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ABSTRACT

Aims. We investigate the contribution of shot-noise and sample variance to uncertainties in the cosmological parameter constraints inferred from
cluster number counts, in the context of the Euclid survey.
Methods. By analysing 1000 Euclid-like light cones, produced with the PINOCCHIO approximate method, we validated the analytical model
of Hu & Kravtsov (2003, ApJ, 584, 702) for the covariance matrix, which takes into account both sources of statistical error. Then, we used
such a covariance to define the likelihood function that is better equipped to extract cosmological information from cluster number counts at the
level of precision that will be reached by the future Euclid photometric catalogs of galaxy clusters. We also studied the impact of the cosmology
dependence of the covariance matrix on the parameter constraints.
Results. The analytical covariance matrix reproduces the variance measured from simulations within the 10 percent; such a difference has no
sizeable effect on the error of cosmological parameter constraints at this level of statistics. Also, we find that the Gaussian likelihood with full
covariance is the only model that provides an unbiased inference of cosmological parameters without underestimating the errors, and that the
cosmology-dependence of the covariance must be taken into account.
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1. Introduction

Galaxy clusters are the most massive gravitationally bound sys-
tems in the Universe (M ∼ 1014−1015 M⊙) of which dark mat-
ter makes up about 85 percent, hot ionized gas 12 percent, and
stars 3 percent (Pratt et al. 2019). These massive structures are
formed by the gravitational collapse of initial perturbations of
the matter density field via a hierarchical process of accreting
and merging of small objects into increasingly massive systems
(Kravtsov & Borgani 2012). Therefore galaxy clusters have sev-
eral properties that can be used to obtain cosmological infor-
mation on the geometry and the evolution of the large-scale
structure of the Universe (LSS). In particular, the abundance
and spatial distribution of such objects are sensitive to the vari-
ation of several cosmological parameters, such as the root mean
square (RMS) mass fluctuation of the (linear) power spectrum
on 8 h−1 Mpc scales (σ8 ) and the matter content of the Universe

⋆ This paper is published on behalf of the Euclid Consortium.

(Ωm ) (Borgani et al. 1999; Schuecker et al. 2003; Allen et al.
2011; Pratt et al. 2019). Moreover, clusters can be observed at
low redshift (out to redshift z ∼ 2), thus sampling the cos-
mic epochs during which the effect of dark energy begins to
dominate the expansion of the Universe; as such, the evolu-
tion of the statistical properties of galaxy clusters should allow
us to place constraints on the dark energy equation of state,
and then detect possible deviations of dark energy from a sim-
ple cosmological constant (Sartoris et al. 2012). Finally, such
observables can be used to constrain neutrino masses (e.g.,
Costanzi et al. 2013, 2019; Mantz et al. 2015; Bocquet et al.
2019; DES Collaboration 2020), the Gaussianity of initial condi-
tions (e.g., Sartoris et al. 2010; Mana et al. 2013), and the behav-
ior of gravity on cosmological scales (e.g., Cataneo & Rapetti
2018; Bocquet et al. 2015).

The main obstacle with regard to the use of clusters as
cosmological probes lies in the proper calibration of system-
atic uncertainties involved in the analyses of cluster surveys.
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First, cluster masses are not directly observed but, instead, they
must be inferred through other measurable properties of clus-
ters, such as the properties of their galaxy population (i.e., rich-
ness, velocity dispersion) or of the intracluster gas (i.e., total gas
mass, temperature, pressure). The relationships between these
observables and clusters masses, referred to as scaling relations,
provide a statistical measurement of masses, but require an accu-
rate calibration in order to correctly relate the mass proxies
with the actual cluster mass. Moreover, scaling relations can be
affected by intrinsic scatter due to the properties of individual
clusters and baryonic physics effects that complicate the cal-
ibration process (Kravtsov & Borgani 2012; Pratt et al. 2019).
Other measurement errors are related to the estimation of red-
shifts and the selection function (Allen et al. 2011). In addi-
tion, there may be theoretical systematics related to modeling
statistical errors: shot-noise, namely the uncertainty due to the
discrete nature of the data, and sample variance, which is the
uncertainty due to the finite size of the survey; in the case of
a “full-sky” survey, the latter is referred to as the cosmic vari-
ance and it illustrates the fact that we are able to observe a single
random realization of the Universe (e.g., Valageas et al. 2011).
Finally, the analytical models describing the observed distribu-
tions, such as the mass function and halo bias, have to be care-
fully calibrated to avoid introducing further systematics (e.g.,
Sheth & Tormen 2002; Tinker et al. 2008, 2010; Bocquet et al.
2015; Despali et al. 2016; Castro et al. 2021).

The study and the control of these uncertainties are fun-
damental for future surveys, which will provide large cluster
samples that will allow us to constrain cosmological parame-
ters with a level of precision much higher than that obtained
so far. One of the main forthcoming surveys is the European
Space Agency (ESA) mission Euclid1, planned for 2022, which
will map ∼15 000 deg2 of the extragalactic sky up to redshift 2
in order to investigate the nature of dark energy, dark mat-
ter, and gravity. Galaxy clusters are among the cosmological
probes to be used by Euclid and the mission is expected to
yield a sample of ∼105 clusters using photometric and spec-
troscopic data and through gravitational lensing (Laureijs et al.
2011; Euclid Collaboration 2019). A forecast of the capabil-
ity of the Euclid cluster survey was performed by Sartoris et al.
(2016), displaying the effect of the photometric selection func-
tion on the number of detected objects and the consequent cos-
mological constraints for different cosmological models. Also,
Köhlinger et al. (2015) showed that weak lensing systematics in
the mass calibration are under control for Euclid, as they will be
limited by the cluster samples themselves.

The aim of this work is to assess the contribution of shot-
noise and sample variance to the statistical error budget expected
for the Euclid photometric survey of galaxy clusters. The expec-
tation is that the level of shot-noise error would decrease due to
the large number of detected clusters, making the sample vari-
ance no longer negligible. To quantify the contribution of these
effects, an accurate statistical analysis is required, which is to be
performed on a large number of realizations of past light cones
extracted from cosmological simulations describing the distribu-
tion of cluster-sized halos. This is made possible using approxi-
mate methods for such simulations (e.g., Monaco 2016). A class
of these methods describes the formation process of dark mat-
ter halos, that is, the dark matter component of galaxy clusters,
through Lagrangian perturbation theory (LPT), which provides
the distribution of large-scale structures in a faster and com-
putationally less expensive way than through “exact” N-body

1 http://www.euclid-ec.org

simulations. As a disadvantage, such catalogs are less accu-
rate and have to be calibrated to reproduce N-body results with
sufficient precision. By using a large set of LPT-based simu-
lations, we tested the accuracy of an analytical model for the
computation of the covariance matrix and defined what the best
likelihood function is for optimizing the extraction of unbiased
cosmological information from cluster number counts. In addi-
tion, we also analyzed the impact of the cosmological depen-
dence of the covariance matrix on the estimation of cosmological
parameters.

This paper is organized as follows: in Sect. 2 we present
the quantities involved in the analysis, such as the mass func-
tion, likelihood function, and covariance matrix. In Sect. 3 we
describe the simulations used in this work, which are dark
matter halo catalogs produced by the PINOCCHIO algorithm
(Monaco et al. 2002; Munari et al. 2017). In Sect. 4, we present
the analyses and the results that we obtained through a study
of the number counts. In Sect. 4.1 (and in Appendix A), we
validate the analytical model for the covariance matrix by com-
paring it with the matrix from the simulations. In Sect. 4.2, we
analyze the effect of the mass and redshift binning on the esti-
mation of parameters, while in Sect. 4.3 we compare the effect
on the parameter posteriors of different likelihood models. In
Sect. 5, we present our conclusions. While this paper is focused
on the analysis relevant for a cluster survey similar in sky cover-
age and depth to that of Euclid, for completeness, we provide in
Appendix B those results that are relevant for present and ongo-
ing surveys.

2. Theoretical background

In this section, we introduce the theoretical framework needed to
model the cluster number counts and derive cosmological con-
straints via Bayesian inference.

2.1. Number counts of galaxy clusters

The starting point for modeling the number counts of
galaxy clusters is given by the halo mass function dn(M, z),
defined as the comoving volume number density of collapsed
objects at redshift z with masses between M and M + dM
(Press & Schechter 1974),

dn(M, z)
d ln M

=
ρ̄m

M
ν f (ν)

d ln ν
d ln M

, (1)

where ρ̄m/M is the inverse of the Lagrangian volume of a halo
of mass, M, and ν = δc/σ(R, z) is the peak height, defined in
terms of the variance of the linear density field smoothed on a
scale of R,

σ2(R, z) =
1

2π2

∫

dk k2 P(k, z) W2
R(k) , (2)

where R is the radius enclosing the mass M = 4π
3 ρ̄mR3, WR(k) is

the filtering function, and P(k, z) the initial matter power spec-
trum, linearly extrapolated to redshift z. The term δc represents
the critical linear overdensity for the spherical collapse and con-
tains a weak dependence on cosmology and redshift that can be
expressed as (Nakamura & Suto 1997):

δc(z) =
3

20
(12π)2/3[1 + 0.012299log10Ωm(z)] . (3)

One of the main characteristics of the mass function is that
when it is expressed in terms of the peak height, its shape is
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nearly universal, meaning that the multiplicity function ν f (ν)
can be described in terms of a single variable and with the
same parameters for all the redshifts and cosmological mod-
els (Sheth & Tormen 2002). A number of parametrizations have
been derived by fitting the mass distribution from N-body sim-
ulations (Jenkins et al. 2001; White 2002; Tinker et al. 2008;
Watson et al. 2013) in order to describe such universality with
the highest possible degree of accuracy. At the present time, a
fully universal parametrization has not yet been found and the
main differences between the various results reside in the def-
inition of halos, which can be based on the Friends-of-Friends
(FoF) and Spherical Overdensity (SO) algorithms (e.g., White
2001; Kravtsov & Borgani 2012) or on the dynamical definition
of the Splashback radius (Diemer 2017, 2020), as well as in the
overdensity at which halos are identified. The need to improve
the accuracy and precision in the mass function parametriza-
tion is reflected in the differences found in the cosmological
parameter estimation, in particular, for future surveys such as
Euclid (Salvati et al. 2020; Artis et al. 2021). Another way to
predict the abundance of halos is the use of emulators, built by
fitting the mass function from the simulations as a function of
cosmology; such emulators are able to reproduce the mass func-
tion within an accuracy of a few percents (Heitmann et al. 2016;
McClintock et al. 2019; Bocquet et al. 2020). The description of
the cluster mass function is further complicated by the presence
of baryons, which have to be taken into account when analyzing
the observational data; their effect must therefore be included in
the calibration of the model (e.g., Cui et al. 2014; Velliscig et al.
2014; Bocquet et al. 2015; Castro et al. 2021).

In this work, we fix the mass function assuming that the
model has been correctly calibrated. The reference mass func-
tion that we assume for our analysis is given as (Despali et al.
2016, hereafter D16)2:

ν f (ν) = 2A

(

1 +
1
ν′p

) (

ν′

2π

)1/2

e−ν
′/2 , (4)

with ν′ = aν2. The values of the parameters are: A = 0.3298,
a = 0.7663, p = 0.2579 (“All z – Planck cosmology” case in
D16). Comparisons with the numerical simulations show depar-
tures from the universality described by this model on the order
of 5−8%, provided that halo masses are computed within the
virial overdensity, as predicted by the spherical collapse model.

Besides the systematic uncertainty due to the fitting model,
the mass function is affected by two sources of statistical error
(which do not depend on the observational process): shot-noise
and sample variance. Shot-noise is the sampling error that arises
from the discrete nature of the data and contributes mainly to
the high-mass tail of the mass function, where the number of
objects is lower, being proportional to the square root of the num-
ber counts. On the other hand, sample variance depends only
on the size and the shape of the sampled volume; it arises as
a consequence of the existence of super-sample Fourier modes,
with wavelengths exceeding the survey size, which cannot be
sampled in the analyses of a finite volume survey. Sample vari-
ance introduces correlation between different mass and redshift
ranges, unlike the shot-noise that only affects objects in the same
bin. For data that is currently available, the main contribution
to the error comes from shot-noise, while the sample variance
term is usually neglected (e.g., Mantz et al. 2015; Bocquet et al.
2019). Nevertheless, upcoming and future surveys will provide

2 In D16, the peak height is defined as ν = δ2
c/σ

2(R, z); in such cases,
the factor of “2” in Eq. (4) disappears.

catalogs with a larger number of objects, making the sample
variance comparable, or even greater, than the shot-noise level
(Hu & Kravtsov 2003). One example is provided by the Dark
Energy Survey (DES Flaugher 2005), where the sample variance
contribution is already taken into account when analyzing cluster
number counts (DES Collaboration 2020; Costanzi et al. 2021).

2.2. Definition of likelihood functions

The analysis of the mass function was performed through
Bayesian inference, by maximizing a likelihood function. The
posterior distribution is explored with a Monte Carlo Markov
chains (MCMC) approach (Heavens 2009), by using a python
wrapper for the nested sampler PyMultiNest (Buchner et al.
2014).

The likelihood commonly adopted in the literature for num-
ber counts analyses is the Poissonian one, which takes into
account only the shot-noise term. To add the sample variance
contribution, the simplest way is to use a Gaussian likelihood. In
this work, we considered the following likelihood functions:

– Poissonian:

L(x | µ) =
Nz
∏

α=1

NM
∏

i=1

µ
xiα

iα
e−µiα

xiα!
, (5)

where xiα and µiα are, respectively, the observed and
expected number counts in the ith mass bin and αth redshift
bin. Here, the bins are not correlated, since shot-noise does
not produce cross-correlation, and the likelihoods are simply
multiplied

– Gaussian with shot-noise only:

L(x | µ, σ) =
Nz
∏

α=1

NM
∏

i=1

exp
{

− 1
2 (xiα − µiα)2/σ2

iα

}

√

2πσ2
iα

, (6)

whereσ2
iα
= µiα is the shot-noise variance. This function rep-

resents the limit of the Poissonian case for large occupancy
numbers

– Gaussian with shot-noise and sample variance:

L(x | µ, C) =
exp

{

− 1
2 (x − µ)T C−1(x − µ)

}

√
2π det[C]

, (7)

where x = {xiα} and µ = {µiα}, while C = {Cαβi j} is the
covariance matrix which correlates different bins due to the
sample variance contribution. This function is also valid in
the limit of large numbers, as the previous one.

We maximize the average likelihood, defined as

lnLtot =
1

NS

NS
∑

a=1

lnL(a) , (8)

where NS = 1000 is the number of light cones and lnL(a) is
the likelihood of the a-th light-cone evaluated according to the
equations described above. The posteriors obtained in this way
are consistent with those of a single light cone but, in principle,
centered on the input parameter values since the effect of cos-
mic variance that affects each realization of the matter density
field is averaged-out when combining all the 1000 light cones;
this procedure makes it easier to observe possible biases in the
parameter posteriors due to the presence of systematics.
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To estimate the differences on the parameter constraints
between the various likelihood models, we quantify the cos-
mological gain using the figure of merit (FoM hereafter,
Albrecht et al. 2006) in the Ωm – σ8 plane, defined as:

FoM(Ωm, σ8) =
1

√
det [Cov(Ωm, σ8)]

, (9)

where Cov(Ωm, σ8 ) is the parameter covariance matrix com-
puted from the sampled points in the parameter space. The FoM
is proportional to the inverse of the area enclosed by the ellipse
representing the 68 percent confidence level and gives a measure
of the accuracy of the parameter estimation: the larger the FoM,
the more precise is the evaluation of the parameters. However, a
larger FoM may not indicate a more efficient method of informa-
tion extraction, but rather an underestimation of the error in the
likelihood analysis.

2.3. Covariance matrix

The covariance matrix can be estimated from a large set of sim-
ulations through the equation:

Cαβi j =
1

NS

NS
∑

m=1

(n(m)
iα
− n̄iα)(n

(m)
jβ
− n̄ jβ) , (10)

where m = 1, . . . ,NS indicates the simulation, n
(m)
i,α

is the num-
ber of objects in the ith mass bin and in the αth redshift bin
for the mth catalog, while n̄i,α represents the same number aver-
aged over the set of NS simulations. Such a matrix describes both
the shot-noise variance, given simply by the number counts in
each bin, and the sample variance contribution, or more aptly,
the sample covariance:

CSN
αβi j = n̄iα δαβ δi j , (11)

CSV
αβi j = Cαβi j −CSN

αβi j , (12)

In reality, the precision matrix C−1 (which has to be included in
Eq. (7)) that is obtained by inverting Eq. (10) is biased due to the
noise generated by the finite number of realizations; the inverse
matrix must therefore be corrected by a factor (Anderson 2003;
Hartlap et al. 2007; Taylor et al. 2013):

C−1
unbiased =

NS − ND − 2
NS − 1

C−1 , (13)

where NS is the number of catalogs and ND the dimension of the
data vector, that is, the total number of bins.

Although the use of simulations allows us to calculate the
covariance in a simple way, numerical estimates of the covari-
ance matrix have some limitations, mainly due to the presence
of statistical noise which can only be reduced by increasing the
number of catalogs. In addition, simulations make it possible to
compute the matrix only at their input cosmology, preventing a
fully cosmology-dependent analysis. To overcome these limita-
tions, we can adopt an analytic prescription for the covariance
matrix (Hu & Kravtsov 2003; Lacasa et al. 2018; Valageas et al.
2011). This involves a simplified treatment of non-linearities, so
that the validity of this approach must be demonstrated by com-
paring it with the simulations. To this end, we consider the ana-
lytical model proposed by Hu & Kravtsov (2003) and validate
its predictions against simulated data (see Sect. 4.1). As stated
before, the total covariance is given by the sum of the shot-noise
variance and the sample covariance,

C = CSN +CSV . (14)

According to the model, such terms can be computed as:

CSN
αβi j = 〈N〉αi δαβ δi j , (15)

CSV
αβi j = 〈Nb〉αi 〈Nb〉β j S αβ , (16)

where 〈N〉αi and 〈Nb〉αi are respectively the expectation values
of number counts and number counts times the halo bias in the
i-th mass bin and α-th redshift bin,

〈N〉αi = Ωsky

∫

∆zα

dz
dV

dz dΩ

∫

∆Mi

dM
dn

dM
(M, z) , (17)

〈Nb〉αi = Ωsky

∫

∆zα

dz
dV

dz dΩ

∫

∆Mi

dM
dn

dM
(M, z) b(M, z) , (18)

with Ωsky = 2π(1 − cos θ), where θ is the field-of-view angle of
the light-cone, and b(M, z) represents the halo bias as a function
of mass and redshift. In the following, we adopt for the halo bias
the expression provided by Tinker et al. (2010). The term S αβ is
the covariance of the linear density field between two redshift
bins,

S αβ = D(zα) D(zβ)
∫

d3k

(2π)3
P(k) Wα(k) Wβ(k) , (19)

where D(z) is the linear growth rate, P(k) is the linear matter
power spectrum at the present time, and Wα(k) is the window
function of the redshift bin, which depends on the shape of the
volume probed. The simplest case is the spherical top-hat win-
dow function (see Appendix A), while the window function for
a redshift slice of a light-cone is given in Costanzi et al. (2019)
and takes the form:

Wα(k) =
4π
Vα

∫

∆zα

dz
dV

dz

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
(i)ℓ jℓ[k r(z)] Yℓm( k̂) Kℓ , (20)

where dV/dz and Vα are, respectively, the volume per unit red-
shift and the volume of the slice, which depend on cosmology.
Also, in the above equation, jℓ[k r(z)] are the spherical Bessel
functions, Yℓm( k̂) are the spherical harmonics, k̂ is the angu-
lar part of the wave-vector, and Kℓ are the coefficients of the
harmonic expansion, such that

Kℓ =
1

2
√
π

for ℓ = 0 ,

Kℓ =

√

π

2ℓ + 1
Pℓ−1(cos θ) − Pℓ+1(cos θ)

Ωsky
for ℓ , 0 ,

where Pℓ(cos θ) are the Legendre polynomials.

3. Simulations

The accurate estimation of the statistical uncertainty associated
with number counts must be carried out with a large set of simu-
lated catalogs representing different realizations of the Universe.
Such a large number of synthetic catalogs can hardly be provided
by N-body simulations, which are capable of producing accu-
rate results but have high computational costs. Instead, the use
of approximate methods, based on perturbative theories, makes
it possible to generate a large number of catalogs in a faster
and far less computationally expensive way compared to N-body
simulations. This comes at the expense of less accurate results:
perturbative theories give an approximate description of parti-
cle and halo displacements that are computed directly from the
initial configuration of the gravitational potential, rather than by
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computing the gravitational interactions at each time step of the
simulation (e.g., Monaco 2016; Sahni & Coles 1995).

PINOCCHIO (PINpointing Orbit-Crossing Collapsed HIer-
archical Objects; Monaco et al. 2002; Munari et al. 2017) is
an algorithm that generates dark matter halo catalogs through
LPT (Moutarde et al. 1991; Buchert 1992; Bouchet et al.
1995) and ellipsoidal collapse (e.g. Bond & Myers 1996;
Eisenstein & Loeb 1995) up to the third order. The code sim-
ulates cubic boxes with periodic boundary conditions, starting
from a regular grid on which an initial density field is generated
in the same way as in N-body simulations. A collapse time is
computed for each particle using ellipsoidal collapse. The col-
lapsed particles on the grid are then displaced with LPT to form
halos, and halos are finally moved to their final positions by
again applying the LPT. The code is also able to build past light
cones (PLC), by replicating the periodic boxes through an “on-
the-fly” process that selects only the halos causally connected
with an observer at the present time, once the position of the
“observer” and the survey sky area are fixed. This method per-
mits us to generate PLC in a continuous way, that is, avoiding
the “piling-up” snapshots at a discrete set of redshifts.

The catalogs generated by PINOCCHIO are able to repro-
duce, within a ∼5−10 percent accuracy, the two-point statistics
on large scales (k < 0.4 h Mpc−1), as well as the linear bias and
the mass function of halos derived from full N-body simula-
tions (Munari et al. 2017). The accuracy of these statistics can
be further increased by re-scaling the PINOCCHIO halo masses
in order to match a specific mass function calibrated against
N-body simulations.

We analyzed 1000 past light cones3 with aperture of 60◦,
that is, a quarter of the sky, starting from a periodic box of
size L = 3870 h−1 Mpc4. The light cones cover a redshift
range from z = 0 to z = 2.5 and contain halos with virial
masses above 2.45 × 1013 h−1 M⊙, sampled with more than
50 particles. The cosmology used in the simulations comes
from Planck Collaboration XVI (2014): Ωm = 0.30711, Ωb =
0.048254, h = 0.6777, ns = 0.96, σ8 = 0.8288.

Before starting our analysis of the catalogs, we performed a
calibration of the halo masses. This step is required both because
the PINOCCHIO accuracy in reproducing the halo mass func-
tion is “only” 5 percent, and because its calibration is performed
by considering a universal FoF halo mass function, whereas D16
define halos based on spherical overdensity within the virial
radius, demonstrating that the resulting mass function is much
nearer to a universal evolution than that of FoF halos.

Masses were re-scaled by matching the halo mass function
of the PINOCCHIO catalogs to the analytical model of D16. In
particular, we predicted the value for each single mass Mi by
using the cumulative mass function:

N(> Mi) = Ωsky

∫

∆z

dz
dV

dz dΩ

∫ ∞

Mi

dM
dn

dM
(M, z) = i , (21)

where i = 1, 2, 3 . . . ; and we assigned such values to the simu-
lated halos, previously sorted by preserving the mass order rank-
ing. During this process, all the thousand catalogs were stacked

3 The PLC can be obtained on request. The list of the available
mocks can be found at http://adlibitum.oats.inaf.it/monaco/
mocks.html; the light cones analyzed are the ones labeled “NewClus-
terMocks”.
4 The Euclid light cones will be slightly larger than our simulations
(about a third of the sky); moreover the survey will cover two separate
patches of the sky, which is relevant to the effect of sample variance.
However, for this first analysis, the PINOCCHIO light cones are suffi-
cient to obtain an estimate of the statistical error that will characterize
catalogs of such sizes and number of objects.

Fig. 1. Halo mass function for the mass calibration of the PINOCCHIO
catalogs. Top panel: comparison between the mass function from the
calibrated (red) and the non-calibrated (blue) light cones, averaged over
the 1000 catalogs, in the redshift bin z = 0.1−0.2. Error bars represent
the standard error on the mean. The black line is the D16 mass func-
tion. Bottom panel: relative difference between the mass function from
simulations and that of D16.

together, which is equivalent to using a 1000 times larger vol-
ume: the mean distribution obtained in this way contains fluctu-
ations due to shot-noise and sample variance that are reduced by
a factor of

√
1000 and can thus be properly compared with the

theoretical one, preserving the fluctuations in each rescaled cata-
log. Otherwise, if the mass function from each single realization
was directly compared with the model, the shot-noise and sam-
ple variance effects would have been washed away.

In our analyses, we considered objects in the mass range
1014 ≤ M/M⊙ ≤ 1016 and redshift range 0 ≤ z ≤ 2; in this
interval, each rescaled light-cone contains ∼3 × 105 halos. We
note that this simple constant mass-cut at 1014 M⊙ provides a
reasonable approximation to a more refined computation of the
mass selection function expected for the Euclid photometric sur-
vey of galaxy clusters (see Fig. 2 of Sartoris et al. 2016; see also
Euclid Collaboration 2019).

In Fig. 1, we show the comparison between the calibrated
and non-calibrated mass function of the light cones, averaged
over the 1000 catalogs, in the redshift bin z = 0.1–0.2. For a
better comparison, in the bottom panel we show the residual
between the two mass functions from simulations and the one
of D16: while the original distribution clearly differs from the
analytical prediction, the calibrated mass function follows the
model at all masses, except for some small fluctuations in the
high-mass end where the number of objects per bin is low.

We also tested the model for the halo bias of Tinker et al.
(2010, hereafter T10) to understand if the analytical prediction
is in agreement with the bias from the rescaled catalogs. The
latter is computed by applying the definition

b2(≥ M, z) =
ξh(r, z; M)
ξm(r, z)

, (22)
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Fig. 2. Comparison between the T10 halo bias and the bias from the
simulations. Top panel: halo bias from simulations at different redshifts
(colored dots), compared to the analytical model of T10 (lighter solid
lines). Bottom panel: fractional differences between the bias from sim-
ulations and from the model.

where ξm is the linear two-point correlation function (2PCF) for
matter and ξh is the 2PCF for halos with masses above a thresh-
old M; we use 10 mass thresholds in the range 1014 ≤ M/M⊙ ≤
1015. We compute the correlation functions in the range of sep-
arations r = 30−70 h−1 Mpc, where the approximation of scale-
independent bias is valid (Manera & Gaztañaga 2011). The error
is computed by propagating the uncertainty in ξh, which is an
average over the 1000 light cones. Since the bias from simula-
tions refers to halos with mass ≥M, the comparison with the T10
model must be made with an effective bias, that is, a cumulative
bias weighted on the mass function:

beff(≥ M, z) =

∫ ∞
M

dM dn
dM

(M, z) b(M, z)
∫ ∞

M
dM dn

dM
(M, z)

. (23)

Such a comparison is shown in Fig. 2, representing the effective
bias from boxes at various redshifts and the corresponding ana-
lytical model, as a function of the peak height (the relation with
mass and redshift is shown in Sect. 2.1). We notice that the T10
model slightly overestimates (underestimates) the simulated data
at low (high) masses and redshifts: the difference is below the 5
percent level over the whole ν range, except for high-ν halos,
where the discrepancy is about 10 percent. At low redshift, this
difference is not compatible with the error on the measurements;
however, such errors underestimate the real uncertainty, as they
do not take into account the correlation between radial bins. We
conclude that the T10 model can provide a sufficiently accurate
prediction for the halo bias of our simulations.

4. Results

In this section, we present the results of the covariance compar-
ison and likelihood analyses. First, we validated the analytical

covariance matrix, described in Sect. 2.3, comparing it with the
matrix from the mocks; this allows us to determine whether the
analytical model correctly reproduces the results of the simula-
tions. Once we verified that we had a correct description of the
covariance, we moved on to the likelihood analysis. First, we
analyzed the optimal redshift and mass binning scheme, which
ensures that we extract the cosmological information in the best
possible way. Then, after fixing the mass and redshift binning
scheme, we tested the effects on parameter posteriors of differ-
ent model assumptions: likelihood model and the inclusion of
sample variance and cosmology dependence.

With the likelihood analysis, we aim to correctly recover
the input values of the cosmological parameters Ωm, σ8 and
log10 As. We directly constrain Ωm and log10 As, assuming flat
priors in 0.2 ≤ Ωm ≤ 0.4 and −9.0 ≤ log10 As ≤ −8.0,
and then derive the corresponding value of σ8; thus, σ8 and
log10 As are redundant parameters, linked by the relation P(k) ∝
As kns and by Eq. (2). All the other parameters are set to the
Planck 2014 values. We are interested in detecting possible
effects on the results that can occur, in principle, both in terms
of biased parameters and over- or underestimating the parameter
errors. The former case indicates the presence of systematics due
to an incorrect analysis, while the latter suggests that not all the
relevant sources of error have been taken into account.

4.1. Covariance matrix estimation

As we mentioned before, the sample variance contribution to the
noise can be included in the estimation of cosmological param-
eters by computing a covariance matrix that takes into account
the cross-correlation between objects in different mass or red-
shift bins. We computed the matrix in the range of 0 ≤ z ≤ 2
with ∆z = 0.1 and 1014 ≤ M/M⊙ ≤ 1016. According to Eq. (13),
since we used NS = 1000 and ND = 100 (20 redshift bins and 5
log-equispaced mass bins), we must correct the precision matrix
by a factor of 0.90.

In the left panel of Fig. 3, we show the normalized sample
covariance matrix, obtained from simulation, which is defined
as the relative contribution of the sample variance with respect
to the shot-noise level,

RSV
αβi j =

CSV
αβi j

√

CSN
ααii

CSN
ββ j j

, (24)

where CSN and CSV are computed from Eqs. (11) and (12). The
correlation induced by the sample variance is clearly detected in
the block-diagonal covariance matrix (i.e., between mass bins),
at least in the low-redshift range where the sample variance
contribution is comparable to, or even greater than the shot-
noise level. Instead, the off-diagonal and the high-redshift diag-
onal terms appear affected by the statistical noise mentioned in
Sect. 2.3, which completely dominates over the weak sample
variance (anti-)correlation.

In the right panel of Fig. 3, we show the same matrix com-
puted with the analytical model: by comparing the two results,
we note that the covariance matrix derived from simulations is
well reproduced by the analytical model, at least for the diagonal
and the first off-diagonal terms, where the former is not domi-
nated by the statistical noise. To ease the comparison between
simulations and model and between the amount of correlation of
the various components, in Fig. 4 we show the covariance from
model and simulations for different terms and components of
the matrix, as a function of redshift: in blue we show the sample
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Fig. 3. Normalized sample covariance between redshift and mass bins (Eq. (24)), from simulations (left) and analytical model (right). The matrices
are computed in the redshift range 0 ≤ z ≤ 1 with ∆z = 0.2 and the mass range 1014 ≤ M/M⊙ ≤ 1016, divided into five bins. Black lines denote the
redshift bins, while in each black square, there are different mass bins.

variance diagonal terms (i.e., same mass and redshift bin, CSV
ααii

),
in red and orange the diagonal sample variance in two different
mass bins (CSV

ααi j
with respectively j = i + 1 and j = i + 2),

in green the sample variance between two adjacent redshift bins
(CSV
αβii
, β = α + 1), and in gray the shot-noise variance (CSN

ααii
). In

the upper panel, we show the full covariance, in the central panel
the covariance normalized as in Eq. (24) and in the lower panel
the normalized difference between model and simulations. Con-
firming what was noticed from Fig. 3, the block-diagonal sample
variance terms are the dominant sources of error at low redshift,
with a signal that rapidly decreases when considering different
mass bins (blue, red, and orange lines), while shot-noise domi-
nates at high redshift. We also observe that the cross-correlation
between different redshift bins produces a small anti-correlation,
whose relevance, however, seems negligible; further considera-
tions about this point are presented in Sect. 4.3.

Regarding the comparison between model and simulations,
the figure clearly shows that the analytical model reproduces with
good agreement the covariance from simulations, with deviations
within 10 percent. Such agreement was expected, as the modes
responsible for the sample covariance are generally very large,
well within the linear regime in which the model operates. Part of
the difference can be ascribed to the statistical noise, which pro-
duces random fluctuations in the simulated covariance matrix. We
also observe, mainly on the block-diagonal terms, a slight under-
estimation of the correlation at low redshift and a small overesti-
mation at high redshift, which are consistent with the under- and
overestimation of the T10 halo bias, shown in Fig. 2. Additional
analyses are presented in Appendix A, where we treat the descrip-
tion of the model with a spherical top-hat window function. Nev-
ertheless, this discrepancy on the covariance errors has negligible
effects on the parameter constraints, at this level of statistics. This
comparison will be further analyzed in Sect. 4.3.

4.2. Redshift and mass binning

The optimal binning scheme should ensure to extract the maxi-
mum information from the data while avoiding the waste of com-
putational resources with an exceedingly fine binning: adopting

Fig. 4. Covariance (upper panel) and covariance normalized to the shot-
noise level (central panel) as predicted by the Hu & Kravtsov (2003)
analytical model (solid lines) and by simulations (dashed lines) for dif-
ferent matrix components: diagonal sample variance terms in blue, diag-
onal sample variance terms in two different mass bins in red and orange,
sample variance between two adjacent redshift bins in green and shot-
noise in gray. Lower panel: relative difference between analytical model
and simulations. The curves are represented as a function of redshift, in
the first mass bin (i = 1).

too large bins would hide some information, while too small
bins can saturate the extractable information, making the anal-
yses unnecessarily computationally expensive. Such saturation
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Fig. 5. Figure of merit for the Poissonian likelihood as a function of the
redshift bin widths, for different numbers of mass bins. The points rep-
resent the average value over five realizations and the error bars are the
standard error of the mean. A small horizontal offset has been applied
to make the comparison clearer.

occurs even earlier when considering the sample covariance,
which strongly correlates narrow mass bins. Moreover, too nar-
row bins could undermine the validity of the Gaussian approxi-
mation due to the low occupancy numbers. This can happen also
at high redshift, where the number density of halos drops fast.

To establish the best binning scheme for the Poissonian like-
lihood function, we analyze the data, assuming four redshift bin
widths ∆z = {0.03, 0.1, 0.2, 0.3} and three numbers of mass bins
NM = {50, 200, 300}. In Fig. 5 we show the FoM as a func-
tion of ∆z, for different mass binning. Since each result of the
likelihood maximization process is affected by some statistical
noise, the points represent the mean values obtained from five
realizations (which are sufficient for a consistent average result),
with the corresponding standard error. About the redshift bin-
ning, the curve increases with decreasing ∆z and flattens below
∆z ∼ 0.2; from this result we conclude that for bin widths .0.2
the information is fully preserved and, among these values, we
choose ∆z = 0.1 as the bin width that maximize the information.
The change of the mass binning affects the results in a minor
way, giving points that are consistent with each other for all
the redshift bin widths. To better study the effect of the mass
binning, we compute the FoM also for NM = {5, 500, 600} at
∆z = 0.1, finding that the amount of recovered information satu-
rates around NM = 300. Thus, we use NM = 300 for the Poisso-
nian likelihood case, corresponding to ∆log10(M/M⊙) = 0.007.

We repeat the analysis for the Gaussian likelihood (with
full covariance), by considering the redshift bin widths ∆z =
{0.1, 0.2, 0.3} and three numbers of mass bins NM = {5, 7, 10},
plus NM = {2, 20} for ∆z = 0.1. We do not include the case of
a tighter redshift or mass binning, to avoid deviating too much
from the Gaussian limit of large occupancy numbers. The result
for the FoM is shown Fig. 6, from which we can state that also
for the Gaussian case the curve starts to flatten around ∆z ∼ 0.2
and ∆z = 0.1 results to be the optimal redshift binning, since
for larger bin widths less information is extracted and for tighter
bins the number of objects becomes too low for the validity of
the Gaussian limit. Also in this case the mass binning does not
influence the results in a significant way, provided that the num-
ber of binning is not too low. We chose to use NM = 5, corre-
sponding to the mass bin widths ∆log10(M/M⊙) = 0.4.

Fig. 6. Same as Fig. 5, for the Gaussian likelihood.

Fig. 7. Contour plots at 68 and 95 per cent of confidence level for
the three likelihood functions: Poissonian (red), Gaussian with only
shot-noise (orange) and Gaussian with shot-noise and sample variance,
with covariance from the analytical model (blue) and from simulations
(black). The gray dotted lines represent the input values of parameters.

4.3. Likelihood comparison

In this section, we present the comparison between the posteri-
ors of cosmological parameters obtained by applying the differ-
ent definitions of likelihood results on the entire sample of light
cones, by considering the average likelihood defined by Eq. (8).

The first result is shown in Fig. 7, which represents the pos-
teriors derived from the three likelihood functions: Poissonian,
Gaussian with only shot-noise and Gaussian with shot-noise and
sample variance (Eqs. (5)–(7), respectively). For the latter, we
compute the analytical covariance matrix at the input cosmology
and compare it with the results obtained by using the covariance
matrix from simulations. The corresponding FoM in the σ8 –
Ωm plane is shown in Fig. 8. The first two cases look almost the
same, meaning that a finer mass binning as the one adopted in
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Fig. 8. Figure of merit for the different likelihood models: Poissonian,
Gaussian with shot-noise, Gaussian with full covariance from simula-
tions, Gaussian with full covariance from the model and Gaussian with
block-diagonal covariance from the model.

the Poisson likelihood does not improve the constraining power
compared to the results from a Gaussian plus shot-noise covari-
ance. In contrast, the inclusion of the sample covariance (blue
and black contours) produces wider contours (and smaller FoM),
indicating that neglecting this effect leads to an underestimation
of the error on the parameters. Also, there is no significant dif-
ference in using the covariance matrix from the simulations or
the analytical model, since the difference in the FoM is below
the level of one percent. This result means that the level of
accuracy reached by the model is sufficient to obtain an unbi-
ased estimation of parameters in a survey of galaxy clusters hav-
ing sky coverage and cluster statistics comparable to that of the
Euclid survey. According to this conclusion, we can use the ana-
lytical covariance matrix to describe the statistical errors for all
following likelihood evaluations.

Having established that the inclusion of the sample variance
has a non-negligible effect on parameter posteriors, we focus
on the Gaussian likelihood case. In Fig. 9, we show the results
obtained by using the full covariance matrix and only the block-
diagonal of such a matrix (Ci jαα), namely by considering shot-
noise and sample variance effects between masses at the same
redshift but with no correlation between different redshift bins.
The resulting contours present small differences, as can be seen
from the comparison of the FoM in Fig. 8: the difference in the
FoM between the diagonal and full covariance cases is about
one third of the effect generated by the inclusion of the full
covariance with respect the only shot-noise cases. This means
that at this level of statistics and for this redshift binning, the
main contribution to the sample covariance comes from the cor-
relation between mass bins, while the correlation between red-
shift bins produces a minor effect on the parameter posteriors.
However, the difference between the two FoMs is not necessar-
ily negligible: for three parameters, a ∼25% change in the FoM
corresponds to a potential underestimate of the parameter error-
bar by ∼10%. The Euclid Consortium is presently requiring that
for the likelihood estimation, approximations should introduce a
bias in parameter errorbars that is smaller than 10%, so as not
to impact the first significant digit of the error. Because the list
of potential systematics at the required precision level is long,

Fig. 9. Contour plots at 68 and 95 per cent of confidence level for the
Gaussian likelihood with full covariance (blue) and the Gaussian like-
lihood with block-diagonal covariance (black). The gray dotted lines
represent the input values of parameters.

it is necessary to avoid any oversimplification that would alone
induce such a sizeable effect. The full covariance is thus required
to properly describe the sample variance effect at the Euclid level
of accuracy.

4.4. Cosmology dependence of covariance

We also investigate if there are differences in using a cosmology-
dependent covariance matrix instead of a cosmology-
independent one. In fact, the use of a matrix evaluated at
a fixed cosmology can represent an advantage by reducing the
computational cost, but may bias the results. In Fig. 10, we
compare the parameters estimated with a cosmology-dependent
covariance (black contours), namely, by recomputing the covari-
ance at each step of the MCMC process, with the posteriors
obtained by evaluating the matrix at the input cosmology
(blue), or assuming a slightly lower or higher value for Ωm,
log10 As and σ8 (red and orange contours, respectively), cho-
sen on the basis of their departures from the fiducial values
of the order of 2σ from Planck Collaboration VI (2020).
Specifically, we fix the parameter values at Ωm = 0.295,
log10 As = −8.685 and σ8 = 0.776 for the lower case and
Ωm = 0.320, log10 As = −8.625 and σ8 = 0.884 for the higher
case. We notice, also from the FoM comparison in Fig. 11, that
there is no appreciable difference between the first two cases. In
contrast, when a wrong-cosmology covariance matrix is used
we can find either tighter or wider contours, meaning that the
effect of shot-noise and sample variance can be either under-
or overestimated. Thus, the use of a cosmology-independent
covariance matrix in the analysis of real cluster abundance data
might lead to under- or overestimated parameter uncertainties
at the level of statistic expected for Euclid. On the contrary,
the use of a cosmology-dependent covariance does not affect
the amount of information obtainable from the data compared
to the input-cosmology case. An alternative way to include
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Fig. 10. Contour plots at the 68 and 95 percent confidence levels for
the Gaussian likelihood evaluated with: a cosmology-dependent covari-
ance matrix (black), a covariance matrix fixed at the input cosmology
(blue) and covariance matrices computed at two wrong cosmologies,
one with lower parameter values (Ωm = 0.295, log10 As = −8.685 and
σ8 = 0.776, red) and one with higher parameter values (Ωm = 0.320,
log10 As = −8.625 and σ8 = 0.884, orange). The gray dotted lines rep-
resent the input values of parameters.

Fig. 11. Figure of merit for the models described in Fig. 10.

the cosmology dependence of the covariance is to perform an
iterative likelihood analysis, in which a cosmology-independent
covariance is updated in every iteration according to the
maximum likelihood cosmology retrieved in the previous step
(Eifler et al. 2009).

5. Discussion and conclusions

In this work, we study some of the theoretical systematics that
can affect the derivation of cosmological constraints from the

analysis of number counts of galaxy clusters from a survey
with its sky-coverage and selection function similar to what
is expected for the photometric Euclid cluster survey. One of
the aims of the paper was to understand whether the inclusion
of sample variance, in addition to the shot-noise error, could
have some influence on the estimation of cosmological parame-
ters at the level of statistics that will be reached by the future
Euclid catalogs. We note that in this work we only consider
uncertainties that do are not related directly to the observa-
tions, thus neglecting the systematics related to the mass esti-
mation; however Köhlinger et al. (2015) state that for Euclid,
the mass estimates from weak lensing would be under control
and, although there would still be additional statistical and sys-
tematic uncertainties due to mass calibration, the analysis of real
catalogs will approach the ideal case considered here.

To describe the contribution of shot-noise and sample vari-
ance, we computed an analytical model for the covariance
matrix, representing the correlation between mass and redshift
bins as a function of cosmological parameters. Once the model
for the covariance has been properly validated, we moved to the
identification of the more appropriate likelihood function to ana-
lyze cluster abundance data. The likelihood analysis has been
performed with only two free parameters, Ωm and log10 As (and
thus σ8), since the mass function is less affected by the variation
of the other cosmological parameters.

Both the validation of the analytical model for the covari-
ance matrix and the comparison between posteriors from dif-
ferent likelihood definitions are based on the analysis of an
extended set of 1000 Euclid-like past light cones generated
with the LPT-based PINOCCHIO code (Monaco et al. 2002;
Munari et al. 2017).

The main results of our analysis can be summarized as
follows.
– To include the sample variance effect in the likelihood anal-

ysis, we computed the covariance matrix from a large set of
mock catalogs. Most of the sample variance signal is con-
tained in the block-diagonal terms of the matrix, giving a
contribution larger than the shot-noise term, at least in the
low-mass and low-redshift regime. On the other hand, the
anti-correlation between different redshift bins produces a
minor effect with respect to the diagonal variance.

– We computed the covariance matrix by applying the analyt-
ical model by Hu & Kravtsov (2003), assuming the appro-
priate window function, and verified that it reproduces the
matrix from simulations with deviations below the 10 per-
cent level accuracy; this difference can be ascribed mainly
to the non-perfect match of the T10 halo bias with the one
from simulations. However, we verified that such a small
difference does not affect the inference of cosmological
parameters in a significant way, at the level of statistic of
the Euclid survey. Therefore, we conclude that the analyti-
cal model of Hu & Kravtsov (2003) can be reliably applied
to compute a cosmology-dependent, noise-free covariance
matrix, without requiring a large number of simulations.

– We established the optimal binning scheme to extract the
maximum information from the data, while limiting the com-
putational cost of the likelihood estimation. We analyzed the
halo mass function with a Poissonian and a Gaussian like-
lihood, for different redshift- and mass-bin widths and then
computed the figure of merit from the resulting contours in
Ωm – σ8 plane. The results show that for both the Poissonian
and the Gaussian likelihood, the optimal redshift bin width is
∆z = 0.1: for larger bins, not all the information is extracted;
while for smaller bins, the Poissonian case saturates and
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the Gaussian case is no longer a valid approximation. The
mass binning affects less the results, provided an overly low
number of bins is not selected. We decided to use NM = 300
for the Poissonian likelihood and NM = 5 for the Gaussian
case.

– We included the covariance matrix in the likelihood analysis
and demonstrated that the contribution to the total error bud-
get and the correlation induced by the sample variance term
cannot be neglected. In fact, the Poissonian and Gaussian
with shot-noise likelihood functions show smaller error-
bars with respect to the Gaussian with covariance likeli-
hood, meaning that neglecting the sample covariance leads
to an underestimation of the error on parameters, at the
Euclid level of accuracy. As shown in Appendix B, this result
holds also for the eROSITA survey, whereas it is not valid for
present surveys like Planck and SPT.

– We verified that the anti-correlation between bins at different
redshifts produces a minor, but non-negligible effect on the
posteriors of cosmological parameters at the level of statis-
tics reached by the Euclid survey. We also established that
a cosmology-dependent covariance matrix is more appropri-
ate than the cosmology-independent case, which can lead to
biased results due to the wrong quantification of shot-noise
and sample variance.

One of the main results of the analysis presented here is that for
the next generation surveys of galaxy clusters, such as Euclid,
sample variance effects need to be properly included, as they are
being shown as one of the main sources of statistical uncertainty
in the cosmological parameters estimation process. The correct
description of sample variance is guaranteed by the analytical
model validated in this work.

This analysis represents the first step toward providing all
the necessary ingredients for an unbiased estimation of cosmo-
logical parameters from the number counts of galaxy clusters. It
has to be complemented with the characterization of the other
theoretical systematics, for instance, one that is related to the
calibration of the halo mass function, and observational system-
atics related to the mass-observable relation and to the cluster
selection function.

To further improve the extractable information from galaxy
clusters, the same analysis will be extended to the cluster-
ing of galaxy clusters by analyzing the covariance of the
power spectrum or of the two-point correlation function. Once
all the systematics are calibrated, so as to properly combine
two such observables (Schuecker et al. 2003; Mana et al. 2013;
Lacasa & Rosenfeld 2016), number counts and clustering of
galaxy clusters will provide valuable observational constraints,
complementary to those of the other two main Euclid probes,
namely, galaxy clustering and cosmic shear.
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Appendix A: Covariance on spherical volumes

Fig. A.1. Normalized sample covariance between mass bins from simu-
lations (top) and our analytical model (center), computed for 106 spher-
ical sub-boxes of radius R = 200 h−1 Mpc at redshift z = 0.506 and in
the mass range of 1014 ≤ M/M⊙ ≤ 1016. Bottom panel: relative differ-
ence between simulations and model for the diagonal elements of the
sample covariance matrix (blue) and for the shot-noise (red).

We tested the Hu & Kravtsov (2003) model in the simple case
of a spherically symmetric survey window function to quantify
the level of agreement between this analytical model and results

Fig. A.2. Sample variance level with respect to the shot-noise, in the
lowest mass bin, as a function of the filtering scale R, at different red-
shifts.

from LPT-based simulations, before applying it to the more com-
plex geometry of the light cones. The analytical model is simpler
than the one described in Sect. 4.1, as in this case, we consider
only the correlation between mass bins at the fixed redshift of a
PINOCCHIO snapshot; for the sample covariance, Eq. (16) then
becomes

CSV
i j = 〈Nb〉i 〈Nb〉 j σ2

R , (A.1)

where the variance σ2
R

is given by Eq. (2), which contains the
Fourier transform of the top-hat window function

WR(k) = 3
sin(kR) − kR cos(kR)

(kR)3
. (A.2)

The matrix from simulations is obtained by computing
spherical random volumes of fixed radius from 1000 periodic
boxes of size L = 3870 h−1 Mpc at a given redshift; the number
of spheres was chosen in order to obtain a high number of (sta-
tistically) non-overlapping sampling volumes from each box and
thus depends on the radius of the spheres. The resulting covari-
ance, computed by applying Eq. (10) to all sampling spheres, has
been compared with the one from the model, with the filtering
scale, R, equal to the radius of the spheres.

In Fig. A.1 we show the resulting normalized matrices com-
puted for R = 200 h−1 Mpc, with 103 sampling spheres for each
box. The redshift is z = 0.506, and we used five log-equispaced
mass bins in the range of 1014 ≤ M/M⊙ ≤ 1015 plus one bin
for M = 1015 − 1016 M⊙. For a better comparison, in the lower
panel, we show the normalized difference between the simula-
tions and model, for the diagonal sample variance terms and for
the shot-noise. We notice that the predicted variance is in agree-
ment with the simulated one with a discrepancy lower than 2 per-
cent. We also notice a slight underestimation of the covariance
predicted by the model at low masses and a slight overestimation
at high masses. We ascribe this to the modeling of the halo bias,
whose accuracy is affected by scatter at the few percent level
(Tinker et al. 2010).

In Fig. A.2 we show the (maximum) sample variance con-
tribution relative to the shot-noise level, as a function of the
filtering scale, for different redshifts. The curves show that the
level of sample variance is lower at high redshift, where the shot-
noise dominates due to the small number of objects. Instead, at
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low redshift (z < 1) the sample variance level is even higher
than the shot-noise one, and increase as the radius of the spheres
decrease; this means that, at least at low redshift where the vol-
umes of the redshift slices in the light cones are small, such a
contribution cannot be neglected, not to introduce systematics or
underestimate the error on the parameter constraints.

Appendix B: Application to other surveys

We repeated the likelihood comparison by mimicking other
surveys of galaxy clusters, which differ in their volume sam-
pled and their mass and redshift ranges. More specifically, we
consider a Planck-like (Tauber et al. 2010) and an SPT-like
(Carlstrom et al. 2011) cluster survey, both selected through the
Sunyaev–Zeldovich effect, which represent two of the main cur-
rently available cluster surveys. We also analyse an eROSITA-
like (Predehl 2014) X-ray cluster sample, an upcoming survey
that, although not reaching the level of statics that will be pro-
vided by Euclid, will produce a much larger sample than current
surveys.

The light cones have been extracted from our catalogs, by
considering the properties (aperture, selection function, redshift
range) of the three surveys, as provided by Bocquet et al. (2016,
see Fig. 4 in their paper)5.

The properties of the surveys are as follows:
– SPT-like sample: we consider light cones with an area of

2500 deg2, containing halos with redshifts z> 0.25 and
masses M500c ≥ 3 × 1014 M⊙. We obtain catalogs with
∼ 1100 objects. We analyze the redshift range 0.25 ≤ z ≤ 1.5
with bins of width ∆z = 0.2 and the mass range 3 × 1014 ≤
M500c/M⊙ ≤ 3 × 1015, divided in ten bins for the Poissonian
case and three bins for the Gaussian case.

– Planck-like sample: we use the redshift-dependent selection
function shown in the reference paper. Since the aperture of
the Planck survey is about twice the size of that of Euclid,
we stack together two light cones to obtain a Planck-like
light-cone; each of the 500 resulting samples contains ∼650
objects. We consider the redshift range of 0 ≤ z ≤ 0.8 with
∆z = 0.25 and mass range 1014 ≤ Mvir/M⊙ ≤ 1016; the
number of mass bins varies for different redshift bins due to
the redshift-dependent selection function, and it is chosen in
order to have non-empty bins at each redshift (at least ten
objects per bin).

– eROSITA-like sample: we select halos according to the
redshift-dependent selection function given by M500c(z) ≥
2.3 z × 1014 M⊙, with a mass cut at 7 × 1013 M⊙. We ana-
lyze the redshift range 0 ≤ z ≤ 2 with ∆z = 0.1 and the
mass range 1014 ≤ Mvir/M⊙ ≤ 1016 with binning defined in
order to have non-empty redshift bins, as for the Planck case.
Also in this case, we stack together four PINOCCHIO light
cones to create a full-sky eROSITA light-cone, obtaining
250 samples containing ∼2 × 105 objects. For the purpose
of this analysis, we did not include any sensitivity mask to
account for the different depths of different surveyed area,
due to the eROSITA scanning strategy.

In Fig. B.1, we show the distribution of cluster masses of the
three samples with their selection function, for comparison to
the full Euclid -like catalog. For both SPT and Planck, despite
the different selection functions that favour different mass and

5 Masses in the paper are defined at the overdensity ∆ = 500 with
respect to the critical density; the conversion to virial masses has been
performed with the python package hydro_mc (https://github.
com/aragagnin/hydro_mc).

Fig. B.1. Mass distribution of the three samples extracted from a single
light-cone, with the respective selection functions: Planck in green, SPT
in red and eROSITA in orange, overplotted to the full Euclid sample in
blue.

Fig. B.2. Contour plots at 68 and 95 per cent of confidence level for the
Poissonian (red) and Gaussian (blue) likelihood for the SPT-like (top)
and Planck -like (bottom) samples. The gray dotted lines represent the
input values of parameters.
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redshift ranges, the number of objects is low, so we expect
shot-noise to be the main source of uncertainty. In contrast,
the eROSITA sample contains a larger number of halos, which
should lower the level of shot-noise and make the sample vari-
ance non-negligible.

In Fig. B.2, we show the resulting average contours for
the Planck and SPT samples, obtained with the Poissonian and
Gaussian (full covariance) likelihood functions. In both the
cases, the contours from the Gaussian case coincide with the
Poissonian ones, confirming that for their survey properties,
which produce a low number of objects, the shot-noise domi-
nates over the sample variance. Thus, the use of the Poissonian
likelihood still represents a good approximation that does not
introduce significant differences at the level of statistics given by
the present surveys. Moreover, no systematic effects related to
uncertainties in the relation between mass and observable (inte-
grated Compton-y parameter in this case), have been included
in the analysis. Unlike Euclid, for these surveys such an uncer-
tainty is expected to dominate the resulting uncertainty on the
cosmological parameters (Bocquet et al. 2015), thus making the
choice of the likelihood function conservative, since the posteri-
ors would be larger and the effect of theoretical systematics less
significant.

In Fig. B.3, we show the same result for the eROSITA case.
We note that there is a large difference between the Poisso-
nian and the Gaussian case, due to the inclusion of the sam-
ple variance effect. Such a difference can be ascribed to the
mass selection of the survey, which makes the Gaussian contours
wider due to the fact that for an X-ray selection, the statistics
of counts is dominated by low-redshift-and-low-mass objects
distributed within a relatively small volume, which makes the

Fig. B.3. Contour plots at 68 and 95 per cent of confidence level for
the Poissonian (red) and Gaussian (blue) likelihood for the eROSITA-
like sample. The gray dotted lines represent the input values of
parameters.

contribution of sample variance becoming comparable to, or
dominant over, the shot-noise.
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