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ABSTRACT

Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of
their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band
photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual
development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates
and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2−2.6 redshift range that the Euclid mission
will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was
divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample,
containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and
a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological
analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-
accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers,
that is to say sources for which the photo-z deviates by more than 0.15(1 + z) from the spectroscopic-redshift (spec-z). We also show that, while
all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find
that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts,
for example z > 1. However they generally perform better than template-fitting methods at low redshift (z < 0.7), indicating that template-fitting
methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness
of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid).
Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning
results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select
between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.
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1. Introduction

The estimation of galaxy redshifts through their photometry,
or photometric redshifts (photo-zs), has evolved significantly
since the concept was first proposed. The earliest attempts
to determine redshifts from photometry used empirical rela-
tions (e.g., Baum 1962; Loh & Spillar 1986; Connolly et al.
1995), which then evolved into template-fitting of the photom-
etry (e.g., Puschell et al. 1982; Koo 1985; Lanzetta et al. 1996;
Arnouts et al. 1999; Bolzonella et al. 2000). More recently,
machine-learning algorithms have been used, based purely
on photometry (e.g., Firth et al. 2003; Tagliaferri et al. 2003;
Collister & Lahav 2004), possibly combining photometric and
morphological information (e.g., Way et al. 2009; Singal et al.
2011; Gomes et al. 2018; Soo et al. 2018), and even directly fed
with image cutouts of the sources (e.g., D’Isanto & Polsterer
2018; Pasquet et al. 2019). Photometric redshifts were first used
to complement spectroscopic-redshifts (spec-z) when the lat-
ter were not available, and they subsequently became a major
tool used in modern cosmological surveys to compute redshifts
for large numbers of sources. For instance, the Dark Energy
Survey (DES; Flaugher 2005), the Kilo-Degree Survey (KiDS;
de Jong et al. 2013), the Hyper Suprime Cam Subaru Strate-
gic Program (HSC-SSP; Aihara et al. 2018), the Euclid survey
(Laureijs et al. 2011), the Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST; Ivezić et al. 2019), and the
Roman Space Telescope survey (Akeson et al. 2019) all rely
or will rely on photo-zs to carry out their main science goals.
Salvato et al. (2019) present a review of the various ways to com-
pute photo-zs and the challenges these large surveys face.

For cosmological applications, the quality of photo-z mea-
surements is important, since constraints on cosmological
parameters obtained by photometric surveys depend on their pre-
cision and their accuracy. The performance of photo-z determi-
nation depends on several factors (e.g., the set of filters and their
depths, the quality of the photometry, the correction of observa-
tional effects, etc.), among which the algorithm plays a key role.
For this reason, a large variety of photo-z codes have been devel-
oped using different approaches for the problem, and a great deal
of work is ongoing to improve these methods.

Tests comparing the results of several methods can be car-
ried out to assess state-of-the-art algorithm performance and
to identify possible improvements. Such tests have been per-
formed on different sets of data, including: Hogg et al. (1998)
on the Hubble Deep Field North; Hildebrandt et al. (2010) on
the photo-z Accuracy Testing (PHAT) contest based on simula-
tions and Great Observatories Origins Deep Survey (GOODS;
Giavalisco et al. 2004) data; Abdalla et al. (2011) on the SDSS-
DR6 Luminous Red Galaxies sample; Dahlen et al. (2013) on
the Cosmic Assembly Near-infrared Deep Extragalactic Legacy
Survey (CANDELS; Grogin et al. 2011); Tanaka et al. (2018) on
the HSC-SSP data-release 1; and Schmidt et al. (2020) on simu-
lated data.

The Euclid survey (Laureijs et al. 2011) is a large photo-
metric and spectroscopic survey, which is planned to cover
15 000 deg2 of the northern and southern extragalactic sky with
a 1.2 m-diameter space telescope. Euclid’s main goal is to inves-
tigate the Universe’s accelerating expansion through two main
probes, baryonic acoustic oscillations and weak-lensing tomog-
raphy. The latter probe requires determination of the shapes
and redshifts of galaxies. The measurement of source shapes
will be performed using a wide visible band (VIS) covering
540−920 nm. For the determination of the photo-zs, Euclid will
also perform near-infrared (NIR) photometric observations, in
Y , J, and H bands (960−2000 nm), complemented by optical

ground-based external observations (EXT) in u, g, r, i and z
bands. Laureijs et al. (2011) present the requirements that the
Euclid photo-zs must meet in order to achieve the desired figure
of merit (FoM) for the science goals. The choice of the methods
to derive the photo-zs is driven by these requirements. Therefore,
the Euclid photo-z team has designed a test for photo-z methods
using a photometry and filter set defined specifically for Euclid.
Several photo-z codes, most of them being developed by mem-
bers of the Euclid Collaboration, have been applied to a realistic
set of Euclid-like data obtained from images of the COSMOS
field (Scoville et al. 2007). This field was chosen because of its
large collection of spectroscopic-redshifts, required by machine-
learning algorithms to perform efficiently.

As in Hogg et al. (1998) and Hildebrandt et al. (2010), we
have set up a blind test of the performance of the photo-z meth-
ods. They are evaluated using standard estimators, as well as new
estimators defined specifically for Euclid. However, because the
final complementary optical-photometry data sets are expected
to be deeper and cover a broader wavelength range in the late
stages of the Euclid mission than those available here, we do
not expect to meet the photo-z requirements; we can only com-
pare the relative performance of the different algorithms. In
this challenge, we focus on the precision (the scatter) of the
results and the fraction of catastrophic failures, but not on the
accuracy (the bias) of the photo-zs. We assume that the Euclid
photo-zs can be calibrated and therefore that the bias can be
removed, for instance using the complete calibration of the
color-redshift relation (C3R2; Masters et al. 2015, 2017, 2019;
Euclid Collaboration 2020). The precision of photo-zs is nev-
ertheless extremely important for the success of tomographic
analyses, because the scatter makes the bins overlap in true-
redshift space; hence the larger the scatter, the larger the degen-
eracy between the weak-lensing signal in the different bins. If too
large, this degeneracy would effectively prevent us from study-
ing the evolution of the dark-energy properties across the differ-
ent epochs of the Universe.

The point of this challenge is first to help the Euclid photo-
z team to define the strategy of the Euclid photo-z pipeline to
achieve the photo-z requirements. It also aims to provide clues
on ways to improve photo-z method performance by comparing
the pros and cons of different approaches.

2. Data

We built a Euclid-like wide-survey data set from real photomet-
ric data matched as far as possible to the characteristics of the
future Euclid survey. However, some unavoidable differences are
present. First the broad VIS band does not exist in any other sur-
vey and thus cannot be simulated from existing data. Also, the
ground-based optical data we have used (the DES survey; see
Sect. 2.1.2) do not contain any u-band observations, although we
expect to have such observations over most of the Euclid survey.
In addition, deeper ground-based data are expected to be avail-
able in the late stage of the survey. Finally, the available NIR
images have a lower resolution than Euclid will have. For these
reasons, this challenge cannot be interpreted as a test of the abso-
lute performance of the photo-z codes, but only as a comparison
of the different algorithm under similar conditions.

2.1. Images

The data set is composed of mosaics in eight different bands
(g, r, i, z, Y , J, H, and VIS-like) from three different surveys
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Fig. 1. Transmission curves of the eight filters used in the challenge.
The effects of instrumental throughput and atmosphere are included in
the transmission.

of the COSMOS field. The area covered by the images is
∼1.2× 1.2 deg2. The transmission curves of the filters in these
bands are shown in Fig. 1. All the mosaics have been rescaled
to the same pixel scale (i.e., 0′′.1 per pixel). Table 1 shows the
properties of the different mosaics.

2.1.1. VIS-like image

The VIS-like mosaic has been emulated using ACS F814W
images1 acquired by the Hubble Space Telescope (HST,
Koekemoer et al. 2007; Massey et al. 2010). It has been gener-
ated by re-binning and smoothing the HST images to the Euclid
pixel scale and resolution (0′′.1 px−1), and adding random Gaus-
sian noise to match the planned Euclid VIS depth. The zero-
point determination is described in Bohlin (2016).

Both the scientific image and rms map have been created
using dedicated simulation software (see Appendix A for more
information). Although the VIS-like image has the required
depth and resolution, the F814W filter (0.7−0.95 µm) is nar-
rower than the VIS one (0.54−0.92 µm).

2.1.2. EXT- like images

The EXT-like ground-based data set in the g, r, i, and z bands is
composed of coadded images from publicly available data in the
COSMOS field, obtained by a Dark Energy Camera (DECam)
community program2. The mosaics were created using the Cos-
mology Data Management system (CosmoDM, Mohr et al. 2012;
Desai et al. 2012, 2015; Hennig et al. 2017).

The data processing and calibration follow the standard
procedure, as outlined in Hennig et al. (2017), where the
single-epoch images are astrometrically calibrated to 2MASS
(Skrutskie et al. 2006) and internally photometrically calibrated
using stellar sources that are common between pairs of overlap-
ping images. Masking of transient artifacts is applied using the
method described in Desai et al. (2016). The images are coadded
and resampled onto the Euclid pixel grid (0′′.1 px−1). Table 1 lists

1 http://irsa.ipac.caltech.edu/data/COSMOS/images/acs_

mosaic_2.0/
2 Data available on http://archive1.dm.noao.edu/; program
number: 2013A-0351.

the properties of the DECam coadded images prepared for this
work.

2.1.3. NIR-like images

The NIR images (Y , J, and H) were produced by Terapix as part
of the UltraVISTA release 13 (McCracken et al. 2012), and were
resampled onto the Euclid pixel grid. These images have similar
depths to those quoted in the Euclid Red Book (Laureijs et al.
2011), so it was decided not to add any additional noise. It must
be noted, however, that the Y , J, and H filters differ signifi-
cantly from the equivalent Euclid filters since the Euclid ones
are designed to leave no gap between the filters and the Euclid
H band extends up to 2 µm. Table 1 shows the properties of
the NIR-like coadded images. More details on the UltraVISTA
images can be found in McCracken et al. (2012).

2.2. Photometry

Source detection was performed on the VIS-like image. The
PSF of all images were homogenized to the g-band one,
which has the poorest resolution among the eight images.
The fluxes were extracted from the images using SExtractor
2.19.5 (Bertin & Arnouts 1996) in dual-image mode. Total flux
measurements were performed on the VIS-like image from
SExtractor FLUX_AUTO counts. Fluxes in the other bands were
measured in apertures on PSF-matched images. The conversion
between counts in band X, CX , as measured by SExtractor,
and fluxes, FX , in µJy was performed using

FX = CX 100.4(23.9−ZPX ). (1)

The zero-points (ZPX) of band X can be found in Table 1.
Aperture fluxes on the PSF-matched images were computed

in circular apertures of n times the flux profile full width at half
maximum (FWHM) of the PSF in the g-band image. The flux
in each band was scaled to total flux according to the following
equation:

FX,tot =

(

FX,aper

FVIS,aper

)

FVIS,tot, (2)

where FX,aper is the measured aperture flux in band X for which
the PSF has been matched to the one of the g-band, FVIS,aper is
the aperture flux in the VIS-like-band with PSF matched to the
g-band one, and FVIS,tot is the total flux extracted in the VIS-
like-band with its original PSF. Fluxes were obtained for three
different apertures sizes, with n = 1, 2, and 3 times the FWHM
of the g-band PSF. Flux uncertainties were also scaled on the
basis of the ratio between the total VIS-like flux and the VIS-
like PSF-matched one measured in an aperture:

Ferr,X,tot = (Ferr,X,aper)
FVIS,tot

(FVIS,aper)
, (3)

where Ferr,X,aper is the aperture flux error in band X.
To take into account pixel correlations coming from the

resampling, which underestimate the measured flux errors, the
errors were corrected according to the difference measured in 2′′

diameter apertures between the sky background noise and the
mean variance computed from the weight maps. The corrections
(multiplicative factors on flux errors) are given in Table 1.

3 http://www.eso.org/sci/observing/phase3/data_

releases/ultravista_dr1.html
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Table 1. Properties of the Ext-like, NIR-like, and VIS-like images used to generate the “Euclid” mosaics.

PSF-FWHM Depth Native pixel scale Zero-point Error correction factor
[arcsec] [AB mag, 10σ] [arcsec pixel−1] [AB mag]

g 1.250 24.20 0.27 31.90 1.247
r 1.151 23.85 0.27 32.32 1.259
i 1.005 22.96 0.27 30.19 1.380
z 0.807 22.45 0.27 31.26 1.191
Y 0.855 23.81 0.15 30.00 2.884
J 0.831 23.59 0.15 30.00 2.582
H 0.800 23.13 0.15 30.00 2.377
VIS-like 0.200 24.50 0.03 25.49 1.038
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Fig. 2. Distribution of the full sample of reliable redshifts.
Spectroscopic-redshifts are in blue (27 872 sources), while Laigle et al.
(2016) 30-band photo-zs are in orange (107 267 sources).

2.3. Catalog

All objects detected by SExtractor are included in the cata-
log. Objects with problematic photometry (mostly located at the
borders of masked regions), bad SExtractor flags, or with zero
weight in at least in one of the weight maps (mostly objects out-
side the near-IR footprint) have been flagged. Galactic extinc-
tion correction factors for the fluxes in all bands, derived from
Schlegel et al. (1998), are also provided for all sources but were
not applied directly to the extracted photometry.

The catalog is divided into two regions based on right ascen-
sion α, defining two sub-catalogs: the calibration catalog, with
α > 150◦.125; and the validation catalog, with α ≤ 150◦.125. The
first catalog is used for the calibration of the different methods to
be tested, and the second one is used to assess the performance of
all the codes. The number of sources is 198 435 in the calibration
sample and 192 864 in the validation sample.

Both photometric catalogs have been matched to the mas-
ter spectroscopic catalog maintained by M. Salvato, which
is available within the COSMOS collaboration and contains
approximately 50 000 objects (including around 30 000 with
high-confidence flags), which serves as our primary reference
to measure photo-z performance. Only the spec-zs for the cali-
bration sample are provided as part of the challenge.

In addition to spectroscopic-redshifts, we matched the photo-
metric catalog with the highly reliable photo-zs from Laigle et al.
(2016, hereafter L15) that have been obtained using deep,
30-band photometry (scatter σ = 0.01 and outlier fraction
η = 1.7% for 22 < iAB < 23 sources). Figure 2 compares the

distribution in redshift of the spec-zs and of the L15 photo-zs.
The 30-band photo-zs are also included in the calibration sample
and can be used to calibrate the different methods.

Stars and active galactic nuclei (AGN) in the field are sep-
arated from the galaxies by matching our catalog to the point
source catalog from Leauthaud et al. (2007), the L15 catalog,
and the catalog of X-ray detected AGN from Marchesi et al.
(2016). Objects are classified as stellar if they are flagged
as such in Leauthaud et al. (2007), or when the spec-zs or
the L15 photo-zs are consistent with 0 and the SExtractor
FLUX_RADIUS_DETECTmeasurements are smaller than 1.5 pixel.
Sources with X-ray detections are flagged as AGNs.

2.4. Euclid shear sample

Unless specified, we focus on the sources in the Euclid shear
sample. This sample is defined by the set of galaxies with a
detection in the VIS-like band with signal-to-noise ratio S/N >
10, with mVIS < 24.5, that are not flagged as having poor
photometry, and that are not flagged as AGNs. In addition, galax-
ies in the Euclid shear sample must have a photo-z in the range
0.2 < zphot ≤ 2.6, meaning that the detailed composition of this
sample is method dependent.

3. Methods

Thirteen different methods have been tested on the data set (see
Table 2 for a summary). In this section we provide brief descrip-
tions of the algorithms and of the configurations that were used.
A requirement of the challenge is that all methods should pro-
vide photo-z point estimates (a single value representative of the
PDZ, e.g., the mean, the median, the mode, etc.), a probability
distribution of the redshift (PDZ), as well as a usability flag (USE
flag equals to 0 or 1) for all sources in the validation catalog.
This usability flag, indicating whether the participant considers
the photo-z estimate reliable or not, is defined freely by the par-
ticipants. The results for rejected objects with USE = 0 are not
accounted in the computation of the metrics. In the spirit of the
challenge, the choices for the configuration of the different meth-
ods using the calibration catalog data were made independently
by the subgroups of authors that ran the codes.

3.1. Le Phare

Le Phare (Arnouts et al. 2002; Ilbert et al. 2006) is a template-
fitting method. The photo-zs for this work were derived fol-
lowing the recipes outlined in Ilbert et al. (2009). Thirty-three
spectral energy distribution (SED) templates were used: the 31
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Table 2. Summary of the different methods compared in this work.

Type Rejection

Le Phare Template-fitting Weak
CPz Random forest classification+ template-fitting Weak
Phosphoros Template-fitting No
EAzY Template-fitting Strong
METAPHOR Machine-learning: neural network Strong
ANNz Machine-learning: neural network No
GPz Machine-learning: Gaussian processes Weak
GBRT Machine-learning: boosted decision trees Weak
RF Machine-learning: random forest No
Adaboost Machine-learning: boosted decision trees No
DNF Machine-learning: nearest neighbor Strong
frankenz Machine-learning: nearest neighbor Strong
NNPZ Machine-learning: nearest neighbor No

Notes. Columns are: the name of the code, the type of the approach (template-fitting or machine-learning) and whether a rejection of the results
is applied or not. We qualify as strong a rejection of more than 15% of the full spectroscopic sample (more than 10 594 sources remaining; see
Table B.1), otherwise it is considered to be a weak one.

COSMOS templates (Ilbert et al. 2009), that includes elliptical
and spiral galaxies from the Polletta et al. (2007) library (some
of them being linearly interpolated to refine the sampling in
color-redshift space) and young and blue star-forming galaxies
whose templates were generated with Bruzual & Charlot (2003)
stellar population synthesis models; and two templates of ellip-
tical galaxies generated with an exponentially decaying star-
formation history (SFH; following Ilbert et al. 2013). Extinction
was added as a free parameter (EB−V < 0.5) on templates of
type Sc and bluer. The Calzetti et al. (2000) attenuation curves
were considered, adding a possible bump at 2175 Å, as well as
the Prevot et al. (1984) attenuation curve. Emission lines were
added to the templates using an empirical relation between UV
light and emission line fluxes (Ilbert et al. 2009). Line fluxes
were allowed to vary by a factor 2, but without changing the
emission line ratios.

In the fit of the 2-FWHM photometry, a minimum error of
0.01 mag for all the visible bands was applied, and a minimum
error of 0.03 mag for all the NIR Euclid bands was applied. A
cut in absolute magnitude was applied, discarding all solutions
with galaxies brighter than Mg = −24. An optimization of the
zero-points was made using the method of Ilbert et al. (2006).
Offsets as large as 0.07 mag were applied to two bands, namely
the i and Y bands.

Redshift point estimates are given as the median of the
marginalized PDZ. All sources with a 68% confidence inter-
vals around the median larger than 0.3(1 + z) were flagged with
USE = 0.

3.2. CPz

Classification-aided photometric-redshift estimation (CPz;
Fotopoulou & Paltani 2018) is a hybrid approach to com-
pute photometric redshifts. This methods uses random forest
(Breiman 2001) to assign each object its optimal class, and then
uses traditional SED fitting (Le Phare; Arnouts et al. 1999) for
the photometric-redshift estimations. The goal of this method
is to use a restricted library of templates optimized for each of
the galaxy classes considered, aiming to reduce degeneracies
between models. It can be considered as a generalization of the
approach described in Salvato et al. (2011).

The data were split into three equal parts, used for training,
validation, and testing, respectively. Three distinct random forest
classifiers were trained to assign each object into: (i) star versus
not star; (ii) one of the five galaxy classes (passive, starforming,
starburst, AGN, or QSO); and (iii) photometric redshift outlier.
All models were fit to the data and labels were assigned based on
the SEDs that provide the best photometric redshifts. The galaxy
models (passive, starforming, starburst) are the 31 COSMOS
templates used in Ilbert et al. (2009), while the AGN and QSO
templates are from Salvato et al. (2011). A detailed description
of the model set up can be found in (Fotopoulou & Paltani 2018,
Case III). Briefly, models were generated at 0 < z < 6 with
∆z = 0.01. Attenuation values EB−V = 0, 0.05, 0.1, 0.15, 0.2,
and 0.3 were used. Emission lines were added only for the nor-
mal galaxy templates, as the AGN and QSO templates are empir-
ical and already contain emission lines.

The classification was performed in color space, by taking
all color combinations of the input photometry without any input
redshift information. Once the three classifiers were trained and
applied to the entire sample, the redshift solution was assigned
using the model library identified by the classifier as optimal.
Additionally, sources classified as stars (Pstar ≥ 0.5) or outliers
(Poutlier ≥ 0.5) were rejected (USE = 0). Since this applica-
tion concerns the estimation of photometric redshifts for Euclid,
sources that are classified as AGN or QSO are also rejected,
since they typically have lower quality photo-z.

3.3. Phosphoros

Phosphoros (Paltani et al., in prep.) is a Bayesian template-
fitting tool developed with the aim of being run in a computer-
intensive processing environment while including most of the
advanced features found in similar codes, such as the use of
upper limits, zero-point corrections, consideration of emission
lines, various intrinsic extinction curves, etc. Phosphoros will
implement unique features, like complex user-defined priors
(e.g., from luminosity functions), the choice between different
intergalactic medium prescriptions, the sampling of the poste-
rior, etc. Because it is still under active development, the only
advanced and unique feature that we use here is the improved
treatment of Galactic reddening (Galametz et al. 2017).
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The 2-FWHM aperture photometry was selected for the
EXT-like and NIR-like bands, and the total flux for the VIS-
like band. The photometric data were fit with the 31 COSMOS
galaxy (SED) templates (see Sect. 3.1) with a similar configura-
tion as in Ilbert et al. (2013), from z = 0.01 to z = 5.99 with step
size of ∆z = 0.02. Intrinsic reddening was set as a free param-
eter, with EB−V ≤ 0.5 and several extinction laws (Prevot et al.
1984; Calzetti et al. 2000 and modified Calzetti laws including
a bump at 2175 Å as in Ilbert et al. 2009). For templates repre-
senting galaxies with types earlier than Sc, no extinction was
added. The Hα to Hδ, [O ii] 3727 Å and [O iii] 4959+5007 Å
emission lines were added to all templates using an empirical
relation between Hα and other emission line fluxes, which were
recalibrated using line fluxes measured from the Sloan Digital
Sky Survey (Thomas et al. 2013). The Milky Way reddening was
treated as prescribed in Galametz et al. (2017) by applying a red-
dening correction to the templates and fitting uncorrected pho-
tometry. Zero-point corrections to the photometric calibration
were computed in the same way as in Ilbert et al. (2006) using
2000 randomly selected galaxies with spec-zs from the calibra-
tion catalog. No luminosity prior has been used.

The PDZs are constructed by marginalizing the likelihood
over the template and reddening dimensions. The point esti-
mates used in the rest of the analysis were computed from the
mode of the PDZ for each object. Finally, no rejection was
made on the quality of the results (USE flag was set to 1 for all
sources).

3.4. EAzY

The setup for the EAzY code (Brammer et al. 2008) was kept
close to the default configuration. All template combinations
of the seven base SED components with added emission lines
were allowed, plus a young, heavily dust-reddened galaxy SED
(which is not allowed to be combined with the other SEDs). The
extended r-band magnitude based prior, p(z|mr), was applied
and a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and
Ωm = 0.3 for luminosity computation was used. The run was
performed using the 2-FWHM aperture photometry without the
VIS-like-band. A single best χ2 value among the possible tem-
plate combinations was returned at each redshift, which was then
combined with the magnitude-based prior to produce the galaxy
PDZs.

Similar to other template-fitting based methods, the EAzY
code includes the flexibility to apply corrections to photomet-
ric zero-points and a systematic uncertainty in measured pho-
tometric fluxes. However, there is also a wavelength-dependent
template uncertainty function which is controlled by a param-
eter that governs its amplitude. These nine parameters (namely
seven zero-points, fractional systematic flux error and template
error function amplitude) were optimized using the spectro-
scopic training sample and the Python function minimize from
the scipy.optimise package. Values were initialized at zero
for the zero-point adjustments, 3% for the systematic flux error,
and 0.7 for the amplitude of the template error function. The
loss function is a linear combination of the normalized median
absolute deviation, mean point redshift bias, Kullback–Leibler
divergence of the histogram of probability integral transform val-
ues (see Sect. 4.2 for more information), and outlier fraction.
Each term in the loss function was scaled such that a value of
unity represented good performance. The point redshift used for
the first two terms, and for the tomographic bin assignment, is
z_peak, the mean redshift of the most probable peak in the PDZ.

Finally, objects were flagged as unreliable if their odds value was
smaller than 0.91. The odds value quantifies the extent to which
a PDZ is single-peaked (see Brammer et al. 2008), and this value
was chosen as a compromise between sample completeness and
performance on the same set of metrics that were used in the loss
function.

3.5. METAPHOR

METAPHOR (Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts; Amaro et al. 2019; Cavuoti et al. 2017)
has a modular workflow, designed to produce the redshift point
estimations and the PDZs. Its internal photo-z estimation engine
is based on the MLPQNA machine-learning model (Multi Layer
Perceptron with Quasi Newton Algorithm; Brescia et al. 2013;
Cavuoti et al. 2015).

The key concept of METAPHOR is to perform a series of inde-
pendent photometry perturbations to take into account the con-
tribution of the uncertainty induced by the photometric errors
within the PDZs. In other words, the idea is to obtain an
estimation of the photo-z PDZs based on the predictive perfor-
mance evaluation of the trained MLPQNA model by varying
the magnitudes within the photometric errors and considering
the distribution of the multiple output as the PDZ. The pertur-
bation method is based on the addition of a variable random
Gaussian noise to the photometry and a polynomial fitting of
the photometric trend to reproduce the inner distribution of the
error.

In practice, each PDZ was based on the following steps:
(i) training of MLPQNA with unperturbed SEDs (the training
set); (ii) producing N different instances of any source SED (the
blind test set) contaminated by photometric noise; (iii) deriv-
ing N + 1 photo-z estimates for the sources with the trained
model (i.e., N perturbed+ the original one); and (iv) binning in
photo-z of the N + 1 values, thus calculating for each one the
probability that a given photo-z estimation belongs to each bin
(i.e., obtaining the PDZ). In the particular case of this Euclid
challenge, N = 999 was used. The point estimate is the value
among the N + 1 values that is the closest to the non-perturbed
value.

The training was done with the 2-FWHM photometry in all
bands, considering all galaxies (including AGNs) with spec-zs
and flagged as having proper photometry. In order to introduce a
quality flag for the estimates, a two-step analysis was performed.
First, a selection on the photometry in which all objects with
S/N ≤ 3 in any of the griz bands, S/N ≤ 5 in any of the
Y JH and VIS-like bands, or a SExtractor detection flag ≥4,
were marked with the flag USE = 0. Second, a further refine-
ment of the flag assignment was performed through a selection
on the PDZ to avoid overly wide PDZs. The criteria were: the
maximum value of a PDZ must be ≥0.09; the width of its pri-
mary peak ≤0.44 in redshift; and the overall distribution must
be ≤2.

3.6. ANNz

ANNz (Collister & Lahav 2004) is a neural-network-based photo-
metric redshift code that uses a training set with both photomet-
ric and spectroscopic information to learn the mapping between
the color-magnitude space of galaxies to their redshifts. The
learning algorithm minimizes the mean-squared error between
predicted and (assumed to be) true, spectroscopic-redshifts. The
learned function is then an estimate of the mean of the condi-
tional distribution p(z| f ), where z denotes the redshift and f the
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vector of galaxy colors and their magnitudes. The learned model
is then applied to the full data sample to obtain photometric red-
shift estimates.

To obtain error bars on these point estimates, one can subse-
quently train an additional neural network to predict the mean-
squared error between true (i.e., spectroscopic) redshift and
the predicted redshift from the previously trained model. This
is done using the same basic setup, meaning, again by mini-
mizing the mean-squared error. The resulting predictions from
this second run then provide an estimate for the variance of
the conditional distribution p(z| f ). These error bars can only
be expected to be well calibrated if enough training data are
available, the training data are representative, and the condi-
tional distributions p(z| f ) are close to Gaussian. The inter-
ested reader is referred to Rau et al. (2015) for a discussion
of the impact of these distributional assumptions on photo-z
results.

The calibration sample was split into two representative sub-
samples. The first one was used for training, and the second one
was used for testing the models.

3.7. GPz

GPz is a machine-learning tool that models the relation between
input data (e.g., observed magnitudes, which we call “color” for
simplicity) and an output value (the redshift). The model used
by GPz is a linear combination of multivariate Gaussian func-
tions (called “basis functions”; here 100 are used). In addition
to learning the mean relation between colors and redshifts, GPz
also learns the scatter of the redshift at a given position in color
space, as well as the density of the training data. It uses this
information, together with knowledge of the uncertainties on the
observed colors, to make a prediction of the PDZ. At a given
position in color space, the predicted PDZ will be broader if:
(i) the colors are uncertain; (ii) the range of matching spec-z
is large; or (iii) there is a lack of training data. A limitation
of this model is that the distribution is forced to be Gaussian
(Almosallam et al. 2016a,b). All the predictions here are pro-
duced with the C++ version of GPz, available in the Euclid Git-
Lab as “PHZ_GPz”. Here, the model was trained on the shear
sample, since this is the sample for which the metrics need to
be optimized in Euclid. The 2-FWHM fluxes were used, and the
fluxes were converted to “luptitudes” (Lupton et al. 1999) before
prediction and training.

First, GPz models the distribution in color space of the vali-
dation data set (the one for which we want to make predictions)
using Gaussian mixture models. It then applies this Gaussian
mixture to the training set to: (i) weight the training data so its
color distributions match the validation data; and (ii) split the
color space in several (typically 5) distinct regions in which sep-
arate GPz models will be trained. The first point deals with any
potential bias in the color distribution of the training set, while
the second point effectively increases the number of basis func-
tions used to model a given region of color space without paying
for the full computational costs.

3.8. Gradient boosted regression trees

Gradient boosted regression trees (GBRT) is a machine-learning
method based on the sci-kit learn gradient boosted decision
tree algorithm (Friedman 2001; Pedregosa et al. 2011). For its
training, galaxies and AGNs with good quality spectroscopic or
30-band photometric redshifts from L15 and detected in at least
four bands were selected from the calibration catalog, leading

to a training sample of around 1.4 × 105 sources. This sample
size is increased by an order of magnitude by synthesizing 10
brighter and fainter versions of each source. The 2-FWHM aper-
ture photometry in the g, r, i, and z bands, the 1-FWHM aperture
photometry in the Y, J, and H bands, and the VIS total photom-
etry were used to train the algorithm.

A point estimate was determined for each source, and a PDZ
was constructed through processing of 1000 realizations per-
turbed by a Gaussian error for each source. GBRT provides an
indication of the most useful bands for the photo-z determina-
tion, those being the g, Y , J, H, and VIS-like bands. Sources
located in regions of this color space that were not covered by
sources from the training sample were rejected (USE = 0).

3.9. Primal Random Forest

The Primal Random Forest (RF) is based on the sci-kit learn
random forest regressor (Breiman 2001; Pedregosa et al. 2011)
wrapped in the Primal framework4. The training was done by
selecting all sources with reliable spectroscopic-redshifts in the
calibration catalog. The features used were the 2-FWHM aper-
ture fluxes in all standard bands and the total fluxes in the
VIS-like band, along with the flux ratios and flux errors. The cal-
ibration sample was split into training (20%) and testing (80%)
sets using a reshuffling procedure with stratified sampling to
insure that both sets were representative of the full sample. RF is
optimized by performing a recursive feature elimination, select-
ing the most important features that provide the minimum outlier
fraction.

The validation set was processed 5000 times with perturbed
fluxes according to their errors. The PDZs were constructed by
binning the 5000 results for each source. The point estimates are
the modes of the constructed PDZs. No rejection was made on
the quality of the results, so that the USE flag is set to 1 for all
objects with good photometric flags.

3.10. Primal Adaboost

The Primal Adaboostmethod is the sci-kit learnAdaboost
regressor algorithm (Freund & Schapire 1997) wrapped in the
Primal framework. We used boosted decision tree regressors. The
training and the processing were done in the exact same way as
for the RF, which is described in Sect. 3.9.

3.11. DNF

DNF (Directional Neighborhood Fitting; De Vicente et al. 2016)
computes the photo-z of a galaxy by a linear combination of
multi-band fluxes. The coefficients of the prediction hyperplane
are determined by fitting the equation with a subsample of neigh-
bors within a reference sample whose spectroscopic-redshifts are
known. A novel metric (“directional neighborhood”) is defined
to account simultaneously for the magnitudes and colors of the
galaxies. The PDZs are computed from the residuals of the fit
and reflect the uncertainties and degeneracies associated with
individual photo-z predictions (see details in De Vicente et al.
2016). DNF also produces a second photo-z (zphot,2 estimate) as
the redshift of the nearest directional neighbor in the reference
sample. The stacking of zphot,2 values for the whole sample pro-
vides a reference redshift distribution estimation, if the target
galaxies are well represented within the training sample.

4 https://github.com/andreatramacere/primal
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DNF was run on galaxies only, using the 3-FWHM photome-
try. DNF provides an error estimation of individual photo-zs that
accounts for flux uncertainty, also tagging the lack of neighbor
reference samples. This parameter allows one to cut the samples
according to different precision, bias, or completeness require-
ments. In this test, precision was prioritized over bias and com-
pleteness, producing an aggressive cut of 50% of the sample.
Other configurations are possible such as those focusing only on
removing the most unreliable photo-zs.

3.12. frankenz

frankenz (Tanaka et al. 2018; Speagle et al., in prep.) adopts
a Bayesian-oriented nearest-neighbors-based approach that
attempts to properly account for measurement errors within
both training and testing sets when making photo-z predictions.
Neighbors were selected using a Monte Carlo approach over
repeated realizations of the photometric errors, after which priors
over the training set (here assumed to be uniform) and the like-
lihoods between each unique training-testing object pair were
computed explicitly in flux space. PDZs were then constructed
using a posterior-weighted average of each object’s redshift ker-
nel. Objects with large best-fit reduced χ2 values among the set
of nearest neighbors were flagged not to be used (USE = 0).

3.13. NNPZ

NNPZ (Nearest-Neighbor Photometric Redshift) is a machine-
learning algorithm that consists in a k-nearest neighbor method
in flux space, developed by J. Coupon, that is designed
to produce PDZs and was applied to the HSC-SSP survey
(Tanaka et al. 2018).

An improved version of the algorithm was used here, which
takes into account errors when searching for the neighbors and
weights them according to some distance definition. For effi-
ciency, in this implementation of NNPZ the process is split into
three stages. First, NNPZ reduces the search space by select-
ing a candidate set of neighbors using a k-dimensional tree and
Euclidean distances, which allows for look-ups inO(log n) steps.
Over this initial candidate set, the final neighbors are searched
using a χ2 distance, which takes into account both the errors of
the reference and the target object. Finally, the weights are com-
puted using the likelihood of the χ2.

The training was done using the Galactic-reddening cor-
rected 2-FWHM aperture photometry of the sources that were
not flagged as stars or AGN. The labels were the reliable L15
photo-zs, restricted to 0 < z ≤ 6. For the first stage, NNPZ
selected 2000 neighbors using the Euclidean distance, then later
reduced their number to 30 using the χ2 distance. The PDZs were
constructed by combining the L15 PDZs of the weighted neigh-
bors.

The point estimate is the mode of the PDZs for each source.
No rejection was made on the quality of the results, so that the
USE flag was set to 1 for all objects with good photometry flags.

4. Results

In the following, we consider the Euclid shear sample (see
Sect. 2.4). In the Euclid context we focus on the performance
of the different methods in the 0.2 < z < 2.6 photo-z range and
for source with USE = 1. In the rest of the analysis, we refer
to this selection as the Euclid selection. We point out that the

Euclid selection is different for each method, since each method
assigns different photo-zs and has different flagging schemes.

4.1. Point estimates

First, we look at the point estimates and assess the quality of
the results through the following commonly used metrics: the
normalized median absolute deviation of the residuals

σ = 1.4826 ×median (|∆z −median (∆z) |),
where ∆z = (zspec−zphot)/(1+zspec) is the scaled residual between
the photo-z and the reference redshift; and the fraction η of out-
lier sources for which |∆z| > 0.15.

Figure 3 shows the density map of the photo-z point esti-
mates versus the spec-zs for all thirteen methods. The same plots
using the 30-bands photo-zs as reference redshift can be found
Fig. C.1. All sources without photo-zs are set to zphot = 0, which
explains the horizontal lines in some of the plots, and are treated
as outliers in the computation of the metrics. METAPHOR shows a
systematic photo-z at z = 4.12, which corresponds to the high-
est redshift in the training sample they considered. The statistics
associated with the plots are presented in a graphical form in
Fig. 4, and all the values are provided in tables in Appendix B.
We note some results that appear similar in Fig. 3, like those
of Phosphoros and CPz; this is due to the similarity of the
approaches (template-fitting) and configuration (31 COSMOS
templates from Ilbert et al. 2013), even if the codes are different.
On the other hand, the difference in the results between Le Phare
and CPz can be explained by the differences in the definition of
the point estimate, being the median of the PDZ for Le Phare
and the mode for CPz, even if CPz uses Le Phare for the fit-
ting of the templates. Further tests have shown that when run in
identical configuration, template-fitting methods provide identi-
cal results. This means that the differences observed in the results
are not due to differences in performance of the template-fitting
methods, but rather to variations in their configurations.

Figure 4 shows the metrics associated with different refer-
ence redshifts and selections applied to the sources. In the top
left panel, σall and ηall are plotted against each other for the
total spectroscopic sample (12 463 sources with highly reliable
spec-z measurements). With its large outlier fraction, frankenz
differs greatly from the rest of the methods in the plot. This is
due to the sources for which no photo-z are provided, visible in
Fig. 3 with zphot = 0. Machine-learning methods seem gener-
ally to perform better than the template-fitting ones, especially
Adaboost or ANNz. The top right panel of Fig. 4 presents met-
rics for the spectroscopic sample, but only considering sources
with USE flag equal to 1. In this case, we see some improvement
in the results of the methods that apply rejection of the sources
for which the predictions are considered less reliable. This phe-
nomenon is particularly obvious for METAPHOR, which shows the
best results after this rejection. This demonstrates that the USE
flags are able to correctly identify a good fraction of the incorrect
predictions, and that they enhance the precision of the results, at
the expense of completeness.

For the Euclid selection, σEuclid and ηEuclid are presented in
Fig. 4 (bottom left panel). In this range of redshifts, the results
are better for all the methods. Phosphoros and CPz show great
improvements, since the selection removes low photo-z sources
that are poorly constrained due to the absence of u-band fluxes
in the data. Here again, METAPHOR presents the best values for
these metrics.

In order to take into account the fact that the spec-z sample is
not representative of the color space of all galaxies, we follow the
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Fig. 3. Density maps of photo-z versus spec-z for all the tested methods: blue are sources within the Euclid sample; gray are sources outside of the
Euclid sample. The statistics on the photo-zs are presented in Fig. 4 and listed in Tables B.1 and B.2. Undefined or negative photo-zs have been set
to 0, explaining the presence of horizontal lines in some panels (e.g., METAPHOR and frankenz).

approach of Lima et al. (2008). We assign weights to the spec-
troscopic sample depending on the distances of the 100 near-
est neighbors each object has in the color-magVIS space of the
full shear sample using a nearest-neighbor method. We compute
the indicators σcolor−space and ηcolor−space with these weights, pre-
sented in the bottom right panel of Fig. 4. Both scatter and outlier
fractions become poorer for most of the methods as one would
expect, with the exception of METAPHOR that shows only a small

reduction in performance. Summing the weights of the sources
in the selection of each method (Ncolor−space in Table B.3) and
comparing this sum to the sum of the weights for all the sources
that should be in the Euclid sample (9384.4) gives an estimate of
the fraction of sources kept by the methods for the photometric
sample. For METAPHOR the ratio between the two values is 1/3,
and the ratio is 1/4 for DNF (the median value for all the methods
is ∼0.86), meaning that the majority of the sources is rejected
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Fig. 4. Point estimates metrics results comparison for all the methods. Circles represent the spectroscopic sample and crosses are the L15 one.
Top left: scatter (σ) versus outlier fraction (η) of all methods for the whole spectroscopic sample (12 463 sources). Top right: σUSE=1 versus ηUSE=1

for USE = 1 selected sources for each method (see Table B.1 for all the values). Bottom left: σEuclid versus ηEuclid for the Euclid selection (see
Table B.2). Bottom right: σ30-bands versus η30-bands using the L15 photo-z as reference redshift plotted as crosses (see Table B.4 for all the values)
and Euclid sample results weighted with the color-space weights to match the spectroscopic sample to the photometric one plotted as circles (see
Table B.3). RF values are outside the limits of the plot for the L15 sample due to a large outlier fraction.

in the photometric sample in order to keep the precision of the
photo-zs at the level of the spectroscopic sample.

Another estimate of the quality of the photo-zs over the full
color space can be obtained by comparing our photo-zs with the
30-band ones of Laigle et al. (2016). The underlying assump-
tion is that the latter photo-zs are much more precise than those
computed here, thanks to the much deeper and better sampled
photometric data. The bottom right panel of Fig. 4 shows the
scatter (σ30-bands) and outlier fraction (η30-bands) for the Euclid
selection, computed with L15 photo-zs as reference redshifts
(see Table B.4 for all the values). We note that the results with
the L15 photo-zs are comparable to the color-space-weighted
ones. The good match between color-space-weighted results and
L15 allows us to consider either of these methods to be good
approximations of the scatter and outlier fraction of the photo-
z methods over the full photometric sample. In the following,
we use both the weighted spectroscopic sample and the L15
sample, since we want to assess the quality of the results over
the whole color space. Using both samples allows us to con-
sider different systematics in the comparison: the weighted spec-
z sample has more reliable reference redshifts, but might not
represent the full photometric sample, since some part of the
color space might not be covered at all; and the L15 sample,
while complete in color space, contains less precise redshifts,
as well as some catastrophic failures, because it is based on
30-band photo-zs. Methods trained on the spectroscopic sample
can be expected to perform better on the weighted spec-z sam-

ple, while methods training on L15 data (NNPZ and GBRT), as
well as the template-fitting methods, especially if they use the
same templates as in L15, might present better results on this
sample.

4.2. PDZs

Each method provides PDZs for every source. Compared to the
point estimates, PDZs include all the information about errors
and possible degeneracies of the measurements. We assess here
the quality of the PDZs provided by all the methods. We consider
only the Euclid sample selection (see Sect. 4.1).

The metric we choose to assess the quality of the results is
the one chosen to express the photo-z requirements of Euclid.
The sources are first distributed in photo-z bins depending on
their point estimates. In each bin, the source PDZs, P(z), are
shifted by the values of the source spec-zs, P(z − zspec), in order
to have the probability of the spec-z at the origin. Then, all the
shifted PDZs of each bin are stacked, using color-space weights
for the spectroscopic sample (see Sect. 4.1) and without weight
for the L15 sample. For a bin centered on a redshift z, we com-
pute the fractions of the stacked PDZ enclosed in ±0.05(1 + z)
around its mode (F005) and the one enclosed in ±0.15(1 + z)
around the mode (F015). We note that integrating the stacked
PDZs around the mode implies that it exists a method to cor-
rect their biases; the current baseline is to apply a calibration
in color space using self-organizing maps (Masters et al. 2015).
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The quantities F005 and F015 measure the compactness of the dis-
tribution and can be compared to the scatter and outlier fraction
of the point estimates. An F005 larger than 68% is the equivalent
of the scatter being smaller than 0.05(1 + z) when considering
PDFs. Likewise an F015 larger than 90% corresponds to the frac-
tion of outliers, which are objects with |zphot−zspec| > 0.15(1+ z),
being smaller than 10%. Therefore F005 and F015 are the equiv-
alent of the scatter and outlier fraction when dealing with PDZs,
and the F005 > 68% and F015 > 90% values are the equiv-
alent to the requirements presented in the Euclid Red Book
(Laureijs et al. 2011) when dealing with PDZs instead of point
estimates.

Figure 5 shows the weighted spectroscopic sample F005 and
F015 fractions for all the tested methods in 12 photo-z bins of
width 0.2, from z = 0.2 to z = 2.6, as well as the number of
sources per bin. In the distribution of sources per bin we see
that the methods using strong rejection scheme, like METAPHOR
or EAzY, provide very few, if any, predictions above z = 1.
The F005 plot shows that template-fitting results and machine-
learning results have distinct behaviors. Phosphoros, Le Phare,
and CPz present a global level around F005 ≃ 0.4 with a strong
peak in F005 at 0.6 . z . 1.2, and a small drop around z = 1.7.
The F015 values of the template-fitting methods have roughly the
same shape as the F005 ones, with a base level of around 0.7 and
less pronounced peaks. Some machine-learning methods (e.g.,
GBRT, GPz, and DNF) show F005 < 0.4 everywhere, highlight-
ing the difficulties of machine-learning algorithms in general in
producing informative PDZs. However, other machine-learning
methods (e.g., ANNz, Adaboost, RF, METAPHOR, frankenz, or
NNPZ) produce good PDZs according to the F005 and F015 met-
rics, although they experience sharp drops of F005 and F015
above z ≃ 1.3. We note that the machine-learning methods that
show good results perform generally better than the template-
fitting ones in the first three redshift bins, with the exception of
METAPHOR, which shows better results than all the other methods
until the z = 1.2−1.4 bin, above which all sources are discarded.
After that, the template-fitting methods show better results. We
notice the same behavior in the results for the L15 sample in
Fig. 6. In Fig. 6, we see that the drop in F005 around z = 1.7
for the template-fitting results disappeared, possibly because
the L15 PDZs are computed with similar template-fitting algo-
rithms. We also see that the distinction between the template-
fitting and machine-learning results is larger, due to a general
decrease in F005 for machine-learning approaches. The diminu-
tion of F005 and F015 for the L15 sample could be explained by
the uncertainties of the L15 photo-zs, however template-fitting
methods showing similar results in both weighted spectroscopic
and L15 sample mitigates this possibility. The results on the L15
sample show the struggles of machine-learning methods to pro-
vide sensible results for a sample with a color space not matching
the one they have been trained on.

The quality of the PDZs can be assessed using other metrics.
We test the performance of the PDZ using probability integral
transform plots (PIT plot, Dawid 1984; D’Isanto & Polsterer
2018). We compute the cumulative distribution function (CDF)
at the true or L15 redshifts for all the sources i:

Ci ≡ CDFi(zi) =
∫ zi

0
PDZi(z) dz. (4)

Figure 7 presents the histograms of Ci for each of the tested
methods, for both the color-space weighted spectroscopic sam-
ple and the L15 sample. If the PDZs correctly represent the prob-
ability distribution of the sources, the histograms should be flat.
Outlier sources that have their spec-zs in the outskirts of their
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Fig. 5. PDZ metrics for the color-space weighted spectroscopic sample.
Top: number of sources in the bin. The histogram of the distribution
for the sources in the bins according to their spec-zs is shown in gray.
Middle: fraction of the stacked-and-shifted PDZs in 0.05(1 + z) (F005).
Bottom: fraction of the stacked-and-shifted PDZs in 0.15(1 + z) (F015)
for all the tested methods. Fractions close to 1 in a bin indicate good
results.

PDZs have their CDFs close to 0 or to 1 and produce the peaks
at the edge of most of the histograms in Fig. 7. U-shaped PIT
plots, like those of Phosphoros or CPz, show that their PDZs
are under-dispersed, meaning that they are in general too narrow.
On the other hand, the PIT plots of GPZ, ANNz, or GBRT present
a bump, indicating that the PDZs are over-dispersed, hence the
PDZs are generally too broad. Biased PDZs produce PIT plots
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Fig. 6. Same as Fig. 5 for the L15 sample and the L15 photo-zs, instead
of the spec-zs.

with a slope, like in the Le Phare, METAPHOR, DNF, or Frankenz
histograms. We see that no method produces a perfectly flat PIT
plot. We note also that there are no strong differences between
the weighted spectroscopic sample and L15 sample PIT plots,
with maybe the exceptions of frankenz and NNPZ that present
flatter distributions for the L15 sample than on the weighted
spectroscopic sample.

The other indicator often used to assess the quality of
the PDZs is the continuous ranked probability score (CRPS,
Hersbach 2000; D’Isanto & Polsterer 2018). It is defined as

CRPSi =

∫ zi

−∞
CDFi(z)2 dz +

∫ +∞

zi

[CDFi(z) − 1]2 dz, (5)

and should be close to zero for a narrow PDZ at the true redshift.
However, the CRPS would increase both in the cases of PDZ at
the wrong redshift or a broad PDZ around the true redshift. The
median CRPS (weighted in the case of the spectroscopic sample)
provided in Table 3 give an indication of the overall quality of
the PDZs for each method. We use the median instead of the
mean due to the high CRPS values for some few outliers (more
than 30 times the mean value in some cases, see Fig. D.1 for the
complete distributions) increasing the mean value, which is thus
less representative of the CRPS than the median for the majority
of sources. Table 3 also reports the CRPSs obtained with precise
(i.e., Dirac function) but biased PDZs or unbiased but dispersed
PDZs (Gaussian with the true redshift as mean and a non-zero
scatter), both tuned to provide values similar to those measured
for the different methods. The CRPS is sensitive to both bias and
scatter, with no possibility to distinguish between the two effects.
CRPS values in Table 3 show that for the spectroscopic sample
the majority of methods present a median CRPS of around 0.08.
Some methods provide better results like METAPHOR, EAzY, or
Le Phare with median CRPS values of around 0.04 to 0.06, and
some methods have larger mean CRPS like ANNz, GPz, GBRT
or RF, with median CRPS above 0.1, meaning they provide less
sensible PDZs which can be also deduced from F005 and F015
indicators for GPz and GBRT. For the L15 sample, there are no
strong changes from the results on the weighted spectroscopic
sample.

5. Discussion

We have performed extensive tests of the performance of 13
photo-z algorithms using several metrics. One must keep in mind
that all the analysis was done on the Euclid shear sample, which
only contains galaxies in a restricted photo-z range of 0.2−2.6
(see Sect. 2.4). This means that our results depend on the hypoth-
esis that we are able to properly classify all the sources to obtain
a pure sample of galaxies. If this is not the case, the resulting
contamination would add an extra level of uncertainty in our
results that is not captured by our tests.

5.1. Point estimates

The results on the full spectroscopic sample presented in
Fig. 4 show that not all template-fitting methods provide similar
results. Although Le Phare, CPz, and Phosphoros implement
almost exactly the same algorithm, Le Phare’s results differ
from these of the other codes, having slightly better results, with
Fig. 3 showing a strong similarity between Phosphoros and CPz
outputs. The differences are therefore due to details of the config-
uration of the methods (i.e., data-driven, instead of code-driven
differences) and we have checked that Phosphoros can repro-
duce almost exactly the Le Phare results if run under identical
conditions. The first difference are the templates, Le Phare is
including two additional templates (generated with an exponen-
tially declining SFH) in addition to the 31 COSMOS template of
Ilbert et al. (2009) that Phophoros and CPz use. A second differ-
ence is the point-estimate definition. Both CPz and Phosphoros
use the PDZ mode, but Le Phare uses the PDZ median. Also,
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Fig. 7. Probability integral transform (PIT) plots for all the methods, for the USE= 1 population and the Euclid selection. Color histograms are
the results for the weighted spectroscopic sample, while the black lines are the histograms for the L15 sample.

we note that Le Phare applied an absolute magnitude cut when
running, added systematic errors to the magnitude errors, and
applied a rejection for sources with overly broad PDZs.

For CPz and Phosphoros, having made roughly the same
configuration choices, we see that they yield very similar results,
as can be seen in Figs. 3 and 4. The main difference between
Le Phare or CPz and Phosphoros is the point estimate defini-
tion. This mostly impacts the point estimate metrics, but is less
relevant in the rest of the analysis using PDZs (see Sect. 5.2).
Finally, the differences between Le Phare and Phosphoros
show that there is some room for improvement in the configu-
ration of the algorithms.
EAzY is a bit distinct from the other template-fitting codes:

it uses a different set of templates than the 31 COSMOS tem-
plates, which it combines to fit the data; it uses a prior on the
magnitudes in the r-band, which is not set by the other template-
fitting codes; and it applies a different rejection scheme than the
other codes, based on the odds of a PDZ being single-peaked.

The results presented in Fig. 3 are different than the results of
the other template-fitting codes for these reasons. Despite these
differences, it has similar performance to Le Phare, as seen in
Fig. 4.

We see in the top left panel of Fig. 4 that, for the whole sam-
ple, the lowest σ and η values are achieved by machine-learning
algorithms (specifically Adaboost and aNNz). The rejection of
the less reliable estimates can greatly improve the results for the
point estimates. For example, METAPHOR sees its outlier frac-
tion drop by about a factor of 6, and its scatter reduced by 25%
when applying a rejection based on its USE flag. Most rejec-
tion schemes seem to efficiently identify outliers, but have only
a small effect on the scatter. However, the improvement in the
outlier fraction comes at a price for completeness, since the most
precise method after the rejection of flagged objects (METAPHOR)
discards 1/3 of all the sources and the second one (DNF) rejects
half of them. Figure 4 shows also that the Euclid selection leads
to an improvement of the outlier fraction, but mainly for the
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Table 3. Median continuous ranked probability score (CRPS) for the
different algorithms using the Euclid selection for the weighted spec-
troscopic and L15 samples.

Spec. sample L15 sample

Le Phare 0.057 0.056
CPz 0.087 0.091
Phosphoros 0.082 0.083
EAzY 0.050 0.048
METAPHOR 0.036 0.034
ANNz 0.115 0.124
GPz 0.116 0.113
GBRT 0.166 0.165
RF 0.107 0.119
Adaboost 0.078 0.090
DNF 0.076 0.072
frankenz 0.071 0.072
NNPZ 0.084 0.081
Bias (0.06−0.18) 0.040–0.160 –
Scatter (0.15−0.7) 0.036–0.164 –

Notes. The last two rows present the CRPSs provided for sources in
two cases: with infinitely precise Dirac PDZs but with a bias in range
0.06−0.18; and with absolutely accurate (bias = 0) Gaussian PDZs with
a scatter in range 0.15−0.7.

methods that do not make any rejection of possibly wrong results
on their own. This indicates that a large fraction of the outliers
are located in redshift ranges outside of the Euclid cosmic-shear
target region.

When weighting the results using the Lima et al. (2008)
weighting scheme or using the L15 sample, we see that most of
the machine-learning results degrade greatly if the methods do
not apply strong rejection. Training is indeed very poor in areas
of color space that have a large weight. This can be mitigated if
algorithms are able to identify and reject objects in these areas,
which is especially the case for METAPHOR. On the other hand,
Adaboost, RF, and ANNz are strongly penalized by the absence
of rejection in their configurations. Another mitigation measure
is the use of L15 photo-zs in the training, as is the case for GBRT
and NNPZ. For these examples, the results on the L15 sample are
even better than those on the color-space weighted sample.

Color-space weight and L15 scores are mostly similar,
except for Adaboost, RF, and ANNz, which shows that these
methods are able to make reasonable predictions even with few
training objects, but that there are significant areas of the color
space without any spec-zs. This could mean that the color-space
weights are overestimating the results that the methods would
have on the full photometric sample. An alternative explanation
is that this could be due to bad L15 photo-zs, since the compar-
ison between L15 photo-zs and spec-zs in the validation catalog
shows a scatter σ = 0.013 and an outlier fraction η = 11.0%,
this explanation cannot be excluded. However the consistency
of the L15 and color-space results for most algorithms show that
these errors, if they are significant, happen essentially where
spec-z coverage is scarce. Template-fitting results do not seem
to suffer as strongly as machine-learning results when applied
to the color-space weighted or the L15 samples. Template-fitting
appears to be able to provide sensible results even in the areas
of the color space not covered by spectroscopic-redshifts, but
we point out that template-fitting methods might perform well in
these areas of color space because L15 photo-zs used the same
algorithm and the same templates as Le Phare, Phosphoros,
and CPz. However, differences in depth and wavelength cover-
age somewhat mitigate this issue.

5.2. PDZs

Although PIT plots and CRPSs have been used in recent works
as PDZ quality indicators (e.g., Tanaka et al. 2018; Pasquet et al.
2019), they are not very useful indicators of the precision of the
PDZs. CRPS is sensitive to both bias and scatter, in a way that
makes the two effects difficult to disentangle. PIT checks that
the individual spec-zs can be on average drawn from the PDZs,
but it does not say anything about the quality of the predictions.
Schmidt et al. (2020) give the example of a method without any
predictive power, but with a perfect PIT, meaning that a method
providing a perfect PIT plot can lead to a bad FoM. The same
behavior can be expected from the CRPS, since the same CRPS
values dominated either by the bias or the precision of the PDZs
will provide different FoMs. Nevertheless the general shapes of
the PIT plots give some indications of whether the PDZs are
over- or under-dispersed, biased, or outliers. Most PIT plots in
Fig. 7 appear reasonable, with the exception of GPz, GBRT, and
ANNz. One the other hand, none of the PIT histograms are flat.
Some methods still manage to provide fairly flat but biased PIT
plots, especially for the L15 sample (like frankenz), or are
slightly concave in the center and with small peaks toward the
edges (like NNPZ or EAzY). This means that no method can pro-
duce PDZs that are in total agreement with the spec-z or the L15
photo-z distributions. This is not a fatal issue, however, since
there are ways to correct the PDZs in order to flatten the PIT
plot (Bordoloi et al. 2010; Gomes et al. 2018) and to correct for
most of the bias. In addition, the Euclid science goals do not
require the determination of the true n(z), but only of the aver-
age redshifts in the tomographic bins, which is a significantly
less ambitious goal that can be reached, for example, using self-
organizing maps as proposed by Masters et al. (2015).

In the context of the Euclid mission, we define new esti-
mators of the photo-z precision that are insensitive to the bias.
The Euclid requirements are expressed using the F005 and F015
definitions, which consider the PDZs around the mode of the
distributions, making these metrics sensitive only to the preci-
sion (the width) of the PDZs. They can also be easily asso-
ciated with the scatter and outlier fraction of point estimates.
For these reasons, we focus on the F005 and F015 measurements
for the different methods. The binning of the results in tomo-
graphic bins presented in Figs. 5 and 6 allows us to see more
clearly what was hinted in Fig. 3, namely that strongly-rejective
methods are mainly rejecting sources with redshifts z > 1. This
is the case for METAPHOR, which does not provide any results
above the bin at z = 1.2−1.4, neither for the weighted spectro-
scopic sample, nor the L15 sample. However, this strong rejec-
tivity results in high scores for the metrics in the domain in
which results are provided. Figures 5 and 6 show that the meth-
ods that have poor results in their PIT plots and CRPSs do not
perform well on the F005 and F015 metrics (e.g., GBRT, GPz, or
ANNz). Figure 5 shows that machine-learning methods tend to
perform better than template-fitting ones in the redshift range
of z < 0.8, but perform worse above this redshift. Using the
L15 sample (Fig. 6), the gap between the results of machine-
learning approaches and those of template-fitting is larger than
that obtained from the spectroscopic sample. This indicates that
(perhaps unsurprisingly) the machine-learning algorithms also
have more difficulty in providing sensible PDZs for sources that
are rarely or not at all represented in the training sample. An
increase in the redshift coverage of the color space is needed to
more properly train the machine-learning methods. Ongoing and
future spectroscopic survey programs (e.g., C3R2, Masters et al.
2017, 2019; Euclid Collaboration 2020) will increase the color
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Fig. 8. F005 plot on the weighted spectroscopic sample showing the
impact of the definition of the point estimates used to sort the sources
into the redshift bins for Phosphoros and Adaboost.

space coverage with high-quality spectroscopic redshifts, thus
the performance of machine-learning algorithms is expected to
improve over time due to a better training sample. However, it
is not clear that the number of spec-zs will be sufficient to both
train the machine-learning methods and calibrate the bias of the
photo-zs without introducing new sources of bias.

Template-fitting codes use an explicit model of the galaxy
SEDs, and thus they provide better results at high redshift than
machine-learning algorithms, which rely on training sources in
this regime. However, at redshifts z < 0.5, all the template-
fitting methods are outmatched by machine-learning methods.
The superior results of machine-learning approaches at low red-
shifts show that the photometry does contain enough information
to constrain the photo-zs. Nevertheless template-fitting meth-
ods have trouble in this region. This may result from a lack of
valid templates at low redshift, or it may be due to a lack of
proper priors, which are present in machine-learning methods in
an implicit way due to the training data set containing mostly
sources with low redshifts.

In Sect. 5.1, we explained that different definitions of point
estimates can lead to differences in results. Our PDZ metrics are
still sensitive to the point estimate variations, since we use them
to sort the sources within the tomographic bins. Figure 8 shows
an example of the impact of the definition of the point estimates
on the F005 fraction for Phosphoros and Adaboost. We observe
some differences between the results, mostly at redshifts z > 1.
In that range of redshift, the mode seems to be the point-estimate
that provides the best results. For the z < 1 redshift range, we see
very little variation of the results with the definition of the point
estimates.

5.3. Maximizing the proper metric

In the context of Euclid, the metric that is maximized is the dark-
energy figure of merit (see Laureijs et al. 2011 for a detailed
description). The dark energy FoM increases with the quality of
the weak-lensing signal, and this signal depends on the quality
of the photo-zs, but also on the number of sources for which the
photo-zs are measured5. The requirement presented in the Euclid
Red Book is that the galaxy density must be over 30 galaxies per
arcmin2.

5 It clearly also depends on other parameters, but we focus here on the
effects on which the photo-z algorithms have influence.

The results presented in Sects. 4.1 and 4.2 show that a rejec-
tion of the sources on which to carry out the analysis allows
the methods to improve the precision of the redshifts. However,
the F005 and F015 metrics are not sensitive to the loss of infor-
mation resulting from this rejection. The same problem is true
for PIT and CRPS. Figures 5 and 6 show that some methods,
such as METAPHOR, leave some tomographic bins completely
unpopulated. This means that no weak-lensing analysis can be
performed at these redshifts, resulting in a strong loss of FoM
and a failure to meet the Euclid mission requirements if such
drastic rejection is made.

We use two methods of averaging the F005 and F015 metrics
over the tomographic bins (Fig. 9). First, the weight applied to
F005 and F015 in each bin is the number of objects put in this bin
by a given photo-z method, that is,

〈F0XX〉 =
1

NUSE=1

bins
∑

i

F0XX,iNsources,i, (6)

where F0XX,i is either F005 or F015 (or any other desired value) in
a bin i, Nsources,i is the number of sources in a bin and NUSE=1 is
the total number of sources in all the bins. These weights roughly
reproduce the standard estimators for point estimates σ and η in
the case of PDZs, since they are averaged over all objects. The
〈F0XX〉 metric does not penalize methods with strong rejection
because the empty bins have null weight in the average com-
putation, thus 〈F0XX〉 does not reflect the negative impact that
underpopulated, or even empty, tomographic bins can have on
the weak-lensing analysis. Using this average, the best methods
seem to be METAPHOR, Le Phare, and Phosphoros.

Another way to produce an average 〈F0XX〉 would be to
assume that each tomographic bin has the same weight in the
weak-lensing signal, which translates into unweighted averages
of F005 and F015. This would give a penalty to methods rejecting
all objects in a given bin or to methods that are particularly poor
in some redshift range (typically machine-learning at high z).
However, it would does not impact results with underpopulated
bins that could obtain good F005 and F015 values, but not enough
sources to improve the weak-lensing analysis results. For this
reason, the metric must take into account the population of
the tomographic bins. To do so, a correction is introduced that
depends on the fraction of objects correctly assigned to the bin:

〈F0XX〉corrected =
1

Nbins

bins
∑

i

F0XX,i

√

Ngood,i

Ntrue,i
, (7)

where Ngood,i is the number of sources that have been correctly
placed in the bins i, and Ntrue,i is the true number of sources
in bin i (see Fig. E.1 for the values of the fractions per bin).
The square root is applied to reproduce the dependency of the
increase in precision with the number of objects. Using the frac-
tion of “good” sources compared to the number of “true” sources
in the bin penalizes underpopulated but not empty bins with high
fraction values. It also ignores outliers falling in the bins, which
could artificially boost the scores of the bins. Figure 9 (right
panel) shows the result of this correction. Template-fitting meth-
ods (Le Phare and Phosphoros) present the best results, but
some machine-learning methods being less penalized, such as
Adaboost and NNPZ, also yields good performance. Neverthe-
less, this correction is a simple and intuitive way to estimate the
trade-off between the precision of the photo-zs and the number
of sources considered, but the proper metrics to consider here
would take into account the weight of each sources and tomo-
graphic bins in the estimation of the weak-lensing signal.
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Fig. 9. PDZs metrics summarized by averaging the F005 and F015 values on all the bins with different weighting schemes. The axes are 1 − 〈F005〉
and 1 − 〈F015〉 to mimic the usual σ−η plots in Fig. 4. Left: results per bin weighted by the fraction of sources in the bin compared to the total
number of sources kept by each methods (see Eq. (6)). Right: results of all the methods when correcting the 〈F005〉 and 〈F015〉 of each bin by the
square root of the ratio of good sources in the bins to the number of sources that truly belong to the bin (see Eq. (7)). In each plot we include the
results for the hybrid method (in black, see Sect. 5.4) for the weighted spectroscopic sample on the L15 sample.

It would be desirable to apply a penalty similar to that used
in Eq. (7) for the PIT and CRPS metrics. Unfortunately, there is
no sensible way to estimate how the loss of sources would affect
them, and neither the CRPS, nor any statistics derived from the
PIT can be unambiguously translated into a FoM.

5.4. Improving the results

Each methods has its advantages and disadvantages, and thus
performs efficiently in different regimes. Machine-learning
methods are based on a training sample and their results depend
strongly on the quality of this training. Template-fitting methods
do not have this problem and perform relatively well for sources
in regions of the color space with a sparse redshift coverage.
However, Fig. 5 shows that they can be outmatched by machine-
learning in the well covered regions of the color space. As men-
tioned earlier, both types of method can be improved separately
(see Sect. 5.2). However, Fig. 5 also shows that some methods
(such as METAPHOR) are able to substantially improve the preci-
sion of their results by accurately predicting when a result is a
probable outlier. In Sect. 5.3 we see that non-rejective template-
fitting methods (such as Phosphoros or Le Phare) are perform-
ing well with a metric approximating the effect of photo-zs on the
weak-lensing analysis, whereas very precise but highly reject-
ing methods (such as Metaphor or DNF) not providing results
above redshift 2 are incompatible with the goals of the weak-
lensing analysis. Nevertheless, the ability of METAPHOR to pre-
dict outliers could be used to improve the results. For that, we
first must check if METAPHOR really surpasses other methods for
the objects for which it provides results. Figure 10 presents the
F005 curve for Phosphoros restricted to sources that have a USE
flag 1 with METAPHOR. We see that the Phosphoros results are
greatly improved up to the point where the rejection discards
all the sources, above z = 1.5. Also, we note that the results of
METAPHOR are only better than the results of Phosphoros with
the same rejection in the first two bins of the Euclid redshift
range. Thus, to improve results, we propose a hybrid photo-z
algorithm as follow: we use the results of METAPHOR when its
USE flag is 1 and its predicted photo-z is below z = 0.6, other-
wise we use the Phosphoros results if not.

The results of this hybrid method are presented in Fig. 10
with a F005 plot and a scatter plots. The scatter plot in Fig. 10
shows that the hybrid approach has similar scatter, but a slightly
smaller outlier fraction than Phosphoros (see Table B.3), which
results in an increase in the number of sources in the Euclid sam-
ple at low redshift. The results of the hybrid method are the best
ones of all methods that do not reject any source. The resulting
F005 curve in Fig. 10 differs from the Phosphoros one only in
the two first bins, since above z = 0.6 only Phosphoros results
are used. The curve still remain under the METAPHOR one, but
a solution is provided for all the sources in the sample. We can
see the improvement it brings in Fig. 9, that shows the results of
this approach in the averaged F0XX metrics. The corrected mean
F005 of this hybridization is 〈F005〉corrected = 0.27 on the weighted
spectroscopic sample. This result is better than all the results pre-
sented in Fig. 9. The increase compared to Phosphoros is only
due to the improvement in F005 in the first two bins.

This method of combining the results of machine-learning
and template-fitting seems promising (e.g., Brodwin et al. 2006;
Duncan et al. 2018) and should be explored further, possibly
with a better criterion for selecting the predictions from the
machine-learning or the template-fitting algorithms.

6. Summary and conclusions

Thirteen different photo-z methods, both template-fitting and
machine-learning based, have been tested on Euclid-like data.
Each method has provided each source a point estimate redshift,
a PDZ, and a USE flag, allowing them to reject sources con-
sidered problematic. Their results have been compared through
different metrics with the aim of assessing the impact of the pro-
vided photo-zs on the Euclid cosmic-shear analysis. For this rea-
son, we analyze the results for galaxies in the 0.2−2.6 photo-z
range only. The tests we have conducted here have therefore little
relevance for the study of high-redshift galaxies, for instance. We
have further assumed that a proper classification between stars,
galaxies and AGNs has already been done, and that the photo-zs
can be calibrated independently of the photo-z algorithm.
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The results show that adopting stringent rejection criteria can
be very efficient in reducing the outlier fraction. Some methods
are quite successful in accurately identifying sources with reli-
able photo-zs. However, the drawback of such rejection is a loss
of completeness for further analysis, which can be incompatible
with some science goals, in particular weak-lensing tomography.

To assess the quality of PDZs, the PIT plot and CRPS are
standard metrics. They must be considered together, since PIT
only indicates whether the true redshifts are collectively com-
patible with being drawn from the PDZs, and CRPS is sensitive
to both the bias and scatter of the results. However, its sensi-
tivity to the bias, which cannot be disentangled from the effect
of the scatter, is not suited for our analysis that only focuses on
the precision of the results. This leads us to define the fraction

metrics (F005 and F015) related to the Euclid requirements on the
precision of the PDZs. The fraction metrics can also be corrected
to take in account the loss in completeness that is due to rejection
schemes of the different methods.

Analysis of the PDZ results shows that producing sensible
PDZs is not straightforward for machine-learning methods, as
several of them do not manage to provide good PDZs, regardless
of the indicator used to assess their quality. Machine-learning
methods also struggle to make good predictions over large areas
of the color space, in particular for z > 1 or regions scarcely cov-
ered by spectroscopic information, even though the COSMOS
training sample is one of the most complete spec-z samples cur-
rently available.

However, in regions of color space well covered by spec-zs,
machine-learning methods (e.g., METAPHOR or Adaboost) seem
to perform the best. With an appropriate spec-z sample, they
could outmatch all the other methods. However, the construc-
tion of a perfect training sample covering the full color space
at the limiting depth of the surveys with sufficiently numerous
spec-z, remains intractable. Using L15 photo-zs for this purpose
is a possible compromise, as shown by NNPZ in particular.

Template-fitting methods show more consistent results than
machine-learning over the full photometric sample; however,
they seem unable to use the full information contained in the
photometry at low redshifts. The reason for this behavior must
be understood whether it is a lack of templates or a better defini-
tion of priors in order to improve these methods.

Taking into account the properties of the output photo-zs, the
driver of the choice of algorithm is the use made of them. The
metrics used to compare the results of the algorithms depend
on the purpose of the photo-zs and must reflect the impacts they
will have on the science case foreseen. For weak-lensing studies,
completeness is needed, and template-fitting appears to perform
best when assessing both the precision of the photo-zs and their
numbers. However, if high precision and purity are required,
then machine-learning seems better in those aspects, especially
when they implement rejection of poor predictions.

Thanks to the capability of rejecting probable outliers, we
can overcome the limits of both approaches and combine the
high precision of machine-learning and the completeness of
template-fitting. This combination of results shows better aver-
age photo-z precision than any method alone, while preserving
the completeness of the considered sample of galaxies, hence
solving the issue of the loss of sources, which impacts negatively
the weak-lensing analysis and the Euclid dark energy FoM.
Further work is required to determine the optimal combination
between template-fitting and machine-learning algorithms.
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Appendix A: The VIS simulation software

The VIS simulation software takes as input a high-resolution
image (using the HST ACS F814W in the COSMOS field in
this specific case) and manipulates it in order to obtain a sim-
ulated image with the desired features (i.e., degrading the res-
olution to the expected VIS resolution and adding noise). The
pipeline implements four processing steps executed in the fol-
lowing sequence:

– Mkkernel, generates an analytical (Gaussian) kernel accord-
ing to the input image PSF and the PSF requested for the
simulated one;

– Convolve, operates the convolution from the input image to
the convolved one according to the previously generated ker-
nel;

– Swarp, performs the rebinning of the convolved image to the
required pixel scale;

– Mknoise, Gaussian noise is added in each pixel to reproduce
the desired depth in the output.

The original ACS F814W image has a non-uniform depth, and
particular care has been devoted to the noise addition: Gaus-
sian noise is added to each pixel according to a scaling factor
that takes into account the pixel-to-pixel variation of the original
image depth. The resulting rms map is an image with constant
value in the portion covered by the observation and has a con-
stant value of 1016 outside. The rms map value is the result of
the following equation:

rmsout =
100.4 (ZP−mn)

S/N
√
π nFWHM

2 pxs

, (A.1)

where mn is the reference magnitude (at the given S/N) measured
in n (1, 2, or 3) times the PSF FWHM. ZP and pxs are the zero-
point and the pixelscale of the image, respectively. Where the
original image has been found to be shallower than requested
no Gaussian noise has been added and the rms value has not
been modified. Currently, photon noise from the sources is not
included.

Appendix B: Point estimate metric tables

Table B.1. Point estimate statistics for the spectroscopic sample.

σall ηall NUSE=1 σUSE=1 ηUSE=1

[%] [%]

Le Phare 0.046 12.0 11 377 0.043 8.1
CPz 0.066 15.5 10 841 0.066 15.6
Phosphoros 0.066 15.8 12 463 0.066 15.8
EAzY 0.058 15.4 9594 0.047 6.2
METAPHOR 0.051 16.6 8302 0.037 2.8
ANNz 0.048 10.0 12 463 0.048 10.0
GPz 0.078 14.2 10 676 0.069 9.3
GBRT 0.058 9.7 12 311 0.058 9.2
RF 0.052 11.5 12 463 0.052 11.5
Adaboost 0.046 9.2 12 463 0.046 9.2
DNF 0.055 12.2 5520 0.041 5.9
frankenz 0.068 28.3 9661 0.042 8.8
NNPZ 0.061 12.1 12 463 0.061 12.1

Notes. The scatter (σ) and the outlier fraction (η) are given in the case
of no rejection with subscript “all” (i.e., 12 463 sources), and in the case
of rejection with the USE flag with subscript “USE= 1”. In the second
case, the number of selected source is also displayed (NUSE=1).

In Sect. 4.1, we present the results of the different methods in
several conditions, using multiple selections (e.g., USE flag or

Table B.2. Point estimate statistics for the Euclid sample.

NEuclid σEuclid ηEuclid
[%]

Le Phare 10 607 0.041 6.9
CPz 8985 0.055 9.7
Phosphoros 10 140 0.055 8.7
EAzY 9286 0.046 6.2
METAPHOR 7865 0.036 2.7
ANNz 12 012 0.048 10.1
GPz 10 208 0.068 9.2
GBRT 11 978 0.057 9.3
RF 11 955 0.05 10.5
Adaboost 12 008 0.045 9.0
DNF 5101 0.042 5.8
frankenz 8870 0.041 8.1
NNPZ 11 501 0.059 11.1

Notes. Number of sources NEuclid, scatter σEuclid, and outlier fractions
ηEuclid are provided.

Table B.3. Point estimate statistics for the color-space weighted-
sample.

Ncolor−space σcolor−space ηcolor−space

[%]

Le Phare 7644.0 0.056 13.4
CPz 8569.7 0.077 21.1
Phosphoros 8084.1 0.067 17.1
EAzY 5772.5 0.062 13.2
METAPHOR 3039.6 0.04 3.1
ANNz 10564.7 0.091 26.1
GPz 5391.3 0.082 13.7
GBRT 10280.1 0.085 22.5
RF 10657.5 0.114 32.6
Adaboost 10021.2 0.075 20.9
DNF 2326.2 0.053 9.3
frankenz 7807.7 0.069 22.0
NNPZ 10112.7 0.082 22.4

Notes. The sum of the weights of sources in each method selection
Ncolor−space, scatter σcolor−space, and outlier fractions ηcolor−space are pro-
vided.

Euclid selection) and comparing the photo-z’s to different refer-
ence redshifts. These results are summarized in Fig. 4, using the
values compiled in Tables B.1–B.4 in this section.

Table B.1 contains the scatter (σall) and outlier fraction
(ηall) for all the methods, considering the complete spectroscopic
shear sample (12463 sources) present in the validation catalog.
This table also shows for each method the number of sources
remaining after the USE flag selection is applied (NUSE=1) and
the σUSE=1 and ηUSE=1 associated with this selection.

The results for the Euclid selection (i.e., being part of shear
sample, with photo-z in the range 0.2−2.6, and USE = 1) are
listed in Table B.2. The column NEuclid shows the number of
sources for each method. The scatter σEuclid and the outlier frac-
tion ηEuclid are also reported.

Table B.3 presents the results for the Euclid selection after
re-weighting it to be more representative of the photometric sam-
ple, using the Lima et al. (2008) scheme. For each method we
provide Ncolor−space, which is the sum of the computed weights
of all the selected sources, along with the weighted scatter
σcolor−space and outlier fraction ηcolor−space.
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Another sample being somewhat representative of the full
photometric one is the shear sample with the 30-band photo-
zs from Laigle et al. (2016). Using these redshifts as reference,
the scatter σ30-bands and outlier fraction η30-bands are presented
in Table B.4. The number of selected sources N30-bands for each
method is also shown.

Table B.4. Point estimate statistics for the L15 sample.

N30-bands σ30-bands η30-bands
[%]

Le Phare 36 842 0.055 11.7
CPz 43 258 0.08 20.0
Phosphoros 38 649 0.069 16.5
EAzY 25 114 0.059 9.8
METAPHOR 13 830 0.04 2.7
ANNz 52 094 0.114 32.3
GPz 23 207 0.082 13.7
GBRT 50 980 0.081 19.1
RF 52 391 0.136 37.4
Adaboost 49 718 0.096 26.9
DNF 9694 0.052 8.5
frankenz 42 808 0.07 19.1
NNPZ 51 047 0.081 19.9

Notes. The number of sources N30-bands, scatterσ30-bands, and outlier frac-
tions η30-bands are provided.
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Appendix C: photo-z versus 30-band photo-z

photo-zs provided by all the tested methods are compared to ref-
erence redshifts to examine the performance of the codes. In
Sect. 4.1, we present a comparison between spec-zs and photo-

zs, specifically shown in Fig. 3. Figure C.1 makes a comparison
between the code photo-zs and 30-band photo-zs of Laigle et al.
(2016), which better represent the full photometric sample. The
resulting metrics associated with these plots are presented in
Table B.4.
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Fig. C.1. Photometric redshifts between 0.2 < z ≤ 2.6 measured with all the methods compared to the Laigle et al. (2016) 30-band photometric
redshifts. The color code is the same here as in Fig. 3, meaning that the shades of blue represent the Euclid selection, and the shades of gray
represent the rest of the L15 sample. As in Fig. 3, undefined or negative point estimate values have been set to 0 in the plots.
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Appendix D: CRPS plots

In Sect. 4.2, we present the mean and the median continuous
ranked probability score (CRPS) for all the methods, specifically

in Table 3. In Fig. D.1 we show the full distributions of CRPSs,
for both the spectroscopic and the L15 samples. The spectro-
scopic sample CRPSs have their distribution weighted by the
color-space weights (see Sect. 4.1).
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Fig. D.1. CRPS plots for all the methods. Colored histograms are the histograms of log(CRPS) for the weighted spectroscopic sample, while solid
black lines are the histograms for the L15 sample.
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Appendix E: Fraction of good sources per bin

In Sect. 5.3 we discuss which metrics we should consider to
maximize the figure of merit of the weak-lensing signal. In
Eq. (7), we correct the F0XX metrics in all the bins by the square

root of the fraction of sources appropriately attributed to the con-
sidered bin. Figure E.1 show this fraction in all the bins, for all
the methods, using both the weighted spectroscopic sample (top
panel) and the L15 sample (bottom panel). These values were
used to compute the metrics presented in Fig. 9.
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Fig. E.1. Fraction of sources per redshift bin that have both photo-z and true z belonging to the bin, compared to the number of sources with their
spec-zs in the bin. Top: true z from GD the weighted spectroscopic sample. Bottom: true z from L15.
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