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Appendix A: The curvature pro�le

The analyses presented in this paper rely on the assumption of
the compensated pro�le introduced in Sect. 2.2, which was cho-
sen in order to ensure that the� CDM background is recovered
at r � rB, a crucial feature in order to confront CMB data con-
sistently using an e� ective FLRW model.

−0.8

−0.6

−0.4

−0.2

0.0

0.2

δ(
ro

u
t ,
t 0

)

rout
L rout

B

∆C = -0.75 and zB = 0.4

Our model

GBH: r0 = rB, ∆r/r0 = 0.25

GBH: r0 = rL, ∆r/r0 = 0.25

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

Ω
m

0
(r

ou
t )
−

Ω
ou

t
m

0

0 500 1000 1500 2000
rout [Mpc]

0

2

4

6

8

10

H
⊥

(r
ou

t ,
t 0

)
−
H

ou
t

0

Fig. A.1. Comparison between our model and the GBH parametriza-
tion. Top: Density contrast of matter today,� (r; t0), as a function of the
FLRW comoving coordinate. Our compensated model (solid blue line)
satis�es� (rout

L ; t0) = � (rout
B ; t0) = 0, while the� CDM background is not

exactly recovered for the GBH models (dashed red and dotted green
lines). Middle: Deviations from the background density of matter,
 out

m;0,
as a function of the FLRW comoving coordinate. The GBH model with
r0 = rB (red dashed line) largely deviates from
 out

m;0 at rout = rout
B . On

the other hand, the choice ofr0 = rL for the GBH leads to deviations
of approximately� 0:01 from the background atrout = rout

B . The model
assumed in this work fully recovers
 out

m;0 at anyrout � rout
B . Bottom:

Deviations from the background Hubble expansion as a function of the
FLRW comoving coordinate. GBH models (dashed red and dotted green
lines) do not perfectly match the� CDM background expansion history
at rout = rout

B .

Here, we compare our model to the Garcia-Bellido
and Haugboelle (GBH) model (Garcia-Bellido & Haugboelle
2008a), which parametrises the LTB metric by imposing


 m;0(r) = 
 out
m;0 +

�

 in

m;0 � 
 out
m;0

� (
1 � tanh[(r � r0)=2� r]

1 + tanh[r0=2� r]

)
;

H0(r) = Hout
? 0 +

�
Hin

? 0 � Hout
? 0

� (
1 � tanh[(r � r0)=2� r]

1 + tanh[r0=2� r]

)
;

wherer0 is the size of the void,� r the transition scale,
 in
m;0 �


 m;0(r = 0), and Hin
? 0 � H? 0(r = 0). Fig. A.1 shows the

di� erences between our model (solid blue line) and the GBH
model, where we have adoptedr0 = rL (dotted green line) and
r0 = rB (dashed red line). When the size of the GBH inhomo-
geneity is �xed torB, a scale greater thatrB is needed to recover
the � CDM background. On the other hand, if one assumes
r0 = rL , the GBH model tends to the� CDM background at
r = rB. In contrast, our model perfectly matches the� CDM
background at any scaler � rB. The compensating behaviour of
our model is particularly notable in the top panel of the Fig. A.1,
where we note that� (rout

L ; t0) = � (rout
B ; t0) = 0 for our model

while the GBH models does not satisfy� (rout; t0) = 0 for all
rout � rout

B .
Furthermore, to investigate the dependence of our results on

the chosen pro�le, we performed an additional analysis using the
following generalisation of Eq. (10):

P3(x; � ) =

8>>>><
>>>>:

1 for 0 � x < �
1 � exp

h
� 1� �

x� � (1 � x� �
1� � )3

i
for � � x < 1

0 for 1 � x
; (A.1)

with 0 < � < 1. This new parameter will modify the smoothness
of the transition between the inner and compensating region,
leading to sharpened pro�les when� approximates to 1. Results
from this extra analysis, which is performed using the com-
bination Base+ BAO + Euclid+ DESI+ y-dist.+ kSZ from the
� CDM �ducial, shows that the inclusion of the� parameter
weakens the constraints on� C androut

L by a factor of two, com-
pared to the results from Eq. (10).

Appendix B: Re-scaling datasets

Covariance matrices are fundamental pieces of forecast
analyses. However, their production for forthcoming sur-
veys is an open issue when non-standard cosmologies are
considered (Harnois-Deraps et al. 2019; Friedrich et al. 2021;
Ferreira & Marra 2022). This complicates the construction of
forecast data for� LTB cosmologies. Nesseris et al. (2022) has
overcome this issue by neglecting the error due to the non-
standard cosmology. Here, we apply a re-scaling method to con-
vert the � CDM forecast data and its covariance matrices into
� LTB catalogues.

Consider a given dataset, withxi being the observed quantity,
zi the corresponding redshift, andCi j the covariance matrix. This
dataset can be re-scaled to agree with a particular model via the
following steps.

First, we de�neRi j = Ci j =xi x j , a new matrix that contains the
relative uncertainties and correlations from the original covari-
ance matrix. Second, we compute with the theoretical prediction
of the new model the �ducial values at the relevant redshifts,
such thatxf

i � x�d (zi). Third, using the above de�ned quantities,
we compute the new correlation matrix as�Ci j = xf

i x
f
j Ri j . Finally,

we then draw a random realisation, �xi , of the multivariate-normal
distributionN (xf

i ; �Ci j ).
We note that this method assumes that relative error and cor-

relations are not changed by a non-standard model. As discussed
through this paper, the procedure above is also applied to re-scale
real data according the �ducial models presented on Table 1; this
ensures that all data are consistently described by a particular
�ducial model.
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Appendix C: The inhomogeneous Hubble
constant

The � LTB model features a pro�le functionH0(r) that depends
on the radial distance from the centre of the void, instead of a
constant value likeH0 in the � CDM model. Since there is not a
preferable scale to set the rate of expansion of the Universe, the
de�nition of H0 remains arbitrary. To overcome this issue, we
extend the FLRW de�nitions and mimic the observational pro-
cedure to locally constrain the Hubble constant. Explicitly, we
adopt the de�nitionHL

0 for inhomogeneous cosmological mod-
els that was introduced in Camarena et al. (2022). This method,
which is applied for every sample point of the parameter space,
follows the following steps.

First, we create a mock catalogue using the redshifts of
Pantheon SNe at 0:023< z < 0:15 and the� LTB luminosity dis-
tances at the corresponding redshifts. Second, the mock data are

�tted using an extension of the cosmographic expansion given by

DL(z) =
cz
HL

0

"
1 +

(1 � qr
0)z

2

#
; (C.1)

qr
0(r) =

"

 m(r)

2
� 
 � (r)

#2
66664
H0(r)
HL

0

3
77775
2

; (C.2)

whereqr
0 is the radial-dependent deceleration parameter. Finally,

the best-�t value ofHL
0 is adopted as the measured Hubble con-

stant.
It is interesting to point out that this procedure mimics the

standard cosmic distance ladder analysis of SNe that follow the
Hubble �ow, while taking into account the e� ect of the inhomo-
geneity on the measurement of the Hubble constant. We note that
other authors have previously proposed similar approximations
(Redlich et al. 2014; Efstathiou 2021).
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