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A b s t r a c t .  One of the main problems to obtain a Euclidean 3D recon- 
struction from multiple views is the calibration of the camera. Explicit 
calibration is not always practical and has to be repeated regularly. Some- 
times it is even impossible (i.e. for pictures taken by an unknown camera 
of an unknown scene). The second possibility is to do auto-calibration. 
Here the rigidity of the scene is used to obtain constraints on the cam- 
era parameters. Existing approaches of this second strand impose that 
the camera parameters stay exactly the same between different views. 
This can be very limiting since it excludes changing the focal length to 
zoom or focus. The paper describes a reconstruction method that allows 
to vary the focal length. Instead of using one camera one can also use 
a stereo rig following similar principles, and in which case also recon- 
struction from a moving rig becomes possible even for pure translation. 
Synthetic data were used to see how resistant the algorithm is to noise. 
The results are satisfactoryo Also results for a real scene were convincing. 

1 I n t r o d u c t i o n  

Given a general  set of images of the same scene one can only bui ld  a projec- 
tive reconst ruct ion [4, 6, 15, 16]. Recons t ruc t ion  up to a smaller  t r ans fo rma t ion  
group (i.e. affine or Euclidean) requires addi t iona l  constraints .  In this article 
only me thods  requir ing no a priori scene knowledge will be discussed. Exis t ing  
methods  assume that  all in ternal  camera  parameters  stay exactly the same for 

the different views. Hartley [7] proposed a me thod  to ob ta in  a Eucl idean recon- 

s t ruc t ion  from three images. The me thod  needs a non- l inear  op t imisa t ion  step 
wich is not  guaranteed to converge. Having  an afline reconstruct ion e l imina tes  
this problem.  Moons et al [11] described a method  to ob ta in  an afiine recon- 
s t ruct ion when the camera  movement  is a pure t rans la t ion .  Arms t rong  et al [1] 
combined both  methods  [11, 7] to ob ta in  a Eucl idean reconst ruct ion f rom three 
images with a t r ans la t ion  between the first two views. 

In contras t  to the 2D case, where viewpoint  independent  shape analysis  and 
the use of unca l ibra ted  cameras go hand  in hand,  the 3D case is more subtle .  The  
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precision of reconstruction depends on the level of calibration, be it in the form of 
information on camera or scene parameters. Thus, uncalibrated operation comes 
at a cost and it becomes important  to carefully consider the pro's and con's of 
needing knowledge on the different internal and external camera parameters. 

As an example, the state-of-the-art strategy to keep all internal camera pa- 
rameters unknown but fixed, means that  one is not allowed to zoom or adapt 
focus. This can be a serious limitation in practical situations. It stands to rea- 
son that the ability to keep the object of interest sharp and at an appropriate 
resolution would be advantageous. Also being allowed to zoom in on details that 
require a higher level of precision in the reconstruction can save much trouble. To 
the best of our knowledge no method using uncalibrated cameras for Euclidean 
reconstruction allows this (i.e. the focal length has to stay constant). 

This paper describes a method to obtain a Euclidean reconstruclion from 
images taken with an uncalibraled camera with a variable focal lenglh. In fact, it 
is an adaptation of the methods of Hartley [7], Moons el al [11] and Armstrong 
el al [1], to which it adds an initial step to determine the position of the principal 
point. Thus, a mild degree of camera calibration is introduced in exchange for 
the freedom to change the focal length between views used for reconstruction. 
The very ability to change the focal length allows one to recover the principal 
point in a straight-forward way. From there, the method starts with an affine 
reconstruction from two views with a translation in between. A third view allows 
an upgrade to Euclidean structure~ The focal length can be different for each of 
the three views. In addition the algorithm yields the relative changes in focal 
length between views. 

Recently, methods for the Euclidean calibration of a fixed stereo rig from 
two views taken with the rig have been propounded [19, 3]. The stereo rig must 
rotate between views. It is shown here that also in this case the flexibility of 
variable focal length can be provided for and that  reconstruction is also possible 
after pure translation, once the principal points of the cameras are determined. 

2 C a m e r a  m o d e l  

In this paper a pinhole camera model will be used. Central projection forms an 
image on a light-sensitive plane, perpendicular to the optical axis. Changes in 
focal length move the optical center along the axis, leaving the principal point 3 
unchanged. This assumption is fulfilled to a sufficient extent in practice [9]. The 
following equation expresses the relation between image points and world points. 

Aij mij = Pj  Mi (1) 

Here Pj is a 3x4 camera matrix, mij and Mi are column vectors containing the 
homogeneous coordinates of the image points resp. world points, Aij expresses 

3 The principal point is defined as the intersection point of the optical axis and the 
image plane 
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the equivalence up to a scale factor. If P j  represents a Euclidean camera, it can 
be put  in the following form [7]: 

P j  = Kj  [ R j l -  Rjtj] (2) 

where Rj  and tj represent the Euclidean orientation and position of this camera 
with respect to a world frame, and Kj  is the calibration matr ix of the jth camera: 

rx - cos0 I[1~=l I_ :-~u ! 
Kj = ry 1 j ly | (3) 

I; J 
In this equation r ,  and ry represent the pixel width and height, 0 is the angle 
between the image axes, u~ and Uy are the coordinates of the principal point, 
and f j  is the focal length. Notice that the calibration matrix is only defined up to 
scale. In order to highlight the effect of changing the focal length the calibration 
matr ix  Kj  will be decomposed in two parts: 

[l O ( f l / f j -1 )u~]  [ r21-r~l  c~ -1 
g j  = K : j K  = 1 (f l / f j  - 1)Uy| . ry 1 fl Uy (4) 

fl/fj J f~-i 
The second part K is equal to the calibration matrix K1 for view 1, whereas Kf~ 
models the effect of changes in focal length (i.eo zooming and focusing). From 
equation (4) it follows that once the principal point u is known, KIj  is known for 
any given value of fill1. Therefore, finding the principal point is the first step 
of the reconstruction method. Then, if the change in focal length between two 
views can be retrieved, its effect is canceled by multiplying the image coordinates 
to the left by K ~  1. 

. d 3  
The first thing to do is to retrieve the principal point u. Fortunately this is 

easy for a camera equiped with a zoom. Upon changing the focal length (without 
moving the camera or the scene), each image point according to the pinhole 
camera model will move on a line passing through the principal point. By taking 
two or more images with a different focal length and by fitting lines through 
the corresponding points, the principal point can be retrieved as the common 
intersection of all these lines. In practice these lines will not intersect precisely 
and a least squares approach is used to determine the principal point. This 
method has been used by others [18, 8, 9]. 

For the sake of simplicity we will assume R1 = I,tl = 0 and f l  = 1 in the 
remainder of this paper. Because the reconstruction is up to scaled Euclidean 
(i.e. similarity) and Kj  is only defined up to scale this is not a restriction. 

3 AtYine  s t r u c t u r e  f r o m  t r a n s l a t i o n  

It is possible to recover the affine structure of a scene from images taken by a 
translating camera [11]. This result can also be obtained when the focal length 
is not constant. Consider two perspective images with a camera translation and 
possibly a change in focal length in between. 
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Fig. 1. Illustration of the camera and zoom model. The focal lengths f l  and f2 
different, the other parameters ( rx, ry, uz, uy,O ) are identical. 

a r e  

3.1 recovering focal l ength  for translat ion 

There are different methods to recover the change in focal length. We first give 
a straightforward method based on the movement of the epipoles 4. The perfor- 
mance of this method degrades very fast with noise on the image correspon- 
dences. Therefore an alternative, non-linear method was developed, that uses 
all available constraints. This method gives good results even in the presence of 
noise. 

The first method is based on the fact that epipoles move on a line passing 
through the principal point u when the focal length is changed while the camera 
is translated and that this movement is related to the magnitude of this change. 
The following equation follows from the camera model: 

Ae21e21 :_ _Ae12(el 2 q_ (f~-i _ 1)u) (5) 

where e21 is the epipole in the second image and el2 the epipole in the first 
image, e21, e12 and u are column vectors of the form [x y 1] -r. From equation (5) 
f 2  1 can be solved in a linear way. This method is suboptimal in the sense that  
it does not take advantage of the translational camera motion. 

Determining the epipoles for two arbitrary images is a problem with 7 de- 
grees of freedom. In the case of a translation (without changing the focal length) 
between two views, the epipolar geometry is the same for both images and the 
image points lie on their own epipolar lines. This means that the epipolar ge- 
ometry is completely determined by knowing the position of the unique epipole 
(2 degrees of freedom). Adding changes in focal length between the images adds 
one degree of freedom when the principal point is known. 

Given three points in the two views, one know that a scaling equal to the 
focal length ratio should bring them in position such that  the lines through cor- 
responding points intersect in the epipole. This immediately yields a quadratic 

4 an epipole is the projection of the optical center of one camera in the image plane of 
the other camera. The epipo]es can be retrieved from at least 7 point correspondences 
between the two images [5]. 
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equation in the focal length ratio. The epipole follows as the resulting intersec- 
tion. In practice the data  will be noisy, however, and it is better to consider 
information from several points as outlined next~ 

The following equations describe the projection from world point coordinates 
Mi to image projection coordinates mi~,2 for both images 

Ailmil = K [ I I  0]Mi (6) 

Ai2mi2 = K / ~ K [ I  I - ~2]Mi 

= K f : K [ I  [ 0]MI + A~:~e2~ 

= )~il (• t i l  "J- ( f 2  1 -- 1)~) + ,,~e2, e21 (7) 

where mil ,  mi2, u and e21 are column vectors of the form Ix y 1] r .  Equation 
(7) gives 3 constraints for every point. If f2 is known this gives a linear set of 
equations in 2n + 3 unknowns ( Ail,Ai2,.~e21e211,Ae21e212,Ae~,e213 ). Because 
all unknowns of equation (7) (except f2) comprise a scale factor, n must satisfy 
3n >_ 2n + 3 - 1 to have enough equations. To also solve for f2 one needs at 
least one more equation, which means that at least 3 point correspondences are 
needed to find the relative focal length f2 (remember that f l  = 1). 

For every value of f2 one could try to solve the set of equations (7) by taking 
the singular value decomposition of the corresponding matrix. If f2 has the 
correct value there will be a solution and the smallest singular value should be 
zero. With noisy data there will not be an exact solution anymore, but the value 
of f2 which yields the smallest singular value will be the best solution in a least 
squares sense. For this paper the Decker-Brent algorithm was used to minimise 
the smallest singular value with respect to the relative focal length f2. This gives 
very good results. Thanks to the fact that  a non-linear optimisation algorithm 
in only one variable was used no convergence problems were encountered. 

3.2 att=ine r e c o n s t r u c t i o n  

knowing the focal length, one can start  the actual affine reconstruction. No- 
tice that it follows from equation (6) that the scene points Mi a r e  related to 

[ )~ i l l i l  ] by the affine transformation [ K 0 ] . S o i t s u f f i c e s t o r e c o v e r  the)~il 

from equation (7) to have an attlne reconstruction of the scene. 

4 E u c l i d e a n  s t r u c t u r e  f r o m  at=fine s t r u c t u r e  a n d  

s u p p l e m e n t a r y  c a m e r a  m o t i o n  

In this section the upgrade of the reconstruction from affine to Euclidean by 
using a supplementary image taken with a different orientation is discussed. 
Once an affine reconstruction of the scene is known the same constraints as in 
[7, l, 19] can be used. Here they are less easy to use, because the focal length also 
appears in these constraints. Therefore one first has to find the relative change 
in focal length. 
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4.1 r e c o v e r i n g  foca l  l e n g t h  fo r  a s u p p l e m e n t a r y  v i ew 

In this paragraph a method will be explained that allows to recover the relative 
focal length of a camera in any position and with any orientation (relative to 
the focal length of the camera at the beginning). This can be done by starting 
from an affine reconstruction. Choosing the first camera matr ix  to be [ I ] 0 ]  the 
second camera matr ix associated to our affine reconstruction is uniquely defined 
up to scale [15]. In the following equations the relationship between the affine 
camera matrixes P1A,  P3A and the Euclidean ones is given: 

= Ap3K$3 [KR3K-11.  ] (8) 

By definition K R a K  -1 is conjugated to R3 and hence will have the same eigen- 
values which for a rotation matr ix all have modulus 1 (one of them is real and 
both others are complex conjugated or real). This will be called the modulus 
constraint in the remainder of this paper. From equation (8) it follows that  P3A 
is related to K R 3 K  -1 in the following way: 

K)-31p3A = Ap3KR3K -1 (9) 

with 
1 0 ( fa  - 1 )u . ' ]  

KL1 = 1 ( f a -  1)uy / 
J 

The characteristic equation of K)'31p3A is as follows: 

(K731 l~3A -- AI) -- a)t 3 -4- bA 2 + cA + d =  0 (10) det 

The modulus constraint imposes I 11 = 1 21 = 1~31 (= ~P3). From this one gets 
the following constraint: 

ac 3 = b3d (11) 

Substituting the left hand side of equation (9) in equation (10), yields first order 
polynomials in f3 for a, b, c, d. Substituting these in equation (11), one obtains 
a 4 th order polynomial in f3. 

a4f  4 + a3fg + a2f  2 + all3 + a0 = 0 (12) 

This gives 4 possible solutions. One can see that  if f3 is a real solution, then - f 3  
must also be a solution 5. Filling this in in equation (12) one gets the following 

s This is because the only constraint imposed is the modulus constraint (same modulus 
for all eigenvalues). If the real part of ),2 and A3 have opposite sign then Kf-:P3A 
does not represent a rotation but a rotation and a mirroring. Changing the sign of 
f3 has the same effect. 
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result after som algebraic manipulations. 

fz -- : t : i ~  3 (13) 

where the sign is dependent on camera geometry and is known 6. One can con- 
elude this paragraph by stating that the relative focal length f of any view with 
respect to a reference view can be recovered for any Euclidean motion. 

4.2 E u c l i d e a n  r e c o n s t r u c t i o n  

To upgrade the reconstruction to Euclidean the camera calibration matr ix  K 
is needed. This is equivalent to knowing the image B of the dual of the abso- 
lute conic for the first camera, since B = KKTo Images are constrained in the 
following way: 

tz13B 3 : H13ooBHl-l-3c~ (14) 
with B3 : K3K3 T the inverse of the image of the absolute conic in the third 
image and H13~ the infinity homography 7 between the two images. This would 
be a set of linear equations in the coefficients of B if g13 was known. This can 
be achieved by imposing equal determinants for the left and right hand side of 
equation (14). But before doing this it is interesting to decompose Bz: 

B3 = K3K3 T : Ky3KKTK)-3 = KI3BK)-  (15) 

From equation (15) one finds an equation for the determinant of B3 and by 
imposing the equality with the determinant of the right hand side of equation 
(14), the following equation is obtained. 

det B3 = (det H~3~) 2 det B - (det Kf~) 2 det B (16) 

Equation (16) will hold if the following equation holds: 

det H l a ~  = det Kf3 = f31 , (17) 

when f3 has been obtained following the principles outlined in section 4.1. This 
constraint can easily be imposed because H13c~ is only determined up to scale. 
The following equations (derived from equations (14) and (15)) together with 
the knowledge of u and f3 then allows to calculate B (and K by cholesky fac- 
torisation). 

K]3BK)-  = H13ooBHT3oo (18) 
This approach could be simplified by assuming that the camera rows and columns 
are perpendicular ( 0 = 90~ In that case equation (18) boils down to an 
overdetermined system of linear equations in r~ -2 and r~ -2 which gives more 
stable results, v. and r v being the only unknowns left, one will also have K.  
Finally the affine reconstruction can be upgraded to Euclidean by applying the 
following transformation 

6 for a non-mirrored image the sign must be positive. 
7 The infinity homogrephy, which is a plane projective transformation, maps vanishing 

points from one image to the corresponding points in another image. 
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5 E u c l i d e a n  c a l i b r a t i o n  o f  a f i x e d  s t e r e o  r i g  

The auto-calibration techniques proposed by Zisserman [19] and Devernay [3] for 
two views taken with a rotating fixed stereo rig can also be generalised to allow 
changes in focal lengths for both cameras independently and purely translational 
motions. In fact the method is easier than for a single camera. 

For a fixed stereo rig the epipoles are fixed as long as one doesn't change 
the focal length. In this case the movement of the epipole in one camera is in 
direct relation with the change of its focal length. This is illustrated in figure 2. 
Knowing the relative change in focal length and the principal points allows to 
remove the effect of this change from the images. From then on the techniques 
of Zisserman [19] or Devernay [3] can be applied. 

AlL e2t, 

r 

(nxL,~L) 

( 

C ~ ~  e2R ~1 
(0,o) 

Fig. 2. this figure illustrates how the epipoles will move in function of a change in focal 
length. 

By first extracting the principal points -i.e. mildly calibrating the camera -  
one can then also get a Euclidean reconstruction even for a translating stereo 
rig[12], which was not possible with earlier methods [19, 3]. Between any pair of 
cameras i and j we have the following constraints: 

n i jBj  -r (20) = Hi jooBiHi joo  

For two views with a fixed stereo rig there are 3 different constraints of the 
type of equation (20): for the left camera (between view 1 and 2), for the right 
camera (between view 1 and 2) and between the left and the right camera. 
For a translation H12oo = I which means that the two first constraints become 
trivial. The constraint between the left and the right camera in general gives 6 
independent equations 8. This is not enough to solve for rL~, fLy, UL~, ULy, OL, 
rn~, rn~, un~, uny and 0R. Knowing the principal points restricts the number of 
unknowns to 6, which could be solved from the available constraints. Assuming 
perpendicular images axes [19] one can solve for the 4 remaining unknowns in a 
linear way [13]. In practical cases this is very important  because with the earlier 
techniques any movement close to translation gives unstable results which isn't 
the case anymore for this technique. 

8 the cameras of the stereo rig should not have the same orientation. 
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It  is also useful to note that  in the case of a translational mot ion of the 
rig, the epipolar geometry can be obtained with as few as 3 points seen in all 
4 views. Superimposing their projections in the focal length corrected second 
views onto the first, it is as if one observes two translated copies of the points. 
Choosing two of the three points, one obtains four coplanar points from the two 
copies (coplanarity derives from the fact that  the rig translates). Together with 
projections of the third point, this suffices to apply the algorithm propound in 
[2]. Needing as few as 3 points clearly is advantagous to detect e.g. independent 
motions using RANSAC strategies [17] 

6 R e s u l t s  

In this section some results obtained with the single camera algort i thm are pre- 
sented. First an analysis of the noise resistance of the algorithm is given based 
on synthetic data  with variable levels of noise. A reconstruction of a real scene 
is given as well. 

6.1 syn th e t i c  data  

Altough synthetic da ta  were used to perform the experiments in this paragraph,  
due attention has been paid to mimic real data.  A simple house shape was 
chosen as scene and the "camera" was given realistic parameter  values. From 
this a sequence of 320x320 disparity maps  was generated. These maps  were 
altered with different amounts of noise to see how robust the method is. The 
focal length change between the first two images (translation) can be recovered 
very accurately. The non-linear method was used to obtain f2 / f l .  The focal 
length for the third image is much more sensitive to noise, but this doesn ' t  seem 
to influence too much the calculation of r~ -1 or r~ -1. This is probably due to the 
fact that  the set of equations (18) gives us 6 independent equations for only 2 
unknowns. The influence of a bad localisation of the principal point u was also 
analysed. The errors on the est imated parameters  f2, f3, r~ "1 and r~ -1 came out 
to be of the same order as the error on u, which in practice was small when 
determined from zooming. From these experiments one sees that  the Euclidean 
calibration of the camera and hence also the reconstruction degrades gracefully 
in the presence of noise. This indicates that  the presented method is usable in 
practical circumstances. 

6.2 r e a l  i m a g e s  

Here some results obtained from a real scene are presented. The scene consisted 
of a cornflakes boxes, a lego box and a cup. The images that  were used can be 
seen in figure 3. The scene was chosen to allow a good qualitative evaluation of 
the Euclidean reconstruction. The boxes have right angles and the cup is cylin- 
drical. These characteristics must be preserved by a Euclidean reconstruction, 
but will in general not be preserved by an affine or projective reconstruction. 
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Fig. 3. The 3 images that  were used to build a Eucl idean reconstruct ion.  The camera 
was translated between the f i r s t  two views (the zoom was used to keep the size more or 
less constant) .  For the third image the camera was also rotated. 

To build a reconstruction one first needs correspondences between the images. 
Zhang's  corner matcher[5] was used to extract these correspondences. A total of 
99 correspondences were obtained between the first two images. From these the 
affine calibration of the camera was computed. From the first up to the third im- 
age 34 correspondences could be tracked. The corresponding scene points were 
reconstructed from the first two images which allowed to find an affine cali- 
bration for the camera in the third position. From this the method described in 
section 5 to find the Euclidean cMibration of the camera  was used. Subsequently, 
the output  of an algorithm to compute dense point correspondences[14] was used 
to generate a more complete reconstruction. This algorithm yields a pointwise 
correspondence and confidence level. Only points with a confidence level above 
a fixed threshold were used for the reconstruction. 

Fig. 4. f r o n t  and  top view of  the reconstruct ion.  

Figure 4 shows two views of the reconstructed scene. The left image is a front 
view while the right image is a top view. Note , especially from the top view, 
that  90 ~ angles are preserved and that  the cup keeps its cylindrical form which 
is an indication of the quality of the E u c l i d e a n  reconstruction. Figure 5 shows a 
further view, both shaded and texture mapped  to indicate the consistency with 
the original image texture. 
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Fig. 5. side views o] the reconstructed scene (with shading and with texture). 

7 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

In this paper the possibility to obtain the auto-calibration of both a single moving 
camera and a moving stereo-rig was demonstrated and this without the need 
of keeping all internal parameters  constant. The complete method for a single 
camera was described. From the experiments one can conclude that  this method 
is relatively stable in the presence of noise~ This makes it suitable for practical 
use. Also a method for auto-calibration of a fixed stereo rig with independently 
zooming cameras was briefly presented. An additional advantage of this method 
is that  it is even suitable for a purely translating stereo rig, whereas previous 
methods required a rotational motion component.  

We plan to enhance the implementations of both the single camera and the 
stereo rig calibration algorithm. The input of more correspondences in the auto- 
calibration stage would certainly yield better  results. We will also look at other 
possibilities of the modulus constraint (see section 4.1) which must hold for a 
camera in any position in an affine camera reference f rame 9. We could use this 
constraint to calculate any unknown parameter  of a camera.  Using different views 
one could solve for more parameters,  like for example the aJ:fine calibration of the 
matr ix  itself. This could be intresting because it allows to work in a 3 parameter  
space in stead of the 8 parameters  that  Hartley [7] had to solve for at once. 
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