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We study the Euclidean distance between syntactically linked words in sentences. The average distance is

significantly small and is a very slowly growing function of sentence length. We consider two nonexcluding

hypotheses: (a) the average distance is minimized and (b) the average distance is constrained. Support for (a)

comes from the significantly small average distance real sentences achieve. The strength of the minimization

hypothesis decreases with the length of the sentence. Support for (b) comes from the very slow growth of the

average distance versus sentence length. Furthermore, (b) predicts, under ideal conditions, an exponential

distribution of the distance between linked words, a trend that can be identified in real sentences.

DOI: 10.1103/PhysRevE.70.056135 PACS number(s): 89.75.2k, 89.20.2a

I. INTRODUCTION

Dependency grammar is a class of grammatical formal-
isms [1–3] specifying how pairs of words link in sentences.
Typically, two words are linked if one syntactically depends
on the other. Links are syntactic dependencies. Most links
are directed, and the arc goes from the head word to its
modifier or vice versa depending on the convention used.
Head and modifier are primitive concepts in the dependency
grammar formalism (Fig. 1). In the examples used here arcs
go from the head to its modifier, but link direction is not
relevant here because we are only concerned about the dis-
tance between linked words. The dependency grammar for-
malism distinguishes some cases, such as coordination,
where there is no clear direction [4].

The statistical structure of global syntactic dependency
networks has recently received attention [5]. Those networks
have words as nodes. A pair of words is linked if that pair
has appeared syntactically connected at least once in a cor-
pus (i.e., collection of sentences).

Here we focus on the Euclidean (or physical) distance
between syntactically linked words in sentences. Here we
assume that words are placed on a straight line following the
order of a sentence (as in Fig. 1). Our convention consists of
assigning position one to the first word of the sentence and
adding one after every word for calculating the positions of
the following words. We define psvd as the position of word

v, and the Euclidean distance between two words, u and v, is
defined as dsu ,vd= upsud−psvdu, so dsu ,vd=dsv ,ud. We are

only interested in the distance between connected words.
Table I lists the positions of every word and the distance to
the sender of the arc for the sentence in Fig. 1 (the depen-
dency grammar formalism generally assumes that every ver-
tex receives one arc except for the root word that receives no
arc). If the word “she” was moved to the end of the sentence,
then all distances in Table I would remain the same except
for dsshe , lovedd=8.

There are reasons for thinking that the distance between
syntactically linked words is constrained. The language fac-

ulty is constrained in many ways. Lung capacity imposes
limits on the length of actual spoken sentences, whereas
working memory [6] imposes limits on the complexity of
sentences if they are to be understandable [7]. It is reason-
able to think that distantly related words pose problems to
the brain machinery that has to produce or process a certain
sentence. The fact that about 50%–67% of the links in sen-
tences are formed between words at distance 1 and 16%–
25% are formed at distance 2 [8] suggests two possibilities:
(a) the Euclidean distance between syntactically linked
words is minimized or (b) the Euclidean distance between
linked words is constrained on average. Various statistical
tests indicate that the distance at which syntactic interactions
take place is significantly small [8].

The distance between syntactically related items in sen-
tences is a basic ingredient of the cost of a sentence [9,10]

and has been used for explaining word order universals [10].
Cost minimization or, in other words, least effort principles
are a successful explanation for universals in quantitative
linguistics. For instance, Zipf’s law [11] for word frequen-
cies can be explained by minimizing hearer and speaker
communicative needs [12,13].

The minimization of the topological (or network) distance
in complex networks has been studied [14–16]. Minimiza-
tion of the Euclidean distance has been studied in various
topologies: rings [17] and two-dimensional Euclidean spaces
[18] (see [19] for more references). Here we focus on a one-
dimensional Euclidean space without boundary conditions.
An important difference is that we assume that the network
structure is fixed. The only freedom is for changing the po-
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FIG. 1. The syntactic structure of the sentence, “She loved me

for the dangers I had passed,” following the conventions in [1].

Here vertices are words and the arcs stand for syntactic dependen-

cies. Following the conventions in [1], arcs go from a head to its

modifier. The pronoun “she” and the verb “loved” are syntactically

dependent in the sentence. “She” is the modifier of the verbal form

“loved,” which is its head. Similarly, the action of “loved” is modi-

fied by its object “me.” “Loved” is the root vertex.
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sitions of words in the sentence, that is changing the function
psvd.

Section II suggests that the linear arrangement of words in
sentences obeys a minimization of the Euclidean distance
between words [hypothesis (a)]. Section III suggests that ar-
rangement could be constrained in the mean Euclidean dis-
tance between words [hypothesis (b)].

II. EUCLIDEAN DISTANCE MINIMIZATION

HYPOTHESIS

Suppose we have a network whose set of vertices is V and
its set of arcs is A (a directed graph). Suppose psvd is the
position of vertex v. Then, dsu ,vd= upsud−psvdu is the Eu-
clidean distance between vertices u and v (where u ,vPV).
We are aimed at finding the p such that Vsp ,Ad
=osu,vdPAdsu ,vd is minimum. Minimizing V, as defined

here, is known as the minimum linear arrangement (m.l.a.)
problem [20]. Here we will consider if the Euclidian distance
between syntactically related words is minimized. The prob-
lem that minimization must solve is exactly the m.l.a. in
computer science [20]. Two different sources of data were
used for the present study. Both are collections of sentences
with its syntactic dependency structure. Both data sets have
been already used in [5]. First, a Romanian corpus was
formed by all sample sentences in the Dependency Grammar
Annotator website [21]. It contains 21 275 words and 2340
sentences. Second, a Czech corpus was used [22,23] having
approximately 563 067 words and 31 701 sentences. Many
sentence structures are incomplete in the Czech corpus (i.e.,
they have fewer than n−1 links, where n is the length of the
sentence in words). The proportion of links provided with
regard to the theoretical maximum is about 0.65. When hav-
ing complete structures was critical, only the Romanian cor-
pus was used. Punctuation marks were absent, so distances
between words are true distances in both cases.

We define the average value of d, the distance between
linked vertices, as

kdl =
1

n − 1
Vsp,Ad ,

where n is the length of the sentence in words (notice uAu
=n−1). Alternatively, we may define kdl as

kdl = Efdg = o
d=1

dPsdd , s1d

where E is the expectation operator and Psdd is the probabil-

ity that two linked words are at distance d. Figure 2 shows
kdl as a function of n for real Romanian sentences. The real

kdl is compared against a null hypothesis (a control series)

and the value obtained by a m.l.a. As for the null hypothesis,
it is calculated on real sentences by scrambling the position
of vertices (while the network structure remains the same)

and calculating V again [V is used instead of Vsp ,Ad for

brevity]. It follows for the latter case that

Psdd =
2sn − dd

nsn − 1d
. s2d

Replacing the previous equation into Eq. (1) we get

kdl =
n + 1

3
s3d

after some algebra. Incidentally, Eq. (3) is the same as the
average vertex-vertex distance of a linear graph [24]. As for
the m.l.a., a fast heuristic algorithm for solving the m.l.a.
problem [25] is used for simplicity. Finding the m.l.a on a
generic graph is a very hard computational problem [20,26].
If the network is a tree, exact computationally affordable
algorithms exist [27,28]. Numerical calculations up to n

=11 showed that the algorithm in [25] always finds the op-
timum on trees. Figure 2 shows that real kdl is significantly

small, given how far the real series is from the upper bound
provided by the null hypothesis in Eq. (3). Figure 2 supports
the hypothesis that real sentences may minimize V to some
extent. The fact that kdl for real sentences is greater than that

of the heuristic approximation shows that using the exact
algorithm for trees [27,28] is not necessary in this context.

We define the ratio

G = Vreal/Vmla,

where Vreal and Vmla are, respectively, the average value of
V for the Romanian collection of sentences and that of the

TABLE I. Every word or the sentence, “She loved me for the

dangers I had passed,” the position of every word fpsworddg and

the distance (in words) of every word to the sender of arc

fdsword ,senderdg.

word pswordd sender dsword ,senderd

she 1 loved 1

loved 2 — —

me 3 loved 1

for 4 loved 2

the 5 dangers 2

dangers 6 for 2

I 7 had 1

had 8 dangers 2

passed 9 had 1

FIG. 2. The average value of kdl, the mean edge length (in

words), versus the length (in words) of the sentence, n, for real

sentences (solid line) and the corresponding minimum linear ar-

rangements (dotted line). Here the Romanian corpus is used. A

control kdl was calculated by scrambling the words in every sen-

tence 1000 times and averaging kdl (long dashed). The latter case is

kdl= sn+1d /3, as expected.
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corresponding m.l.a.’s. G is a growing function of n, the
sentence length (Fig. 3). Therefore, the shorter the sentence,
the higher the support for the Euclidean distance minimiza-
tion hypothesis.

III. CONSTRAINED EUCLIDEAN DISTANCE

HYPOTHESIS

Figure 2 suggests that kdl is constrained in real sentences

because kdl is a very slowly growing function of n (a linear

fitting gives kdl=1.163±0.039n). Additional support for that

constraint comes from the computational limitations of the
brain for dealing with distant syntactically linked words [9].
Working memory [6] carries on the load of distant linked
words. So the hypothesis here is twofold: (a) there is a lim-
ited amount of resources (e.g., working memory) for produc-
ing and processing sentences that should not be exceeded
and (b) kdl is a good measure of the amount of resources

required by the structure of sentence.
The distance between linked words of an ideal language

constraining kdl can be calculated. We can predict Psdd, the

probability that two linked words are at distance d using the
maximum entropy principle [29,30] for obtaining Psdd when

the arc mean length kdl is constrained as Fig. 2 suggests.

Thus, we get (see the Appendix)

Psdd = asn − dde−bd, s4d

where b is a parameter and

a = So
d=1

n−1

sn − dde−bdD−1

.

b is a parameter satisfying

kdl = o
d=1

n−1

dsn − dde−bd.

For large n (see the Appendix) we have

b <
n − kdl ± skdl2 − 10nkdl − n2d1/2

2kdln
s5d

and n and kdl are the only parameters.

Support for maximizing the entropy of hPsddj comes from

the following. The minimum entropy is given by an arrange-

ment where kdl=1. The only networks that can achieve such

a small distance are linear graphs where all links are formed
between consecutive words in the sentence. A linear graph is
a connected graph without cycles where all vertices have two
connections except two vertices in the extremes which have
a single connection [24]. For instance, the sentence “I eat
potatoes,” whose links are {“I,” “eat”} and {“eat,” “pota-
toes”} is a linear graph of that kind. The problem of a linear
a graph is that it is a very specific structure. For instance, the
graph in Fig. 1 is not a linear graph, so it cannot inherently
achieve kdl=1. Sentence structure imposes links whose ver-

tices pairs cannot be arranged consecutively. Thus, sentence
structure induces maximizing the entropy of hPsddj.

IV. DISCUSSION

We have considered two hypotheses concerning the Eu-
clidean distance between syntactically linked words: (a) kdl
is minimized and (b) kdl is constrained while the entropy is

maximized. First, we examine the support for hypothesis (a).
We have found that real kdl is slightly above what a mini-

mum linear arrangement would dictate but very far from the
null hypothesis, the expected kdl when there is not minimi-

zation at all (Fig. 2). Real kdl is significantly small. We have

also seen that G, the ratio between real kdl and m.l.a. kdl,
increases with the length of the sentence (Fig. 3). Second, we
examine the support for hypothesis (b). If kdl was con-

strained in real sentences in full, a straight line in linear-log
scale with the predicted exponent would be expected. Al-
though Eq. (4) is close to the real values for short distances,
it cannot directly explain the exponential trend with different
slope for long distances (Fig. 4). The slower decrease in Psdd
for long distances suggests the presence of factors such as
word order rules preventing Psdd from decreasing as fast as a

pure Euclidean distance constraint would dictate. Let us il-
lustrate what could be happening at long distances with a
simple example (a short phrase is chosen for simplicity). The
phrase “beautiful black car,” whose edges are {“beautiful,”
“car”} and {“black,” “car”}, gives kdl=3/2. A better ar-

rangement would be “beautiful car black,” giving kdl=1, but

that would violate English grammar rules. That type of gram-
matical conflicts may also explain the growth of G with n.

Our study provides support for hypotheses (a) and (b).
Both hypotheses are complementary although one could be a
consequence of the other. Constraining kdl to a certain value

is similar to minimizing kdl if that value is sufficiently small.

In other words, (a) could be, to some extent, a side effect of
(b). Distant connections are so expensive in terms of
memory that they are very unlikely to happen, but if the
sentence structure is complex enough, links between noncon-
secutive words cannot be avoided. Distance minimization or
constrained distance seems a consequence of limited brain
resources.
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APPENDIX: THE MAXIMUM ENTROPY PRINCIPLE

pd, the probability that two linked words are at distance d

[Psdd in the main text], can be derived using the minimum

entropy principle [29,30]. Knowing that the prior distribution
is Pd=2sn−dd /nsn−1d and assuming there is no further con-

straint other than normalization, we may define the func-
tional

E = HB − ao
d=1

n−1

pd,

where HB is the Bayesian entropy defined as

HB = − o
d=1

n−1

pdln
pd

Pd

.

]E /]pd=0 leads to

pd = Pde−1−a.

The constraint od=1
n−1pd=1 gives pd=Pd as expected.

Assuming kdl=od=1
n−1dpd, the average distance between

linked words, is constrained, we may define the functional

E = HB − ao
d=1

n−1

pd − bo
d=1

n−1

dpd.

Thus, ]E /]pd=0 leads to

pd = Pde−1−a−bd,

which we may write as

pd = asn − dde−bd,

with

a =
2e−1−a

nsn − 1d
.

The constraint

o
d=1

n−1

pd = 1

leads to

a = So
d=1

n−1

sn − dde−bdD−1

. sA1d

The constraint

o
d=1

n−1

dpd = kdl

leads to

a =
kdl

o d=1
n−1

dsn − dde−bd
. sA2d

Minimizing the function

F = sab − kdld2,

with

b = o
d=1

n−1

dsn − dde−bd,

we may obtain the value(s) of b. Knowing

E
0

`

xne−axdx =
Gsn + 1d

an+1 ,

we may write Eq. (A1) as

a < SnGs1d

b2 −
Gs2d

b3 D−1

sA3d

and Eq. (A2) as

FIG. 4. The cumulative Psdd, where Psdd is the probability an

arc links words at distance d. Real values (solid lines) can be com-

pared to that of the null hypothesis (dotted lines) and the maxent

exponential model (dashed lines). (A) Romanian sentences having

the typical length L* =6. (B) Czech sentences having the typical

length L* =12. (C) Romanian sentences having the mean length

kLl<9 D. Czech sentences having the mean length kLl<18. Real

Psdd clearly differs from the null hypothesis and approaches a

straight line in linear-log scale, agreeing with the exponential pre-

diction derived in this paper for short distances and changing the

slope but keeping the exponential trend for long distances.
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a <
kdl

nGs2d

b2 −
Gs3d

b3

sA4d

for large n. The right-hand sides of Eqs. (A3) and (A4) to-
gether give

kdlnb2 − skdl + ndb + 2 < 0. sA5d

Therefore, we have

b <
n − kdl ± skdl2 − 6nkdl + n2d1/2

2kdln
.
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