
 IEEE SIGNAL PROCESSING MAGAZINE [12] NOVEMBER 2015 1053-5888/15©2015IEEE IEEE SIGNAL PROCESSING MAGAZINE [12] NOVEMBER 2015 1053-5888/15©2015IEEE

E
uclidean distance matrices (EDMs) are matrices of the 
squared distances between points. The definition is 
deceivingly simple; thanks to their many useful proper-
ties, they have found applications in psychometrics, 
crystallography, machine learning, wireless sensor net-

works, acoustics, and more. Despite the usefulness of EDMs, they 
seem to be insufficiently known in the signal processing commu-
nity. Our goal is to rectify this mishap in a concise tutorial. We 
review the fundamental properties of EDMs, such as rank or 
(non)definiteness, and show how the various EDM properties can 
be used to design algorithms for completing and denoising dis-
tance data. Along the way, we demonstrate applications to micro-
phone position calibration, ultrasound tomography, room 
reconstruction from echoes, and phase retrieval. By spelling out 
the essential algorithms, we hope to fast-track the readers in 
applying EDMs to their own problems. The code for all of the 
described algorithms and to generate the figures in the article is 
available online at http://lcav.epfl.ch/ivan.dokmanic. Finally, we 
suggest directions for further research.

INTRODUCTION

Imagine that you land at Geneva International Airport with the 
Swiss train schedule but no map. Perhaps surprisingly, this may 
be sufficient to reconstruct a rough (or not so rough) map of 
the Alpine country, even if the train times poorly translate to 
distances or if some of the times are unknown. The way to do it 

is by using EDMs; for an example, see “Swiss Trains (Swiss Map 
Reconstruction).” 

We often work with distances because they are convenient to 
measure or estimate. In wireless sensor networks, for example, the 
sensor nodes measure the received signal strengths of the packets 
sent by other nodes or the time of arrival (TOA) of pulses emitted 
by their neighbors [1]. Both of these proxies allow for distance esti-
mation between pairs of nodes; thus, we can attempt to reconstruct 
the network topology. This is often termed self-localization [2]–[4]. 
The molecular conformation problem is another instance of a dis-
tance problem [5], and so is reconstructing a room’s geometry 
from echoes [6]. Less obviously, sparse phase retrieval [7] can be 
converted to a distance problem and addressed using EDMs.

Sometimes the data are not metric, but we seek a metric 
representation, as it happens commonly in psychometrics [8]. As a 
matter of fact, the psychometrics community is at the root of the 
development of a number of tools related to EDMs, including 
multidimensional scaling (MDS)—the problem of finding the best 
point set representation of a given set of distances. More abstractly,  
we can study EDMs for objects such as images, which live in high-
dimensional vector spaces [9].

EDMs are a useful description of the point sets and a starting 
point for algorithm design. A typical task is to retrieve the original 
point configuration: it may initially come as a surprise that this 
requires no more than an eigenvalue decomposition (EVD) of a 
symmetric matrix. In fact, the majority of Euclidean distance 
problems require the reconstruction of the point set but always 
with one or more of the following twists:

1) The distances are noisy. 
2) Some distances are missing.
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3) The distances are unlabeled.
For examples of applications requiring solutions of EDM problems 
with different complications, see Figure 1. 

There are two fundamental problems associated with distance 
geometry [10]: 1) given a matrix, determine whether it is an EDM 
and 2) given a possibly incomplete set of distances, determine 
whether there exists a configuration of points in a given embed-
ding dimension—the dimension of the smallest affine space com-
prising the points—that generates the distances.

LITERATURE REVIEW

The study of point sets through pairwise distances, and that of 
EDMs, can be traced back to the works of Menger [11], Schoen-
berg [12], Blumenthal [13], and Young and Householder [14]. An 
important class of EDM tools was initially developed for the pur-
pose of data visualization. In 1952, Torgerson introduced the 
notion of MDS [8]. He used distances to quantify the dissimilari-
ties between pairs of objects that are not necessarily vectors in a 
metric space. Later, in 1964, Kruskal suggested the notion of 
stress as a measure of goodness of fit for nonmetric data [15], 
again representing experimental dissimilarities between objects.

A number of analytical results on EDMs were developed by 
Gower [16], [17]. In 1985 [17], he gave a complete characteriza-
tion of the EDM rank. Optimization with EDMs requires adequate 
geometric intuitions about matrix spaces. In 1990, Glunt et al. 
[18] and Hayden et al. [19] provided insights into the structure of 
the convex cone of EDMs. An extensive treatise on EDMs with 
many original results and an elegant characterization of the EDM 
cone is provided by Dattorro [20].

In the early 1980s, Williamson, Havel, and Wüthrich developed 
the idea of extracting the distances between pairs of hydrogen 
atoms in a protein using nuclear magnetic resonance (NMR). The 
extracted distances were then used to reconstruct three-dimen-
sional (3-D) shapes of molecules [5]. (Wüthrich received the Nobel 
Prize for chemistry in 2002.) The NMR spectrometer (together 
with some postprocessing) outputs the distances between the 
pairs of atoms in a large molecule. The distances are not specified 
for all atom pairs, and they are uncertain—i.e., given only up to an 
interval. This setup lends itself naturally to EDM treatment; for 
example, it can be directly addressed using MDS [21]. Indeed, the 
crystallography community also contributed a large number of 
important results on distance geometry. In a different biochemical 
application, comparing distance matrices yields efficient algo-
rithms for comparing proteins from their 3-D structure [22].

In machine learning, one can learn manifolds by finding an 
EDM with a low embedding dimension that preserves the local 
geometry. Weinberger and Saul use it to learn image manifolds [9]. 
Other examples of using Euclidean distance geometry in machine 
learning are the results by Tenenbaum, De Silva, and Langford [23] 
on image understanding and handwriting recognition; Jain and 

Saul [24] on speech and music; and Demaine et al. [25] on music 
and musical rhythms.

With the increased interest in sensor networks, several EDM-
based approaches were proposed for sensor localization [2]–[4], 
[20]. The connections between EDMs, multilateration, and sem-
idefinite programming are expounded in depth in [26], especially 
in the context of sensor network localization (SNL).

SWISS TRAINS (SWISS MAP RECONSTRUCTION)

Consider the following matrix of the time in minutes it 

takes to travel by train between some Swiss cities (see 

Figure S1):
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The numbers were taken from the Swiss railways timeta-

ble. The matrix was then processed using the classical MDS 

algorithm (Algorithm 1), which is basically an EVD. The 

obtained city configuration was rotated and scaled to align 

with the actual map. Given all of the uncertainties 

involved, the fit is remarkably good. Not all trains drive 

with the same speed, they have varying numbers of stops, 

and railroads are not straight lines (i.e., because of lakes 

and mountains). This result may be regarded as anecdotal, 

but, in a fun way, it illustrates the power of the EDM tool-

box. Classical MDS could be considered the simplest of the 

available tools, yet it yields usable results with erroneous 

data. On the other hand, it might be that Swiss trains are 

just that good.
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Neuchâtel

Bern
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[FIGS1] A map of Switzerland with the true locations of 
five cities (red) and their locations estimated by using 
classical MDS on the train schedule (black).
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Position calibration in ad hoc microphone arrays is often done 
with sources at unknown locations, such as hand claps, finger 
snaps, or randomly placed loudspeakers [27]–[29]. This gives us 
the distances (possibly up to an offset time) between the micro-
phones and the sources and leads to the problem of multidimen-
sional unfolding (MDU) [30].

All of the mentioned applications work with labeled distance 
data. In certain TOA-based applications, one loses the labels, i.e., 
the correct permutation of the distances. This issue arises when 
reconstructing the geometry of a room from echoes [6]. Another 
example of unlabeled distances is in sparse phase retrieval, where 
the distances between the unknown nonzero lags in a signal are 
revealed in its autocorrelation function (ACF) [7]. Recently, moti-
vated by problems in crystallography, Gujarahati et al. published an 
algorithm for the reconstruction of Euclidean networks from unla-
beled distance data [31].

OUR MISSION

We were motivated to write this tutorial after realizing that 
EDMs are not common knowledge in the signal processing com-
munity, perhaps for the lack of a compact introductory text. This 
is effectively illustrated by the anecdote that, not long before 
writing this article, one of the authors of this article had to add 
the (rather fundamental) rank property to the Wikipedia page on 
EDMs (search for “Euclidean distance matrix”). (We are working 
on improving that page substantially.) In a compact tutorial, we 
do not attempt to be exhaustive; much more thorough literature 
reviews are available in longer exposés on EDMs and distance 
geometry [10], [32], [33]. Unlike these works, which take the 
most general approach through graph realizations, we opt to 
show simple cases through examples and explain and spell out a 

set of basic algorithms that anyone can use immediately. Two big 
topics that we discuss are not commonly treated in the EDM lit-
erature: localization from unlabeled distances and MDU (applied 
to microphone localization). On the other hand, we choose to 
not explicitly discuss the SNL problem as the relevant literature 
is abundant.

Implementations of all of the algorithms in this article are 
available online at http://lcav.epfl.ch/ivan.dokmanic. Our hope is 
that this will provide a solid starting point for those who wish to 
learn much more while inspiring new approaches to old problems.

FROM POINTS TO EDMs AND BACK

The principal EDM-related task is to reconstruct the original point 
set. This task is an inverse problem to the simpler forward problem of 
finding the EDM given the points. Thus, it is desirable to have an 
analytic expression for the EDM in terms of the point matrix. Beyond 
convenience, we can expect such an expression to provide interesting 
structural insights. We will define the notation as it becomes neces-
sary—a summary is provided in Table 1.

Consider a collection of n  points in a d-dimensional Euclidean 
space, ascribed to the columns of matrix ,X R

d n
!

#  
[ , , , ], .X x x x x Rn i

d
1 2 g !=  Then the squared distance between 

xi  and x j  is given as 

 ,x xdij i j
2

= -  (1)

where ·  denotes the Euclidean norm. Expanding the norm 
yields 

 ( ) ( ) .x x x x x x x x x xd 2ij i j i j i i i j j j= - - = - +
< < <<  (2)

From here, we can read out the matrix equation for [ ]D dij=  

 ( ) ( ) ( ) ,X X X X X X X21 1edm diag diag
def
= - +

< < < <<  (3)

where 1  denotes the column vector of all ones and ( )Adiag  is the 
column vector of the diagonal entries of .A  We see that ( )Xedm  is 
in fact a function of .X X<  For later reference, it is convenient to 
define an operator ( )GK  similar to ( ),Xedm  which operates 
directly on the Gram matrix G X X=

<

 ( ) ( ) ( ) .G G G G21 1diag diagK
def
= - +

< <  (4)

The EDM assembly formula (3) or (4) reveals an important 
property: because the rank of X  is at most d  (i.e., it has d  rows), 
then the rank of X X<  is also at most .d  The remaining two sum-
mands in (3) have rank one. By rank inequalities, the rank of a sum 
of matrices cannot exceed the sum of the ranks of the summands. 
With this observation, we proved one of the most notable facts 
about EDMs:

Theorem 1 (Rank of EDMs): The rank of an EDM correspond-

ing to points in Rd  is at most .d 2+

This is a powerful theorem; it states that the rank of an EDM is 
independent of the number of points that generate it. In many 

[FIG1] Two real-world applications of EDMs. (a) SNL from 
estimated pairwise distances is illustrated with one distance 
missing because the corresponding sensor nodes are too far apart 
to communicate. (b) In the molecular conformation problem, we 
aim to estimate the locations of the atoms in a molecule from their 
pairwise distances. Here, because of the inherent measurement 
uncertainty, we know the distances only up to an interval. 
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applications, d  is three or less while n  can be in the thousands. 
According to Theorem 1, the rank of such practical matrices is at 
most five. The proof of this theorem is simple, but, to appreciate 
that the property is not obvious, you may try to compute the rank 
of the matrix of nonsquared distances.

What really matters in Theorem 1 is the affine dimension of 
the point set, i.e., the dimension of the smallest affine subspace 
that contains the points, which is denoted by .( )dim Xaff  For 
example, if the points lie on a plane (but not on a line or a cir-
cle) in ,R3  the rank of the corresponding EDM is four, not five. 
This will be made clear from a different perspective in the sec-
tion “Essential Uniqueness,” as any affine subspace is just a 
translation of a linear subspace. An illustration for a one-dimen-
sional (1-D) subspace of R2  is provided in Figure 2. Subtracting 
any point in the affine subspace from all of its points translates 
it to the parallel linear subspace that contains the zero vector.

ESSENTIAL UNIQUENESS

When solving an inverse problem, we need to understand what 
is recoverable and what is forever lost in the forward problem. 
Representing sets of points by distances usually increases the 
size of the representation. For most interesting n  and ,d  the 
number of pairwise distances is larger than the size of the coor-
dinate description, ( / ) ( ) ,n n nd1 2 1 2-  so an EDM holds more 
scalars than the list of point coordinates. Nevertheless, some 
information is lost in this encoding such as the information 
about the absolute position and orientation of the point set. 
Intuitively, it is clear that rigid transformations (including 
reflections) do not change the distances between the fixed 
points in a point set. This intuitive fact is easily deduced from 
the EDM assembly formula (3). We have seen in (3) and (4) that 

( )Xedm  is in fact a function of the Gram matrix .X X<

This makes it easy to show algebraically that rotations and 
reflections do not alter the distances. Any rotation/reflection 
can be represented by an orthogonal matrix Q R

d d
!

#  acting 
on the points .xi  Thus, for the rotated point set ,X QXr =  we 
can write

 ( ) ( ) ,X X QX QX X Q QX X Xr r = = =
< < < <<  (5)

where we invoked the orthogonality of the rotation/reflection mat-
rix .Q Q I=

<

Translation by a vector b R
d

!  can be expressed as

 .X X b1t = +
<  (6)

Using ( ) ( ) ,X X X X X b b2 1diag diagt t
2

= + +
< <<  one can directly 

verify that this transformation leaves (3) intact. In summary,

 ( ) ( ) ( ) .QX X b X1edm edm edm= + =
<  (7)

The consequence of this invariance is that we will never be able 
to reconstruct the absolute orientation of the point set using only 
the distances, and the corresponding degrees of freedom will be 
chosen freely. Different reconstruction procedures will lead to dif-
ferent realizations of the point set, all of them being rigid 

transformations of each other. Figure 3 illustrates a point set 
under a rigid transformation; it is clear that the distances between 
the points are the same for all three shapes.

RECONSTRUCTING THE POINT SET FROM DISTANCES

The EDM equation (3) hints at a procedure to compute the point 
set starting from the distance matrix. Consider the following 
choice: let the first point x1  be at the origin. Then, the first col-
umn of D  contains the squared norms of the point vectors

 .x x x xd 0i i i i1 1
2 2 2

= - = - =  (8)

[TABLE 1] A SUMMARY OF THE NOTATIONS.

SYMBOL MEANING 

n NUMBER OF POINTS (COLUMNS) IN [ , , ]X x xn1 f=

d DIMENSIONALITY OF THE EUCLIDEAN SPACE 

a ij ELEMENT OF A MATRIX A  ON THE iTH  ROW AND 
THE jTH COLUMN 

D AN EDM 

( )Xedm AN EDM CREATED FROM THE COLUMNS IN X

( , )X Yedm A MATRIX CONTAINING THE SQUARED DISTANCES 
BETWEEN THE COLUMNS OF X  AND Y

( )GK AN EDM CREATED FROM THE GRAM MATRIX G

J A GEOMETRIC CENTERING MATRIX 

AW RESTRICTION OF A  TO NONZERO ENTRIES IN W

W MASK MATRIX, WITH ONES FOR OBSERVED ENTRIES 

S
n
+ A SET OF REAL SYMMETRIC POSITIVE-SEMIDEFINITE 

(PSD) MATRICES IN Rn n#

( )Xdimaff AFFINE DIMENSION OF THE POINTS LISTED IN X

A B% HADAMARD (ENTRYWISE) PRODUCT OF A  AND B

ijf NOISE CORRUPTING THE ( , )i j  DISTANCE 

e i iTH VECTOR OF THE CANONICAL BASIS 

A F FROBENIUS NORM OF ,A  a
/

ij
ij

2 1 2` j/
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[FIG2] An illustration of the relationship between an affine subspace 
and its parallel linear subspace. The points [ , , ]X x x1 4f=  live in an 
affine subspace—a line in R2  that does not contain the origin. In (a), 
the vector x1  is subtracted from all the points, and the new point 
list is [ , , , ] .X x x x x x x0 2 1 3 1 4 1= - - -l  While the columns of X  
span ,R

2  the columns of X l only span a 1-D subspace of R2—the 
line through the origin. In (b), we subtract a different vector from  
all points: the centroid / .X1 4 1^ h  The translated vectors 

[ , , ]X x x1 4f=m m m  again span the same 1-D subspace. 
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Consequently, we can construct the term ( )X X1 diag <  and its 
transpose in (3), as the diagonal of X X<  contains exactly the 
norms squared .xi

2  Concretely,

 ( ) ,X X d1 1diag 1=
<<  (9)

where d De1 1=  is the first column of .D  We thus obtain the 
Gram matrix from (3) as 

 ( ) .G X X D d d
2
1 1 11 1= =- - -

< <<  (10)

The point set can then be found by an EVD, ,G U UK=
<  where 

( , , )diag n1 fm mK =  with all eigenvalues im  nonnegative and U  
orthonormal, as G is a symmetric positive-semidefinite (PSD) matrix. 
Throughout this article, we assume that the eigenvalues are sorted in 
the order of decreasing magnitude, .n1 2 g$ $ $m m m  We can 
now set [ ( , , ), ] .X U0diag ( )d d n d1

def
fm m= #

<
-

X  Note that we 
could have simply taken U/1 2

K
< as the reconstructed point set, but if 

the Gram matrix really describes a d-dimensional point set, the trail-
ing eigenvalues will be zeroes, so we choose to truncate the corre-
sponding rows.

It is straightforward to verify that the reconstructed point set 
XX  generates the original EDM, ( );D Xedm=  as we have learned, 
XX  and X  are related by a rigid transformation. The described 
procedure is called the classical MDS, with a particular choice of 
the coordinate system: x1  is fixed at the origin.

In (10), we subtract a structured rank-2 matrix ( )d d1 11 1+
<<  

from .D  A more systematic approach to the classical MDS is to use 
a generalization of (10) by Gower [16]. Any such subtraction that 
makes the right-hand side of (10) PSD, i.e., that makes G  a Gram 
matrix, can also be modeled by multiplying D  from both sides by a 
particular matrix. This is substantiated in the following result.

Theorem 2 (Gower [16]): D  is an EDM if and only if 

 ( ) ( )I s D I s
2
1 1 1- - -

<<  (11)

is PSD for any s  such that s 11 =<  and .s D 0!<

In fact, if (11) is PSD for one such ,s  then it is PSD for all of 
them. In particular, define the geometric centering matrix as

 .J I
n
1 11

def

= -
<  (12)

Then, / JDJ1 2-^ h  being PSD is equivalent to D  being an EDM. 
Different choices of s  correspond to different translations of the 
point set.

The classical MDS algorithm with the geometric centering 
matrix is spelled out in Algorithm 1. Whereas so far we have 
assumed that the distance measurements are noiseless, 
Algorithm 1 can handle noisy distances too as it discards all but 
the d  largest eigenvalues.

It is straightforward to verify that (10) corresponds to .s e1=  
Think about what this means in terms of the point set: Xe1  
selects the first point in the list, .x1  Then, ( )X X I e 10 1= -

<  
translates the points so that x1  is translated to the origin. Multi-
plying the definition (3) from the right by ( )I e 11-

<  and from 
the left by ( )I e1 1-

<  will annihilate the two rank-1 matrices, 
( )G 1diag <  and ( ) .G1 diag <  We see that the remaining term has 

the form ,X X2 0 0-
<  and the reconstructed point set will have the 

first point at the origin.
On the other hand, setting /s n1 1= ^ h  places the centroid of the 

point set at the origin of the coordinate system. For this reason, the 
matrix /J I n1 11= -

<^ h  is called the geometric centering matrix. 
To better understand why, consider how we normally center a set of 
points given in :X  first, we compute the centroid as the mean of all 
the points,

 .x x X
n n

1 1 1c i

i

n

1

= =

=

/  (13)

Second, we subtract this vector from all the points in the set

 ( ) .X X x X X X I
n n

1 11 11 11c c= - = - = -
< <<  (14)

In complete analogy with the reasoning for ,s e1=  we can see 
that the reconstructed point set will be centered at the origin.

ORTHOGONAL PROCRUSTES PROBLEM

Since the absolute position and orientation of the points are lost 
when going over to distances, we need a method to align the 
reconstructed point set with a set of anchors, i.e., points whose 
coordinates are fixed and known.

[FIG3] An illustration of a rigid transformation in 2-D. Here, the point 
set is transformed as .RX b1+

<  The rotation matrix [ ; ]R 0 1 1 0= -  
(MATLAB notation) corresponds to a counterclockwise rotation 
of 90°. The translation vector is [ , ] .b 3 1=

<  The shape is drawn 
for visual reference.
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Algorithm 1: The classical MDS.

1: function ClassicalMDS , )(D d  
2:  /J I n1 1 1! -

<^ h  q  Geometric centering matrix 
3:  /G JDJ1 2!-^ h  q  Compute the Gram matrix 
4:  , [ ] ( )U GEVDi i

n
1 !m =

5:  return [ ( , , ), ]U0diag ( )d d n d1 fm m #

<
-

6: end function
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This can be achieved in two steps, sometimes called Procrustes 

analysis. Ascribe the anchors to the columns of ,Y  and suppose that 
we want to align the point set X  with the columns of .Y  Let Xa  
denote the submatrix (a selection of columns) of X  that should be 
aligned with the anchors. We note that the number of anchors (the 
columns in )Xa  is typically small compared with the total number of 
points (the columns in ) .X

In the first step, we remove the means yc  and x ,a c  from matri-
ces Y  and ,Xa  obtaining the matrices ,Y  and .X a  In the second 
step, termed orthogonal Procrustes analysis, we are searching for 
the rotation and reflection that best maps X a  onto Y

  .arg min QX YR
:Q QQ I

a F

2
= -

=
<

 (15)

The Frobenius norm · F  is simply the 2
, -norm of the matrix 

entries, ( ) .A A Aa traceF ij

2 2def
= =

</
The solution to (15), found by Schönemann in his Ph.D. thesis 

[34], is given by the singular value decomposition (SVD). Let 
;X Y U Va R=
<<  then, we can continue computing (15) as follows:

 

( )

( ),

arg min

arg min

R QX Y Y QX

Q

trace

trace

:

:

Q QQ I

Q QQ I

a F F a
2 2

R

= + -

=

<

=

=

<

<

L

M MM

 (16)

where Q V QU
def

=
<L  and we used the orthogonal invariance of the 

Frobenius norm and the cyclic invariance of the trace. The last 
trace expression in (16) is equal to 

q .i iii

n

1
v

=

K/  Noting that QL is also an 
orthogonal matrix, its diagonal 
entries cannot exceed 1. Therefore, 
the maximum is achieved when 
q 1ii =
K  for all ,i  meaning that the 
optimal QL  is an identity matrix. It 
follows that .R VU=

<

Once the optimal rigid transformation has been found, the 
alignment can be applied to the entire point set as

 ( ) .R X x y1 1,a c c- +
<<  (17)

COUNTING THE DEGREES OF FREEDOM

It is interesting to count how many degrees of freedom there are in 
different EDM-related objects. Clearly, for n  points in ,Rd  we have

 # n dX #=  (18)

degrees of freedom: if we describe the point set by the list of coor-
dinates, the size of the description matches the number of degrees 
of freedom. Going from the points to the EDM (usually) increases 
the description size to / ( ),n n1 2 1-^ h  as the EDM lists the dis-
tances between all the pairs of points. By Theorem 1, we know that 
the EDM has rank at most .d 2+

Let us imagine for a moment that we do not know any other 
EDM-specific properties of our matrix except that it is symmetric, 
positive, zero-diagonal (or hollow), and that it has rank .d 2+  The 
purpose of this exercise is to count the degrees of freedom associated 
with such a matrix and to see if their number matches the intrinsic 

number of the degrees of freedom of the point set, # .X  If it did, then 
these properties would completely characterize an EDM. We can 
already anticipate from Theorem 2 that we need more properties: a 
certain matrix related to the EDM—as given in (11)—must be PSD. 
Still, we want to see how many degrees of freedom we miss.

We can do the counting by looking at the EVD of a symmetric 
matrix, .D U UK=

<  The diagonal matrix K  is specified by d 2+  
degrees of freedom because D  has rank .d 2+  The first eigenvec-
tor of length n  takes up n 1-  degrees of freedom due to the nor-
malization; the second one takes up ,n 2-  as it is in addition 
orthogonal to the first one; for the last eigenvector, number 
( ),d 2+  we need ( )n d 2- +  degrees of freedom. We do not need 
to count the other eigenvectors because they correspond to zero 
eigenvalues. The total number is then

 

# ( ) ( ) [ ( )]

( )
( ) ( )

.

d n n d n

n d
d d

2 1 2

1
2

1 2

DOF

Eigenvalues Eigenvectors Hollowness

#
#

g= + + - + + - + -

= + -
+ +

1 2 34444444 4444444> 5

For large n  and fixed ,d  it follows that

 
#

#
~ .

d
d 1

X

DOF +  (19)

Therefore, even though the rank property is useful and we will show 
efficient algorithms that exploit it, it is still not a tight property (with 

symmetry and hollowness included). 
For ,d 3=  the ratio (19) is / ,4 3^ h  so 
loosely speaking, the rank property 
has 30% too many determining sca-
lars, which we need to set consistently. 
In other words, we need 30% more 
data to exploit the rank property than 

we need to exploit the full EDM structure. We can assert that, for the 
same amount of data, the algorithms perform at least .30% worse if 
we only exploit the rank property without EDMness.

The one-third gap accounts for various geometrical constraints 
that must be satisfied. The redundancy in the EDM representation 
is what makes denoising and completion algorithms possible, and 
thinking in terms of degrees of freedom gives us a fundamental 
understanding of what is achievable. Interestingly, the previous dis-
cussion suggests that for large n  and large ( ),d o n=  little is lost 
by only considering rank.

Finally, in the previous discussion, for the sake of simplicity we 
ignored the degrees of freedom related to absolute orientation. 
These degrees of freedom, which are not present in the EDM, do 
not affect the large n  behavior.

SUMMARY

Let us summarize what we have achieved in this section: 
 ■ We explained how to algebraically construct an EDM given 

the list of point coordinates.
 ■ We discussed the essential uniqueness of the point set; 

information about the absolute orientation of the points is 
irretrievably lost when transitioning from points to an EDM.

MISSING ENTRIES ARISE BECAUSE  
OF THE LIMITED RADIO RANGE  
OR BECAUSE OF THE NATURE  

OF THE SPECTROMETER.
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 ■ We explained classical MDS—a simple EVD-based algorithm 
(Algorithm 1) for reconstructing the original points—along 
with discussing parameter choices that lead to different cen-
troids in reconstruction.

 ■ Degrees of freedom provide insight into scaling behavior. 
We showed that the rank property is satisfactory, but there is 
more to it than just rank.

EDMs AS A PRACTICAL TOOL

We rarely have a perfect EDM. Not only are the entries of the 
measured matrix plagued by errors, but often we can measure 
just a subset. There are various sources of error in distance meas-
urements: we already know that in NMR spectroscopy, we get 
intervals instead of exact distances. Measuring the distance using 
received powers or TOAs is subject to noise, sampling errors, and 
model mismatch.

Missing entries arise because of the limited radio range or 
because of the nature of the spectrometer. Sometimes the nodes 
in the problem at hand are asymmetric by definition; in micro-
phone calibration, we have two types: microphones and calibra-
tion sources. This results in a particular block structure of the 
missing entries (see Figure 4 for an illustration).

It is convenient to have a single statement for both EDM 
approximation and EDM completion as the algorithms described 
in this section handle them at once.

Problem 1: Let ( ) .D Xedm=  We are given a noisy observa-

tion of the distances between ( / ) ( )n np 1 2 1# -  pairs of points 

from .X  That is, we have a noisy measurement of p2  entries in D

 d ,dij ij ijf= +K  (20)

for ( , ) ,i j E!  where E  is some index set and ijf  absorbs all 

errors. The goal is to reconstruct the point set XX  in the given 

embedding dimension, so that the entries of ( )Xedm X  are close in 

some metric to the observed entries .dijK

To concisely write down completion problems, we define the 
mask matrix W  as follows:

 
, ( , )

, .
w

i j E1

0 otherwise
ij

def !
= '  (21)

This matrix then selects elements of an EDM through a Hadamard 
(entrywise) product. For example, to compute the norm of the dif-
ference between the observed entries in A  and ,B  we write 

( ) .W A B% -  Furthermore, we define the indexing AW  to mean 
the restriction of A  to those entries where W  is nonzero. The 
meaning of B AW W!  is that we assign the observed part of A  to 
the observed part of .B

EXPLOITING THE RANK PROPERTY

Perhaps the most notable fact about EDMs is the rank property 
established in Theorem 1: the rank of an EDM for points living 
in Rd  is at most .d 2+  This leads to conceptually simple algo-
rithms for EDM completion and denoising. Interestingly, these 
algorithms exploit only the rank of the EDM. There is no 
explicit Euclidean geometry involved, at least not before recon-
structing the point set.

We have two pieces of information: a subset of potentially 
noisy distances and the desired embedding dimension of the 
point configuration. The latter implies the rank property of the 
EDM that we aim to exploit. We may try to alternate between 
enforcing these two properties and hope that the algorithm pro-
duces a sequence of matrices that converges to an EDM. If it 
does, we have a solution. Alternatively, it may happen that we 
converge to a matrix with the correct rank that is not an EDM 
or that the algorithm never converges. The pseudocode is listed 
in Algorithm 2.

A different, more powerful approach is to leverage algorithms 
for low-rank matrix completion developed by the compressed sens-
ing community. For example, OptSpace [35] is an algorithm for 
recovering a low-rank matrix from noisy, incomplete data. Let us 
take a look at how OptSpace works. Denote by M R

m n
!

#  the 
rank-r  matrix that we seek to recover, by Z R

m n
!

#  the measure-
ment noise, and by W R

m n
!

#  the mask corresponding to the 

Algorithm 2: The alternating rank-based EDM completion.

1: function RankCompleteEDM ( , , )W D dM

2:  D DW W!
M  q  Initialize observed entries 

3:  D W11 ! n-
<  q  Initialize unobserved entries 

4:  repeat 
5:   ( , )D D d 2EVThreshold! +

6:   D DW W!
M  q  Enforce known entries 

7:   D 0I !  q  Set the diagonal to zero 
8:   ( )D D! +  q  Zero the negative entries 
9:  until Convergence or MaxIter 
10:  return D 
11: end function 

12: function EVThreshold , )(D r  
13:  , [ ] ( )U DEVDi i

n
1 !m =

14:  ( , , , , , )0 0diag

 

r

n r

1

times

! f fm mR

-

>
15:  D U U! R

<

16:  return D

17: end function

[FIG4] The microphone calibration as an example of MDU. We 
can measure only the propagation times from acoustic sources at 
unknown locations to microphones at unknown locations. The 
corresponding revealed part of the EDM has a particular off-
diagonal structure, leading to a special case of EDM completion.
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measured entries; for simplicity, we chose .m n#  The measured 
noisy and incomplete matrix is then given as

 ( ) .M W M Z%= +O  (22)

Effectively, this sets the missing (nonobserved) entries of  
the matrix to zero. OptSpace aims to minimize the following  
cost function:

 ( , , ) ( ) ,A S B W M ASBF
2
1

F
2def

%= -
<O  (23)

where ,S R
r r

!
#  A R

m r
!

#  and ,B R
n r

!
#  such that A A =<  

.B B I=
<  Note that S  need not be diagonal.
The cost function (23) is not convex, and minimizing it is a 

priori difficult [36] because of many local minima. Nevertheless, 
Keshavan, Montanari, and Oh [35] show that using the gradient 
descent method to solve (23) yields the global optimum with high 
probability, provided that the descent is correctly initialized.

Let M a bi i i
i

m

1
v=

<

=

O /  be the SVD of .MO  Then, we define the 
scaled rank-r  projection of MO  as .M a br i i i

i

r1

1

def

a v=
<-

=

O /  The 
fraction of observed entries is denoted by a  so that the scaling fac-
tor compensates the smaller average magnitude of the entries in 
MO  in comparison with .M  The SVD of M rO  is then used to initial-

ize the gradient descent, as detailed in Algorithm 3.

Two additional remarks are due in the description of OptSpace. 
First, it can be shown that the performance is improved by zeroing 
the overrepresented rows and columns. A row (respectively, col-
umn) is overrepresented if it contains more than twice the average 
number of observed entries per row (respectively,  column). These 
heavy rows and columns bias the corresponding singular vectors 
and values, so (perhaps surprisingly) it is better to throw them 
away. We call this step “Trim” in Algorithm 3.

Second, the minimization of (23) does not have to be per-
formed for all variables at once. In [35], the authors first solve 
the easier, convex minimization for ,S  and then with the opti-
mizer S  fixed, they find the matrices A  and B  using the gra-
dient descent. These steps correspond to lines 6 and 7 of 
Algorithm 3. For an application of OptSpace in the calibration 
of ultrasound measurement rigs, see “Calibration in Ultra-
sound Tomography.” 

Algorithm 3: OptSpace [35].

1: function OptSpace , )(M rO  
2:  ( )M MTrim!O O

3:  , , ( )A MB SVD 1
! aR

-M M M O

4:  A0 !  First r  columns of AM

5:  B0 !  First r  columns of BM

6:  ( , , )argminS A S BF
S

0 0 0

R
r r

!

!
#

 q  Eq. (23) 

7:  , ( , , )argminA B A S BF
A A B B I

0!

= =
<<

  q See the note below 

8:  return AS B0
<

9: end function

2  Line 7: gradient descent starting at ,A B0 0

CALIBRATION IN ULTRASOUND TOMOGRAPHY

The rank property of EDMs, introduced in Theorem 1, can be 

leveraged in the calibration of ultrasound tomography 

devices. An example device for diagnosing breast cancer is a 

circular ring with thousands of ultrasound transducers 

placed around the breast [37]. The setup is shown in 

Figure S2(a).

Because of manufacturing errors, the sensors are not 

located on a perfect circle. This uncertainty in the positions 

of the sensors negatively affects the algorithms for imaging 

the breast. Fortunately, we can use the measured distances 

between the sensors to calibrate their relative positions. 

We can estimate the distances by measuring the times of 

flight (TOF) between pairs of transducers in a homoge-

neous environment, e.g., in water.

We cannot estimate the distances between all pairs of 

sensors because the sensors have limited beamwidths. (It is 

hard to manufacture omnidirectional ultrasonic sensors.) 

Therefore, the distances between the neighboring sensors 

are unknown, contrary to typical SNL scenarios where only 

the distances between nearby nodes can be measured. 

Moreover, the distances are noisy and some of them are 

unreliably estimated. This yields a noisy and incomplete 

EDM whose structure is illustrated in Figure S2(b).

Assuming that the sensors lie in the same plane, the origi-

nal EDM produced by them would have a rank less than five. 

We can use the rank property and a low-rank matrix com-

pletion method, such as OptSpace (Algorithm 3), to com-

plete and denoise the measured matrix [38]. Then, we can 

use the classical MDS in Algorithm 1 to estimate the relative 

locations of the ultrasound sensors.

For the reasons mentioned previously, SNL-specific algo-

rithms are suboptimal when applied to ultrasound calibra-

tion. An algorithm based on the rank property effectively 

solves the problem and enables one to derive upper 

bounds on the performance error calibration mechanism, 

with respect to the number of sensors and the measure-

ment noise. The authors in [38] show that the error van-

ishes as the number of sensors increases.

[FIGS2] (a) Ultrasound transducers lie on an approximately 
circular ring. The ring surrounds the breast and after each 
transducer fires an ultrasonic signal, the sound speed 
distribution of the breast is estimated. A precise knowledge  
of the sensor locations is needed to have an accurate 
reconstruction of the enclosed medium. (b) Because of the 
limited beamwidth of the transducers, noise, and imperfect 
TOF estimation methods, the measured EDM is incomplete and 
noisy. The gray areas show the missing entries of the matrix.

D =

S

(a) (b)
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MULTIDIMENSIONAL SCALING

MDS refers to a group of techniques that, given a set of noisy 
distances, find the best fitting point conformation. It was orig-
inally proposed in psychometrics [8], [15] to visualize the (dis)
similarities between objects. Initially, MDS was defined as the 
problem of representing distance 
data, but now the term is com-
monly used to refer to methods for 
solving the problem [39].

Various cost functions were pro-
posed for solving MDS. In the sec-
tion “Reconstructing the Point Set 
from Distances,” we already encoun-
tered one method: the classical MDS. This method minimizes 
the Frobenius norm of the difference between the input Gram 
matrix and the Gram matrix of the points in the target embed-
ding dimension.

The Gram matrix contains inner products, but it is better to 
work directly with the distances. A typical cost function represents 
the dissimilarity of the observed distances and the distances 
between the estimated point locations. An essential observation is 
that the feasible set for these optimizations is not convex (i.e., 
EDMs with embedding dimensions smaller than n 1-  lie on the 
boundary of a cone [20], which is a nonconvex set).

A popular dissimilarity measure is raw stress [40], defined as 
the value of

 ( ) ,X dminimize edm
( , )X

ij ij

i j E

2

R
d n

-
! !

#

^ hK/  (24)

where E  defines the set of revealed elements of the distance 
matrix .D  The objective function can be concisely written as 

( ( ) ) ;W X Dedm F

2
% - M  a drawback of this cost function is 

that it is not globally differentiable. The approaches described in 
the literature comprise iterative majorization [41], various meth-
ods using convex analysis [42], and steepest descent methods [43].

Another well-known cost function, first studied by Takane, 
Young, and De Leeuw [44], is termed s-stress,

 ( ) .X dminimize edm
( , )X

ij ij

i j E

2

R
d n

-
! !

#

^ hK/  (25)

Again, we write the objective concisely as ( ( ) ) .W X Dedm F
2

% -M   
Conveniently, the s-stress objective is globally differentiable, but a 
disadvantage is that it puts more weight on errors in larger dis-
tances than on errors in smaller ones. Gaffke and Mathar [45] 
propose an algorithm to find the global minimum of the s-stress 
function for embedding dimension .d n 1= -  EDMs with this 
embedding dimension exceptionally constitute a convex set [20], 
but we are typically interested in embedding dimensions much 
smaller than .n  The s-stress minimization in (25) is not convex 
for .d n 11 -  It was analytically shown to have saddle points 
[46], but interestingly, no analytical nonglobal minimizer has 
been found [46].

Browne proposed a method for computing s-stress based on 
Newton–Raphson root finding [47]. Glunt reports that the method 

by Browne converges to the global minimum of (25) in 90% of the 
test cases in his data set [48]. (While the experimental setup of 
Glunt [48] is not detailed, it was mentioned that the EDMs were 
produced randomly.) 

The cost function in (25) is separable across points i  and 
across coordinates ,k  which is con-
venient for distributed implementa-
tions. Parhizkar [46] proposed an 
alternating coordinate descent 
method that leverages this separabil-
ity by updating a single coordinate of 
a particular point at a time. The 
s-stress function restricted to the 

kth  coordinate of the ith  point is a fourth-order polynomial

 ( ; ) ,f x x
( , ) ( , )i k i k

0

4

a a= ,

,

,

=

/  (26)

where ( , )i k
a  lists the polynomial coefficients for the ith  point and 

the kth  coordinate. For example, ,w4
( , )i k

ij
j0a = /  that is, four 

times the number of points connected to point .i  Expressions for 
the remaining coefficients are given in [46]; in the pseudocode 
 (Algorithm 4), we assume that these coefficients are returned by 
the function “GetQuadricCoeffs,” given the noisy incomplete 
matrix ,DM  the observation mask ,W  and the dimensionality .d  The 
global minimizer of (26) can be found analytically by calculating 
the roots of its derivative (a cubic). The process is then repeated 
over all coordinates k  and points i  until convergence. The result-
ing algorithm is remarkably simple yet empirically converges fast. It 
naturally lends itself to a distributed implementation. We spell it out 
in Algorithm 4.

When applied to a large data set of random, noiseless, and 
complete distance matrices, Algorithm 4 converges to the global 
minimum of (25) in more than 99% of the cases [46].

SEMIDEFINITE PROGRAMMING

Recall the characterization of EDMs (11) in Theorem 2. It states 
that D  is an EDM if and only if the corresponding geometrically 
centered Gram matrix / JDJ1 2-^ h  is PSD. Thus, it establishes a 

Algorithm 4: Alternating descent [46].

1: function AlternatingDescent ( , , )D W dM

2:  X X 0R
d n

0!! =
#        q  Initialize the point set 

3:  repeat 
4:   for { , , }i n1 g!  do       q  Points 
5:     for { , , }k d1 g!  do      q  Coordinates 
6:      ( , , )W D dGetQuadricCoeffs( , )i k

!a M

7:      ( ; )argminx f x,
( , )

i k x
i k

! a    q  Eq. (26) 
8:     end for 
9:   end for 
10:  until Convergence or MaxIter 
11:  return X 
12: end function

THE S-STRESS OBJECTIVE  
IS EVERYWHERE DIFFERENTIABLE,  

BUT A DISADVANTAGE IS 
THAT IT FAVORS LARGE  

OVER SMALL DISTANCES.
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one-to-one correspondence between the cone of EDMs, denoted 
by EDMn  and the intersection of the symmetric positive-sem-
idefinite cone Sn

+  with the geometrically centered cone .Scn  The 
latter is defined as the set of all symmetric matrices whose col-
umn sum vanishes,

 | , .G G G G 1 0S Rc
n n n

!= = =
# <" ,  (27)

We can use this correspondence to cast EDM completion and 
approximation as semidefinite programs. While (11) describes an 
EDM of an n-point configuration in any dimension, we are often 
interested in situations where .d n%  It is easy to adjust for this 
case by requiring that the rank of the centered Gram matrix be 
bounded. One can verify that 

 
( )

( ) ( ) ,

D X

X

JDJ

JDJd d
2
1

0edm

affdim rank
,

#

*

#

= -*3  (28)

when .n d$  That is, EDMs with a particular embedding dimen-
sion d  are completely characterized by the rank and definiteness 
of .JDJ

Now we can write the following rank-constrained semidefinite 
program for solving Problem 1:

 ( )

( )

.

W D

G

G

G

d

minimize

subject to rank

S S

K
G

F

n
c
n

2

+

%

#

!

-

+

^ hM

 
(29)

The second constraint is just shorthand for writing ,G 0*

.G1 0=  We note that this is equivalent to MDS with the s-stress 
cost function thanks to the rank characterization (28).

Unfortunately, the rank property makes the feasible set in (29) 
nonconvex, and solving it exactly becomes difficult. This makes 
sense, as we know that s-stress is not convex. Nevertheless, we may 
relax the hard problem by simply omitting the rank constraint and 
hope to obtain a solution with the correct dimensionality:

 
( )

.

W D

G

Gminimize

subject to S S

K
G

F

n
c
n

2
%

+!

-

+

^ hM
 

(30)

We call (30) a semidefinite relaxation (SDR) of the rank-con-
strained program (29).

The constraint ,G Sc
n

!  or equivalently, ,G1 0=  means that 
there are no strictly positive definite solutions. (G  has a nullspace, 
so at least one eigenvalue must be zero.) In other words, there 
exist no strictly feasible points [32]. This may pose a numerical 
problem, especially for various interior point methods. The idea is 
then to reduce the size of the Gram matrix through an invertible 
transformation, somehow removing the part of it responsible for 
the nullspace. In what follows, we describe how to construct this 
smaller Gram matrix.

A different, equivalent way to phrase the multiplicative charac-
terization (11) is the following statement: a symmetric hollow 
matrix D  is an EDM if and only if it is negative semidefinite on 

1 =" ,  (on all vectors t  such that ) .t 01 =<  Let us construct an 

orthonormal basis for this orthogonal complement—a subspace 
of dimension ( )n 1- —and arrange it in the columns of matrix 

.V R
( )n n 1

!
# -  We demand 

 
.

V

V V I

1 0=

=
<

<

 
(31)

There are many possible choices for ,V  but all of them obey that 
/ .VV I Jn1 11= - =

< <^ h  The following choice is given in [2]:

 ,V

p

q

q

q

p

q

q

q
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q

q

q

1

1

1

h g

g

g

g

j

g

h

=

+

+

+

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

 (32)

where / ( )p n n1=- +  and / .q n1=-

With the help of the matrix ,V  we can now construct the 
sought Gramian with reduced dimensions. For an EDM 

,D R
n n

!
#

 ( )D V DV
2
1

G
def
=-

<  (33)

is an ( ) ( )n n1 1#- -  PSD matrix. This can be verified by substi-
tuting (33) in (4). Additionally, we have that

 ( ( ) ) .V D V DK G =
<  (34)

Indeed, ( )H VHVK7 <  is an invertible mapping from Sn 1
+

-  to 
EDM

n  whose inverse is exactly .G  Using these notations, we can 
write down an equivalent optimization program that is numeric-
ally more stable than (30) [2],

 
( )

.

W D

H

VHVminimize

subject to S

K
H

F

n

2

1

%

!

-
<

+

-

u^ h
 

(35)

On the one hand, with the previous transformation, the constraint 
G1 0=  became implicit in the objective, as VHV 1 0/

<  by (31); 
on the other hand, the feasible set is now the full semidefinite 
cone .S

n 1
+

-

Still, as Krislock and Wolkowicz mention [32], by omitting the 
rank constraint, we allow the points to move about in a larger 
space, so we may end up with a higher-dimensional solution even 
if there is a completion in dimension .d

There exist various heuristics for promoting lower rank. One 
such heuristic involves the trace norm—the convex envelope of 
rank. The trace or nuclear norm is studied extensively by the com-
pressed sensing community. In contrast to the common wisdom in 
compressed sensing, the trick here is to maximize the trace norm, 
not to minimize it. The mechanics are as follows: maximizing the 
sum of squared distances between the points will stretch the con-
figuration as much as possible, subject to available constraints. But 
stretching favors smaller affine dimensions (e.g., imagine pulling 
out a roll of paper or stretching a bent string). Maximizing the sum 
of squared distances can be rewritten as maximizing the sum of 
norms in a centered point configuration—but that is exactly the 
trace of the Gram matrix /G JDJ1 2=-^ h  [9]. This idea has been 
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successfully put to work by Weinberger and Saul [9] in manifold 
learning and by Biswas et al. in SNL [49].

Noting that ( ) ( )H Gtrace trace=  because ( )JDJtrace =  
( ),V DVtrace <  we write the following SDR:

 
( ) (

.

( ))DH W

H

VHVmaximize trace

subject to S

K
H

F

n 1

%

!

m- -
<

+

-

M

 
(36)

Here, we opted to include the data fidelity term in the Lagrangian 
form, as proposed by Biswas et al. [49], but it could also be moved 
to constraints. Finally, in all of the above relaxations, it is straight-
forward to include upper and lower bounds on the distances. 
Because the bounds are linear constraints, the resulting programs 
remain convex; this is particularly useful in the molecular confor-
mation problem. A MATLAB/CVX [50], [51] implementation of the 
SDR (36) is given in Algorithm 5.

MULTIDIMENSIONAL UNFOLDING:  

A SPECIAL CASE OF COMPLETION

Imagine that we partition the point set into two subsets and that 
we can measure the distances between the points belonging to dif-
ferent subsets but not between the points in the same subset. MDU 
[30] refers to this special case of EDM completion.

MDU is relevant for the position calibration of ad hoc sensor 
networks, particularly of microphones. Consider an ad hoc 
array of m  microphones at unknown locations. We can meas-
ure the distances to k  point sources, also at unknown loca-
tions, for example, by emitting a pulse. (We assume that the 
sources and the microphones are synchronized.) We can 
always permute the points so that the matrix assumes the 

structure shown in Figure 4, with the unknown entries in two 
diagonal blocks. This is a standard scenario described, for 
example, in [27].

One of the early approaches to metric MDU is that of Schöne-
mann [30]. We go through the steps of the algorithm and then 
explain how to solve the problem using the EDM toolbox. The goal 
is to make a comparison and emphasize the universality and sim-
plicity of the introduced tools.

Denote by [ , , ]R r rm1 f=  the unknown microphone loca-
tions and by [ , , ]S s sk1 f=  the unknown source locations. The 
distance between the ith  microphone and the jth  source is

 ,r sij i j
2d = -  (37)

so that, in analogy with (3), we have

 ( , ) ( ) ( ),R S R R R S S S21 1edm diag diagD = = - +
< < <<  (38)

where we overloaded the edm  operator in a natural way. We use 
D  to avoid confusion with the standard Euclidean .D  Consider 
now two geometric centering matrices of sizes m  and ,k  denoted 
as Jm  and .Jk  Similar to (14), we have

 , .RJ R r S J S s1 1cm c k= - = -
<<  (39)

This means that

 R S GJ Jm k

def

D = =
<M L M  (40)

is a matrix of the inner products between vectors riJ  and .s jJ  We 
used tildes to differentiate this from the real inner products 
between ri  and sj  because in (40), the points in RM  and SL  are ref-
erenced to different coordinate systems. The centroids rc  and sc  
generally do not coincide. There are different ways to decompose 
GM  into a product of two full rank matrices, call them A  and B

 .G A B=
<M  (41)

We could, for example, use the SVD, G U VR=
<M  and set A U=

<  
and .B VR=

<  Any two such decompositions are linked by some 
invertible transformation T R

d d
!

#

 .G R SA B T T
1

= =

<< -M M L  (42)

We can now write down the conversion rule from what we can 
measure to what we can compute

 
( ) ,

R T A r

S T B s

1

1

c

c
1

= +

= +

<

< <

<

-  (43)

where A  and B  can be computed according to (41). Because we 
cannot reconstruct the absolute position of the point set, we can 
arbitrarily set ,r 0c =  and .s ec 1a=  Recapitulating, we have that

 , ( ) ,T A T B e 1edm 1
1aD = +

< << -^ h  (44)

Algorithm 5: SDR (MATLAB/CVX).

 1: function EDM = sdr_complete_edm(D, W, lambda) 

 2: 

 3: n = size(D, 1); 

 4: x = −1/(n + sqrt(n)); 

 5: y = −1/sqrt(n); 

 6: V = [y*ones(1, n − 1); x*ones(n − 1) + eye(n − 1)]; 

 7: e = ones(n, 1); 

 8: 

 9: cvx_begin sdp 

10:    variable G(n − 1, n − 1) symmetric; 

11:    B = V*G*V’; 

12:    E = diag(B)*e’ + e*diag(B)’ − 2*B; 

13:    maximize trace(G) − lambda * norm(W .* (E − D), ’fro’); 

14:    subject to 

15:       G >= 0; 

16: cvx_end 

17: 

18: EDM = diag(B)*e’ + e*diag(B)’ − 2*B; 
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and the problem is reduced to computing T  and a  so that (44) 
holds, or in other words, so that the right-hand side is consist-
ent with the data .D  We reduced MDU to a relatively small 
problem: in 3-D, we need to compute only ten scalars. Schöne-
mann [30] provides an algebraic method to find these parame-
ters and mentions the possibility of least squares, while Crocco, 
Del Bue, and Murino [27] propose a different approach using 
nonlinear least squares.

This procedure seems quite convoluted. Rather, we see MDU as 
a special case of matrix completion, with the structure illustrated 
in Figure 4.

More concretely, represent the microphones and the sources by 
a set of n k m= +  points ascribed to the columns of matrix 

[ ] .X R S=  Then, ( )Xedm  has a special structure as seen in 
 Figure 4,

 ( )
( )

( , )

( , )

( )
.X

R

S R

R S

S
edm

edm

edm

edm

edm
= ; E  (45)

We define the mask matrix for MDU as

 .W
0

1

1

0

m m

k m

m k

k k
MDU

def

=
#

#

#

#

; E  (46)

With this matrix, we can simply invoke the SDR in Algorithm 5. 
We could also use Algorithm 2 or Algorithm 4. The performance 
of different algorithms is compared in the next section.

It is worth mentioning that SNL-specific algorithms that exploit 
the particular graph induced by limited range communication do 
not perform well on MDU. This is because the structure of the miss-
ing entries in MDU is in a certain sense opposite to the one of SNL.

PERFORMANCE COMPARISON OF ALGORITHMS

We compare the described algorithms in two different EDM com-
pletion settings. In the first experiment (Figures 5 and 6), the 
entries to delete are chosen uniformly at random. The second 
experiment (Figures 7 and 8) tests the performance in MDU, 
where the nonobserved entries are highly structured. In Figures 5 
and 6, we assume that the observed entries are known exactly, and 
we plot the success rate (percentage of accurate EDM reconstruc-
tions) against the number of deletions in the first case and the 
number of calibration events in the second case. Accurate recon-
struction is defined in terms of the relative error. Let D  be the 
true and DX  the estimated EDM. The relative error is then 

/ ,D D DF F-X  and we declare success if this error is below 1%.
To generate Figures 6 and 8, we varied the amount of random, 

uniformly distributed jitter added to the distances, and for each jit-
ter level, we plotted the relative error. The exact values of interme-
diate curves are less important than the curves for the smallest 
and largest jitter and the overall shape of the ensemble.

A number of observations can be made about the performance of 
algorithms. Notably, OptSpace (Algorithm 3) does not perform well 
for randomly deleted entries when ;n 20=  it was designed for larger 
matrices. For this matrix size, the mean relative reconstruction error 
achieved by OptSpace is the worst of all algorithms (Figure 6). In fact, 
the relative error in the noiseless case was rarely below the success 

threshold (set to 1%), so we omitted the corresponding near-zero 
curve from Figure 5. Furthermore, OptSpace assumes that the pat-
tern of missing entries is random; in the case of a blocked deter-
ministic structure associated with MDU, it never yields a 
satisfactory completion.

On the other hand, when the unobserved entries are ran-
domly scattered in the matrix, and the matrix is large—in the 
ultrasonic calibration example, the number of sensors n  was 200  
or more—OptSpace is a very fast and attractive algorithm. To 
fully exploit OptSpace, n  should be even larger, in the thousands 
or tens of thousands.

SDR (Algorithm 5) performs well in all scenarios. For both the 
random deletions and the MDU, it has the highest success rate and 
it behaves well with respect to noise. Alternating coordinate 
descent (Algorithm 4) performs slightly better in noise for a small 
number of deletions and a large number of calibration events, but 
Figures 5 and 7 indicate that, for certain realizations of the point 
set, it gives large errors. If the worst-case performance is critical, 
SDR is a better choice. We note that, in the experiments involving 
the SDR, we have set the multiplier m  in (36) to the square root of 
the number of missing entries. This simple choice was empirically 
found to perform well.

The main drawback of SDR is the speed; it is the slowest among 
the tested algorithms. To solve the semidefinite program, we used 
CVX [50], [51], a MATLAB interface to various interior point meth-
ods. For larger matrices (e.g., , ),n 1 000=  CVX runs out of mem-
ory on a desktop computer, and essentially never finishes. MATLAB 
implementations of alternating coordinate descent, rank alterna-
tion (Algorithm 2), and OptSpace are all much faster.

[FIG5] A comparison of different algorithms applied to 
completing an EDM with random deletions. For every number 
of deletions, we generated 2,000 realizations of 20 points 
uniformly at random in a unit square. The distances to delete 
were chosen uniformly at random among the resulting 
( ) * * ( )/ 20 20 1 1901 2 - =  pairs; 20 deletions correspond to .  
10% of the number of distance pairs and to 5% of the 
number of matrix entries; 150 deletions correspond to .  80% 
of the distance pairs and to .  38% of the number of matrix 
entries. Success was declared if the Frobenius norm of the 
error between the estimated matrix and the true EDM was 
less than 1% of the Frobenius norm of the true EDM.
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The microphone calibration algorithm by Crocco [27] performs 
equally well for any number of acoustic events. This may be 
explained by the fact that it always reduces the problem to ten 
unknowns. It is an attractive choice for practical calibration prob-
lems with a smaller number of calibration events. The algorithm’s 
success rate can be further improved if one is prepared to run it for 
many random initializations of the nonlinear optimization step.

Interesting behavior can be observed for the rank alternation in 
MDU. Figures 7 and 8 show that, at low noise levels, the perfor-
mance of the rank alternation becomes worse with the number of 
acoustic events. At first glance, this may seem counterintuitive, as 
more acoustic events means more information; one could simply 
ignore some of them and perform at least equally well as with fewer 
events. But this reasoning presumes that the method is aware of the 
geometrical meaning of the matrix entries; on the contrary, rank 
alternation is using only rank. Therefore, even if the percentage of 
the observed matrix entries grows until a certain point, the size of 
the structured blocks of unknown entries grows as well (and the 
percentage of known entries in columns/rows corresponding to 
acoustic events decreases). This makes it harder for a method that 
does not use geometric relationships to complete the matrix. A 
loose comparison can be made to image inpainting: If the pixels are 
missing randomly, many methods will do a good job, but if a large 
patch is missing, we cannot do much without additional structure 
(in our case geometry) no matter how large the rest of the image is.

[FIG6] A comparison of different algorithms applied to completing an EDM with random deletions and noisy distances. For every 
number of deletions, we generated 1,000 realizations of 20 points uniformly at random in a unit square. In addition to the number  
of deletions, we varied the amount of jitter added to the distances. Jitter was drawn from a centered uniform distribution, with the 
level increasing in the direction of the arrow, from [ , ]0 0U  (no jitter) for the darkest curve at the bottom, to [ . , . ]0 15 0 15U -  for the 
lightest curve at the top, in 11 increments. For every jitter level, we plotted the mean relative error /D D DF F-

t  for all algorithms. 
(a) OptSpace (Algorithm 3). (b) Alternating descent (Algorithm 4). (c) The rank alternation (Algorithm 2). (d) SDR (Algorithm 5).
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[FIG7] A comparison of different algorithms applied to MDU 
with a varying number of acoustic events .k  For every number 
of acoustic events, we generated 3,000 realizations of m 20=  
microphone locations uniformly at random in a unit cube.  
The percentage of the missing matrix entries is given as 
( )/( )k m k m

2 2 2
+ +  so that the ticks on the abscissa correspond 

to [ , , , , , ]%68 56 51 50 51 52  (nonmonotonic in k  with the 
minimum for ) .k m 20= =  Success was declared if the Frobenius 
norm of the error between the estimated matrix and the true 
EDM was less than 1% of the Frobenius norm of the true EDM.
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To summarize, for smaller and moderately sized matrices, the 
SDR seems to be the best overall choice. For large matrices, the 
SDR becomes too slow and one should turn to alternating coordi-
nate descent, rank alternation, or OptSpace. Rank alternation is 
the simplest algorithm, but alternating coordinate descent per-
forms better. For very large matrices (n  on the order of thousands 
or tens of thousands), OptSpace becomes the most attractive solu-
tion. We note that we deliberately refrained from making detailed 
running time comparisons due to the diverse implementations of 
the algorithms.

SUMMARY

In this section, we discussed: 
 ■ the problem statement for EDM completion and denoising 

and how to easily exploit the rank property (Algorithm 2)
 ■ standard objective functions in MDS, raw stress and 

s-stress, and a simple algorithm to minimize s-stress (Algo-
rithm 4)

 ■ different SDRs that exploit the connection between EDMs 
and PSD matrices

 ■ MDU and how to solve it efficiently using EDM completion
 ■ performance of the introduced algorithms in two very dif-

ferent scenarios: EDM completion with randomly unobserved 
entries and EDM completion with a deterministic block 
structure of unobserved entries (MDU).
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[FIG8] A comparison of different algorithms applied to MDU with a varying number of acoustic events k  and noisy distances. For 
every number of acoustic events, we generated 1,000 realizations of m 20=  microphone locations uniformly at random in a unit cube. 
In addition to the number of acoustic events, we varied the amount of random jitter added to the distances, with the same parameters 
as in Figure 6. For every jitter level, we plotted the mean relative error /D D DF F-X  for all algorithms. (a) Crocco’s method [27].  
(b) Alternating descent (Algorithm 4). (c) Rank alternation (Algorithm 2) and SDR (Algorithm 5).
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[FIG9] An illustration of the uniqueness of EDMs for unlabeled 
distances. A set of unlabeled distance (a) is distributed in two 
different ways in a tentative EDM with embedding dimension 
two (b) and (c). The correct assignment yields the matrix with the 
expected rank (c), and the point set is easily realized in the plane 
(e). On the contrary, swapping just two distances [the hatched 
squares in (b) and (c)] makes it impossible to realize the point set in 
the plane (d). Triangles that do not coincide with the swapped 
edges can still be placed, but in the end, we are left with a hanging 
orange stick that cannot attach itself to any of the five nodes.
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UNLABELED DISTANCES

In certain applications, we can measure the distances between the 
points, but we do not know the correct labeling. That is, we know 
all the entries of an EDM, but we do not know how to arrange 
them in the matrix. As illustrated in Figure 9(a), we can imagine 
having a set of sticks of various lengths. The task is to work out the 
correct way to connect the ends of different sticks so that no stick 
is left hanging open-ended.

In this section, we exploit the fact that, in many cases, distance 
labeling is not essential. For most point configurations, there is no 
other set of points that can generate the corresponding set of dis-
tances up to a rigid transformation.

Localization from unlabeled distances is relevant in various 
calibration scenarios where we cannot tell apart distance meas-
urements belonging to different points in space. This can occur 
when we measure the TOAs of echoes, which correspond to the 
distances between the microphones and the image sources (ISs) 
(see Figure 10) [6], [29]. Somewhat surprisingly, the same 

problem of unlabeled distances appears in sparse phase retrieval; 
see “EDM Perspective on Sparse Phase Retrieval (the Unexpected 
Distance Structure).”

No efficient algorithm currently exists for localization from 
unlabeled distances in the general case of noisy distances. We 
should mention, however, a recent polynomial-time algorithm 
(albeit of a high degree) by Gujarathi et al. [31] that can recon-
struct relatively large point sets from unordered, noiseless dis-
tance data.

At any rate, the number of assignments to test is sometimes 
small enough that an exhaustive search does not present a prob-
lem. We can then use EDMs to find the best labeling. The key to 
the unknown permutation problem is the following fact.

Theorem 3: Draw , , ,x x x Rn
d

1 2 g !  independently from 

some absolutely continuous probability distribution (e.g., uni-

formly at random) on .Rd
3X  Then, with probability 1, the 

obtained point configuration is the unique (up to a rigid 

EDM PERSPECTIVE ON SPARSE PHASE RETRIEVAL 

(THE UNEXPECTED DISTANCE STRUCTURE)

In many cases, it is easier to measure a signal in the Fourier 

domain. Unfortunately, it is common in these scenarios that we 

can only reliably measure the magnitude of the Fourier transform 

(FT). We would like to recover the signal of interest from just the 

magnitude of its FT, hence the name phase retrieval. X-ray crystal-

lography [54] and speckle imaging in astronomy [55] are classic 

examples of phase retrieval problems. In both of these applica-

tions, the signal is spatially sparse. We can model it as

 ( ) ( ),x x xf c i
i

n

i

1

d= -

=

/  (S1)

where c i  are the amplitudes and xi  are the locations of the 

n  Dirac deltas in the signal. In what follows, we discuss the 

problem on 1-D domains, that is, for ,x R!  knowing that a 

multidimensional phase retrieval problem can be solved by 

solving multiple 1-D problems [7].

Note that measuring the magnitude of the FT of ( )xf  is equiv-

alent to measuring its ACF. For a sparse ( ),xf  the ACF is also 

sparse and is given as

 ( ) ( ( )),x x x xa c ci
j

n

i

n

j i j

11

d= - -

==

//  (S2)

where we note the presence of differences between the 

locations xi  in the support of the ACF. As ( )xa  is symmetric, 

we do not know the order of xi  and so we can only know 

these differences up to a sign, which is equivalent to know-

ing the distances x xi j-  (Figure S3).

For the following reasons, we focus on the recovery of the sup-

port of the signal ( )xf  from the support of the ACF ( ):xa  1) in cer-

tain applications, the amplitudes c i  may be all equal, thus limiting 

their role in the reconstruction and 2) knowing the support of 

( )xf  and its ACF is sufficient to exactly recover the signal ( )xf  [7].

The recovery of the support of ( )xf  from the one of ( )xa  

corresponds to the localization of a set of n  points from their 

unlabeled distances: we have access to all the pairwise distances 

but we do not know which pair of points corresponds to any 

given distance. This can be recognized as an instance of the 

turnpike problem, whose computational complexity is believed 

not to be NP-hard but for which no polynomial time algorithm 

is known [56]. 

From an EDM perspective, we can design a reconstruction 

algorithm recovering the support of the signal ( )xf  by labe-

ling the distances obtained from the ACF such that the result-

ing EDM has a rank that is less than or equal to three. This can 

be regarded as unidimensional scaling with unlabeled dis-

tances, and the algorithm to solve it is similar to echo sorting 

(Algorithm 6).

a (x ) f (x )

x x

(a) (b)

[FIGS3] A graphical representation of the phase retrieval 
problem for 1-D sparse signals. (a) We measure the ACF of the 
signal and we recover a set of distances (sticks in Figure 9) 
from its support. (b) These are the unlabeled distances 
between all the pairs of Dirac deltas in the signal ( ) .xf  We 
exactly recover the support of the signal if we correctly 
label the distances.
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transformation) point configuration in X  that generates the 

set of distances , .x x i j n1i j 1# #-" ,

This fact is a simple consequence of a result by Boutin and 
Kemper [52] who provide a characterization of point sets recon-
structable from unlabeled distances. Figure 9(b) and (c) shows two 
possible arrangements of the set of distances in a tentative EDM; 
the only difference is that the two hatched entries are swapped. But 
this simple swap is not harmless: there is no way to attach the last 
stick in Figure 9(d) while keeping the remaining triangles consist-
ent. We could do it in a higher embedding dimension, but we insist 
on realizing it in the plane.

What Theorem 3 does not tell us 
is how to identify the correct labeling. 
But we know that for most sets of dis-
tances, only one (correct) permuta-
tion can be realized in the given 
embedding dimension. Of course, if 
all the labelings are unknown and we 
have no good heuristics to trim the 
solution space, finding the correct labeling is difficult, as noted in 
[31]. Yet there are interesting situations where this search is feasi-
ble because we can augment the EDM point by point. We describe 
one such situation next. 

HEARING THE SHAPE OF A ROOM

An important application of EDMs with unlabeled distances is 
the reconstruction of the room shape from echoes [6]. An acous-
tic setup is shown in Figure 10(a), but one could also use radio 
signals. Microphones pick up the convolution of the sound emit-
ted by the loudspeaker with the room impulse response (RIR), 
which can be estimated by knowing the emitted sound. An 
example RIR recorded by one of the microphones is illustrated 
in Figure 10(b), with peaks highlighted in green. Some of these 
peaks are first-order echoes coming from different walls, and 
some are higher-order echoes or just noise.

Echoes are linked to the room geometry by the image source 
(IS) model [53]. According to this model, we can replace echoes by 
ISs—mirror images of the true sources across the corresponding 
walls. The position of the IS of s  corresponding to wall i  is 
 computed as

 s , ,s p s n n2i i i i= + -J  (47)

where pi  is any point on the ith  wall and ni  is the unit normal 
vector associated with the ith  wall [see Figure 10(a)].

A convex room with planar walls is completely determined by 
the locations of first-order ISs [6], so by reconstructing their loca-
tions, we actually reconstruct the room’s geometry.

We assume that the loudspeaker and the microphones are syn-
chronized so that the times at which the echoes arrive directly 
correspond to distances. The challenge is that the distances—the 
green peaks in Figure 10(b)—are unlabeled: it might happen that 
the kth  peak in the RIR from microphone 1 and the kth  peak in 
the RIR from microphone 2 come from different walls, especially 

for larger microphone arrays. Thus, we have to address the prob-
lem of echo sorting to group peaks corresponding to the same IS 
in RIRs from different microphones.

Assuming that we know the pairwise distances between the 
microphones [ , , ],R r rm1 f=  we can create an EDM corre-
sponding to the microphone array. Because echoes correspond to 
ISs, and ISs are just points in space, we attempt to grow that EDM 
by adding one point—an IS—at a time. To do that, we pick one 
echo from every microphone’s impulse response, augment the 
EDM based on echo arrival times, and check how far the aug-
mented matrix is from an EDM with embedding dimension three, 
as we work in 3-D space. The distance from an EDM is measured 

with the s-stress cost function. It 
was shown in [6] that a variant of 
Theorem 3 applies to ISs when 
microphones are positioned at ran-
dom. Therefore, if the augmented 
matrix satisfies the EDM properties, 
almost surely we have found a good 
IS. With probability 1, no other com-

bination of points could have generated the used distances.
The main reason for using EDMs and s-stress instead of, for 

instance, the rank property is that we get robust algorithms. The 
echo arrival times are corrupted with various errors, and relying 
on the rank is too brittle. It was verified experimentally [6] that 
EDMs and s-stress yield a very robust filter for the correct combi-
nations of echoes.

Thus, we may try all feasible combinations of echoes and 
expect to get exactly one “good” combination for every IS that is 
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[FIG10] (a) An illustration of the IS model for first- and second-
order echoes. Vector ni  is the outward-pointing unit normal 
associated with the ith  wall. The stars denote the IS, and s ijJ  is the 
IS corresponding to the second-order echo. The sound rays 
corresponding to first reflections are shown in purple, and the ray 
corresponding to the second-order reflection is shown in green.  
(b) The early part of a typical recorded RIR.

AN IMPORTANT APPLICATION 
OF EDMs WITH UNLABELED 

DISTANCES IS THE 
RECONSTRUCTION OF THE 

ROOM SHAPE FROM ECHOES.
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“visible” in the impulse responses. In this case, as we are only add-
ing a single point, the search space is small enough to be rapidly 
traversed exhaustively. Geometric considerations allow for a fur-
ther trimming of the search space: because we know the diameter 
of the microphone array, we know that an echo from a particular 
wall must arrive at all the microphones within a temporal window 
corresponding to the array’s diameter.

The procedure is as follows: collect all echo arrival times 
received by the ith  microphone in the set Ti  and fix t T1 1!  cor-
responding to a particular IS. Then, Algorithm 6 finds echoes in 
other microphones’ RIRs that correspond to this same IS. Once 
we group all the peaks corresponding to one IS, we can determine 
its location by multilateration (e.g., by running the classical MDS) 
and then repeat the process for other echoes in .T1

To get a ballpark idea of the number of combinations to test, 
suppose that we detect 20 echoes per microphone and that the 
diameter of the five-microphone array is 1 m. (We do not need to 
look beyond early echoes corresponding to at most three 
bounces; this is convenient as echoes of higher orders are chal-
lenging or impossible to isolate.) Thus, for every peak time 

,t T1 1!  we have to look for peaks in the remaining four micro-
phones that arrived within a window around t1  of length 

/  ,2 1 343m /m s# ^ h  where 343 m/s is the speed of sound. This is 
approximately 6 ms, and in a typical room, we can expect about 
five early echoes within a window of that duration. Thus, we have 
to compute the s-stress for ,20 5 12 5004

# =  matrices of size 
,6 6#  which can be done in a matter of seconds (or less) on a 

desktop computer. In fact, once we assign an echo to an IS, we 
can exclude it from further testing, so the number of combina-
tions can be further reduced.

Algorithm 6 was used to reconstruct rooms with centimeter 
precision [6] with one loudspeaker and an array of five micro-
phones. The same algorithm also enables a dual application: indoor 
localization of an acoustic source using only one microphone—a 
feat not possible if we are not in a room [57].

SUMMARY

To summarize this section: 
 ■ We explained that for most point sets, the distances they 

generate are unique; there are no other point sets generating 
the same distances.

 ■ In room reconstruction from echoes, we need to identify 
the correct assignment of the distances to ISs. EDMs act as a 
robust filter for echoes coming from the same IS.

 ■ Sparse phase retrieval can be cast as a distance problem, 
too. The support of the ACF gives us the distances between 
the deltas in the original signal. Echo sorting can be adapted 
to solve the problem from the EDM perspective.

IDEAS FOR FUTURE RESEARCH

Even problems that at first glance seem to have little to do with 
EDMs sometimes reveal a distance structure when you look 
closely. A good example is sparse phase retrieval.

The purpose of this article is to convince the reader that EDMs 
are powerful objects with a multitude of applications (Table 2 lists 
various flavors) and that they should belong to any practitioner’s 
toolbox. We have an impression that the power of EDMs and the 
associated algorithms has not been sufficiently recognized in the 
signal processing community, and our goal is to provide a good 
starting reference. To this end, and perhaps to inspire new 
research directions, we list several EDM-related problems that we 
are curious about and believe are important. 

DISTANCE MATRICES ON MANIFOLDS

If the points lie on a particular manifold, what can be said about 
their distance matrix? We know that if the points are on a circle, 
the EDM has a rank of three instead of four, and this generalizes to 
hyperspheres [17]. But what about more general manifolds? Are 
there invertible transforms of the data or of the Gram matrix that 
yield EDMs with a lower rank than the embedding dimension sug-
gests? What about different distances, e.g., the geodesic distance 
on the manifold? The answers to these questions have immediate 
applications in machine learning, where the data can be approxi-
mately assumed to be on a smooth surface [23].

PROJECTIONS OF EDMs ON  

LOWER-DIMENSIONAL SUBSPACES

What happens to an EDM when we project its generating points to a 
lower-dimensional space? What is the minimum number of 

Algorithm 6: Echo sorting [6].

1: function EchoSort , , , )(R t Tm1 f  
2:  ( )D Redm!

3:  s Infbest !+

4:  for all [ , , ],  t t t t Tsuch thatm i i2 f !=  do 
5:   [ , ]d tc t1! $

<<  q  c  is the sound speed 

6:   D
D

d

d

0
aug ! <

= G
7:   if ( )D ss-stress aug best1  then 
8:    ( )Ds s-stressbest aug!

9:    d dbest !

10:   end if 
11:  end for 
12:  return dbest

13: end function

[TABLE 2] APPLICATIONS OF EDMs WITH DIFFERENT TWISTS.

APPLICATION
MISSING 
 DISTANCES

NOISY 
 DISTANCES

UNLABELED 
 DISTANCES

WIRELESS SENSOR NETWORKS ✔ ✔ #

MOLECULAR CONFORMATION ✔ ✔ #

HEARING THE SHAPE OF A 
ROOM

# ✔ ✔ 

INDOOR LOCALIZATION # ✔ ✔ 

CALIBRATION ✔ ✔ #

SPARSE PHASE RETRIEVAL # ✔ ✔ 
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projections that we need to be able to reconstruct the original point 
set? The answers to these questions have a significant impact on 
imaging applications such as X-ray crystallography and seismic 
imaging. What happens when we only have partial distance observa-
tions in various subspaces? What are the other useful low-dimen-
sional structures on which we can observe the high-dimensional 
distance data?

EFFICIENT ALGORITHMS FOR DISTANCE LABELING

Without application-specific heuristics to trim down the search 
space, identifying correct labeling of the distances quickly becomes 
an arduous task. Can we identify scenarios for which there are effi-
cient labeling algorithms? What happens when we do not have the 
labeling, but we also do not have the complete collection of sticks? 
What can we say about the uniqueness of incomplete unlabeled dis-
tance sets? Some of the questions have been answered by Gujarathi 
et al. [31], but many remain. The quest is on for faster algorithms 
as well as algorithms that can handle noisy distances.

In particular, if the noise distribution on the unlabeled dis-
tances is known, what can we say about the distribution of the 
reconstructed point set (taking in some sense the best reconstruc-
tion over all labelings)? Is it compact, or can we jump to totally 
wrong assignments with positive probability?

ANALYTICAL LOCAL MINIMUM OF S-STRESS

Everyone agrees that there are many, but, to the best of our 
knowledge, no analytical minimum of s-stress has yet been found.

CONCLUSIONS

We hope that we have succeeded in showing how universally useful 
EDMs are and that readers will be inspired to dig deeper after com-
ing across this material. Distance measurements are so common 
that a simple, yet sophisticated tool like EDMs deserves attention. A 
good example is the SDR: even though it is generic, it is the best-
performing algorithm for the specific problem of ad hoc micro-
phone array localization. Continuing research on this topic will 
bring new revolutions like it did in the 1980s in crystallography. 
Perhaps the next one will be fueled by solving the labeling problem.
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also supported by the Google Ph.D. Fellowship.

AUTHORS
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