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EUCLIDEAN IDEAL CLASSES

par

H.W. Lenstra, jr

Introduction

A classical method, due to Euclid, Stevin and Gauss, to establish that a given com-

mutative ring R is a principal ideal ring consists in showing that R is

Euclidean, i.e. that there exists a map tp from R - {0} to a well-ordered set,

usually JN = {0, 1,2, ...}, such thaL for all a, b ε R, b f 0, a i Rb, there

exist q, r £ R such that a = qb + r and t?(r) < cp(b). Such a map ip is said

to be a Euclidean algorithm on R, and R is called Euclidean with respec_t

_tcj φ.

A case of special interest in number theory is the following. Let K be a

global field, i.e. a finite extension of flj or a function field in one variable

over a finite field V . Benote by P the set of all non-trivial prime divisors

of K, and let S <= P be a finite non-empty subset containing the set S of

archimedean prime divisors of K. Tor R we take the ring of S-integers in K:

R = {x c K: jxj < l for all p_ ε Ρ - S},

where , for p_ e
 T
', denotes an absolute value of K corresponding to p.

For χ ε R - {0}, the norm N(x) is the cardinality of the finite ring R/Rx.

One is interested in conditions under which the norm N is a Euclidean algorithm

on R. Most of the literature on the subject (see [8] for references) restricts

to the case that K is a number field, and S = S^. Then R is the ring of

algebraic integers in K, and N is the absolute value of the field norm K -> Q

(restricled to R - {0}).
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Let the norm N be extended to K by multiplicativity and N(0) = 0. Then

it is easily seen that N is a Euclidean algorithm on R if and only if

(0.1) for all χ £ K there exists y e R such that N(x-y) < 1.

In this paper we investigate a similar property in which the role of the ring R

is played by a fractional ideal £ of R. If £
 c
 R is a non-zero ideal, we

define N(aJ to be the cardinality of R/a, and we extend the definition of

N(ji) to fractional ideals by multiplicativity. We are interested in the following

property of a fractional ideal £:

(0.2) for all χ e K there exists y e £ such that N(x-y) < N(c).

For £ = R this clearly reduces to (0.1). If £ is principal, £ = Rc, then

NO;) = N(c) and dividing by c we see that (0.2) and (0.1) are equivalent.

Generally, this argument shows that whether or not (0.2) is satisfied only depends

on the ideal class [c] of £. If it is satisfied, we say that the ideal class

[_c] is Euclidean for the norm or norm-Euclidean. So the principal ideal class is

Euclidean for the norm if and only if N ift a Euclidean algorithm on R.

Here is an example of a non-principal Euclidean ideal class. Let K = φ(/-5),

R =2[/-5] (so S = SJ and £ = (2, l + /-5). Then N(c) = 2, and N(x) = |x|
2

for χ ε K if K is considered äs a subfield of (C. Drawing a picture (cf. [2])

one finds that

for all χ e I there exists y e £ such that x-y| < /2,

so (0.2) holds. But (0.1) doesn't, because R is no principal ideal ring.

The main result about Euclidean ideal classes is the following theorem.

(0.3) Theorem The ring R has at most one ideal class which is Euclidean for the

norm. If there is one, then it generates the ideal class group of R.

In particular, if the principal ideal class is Euclidean, then the class

group is trivial and R is a principal ideal ring, äs we knew already.

A generalization of theorem (0.3), in an algebraic setting, is proved in

section l. By means of examples we show that the class number can be arbitrarily
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large.

Section 2 is devoted to the arithmetic rings discussed above. We shall see in

this section that the ring of integers of a quadratic number field K has a

non-principal norm-Euclidean ideal class if and only if the discriminant of K

over Q is one of

-20, -15, 40, 60, 85,

see (2.1) and (2.5). In all five cases, the class number is two (cf. (1.8)).

l. Elementary properties

In this section R is a domain, i.e. a commutative ring, without zero-divisors,

with a unit element different from zero. The group of units of R is denoted by

R , and K denotes its field of fractions. An ideal class of R is a set of

the form {da: a e K } where d
 c
 R is a non-zero ideal and d_a = {xa: χ c dl.

An element of an ideal class is called a fractional ideal of R. The unique ideal

class containing a given fractional ideal a. is denoted by [a]. Fractional

ideals are multiplied in the usual way, and ideal classes are multiplied by

[_al.[b] = [a.b]. If the set CI (R) of ideal classes of R is a group with

respect to this multiplication, then R is called a Dedekind domain, Cl(R) its

class group, and the order of C1(R) its class number. We put

E = {b_: b̂  is a fractional ideal of R, and _b => R}.

(1.1) Definition Let W be a well-ordered set, ψ: E ->· W a map, C an ideal

class of R, and £ e C. We say that ψ is a Euclidean algorithm for C, or

that C is Euclidean with respect to ψ, if

(1.2) for all b e E and all χ c b.c - c there exists z e χ + c

_ 1

such that i(j(bcz ) < ψ(1>).

We call C Euclidean if there exists a Euclidean algorithm for C.

It is readily verified that the definition does not depend on the choice of
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£ in C, and that, in the given circumstances, we have z φ 0 and bcz e E.

In the arithtnetic case discussed in the introduction we take ψ(1>) = N(b)~ .

The inequality in (1.2) then simplifies to N(z) < N(£>. Using that U bc = K,

and writing z = χ - y, we then find that (1.2) is equivalent to (0.2). So C is

Euclidean with respect to ψ if and only if it is Euclidean for the norm.

(1.3) Exercise Show that a domain R is Euclidean if and only if the principal

ideal class [R] is Euclidean.

In the sequel we suppose that C = Lc] satisfies the condition

(1.4) {x e K: xc c _c} = R.

This condition is satisfied if £ is invertible, e.g. if R is Dedekind. If

(1.4) does not hold, then in our conclusions R should be replaced by the ring

{χ e K: xc c c} .

In the following lemma we assume that W contains M äs a beginning Segment.

(J.5) Lemma Let C satisfy (1.4) and be Euclidean with respect to ψ. Then for

every b_ c E, b_ # R, there exists n e M such that

[b.£
n
] = [R], 0 <· n ä ψ(Μ.

Proof by induction on ψ(ί>_). From b_ / R and (1.4) we find that there exists an

element χ e b£-£, and (1.2) then gives us a_ = bcz e E with <KjO < ψ(1>).

If _a = R, then [bc] = [R] and we can take n = l . If a_ / R, then by the

induction hypothesis Cac ] = [R] for some m < ψ(a), and we can take n = m+ 1.

This proves (1.5).

(1.6) Theorem Let R be a domain, and C a Euclidean ideal class of R satis-

fying (1.4). Then R is a Dedekind domain with a finite cyclic class group,

generated by C.

Proof We may clearly assume that R φ K. Then C1(R) = {[b]: b e E, b / R},

so (1.5) shows that every ideal class has an inverse [c ]. Therefore R is

Dedekind, and C1(R) = {[£]~
n
: n = l, 2, 3, .. .}. In particular [R] = [c]~

n
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t
 for some n > 0, so [c] has finite order. This proves (1.6).

(1.7) Exercise Let a e R - R*, a ϊ 0. Prove that #C1(R) < i|j(Ra~').

r

Suppose b_ £ E, b_ ^ R is such that if)(b_) is smallest possible. Then the

ideal a. in the proof of (1.5) must be equal to R, so n = l and C = r y

Hence there is at most one ideal class, satisfying (1.4), which is Euclidean with

respect to a given |i. Tlns remark, and theorem (1.6), prove theorem (0.3).

(1.8) Exercise Let K be a Galois extension of degree n of fl), and suppose

that its ring of integers has a norm-Euclidean ideal class. Prove that the class

number of K divides n.

Many results known about Euclidean rings (cf. [13]) have immediate generali-

zations for rings possessing a Euclidean ideal class. We list some of them äs

exercises. Assume, for (1.9) - (1.14), that C satisfies (1.4) and is Euclidean

with respect to ψ.

(1.9) bxercise Let a., b_ e E. Prove that \li(ab) > ψ(10, with equality if and

only if a = R.

(1.10) Exercise Let R' c K be a subring containing R. Prove that R
1
 has a

Euclidean ideal class. Prove that R' is Euclidean if and only if R' is a

principal ideal domain. Deduce that K[/-5, 1/3] is Luclidean (cf. [15]).

In the following exercises we put

(1.11) e(b) = mini ψ (b): ij : E >- W is a Euclidean algorithm for C)

where W is the set of jrdinals of cardinality < ffE. This map is called the

smallest Euclidean algjrithm for C; the terminology is eas]ly justified.

(1.12) Exercise Prove that θ (ab) > θ (a.) + 6(b_) for _a, b̂  c E.

(1.13) Exercise Let b e E be such that 6(b) is finite. Prove that b e C~
9
 — .

* ' , — —

(1.14) Exercise Prove that θ (b) = l if and only if b_ = £ is a maximal ideal

» of R such that p_ c C and the natural map R -* (R/p) is surjective.
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(l . 15) Example Let k be a field, K = k(t) a simple transcendental extension

of k, and f c k[t] an irreducible polynomial. Denote by h the degree of f.

Put

R = {a/b e K: a, b e k[tj, b is a power of f, deg a < deg b},

£ = {a/b e R: deg a < deg b}.

Then R is a ring, and £ is an invertible R-ideal, satisfying (1.4). For a

non-zero ideal a. c R, put d(a) = dim. R/a, and extend the definition to all

fractional ideals by d(aa~') = d(a.) - d(Ra). Then d(c_) = l, and more generally

d(a£) = d(a_) + l for all a_; this follows from the invertibility of £. An

easy calculation gives

d(Rx) = -ord
f
(x).h for χ c K ,

where ord
f
 is the normalized exponential valuation of K corresponding to f.

We Claim that C = [c] is Euclidean with respect to the map ψ: Ε -»-W

defined by ψ(ΐΟ = -d(b_). This assertion is equivalent to

for all χ ε Κ there exists y ε £ such that d(R(x-y)) < d(£>

(cf. (0.2)). To prove it, use the partial fraction expansion of χ to write

χ = (c/f
n
) + z, with n £ W, c € k[t], deg c < deg f , z e K, ordf (z) > 0, and

choose y = c/fn. Then d(R(x-y)) = d(Rz) = -ordf(z).h < 0 < l = d(£), äs

required.

We conclude that R is Dedekind, and that C1(R) is generated by C. We

calculate the class number. If c = Rx, then n = d(c) = d(Rx) = -ord,(x).h so
f

n is divisible by h. Also £ = Rf , so the class number equals h.

Thus we see that every positive integer occurs äs the class number of a ring

having a Euclidean ideal class.

If we take k =IFa> then R is of the arithmetic type described in the in-

troduction, and N(x) = q . Hence, in our example, C is also Euclidean for

the norm.
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2. Arithmetic rings

In this section we let the notations be äs in the introduction. In particular, K

is a global field, and R is its ring of S-integers.

In the case #S = l all examples of Euclidean ideal classes are easily

determined.

(2.1) Proposition Let #S = l, and let C be an ideal class of R. Then C

is Euclidean if and only if C is Euclidean for the norm, and if and only if

(a) R is the ring of integers in one of the fields

Q, Q(/-d), d = 3, 4, 7, 8, 11, 15, or 20

and C is the unique generator of C1(R);

or (b) R is one of the rings described in (1.15), with k finite and C = [£_].

The proof is similar to the proof in the classical case (cf. [7, sec. 10]). There

is an analogous result for function fields over infinite fields of constants.

The class numbers of the rings in (a) are l, l, l, l, l, l, 2, 2, res-

pectively.

(2.2) Proposition Suppose that #S > 2, and if K is a number field, assume

that for every squarefree integer n the ζ-function of the field Κ(ζ ,R* ),

with ζ denoting a primitive n-th root of unity, satisfies the generalized

Riemann hypothesis. Then every ideal class C which generates the ideal class

group of R is Euclidf-an.

This proposition generalizes the theorem of Weinberger and Queen in the

classical case [16, 12]. The proof of (2.2) uses the methods of [9]. It also yields

an explicit description of the map θ defined by (1.11); in most, but not all,

cases it is the smallest function having the properties indicated in exercises

(1.12), (1.13) and (1.14).

In the rest of this section we are exclusively interested in ideal classes

which are Euclidean for the norm.
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Let K denote the locally compact topological ring

K = Π „ K ,
S £e S £'

where K is the £-adic completion of K. We regard K äs being embedded in

K along the diagonal. Then K is dense in K , and every fractional ideal a
O ü

of R is discrete in K , with K /a compact. The norm is extended to a map
o o —

N: Kg * K > 0 by

N(x) = H |x | , for χ = (x )
 £ g
 c K

g
,

where the are normalized in the usual way which makes the formula valid
P

for χ e K. For t e 3R „, put

V
t
 = {z e K

g
: N(z) < t}.

This is an open neighborhood of 0 in K
g
. Clearly, the ideal class C = fc_]

is Euclidean for the norm if and only if

K <= c_ + V^, , = {x + y: χ e _c, y c "N(
C
)·'·

It seems that in all cases in which this condition is known to be satisfied we

actually have

It is unknown whether both properties are in fact equivalent. The only known

result in this direction is:

(2.3) Proposition Suppose that #S < 2, and t e M
> Q
. Then K c £ + v implies

that K
g
 = £ + v for every ε e

 R

> 0
!

 i f
 "

s = ] o r K i s a
 function field

this is also true for ε = 0.

For the proof, cf. [l, theorem Ml.

In the case #S = 2, S = S
m
, Davenport [4, nrs 70, 76, 82] proved that

only finitely many R, up to isomorphism, are Euclidean with respect to the norm.

This result can be generalized äs follows.

(2.4) Proposition Suppose that #S = 2. Then R has an ideal class which is
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Euclidean for the norm if and only if

(a) K is one of Q, Q(/-d), d = 3, 4, 7, 8, 11, 15, 20;

or (b) R belongs, up to isomorphism, to a certain finite list of number rings;

or (c) K is a function field of genus zero.

The proof makes use of (2.3) and of ideas of Cassels [3].

The finite list mentioned under (b) is not completely known. It contains at

least 107 rings, äs we shall see below. We distinguish four cases.

(2.5) S = S , K is real quadratic, and R its ring of integers. This case is

completely settled. The principal ideal class is norm-Euclidean if and only if the

discriminant of K over Q has one of the following sixteen values:

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 57, 73, 76,

cf. [4, nr 74]. By similar methods one can show that there is a non-principal

norm-Euclidean ideal class if and only if the discriminant is one of

40, 60, 85.

In these three cases, the class number is two.

(2.6) S = S , K is complex cubic, and R its ring of integers. If R has a

norm-Euclidean ideal class then -Δ < 170523 and h < 4, where Δ denotes the

discriminant of K over Q and h the class number. The fifty-two known

examples all have cla.es number one [14]. It would be of interest to find examples

with larger class numbers in this category.

(2.7) S = S , K is totally complex quartic, and R its ring of integers. Here

we may restrict attention to fields with Δ < 20,435,007 and h < 6. There are

thirty-two known K's with [R] norm-Euclidean, see [8] for references. The

only other known example in this category is K = 0)(/-3, /13): it has class

number two, and the non-principal ideal class is Euclidean for the norm.

(2.8) S = SJJfp}, K is a complex quadratic field not mentioned in (2.4)(a), and

p is a non-archimedean prime of K. The three rings
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R=S[/-19, 1/2], E[/-6, 1/2], E[/-6, l/(i+4/-6)]

are Euclidean with respect to the norm; the last two are due to G. Cooke (un-

published). Other examples of norm-Euclidean ideal classes are not known in this

category, but should not be hard to find. It seems an attractive problem to

determine them all. It can be shown that they all have h < 2.

For higher values of US no result comparable to (2.4) is known.

We finish with three unsolved problems.

(2.9) Problem A theorem of O'Meara Γ11] states that for any globa] field K

there exists a finite subset S <= p, s y£ 0, S D S^, such that the ring R of

S-integers is Euclidean with respect to the norm. Can one take S to satisfy

S n T = 0, where T is a given finite subset of P with S
m
 n T = 0?

(2.10) Problem Do there, in the case S = S^, exist infinitely many non-

isomorphic rings R with a norm-Euclidean ideal class? See [8, 10] for 312

examples with class number one, and (2.1), (2.5), (2.7) for six examples with

class number two.

(2.11) Problem Heilbronn [5, 6] has shown that in certain classes of cyclic

number fields there are only finitely many whose ring of integers is Euclidean

with respect to the norm. Do bis results carry over to rings with a norm-Euclidean

ideal class?
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