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Abstract. We present an a lgor i thm to compute  a Euclidean min imum spanning tree 
of a given set S of N points in ~_d in time C(,~-a(N, N) log d N), where J~(n, m) is the 
time required to compute  a b ichromat ic  closest pair among  n red and m green points 
in U. If Jd(N,  N) = ~ ( N  ~ +~), for some fixed ~: > 0, then the runn ing  time improves to 
C(,~(N, N)). Fur thermore ,  we describe a randomized algori thm to compute  a 
b ichromat ic  closest pair in expected time 6((nm log n log m) z/3 + m log 2 n + n log 2 m) 
in ~3, which yields an 6(N 4/3 log 4'3 N) expected time a lgor i thm for comput ing  a 
Euclidean min imum spanning tree of N points  in ~3. In d > 4 dimensions we obtain 
expected time C((nm) 1-1/trd/2~+l)+~ + m log n + n log m) for the b ichromat ic  closest 
pair  problem and (6(N 2-2/~fd/21+1)+~) for the Euclidean min imum spanning  tree 
problem, for any positive e. 

1. Introduction 

G i v e n  a set  S of  N p o i n t s  in  E u c l i d e a n  d - d i m e n s i o n a l  space  ~d, a Euclidean minimum 
spanning tree ( E M S T )  is a s p a n n i n g  t ree  of  S w h o s e  edges  h a v e  a m i n i m u m  t o t a l  
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length among all spanning trees of S, where the length of an edge is the Euclidean 
distance between its vertices. For  d = 2, an 6~(N log N) algorithm for the computa- 
tion of an EMST has been given by Shamos and Hoey [SH]. For d > 3, 
Yao [Y] obtained o(N 2) algorithms. In three dimensions, his algorithm runs in time 
~((N log N)1"8), which can be reduced to C((N log N) ls )  using results on the 
computation of Voronoi diagrams, see Section 5.1. Algorithms for computing 
approximate minimum spanning trees have been developed by Clarkson [Cll]  
and Vaidya IV]. 

Our aim is to shed light on the relation between the EMST problem and the 
computat ion of bichromatic closest pairs (BCP). The latter problem can be 
formulated as follows: Given a set of n red and m green points in E d, find a red 
point r and a green point g such that the distance between r and g is minimum 
among all red-green pairs. Note that this is not the same as the nearest fi)reign 
neighbor (NFN) problem as studied by Yao, which calls for computing, for every 
green point g, a closest red point r(g). 

It is not difficult to verify that an EMST of the union of the red and green 
points contains at least one closest red-green pair, It is thus possible to solve the 
BCP problem by computing an EMST. The first result of this paper is to show 
that the converse is also true. We present an algorithm that computes an EMST 
by solving several BCP problems. If we can find a BCP for n red and m green 
points in Ed in time ,Y-d(n, m), then we can compute an EMST in E d in time 
(9(,Y-a(N , N) log d N). Moreover, if ,~(N, N) = ~(N 1 ~) for some e > 0, the time to 
compute an EMST is only (9(~--a(N, N)). 

Most current EMST algorithms start by computing a set of edges which can 
be shown to be a superset of the edge set of an EMST. In the two-dimensional 
case the set of edges of the Delaunay triangulation is a good choice for this superset. 
Unfortunately, already in three dimensions the edge set of the Delaunay triangula- 
tion can be the complete graph. Another possible choice for a suitable superset is 
due to Yao. He divides the set of all possible edges into a constant number of 
groups, according to the slope of the edges, and selects a linear number of edges 
from each group. Our algorithm is based on a similar idea. We classify all possible 
edges into (9(N log d- 1 N) groups, each group forming a complete bipartite sub- 
graph on two subsets, R and G, of S. We are then able to show that for each 
group only a closest pair between R and G can form an edge of any EMST. 

We then turn our attention to the BCP problem. We show that a random 
sample of one of the point sets can be used to decompose the problem into many 
small ones, which can then be solved using one of the solutions to the post office 
problem that can be found in the literature. Using the currently best known results 
in that direction, we obtain a randomized algorithm that computes a bichromatic 
closest pair of n red and m green points in three dimensions in expected time 
(9((nm log n log m) 2/3 %- m log 2 n + n log 2 m). This implies an (9(N '*/3 log 4/3 N) ran- 
domized expected time algorithm for the EMST problem in E 3. In d dimensions, 
the time bounds are C((nm) ~- ~md/21+ ~)+~ + m log n + n log m) for the BCP prob- 
lem and C(N 2-2/~rd/21+ 1)+,) for the EMST problem, where e > 0 is a constant which 
can be made arbitrarily small. 
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2. Conventions 

We do not  dis t inguish between points  and  vectors in U;  hence, we can add and 
subtract  points.  The scalar product of x = ( x l , . . . , x d )  and  y = (Yl . . . . .  Yd) is 

xTy = ~d=l  Xi Yi, the norm of x is J[xl[ = , Jx fx ,  and the angle between x and y is 

L(x ,y )  = arccos xTy/(Hxll.[lyql). Fur the rmore ,  the an qle L(xyz) defined by the 
three points  x, y, and  z is defined as L(xyz) = / ( z  - y ,  x - y ) .  

For  A, B~_E  a define A + B =  { x + y l x e A ,  y e B }  and let x + B =  { x } + B .  
The Euclidean distance between x and y is d(x, y) = IlY - xH. F o r  a finite poin t  set 
A, define d(x, A) = miny~A d(x,y), and for two finite point  sets A and B, define 
d(A, B) = minx~A d(x, B). F o r  two points  x and y we let xy be the line segment 
connect ing  them; the length of xy is deno ted  by d(x,y). 

A closest (A, B)-pair is a pair  (x, y) with x e A, y e B, and d(x, y) = d(A, B). We 
define diam(A) = maXx.y~A d(x,y). 

F o r  three vectors x, y, z we use 

L (x, y) _< L (x, z) + L (z, y), (1) 

the tr iangle inequal i ty  for the angles they define. 

3. Geometric Results 

As ment ioned  above,  we intend to classify the set of pairs  of points  in S into several 
groups.  F r o m  each group  we select only one pair  as a possible  edge for an EMST.  
In this section we define the groups  and show the geometr ic  result which allows 
selecting only one edge for every group.  

First ,  we in t roduce  some nota t ion .  Let d c  ~d be a vector  of unit  length, HdN = 1, 
indica t ing  a direct ion in d-d imens iona l  space, and  let ~ < 90 ~ be an angle. We  
define the cone Cone(d, ~) = {x ~ ~d b L (x, d) < ~}. 

Let ~o be the largest angle so that  for any 0 < c~ < eo we have 

tan 2:~ < cos 2c~ 

(% = (arcsin(, ,f5 - 1)/2)/2 which is abou t  19.08~'). In the fol lowing we assume tha t  
c~ is fixed with 0 < ~ < %.  

Let S be a finite set of points  in E d for which we want  to compute  an EMST.  
F o r  two dis joint  subsets R and G of S we call (R, G) a strongly separated pair  if 

max{diam(R), diam(G)} < d(R, G). 

Fur the rmore ,  we call (R, G) a-separated if there exists a po in t  z and a direct ion 
vector  d such that  R ~_ z + Cone(-d ,  ~) and G c_ z + Cone(d, a). When  d, the 
o r ien ta t ion  of the cones, is impor t an t  we call (R, G) a - separa ted  in direction d. 
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The strongly separated pairs are our  first means  to reduce the number  of 
candidate  edges for an EMST.  In fact, if (R, G) is a strongly separated pair, an 
E M S T  contains  at most  one edge between R and G, namely  a closest (R, G)-pair: 

L e m m a  1. Let E be a subset of edges of the complete graph on S such that E 
contains every E M S T  for S and let ~ be a set of strongly separated pairs (R, G), 
R, G ~ S, such that for every edge {r,g} e E  there is a pair (R, G) e ~  with r e  R, 
g ~ G. I f  M ~_ E contains a closest (R, G)-pair .for every pair (R, G)~ ~ ,  then M 
contains an E M S T  of S. 

Proof. Let T be an E M S T  using the m a x i m u m  possible number  of  edges in M. 
Suppose for a contradict ion that  T contains an edge e = {r, g} ~ M. Let Q and S\Q 
be the vertex sets of the two connected componen t s  of Twhich  arise after removing 
e. Consider  a pair  (R, G)e  ~ with r ~ R and g E G. Since diam(R), diam(G)< 
d(R, G) < d(r, g), we have R _~ Q and G ~_ S\Q. By definition, M contains a closest 
(R, G)-pair (r', g'). Since d(r', g') < d(r, 0), there is an E M S T  T'  which contains (r', g') 
instead of (r, g). So T '  contains one more  edge of M than 7", a contradict ion.  [ ]  

We obtain strongly separated pairs f rom c~-separated pairs. Let (R, G), R, G ~_ S, 
be a-separated in direction d. We call r ~ R extremal i f r  + Cone(d, rt/2 - a) contains 
no element of R. Analogously,  we call g ~ G extremal if g + Cone ( - d ,  n/2 - a) 
contains no element of  G. We denote  the subsets of extremal  elements by R' and G'. 

L e m m a  2 (Fig. 1). Let (R, G), R, G ~_ S, be an a-separated pair, and let R', G' be 
the subsets of extremal elements. I f{ r ,  g}, r e  R, g ~ G, is an edge of some E M S T  of 
S, then r 6 R ' ,  g E G ' .  

Proof. Here we use a result of  Yao [Y] who proved that  if {r, O} is an edge of 
an E M S T  of S and g E r + Cone(d, fl), for fl < re/6, then O is a nearest  neighbor  of 
r in the cone r + Cone(d, fl). Since a < zt/6 by assumpt ion  this is also true if we 
substi tute a for ft. So consider O- We claim that  if 0 ~ G\G', then O cannot  be the 
nearest  ne ighbor  of r in the given cone. So assume that  O is not  extremal,  i.e., there 

R . . . . . .  . . . . . . . . . . . . . . . . . . .  �9 

Fig. 1. Illustration of Lemma 2, 
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exists a poin t  p e g + C o n e ( - d ,  n / 2 -  e). Cons ider  the t r iangle  rpg. We have 
• (rpg) = rt - / (p - r, g - p), /_(d ,p  - r) < c~, and L.(d, g - - p )  _< rt/2 -- c~. By the 
tr iangle inequal i ty  (1) we have L(p  - r, g - - p )  < n/2, and therefore / ( r p g )  >__ n/2. 
Hence, rg is the longest  side of the tr iangle rpg which implies d(r, g) > d(r,p),  a 
contradic t ion .  

We conclude that  g must  be extremal  in G. By symmetry ,  we have r e R'  and 
r is the closest ne ighbor  of 0 in R. [ ]  

So we can content  ourselves with the pair  (R', G'), and  for tunate ly  we have the 
following result. 

L e m m a  3 (Fig. 2). I f  (R', G') is an or-separated pair o f  ex t remal  elements,  then 
(R', G') is s trongly  separated.  

Proof .  Let z e ~a be such tha t  G' ~_ z + Cone(d, ~t). Let 0, P e G' and consider  the 
tr iangle zgp. Define q~ = Z_ (gzp), 0 = /(POZ),  and co = / ( g p z )  and let a, b, and c 
be the lengths of zo, zp, and go. Using  (1) we derive bounds  on the sine functions 
of  the angles. F r o m  q9 _< 2ct we get sin ~0 _< sin 2ct, and  from ~/2 - 2~ _< ~,, co < 
r~/2 + 2ct we get sin ~k >_ cos 2ct and  sin co >_ cos 2ct. 

The equal i ty  

a b c 
i 

sin co s i n ~  sinq~ 

for the tr iangle zgp implies 

c b sin q) sin 2c~ 
= - < b - b tan 2c~, (2) 

s i n ~ -  c o s 2 z  

sin ~ 1 1 
< a - - -  _< a - - - .  (3) 

b = a sin co sin co cos 2c~ 

Fig. 2. Illustration of Lemma 3. 
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Let go e G' be a nearest neighbor  of z, that  is, d(z, 0o) = d(z, G'). By (3), for every 
0 e G', we have 

1 1 
d(z, g) < d(z, go) cos 2~ d(z, G') cos 2~ (4) 

N o w  let g', g" be any pair of  points in G'. It follows from (2) and (4) that 

d(9', g") < d(z, g') tan 2c~ _< d(z, G') - -  
tan 2~ 

< d(z, G') 
cos 2c~ 

as ~ < ct o. By symmetry,  we have d(r', r") < d(z, R') for any two points r', r" e R', 
assuming R' ~_ z + Cone ( -d ,  ~). We thus have 

max{diam(R'), diam(G')} < max{d(z, R'), d(z, G')}. 

Consider now r e R, g e G. The angle (rzg) > rr - 2c~ > ~z/2, so r O is the longest 
side of the triangle rzg. This implies d(r, g ) >  max{diam(R'), diam(G')}, which is 
equivalent to saying that  R' and G' are strongly separated. [ ]  

Now we can give our  central result which reduces the E M S T  problem to the 
BCP problem. 

Lemma 4. Let S be a set of  points in E a and let .~ be a set of  ~-separated pairs, 
for some 0 < ~ < ~o, with the property that, .[br any pair of  points r, g ~ S, there 
exists a pair (R, G) ~ s such that r ~ R and g ~ G. I f  a subset M of edges contains 
a closest (R, G)-pairfor every (R, G)~ ~ ,  then M contains an E M S T  of S. 

Proof. Consider  the set ~ ' =  { ( R ' , G ' ) I ( R , G ) e ~  and R', G' are the sets of 
extremal elements in R and G}. Let E be the set of edges E = {{r', g'} It' e R', g' e G', 
(R', G') E ~'} .  By Lemma 2, E contains every E M S T  of S. By Lemma 3, ~ '  and E 
fulfill the requirements of Lemma 1. As in Lemma 2, it is easy to see that a closest 
pair of(R, G) is also a closest pair  of(R',  G'). The result thus follows from Lemma 1. 

[ ]  

4. An Algorithm To Reduce E M S T  to BCP 

We now describe an algori thm that solves the E M S T  problem in d dimensions 
by solving several instances of  the BCP problem, assuming we are given an 
algori thm for the BCP problem. Let this algori thm take .Y-d(n, m) time for a set of  
n red and m green points. As usual we let S be a set of N points and we wish to 
compute  an E M S T  of S. 

We bor row some notat ion from [Y]. Let B = {b~ . . . . .  bd} be a basis of E a. The 
convex cone of B is Cony(B)= {Z~=~ 21b~12, > 0, Vi}. We call Cony(B) narrow 
if there exists a vector dE fa, Ildl[ = 1, such that  Cony(B)~_ Cone(d,a) with 

< c%. Let f f  be a finite family of  bases of  E d. We call ~ a fan of E d if 
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UB~,~(Conv(B) • - -Cony(B) )  = E d. A fan <~- is called narrow if every B e<~- is 
narrow. By Lemma 4.2 of [Y], for every dimension d we can construct  a narrow 
fan in a finite number  of steps. 

We compute  such a narrow fan , f  and successively consider the bases B E.~.  
For  each B E W, we compute  a set ~B of ~-separated pairs using an algorithm 
inspired by the range tree structure for d-dimensional point sets (see, e.g., [PSI). 

Let B = {bl . . . . .  bd} be the basis for which we compute  a-separated pairs, and 
let (xl . . . . .  Xd) be the coordinates of a point x in this basis, that  is, x = x lb l  + 
�9 "" + xdba. We assume that B is such that no two points of S share a coordinate. 
The algori thm that computes  the a-separated pairs is recursive, and each recursive 
call either reduces the number  of points considered or the dimensionality of the 
problem. The a-separated pairs are output  when the dimensionality k is 0. The 
input parameters  of the algori thm are k, the dimensionality, R, a set of red points, 
and G, a set of green points in IE n. Initially, k = d and R = G = S. 

1. If k = 0, then output  (R, G) as an ~-separated pair. 
2. Otherwise (if k _> 1) execute the following steps. 

2.1. Compute  Xk, the median of the kth coordinate of points in R w G. 
2.2. Set R l = {r ~ Rlrk < Xk}, Rr = {re  Rlr  k > Xk}, G l = {0 E Glgk <-- Xk}, and 

G, = {g E Glok > xk}. 
2.3. IfR~ # ~ and G, # ~ ,  then recurse with parameters k - 1, R~, and G,. 
2.4. If  R l 4: ~ and Gt 4= ~Z~, then recurse with k, R~, and @. 
2.5. If R, # ~Z~ and G~ # ~ ,  then recurse with k, R,, and G,. 

Since B is narrow, every pair (R, G) returned by the algorithm is a-separated. We 
need to show that if O E r + Cony(B), then the algorithm outputs  a pair (R, G) with 
r e R and O e G. Assume inductively that this is true for dimension d - 1. To prove 
it for dimension d note that g E r + Cony(B) is equivalent to r~ < g~ for 1 < i _< d. 
In particular, it implies rd < gd" Thus, there will be a call of the algorithm so that  
k = d, rE Rt, and 0 E G~. Step 2 calls the algorithm for k = d -  1, R = Rt, and 
G = G,, and by inductive assumption this call produces the desired ~-separated 
pair. Let ~A be the set of a-separated pairs produced by the 'algori thm. 

From what we just said it follows that ~ = UB~,~ ~ fulfills the requirements 
of Lemma 4. It therefore suffices to compute,  for every pair (R, G)~ ~ ,  a closest 
(R, G)-pair to obtain a suitable set M. We claim that the size of M is (9(N log d- ~ N) 
and verify this by count ing the number  of a-separated pairs generated by the 
algorithm when it is called for k = d, R = G = S, and basis B. Let tk(n + m) denote 
the maximal number  of a-separated pairs generated for any input sets R, G with 
[R[ = n, I G[ = m, so we are interested in td(2N ). Clearly, to(n + m) = 1. For  higher 
indices k we have 

/ n  + m \  

which solves to tk(n + m) = C((n + m) log k - l (n  + m)). I t  follows that td(2N) : 
(9(N log d-1 N) as claimed. F r o m  M we can compute  an E M S T  of S in time 
C(N log d- x N). 
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It remains to analyze the computation of closest pairs. In order to get closest 
pairs as output we just replace step 1 with 

1'. If k = 0, then find a closest (R, G)-pair {r, g} and output it. 

Recall that J-a(n, m) is an upper bound on the time it takes to compute {r, g} if 
n = [RI and m = [G]. Let Tk(n + m) be the running time of the above algorithm 
for dimensionality k, and for sets R of size n and G of size m in ~-d. We have 
T~ + m) = J~n,  m), and since ,Y-d(n, m) = D(n + m) we have 

k / n +  m \  T~(n + m)= 2T./-- =--!  + T~ ~(n + m) 
\ z /  

for k > 1. Without further assumptions we get Tdd(2N)= ~(oY-d(N, N) log d N). 
However, if ~ ~((n + m)l+~), for some fixed e > 0, then T~(2N)= 
~n(~--d(N, N)). We summarize the results of this section. 

Theorem 5. Let J-d(n, m) be the time required to compute a BCP for n red and m 
green points in E a. Then an E M S T  of N points in E n can be computed in time 
6J(~d(N, N) log d N). I f  furthermore ~-d(n, m) = D((n + m) 1 +~), Jbr some ~: > O, then 
(5~(.y-a(N, N)) time suffices to compute an EMST. 

5. Computing a BCP 

In this section we present a fast randomized algorithm for the BCP problem: Given 
a set R of n red points in E d and another set G of m green points in E d, determine 
a pair of points r ~ R and O e G such that d(r, O) = d(R, G). 

This problem can obviously be solved in time (9(ran) by testing all red-green 
pairs of points. The goal of this section is to develop a significantly faster algorithm. 
The main result is a randomized algorithm whose expected running time is 
~O((nm log n log m) 2/3 + m log 2 n + n log 2 m) in three dimensions, and 

6~((nm) 1-1/~fa/21+1)+~ + m log n + n log m) 

in d _> 4 dimensions, for any fixed e > 0. 

5.1. BCP for Unbalanced Point Sets 

The BCP problem can be solved by determining for every green point O E G its 
nearest red neighbor r e R. Following Yao, we call this the nearest foreign neighbor 
(NFN) problem. 

The natural approach to this problem is to preprocess the set R into a data 
structure that supports queries of the form: Given a point y e E a, which point in 
R is closest to y?  Then such a query is performed for every O ~ G. 

The computat ion of such a data structure is known as the post office problem 
in the literature, and there exist several solutions, see, e.g., [Ch], [C12], and [PT].  
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In three dimensions, we use Chazelle's technique [Ch] which preprocesses n points 
in E 3 in time C(n 2) and has query time C(log 2 n). For d >_ 4 dimensions, we use 
tile technique of Clarkson [C12] which requires O(n [a/zl+e) expected time for the 
preprocessing, where e > 0 can be chosen arbitrarily small, and has (9(log n) 
(deterministic) query time. 

Note that in three dimensions there is a randomized algorithm for the post 
office problem which is simpler than Chazelle's algorithm and which has the same 
time bounds (although only in the expected case). This algorithm has been 
described in the proceedings version [AESW] and can safely be substituted for 
Chazelle's technique in the following. 

To make our discussions independent of the specific solution to the post office 
problem we define functions p(n) and q(n) and assume that we have a subroutine 
for the post office problem that preprocesses n points in E d in time nfd/Zlp(n) and 
answers closest point queries in time q(n). Note that it makes sense to assume a 
preprocessing time of f~(n fd/21) since this is the worst-case combinatorial complexity 
of the Voronoi diagram for n point sites in d dimensions. Any known data structure 
for the post office problem with polylogarithmic q(n) indeed takes ~(n Id/21) 
preprocessing time and storage. 

The subroutine for the post office problem can now be used to solve the N F N  
problem in time C(n~p(n) + mq(n)), where 7 is defined as a shorthand for [d/2]. If 
we assume that q(n) is small, e.g., polylogarithmic, then this solution can be 
recommended only if the set G has many more points than R, e.g., if m >~ n~p(n)/q(n). 
Otherwise, there is a simple technique that balances the two terms of the running 
time. Notice that in this case n ~ > mq(n)/p(n). 

Divide R into t = [n(p(n)/mq(n)) 1/~] > 1 subsets R 1 . . . . .  R, of size at most [n/t] 
each and solve the problem with the above method for every pair (R i, G). This 
results in a running time of 

C(t'(n/t)~p(n/t) + t" mq(n/t)) = C(nm I - 1/~p(n)X/~q(n)l - 1/~). 

Together with the original case where m >_ n~p(n)/q(n) and the query time is 
C(mq(n)) this implies the following result. 

Lemma 6. The BCP problem for a set of  n red and a set of  m green points in E 3 
can be solved in time (9(nm 1-1/Yp(n)l/~q(n)l 1/7 + mq(n)), assuming a solution to the 
post office problem with nTp(n) preprocessing and q(n) query time, where ? = [d/2]. 

This time bound is still quite unbalanced in the number of red and green points, 
but is used as a subroutine in the next section, where we show how to balance 
the running time with respect to n and m using random sampling. 

5.2. B C P  for  Balanced Point Sets 

When n and m are of about  the same size we use a technique similar to that of 
[CEG+] ,  combined with ideas of [CS]. We take a random sample of the green 
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points  and use it to decompose  the p rob lem into m a n y  small problems.  The idea 
relies on the fact that  the expected size of  the subproblems will be unbalanced 
enough so that  we can use the a lgor i thm of the previous section. 

We construct  a t r iangulat ion of the Voronoi  d iagram of a sample of the green 
points. More  specifically, we use what  we call the bottom-vertex-triangulation 
(by-triangulation) of the Voronoi  diagram. It is constructed by first decompos ing  
the 2-faces into triangles. Based on these triangles the 3-faces are decomposed  into 
tetrahedra,  based on these te t rahedra  the 4-faces are decomposed  into 4-simplices, 
and so on and so forth. It turns out that  it suffices for our  purposes  to tr iangulate 
only bounded  faces. More  formally, for k = 2 to d we choose, for every bounded  
k-face f of  the Voronoi  diagram,  the (lexicographically) smallest vertex v and form 
a k-simplex with v and every (k - 1)-simplex o f f ' s  (k - 1)-faces not incident to v. 
These (k - 1)-faces are already tr iangulated since they are bounded.  

Let Vor(S) denote the Voronoi  d iagram of S and let by-V or(S) be its bv- 
tr iangulation.  The  bv- t r iangula t ion has the nice proper ty  that  it is unique and it 
is completely  determined locally. In fact, d + 1 vertices of a bounded  Voronoi  cell 
of Vor(S) form a simplex A of bv-Vor(S) if and only if A is a simplex of bv-Vor(T), 
where T _ S is the set of  at most  (d + 1) 2 points  defining the d + 1 vertices of A. 
This is because every vertex of  Vor(S) is defined by d + l points  in S, assuming 
general position. Not  that  it is impor tant ,  but (d + 1) 2 can be improved  to (d~2) 
if we avoid double  count ing of points. 

To  make  the above  remark  more  formal  we introduce a few definitions. Fo r  a 
finite point  set S _~ E a let ~--s be the set of simplices A in bv-Vor(T), for all T ~_ S 
with I TI < (d + 1) 2. Because we assume that  S is in general position, the subset 
T defining a simplex A is unique and denoted by T a. For  A e ,Y-s, let r A be the 
point  in T A tha t  generates the Voronoi  cell containing A, and let 

reg(A) = { x e  IEdlSy e A, d(y, x) < d(y, ra) }. 

We have the following simple l emma which is ana logous  to a similar s ta tement  

in [CS]  

L e m m a  7. A simplex A e by- Vor(S) if and only if A e ~--s and reg(A) c~ S = ~ .  

Before we proceed to the a lgor i thm we need to discuss the unbounded  cells of 
Vor(S), as they pose a slight p rob lem when it comes to tr iangulat ing Vor(S). We 
decide not  to t r iangulate  an unbounded  cell because its bo t t om vertex may  not  
be defined. To  cope with the difficulties thus arising, we introduce a set U of d + I 
points  forming a sufficiently large simplex, where sufficiently large means  that  

(i) the convex hull of  R w G w U is the simplex U, and 
(ii) for any two points  x, y e R w G we have d(x, y) < d(x, U). 

Proper ty  (i) ensures tha t  for any  Z _ G, the only unbounded  cells of Vor(E ~ U) 
are those generated by the d + 1 points  in U. On the other  hand,  p roper ty  (ii) 
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implies that if y c E and x e R w G, then x lies in a bounded cell of  Vor(E w U). 
This will be convenient later when we perform point location in Vor(E w U). 

Given bv-Vor(S) for a set S of n points in E d, we can perform point location in 
it in time d.(9(n) = C(n) without further preprocessing. (We borrow from [M] ;  a 
similar idea has been used in [DF] . )  The idea is to iterate through the number  of 
dimensions, starting with the largest, as now described. First, in time (~(n) we 
determine the nearest neighbor s e S of the query point x by exhaustive search; x 
is contained in the Voronoi  cell of s. Thus, we now know the d-face of Vor(S) 
containing x. To compute  the d-simplex of bv-Vor(S) that contains x let s' be the 
bot tom vertex of this d-face and consider the ray from s' going through x. By 
exhaustive search we find the (d - 1)-face f '  intersected by the ray. This step takes 
only (5(n) time because the d-face has at most  n - 1 (d - 1)-faces, and the one we 
search for has the property that its support ing hyperplane intersects the ray closest 
to s' of all support ing hyperplanes. To finish, we recursively find the (d - D-simplex 
containing the intersection x' of the ray and f ' .  This gives us the d-simplex 
containing x. Each level of the recursion takes (5)(n) time because each k-face has 
at most  n - ( d - k +  1)<_n (k -1 ) - f a c e s ,  and there are at most  d levels of 
recursion, one for each dimension. 

The description of the algori thm follows. For  simplicity we use the word simplex 
synonymously  with d-simplex as most  of the time we are concerned with full- 
dimensional simplices only. Let again R be a set of n red points and let G be a 
set of m green points in E d. We assume that n _< m, otherwise we swap colors. 

If m > n~p(n)/q(n), a BCP can be computed  in time ~(mq(n)), using the first 
algorithm described in the last subsection. 

Otherwise, i.e., m < n~p(n)/q(n), take a r andom sample Y, of  a green points (a 
will be specified below). We compute,  in time (9(a~), the Voronoi  diagram of Y 
and its by-tr iangulat ion ~Y- = bv-Vor(U u Z), where U satisfies conditions (i) and 
(ii) specified above. Y- is a cell complex of 6;(a0 simplices. For  every simplex A e J- ,  
we determine a set Ra of red points and a set G A of green points defined as follows: 

�9 R A = R c~ A, that is, R~ is the set of all red points r ~ R contained in A. 
�9 GA = G c~ reg(A), that  is, a green point g e G is in G~ if and only if there exists 

a point y ~ A with dO,, g)-< dO', gA), where gA is again the point  in E that 
generates the d-face of Vor(E w U) that  contains A. 

We can compute  R A for all A e ~Y'- in time (9(na) by performing a point  location 
query for every red point as explained above. If nA is the number  of points in R A, 
we have ~ A ~ y  n~ -- n. 

N o w  observe that the set of  simplices A with GA containing a fixed green point  
g is exactly the set c~(0) of all simplices intersecting the Voronoi  cell of g in 
Vor(U w 32 w {g}). Hence, ~(g) is connected in the sense that for any two simplices 
A 1 and A2 in ~(g)  there is a sequence of  simplices in ~(g) starting with Aa and 
ending with A 2 so that any two adjacent simplices share a (d - 1)-face. It follows 
that ~(g)  can be found using a graph-search algori thm (such as depth-first search) 
starting at the simplex that contains g; this takes time (9(a + [~(g)[). The total 
running time for this procedure is thus (9(ma + Y',A~9-mA), where mA is the 
cardinality of  G A. 
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Finally, we use the algorithm of Lemma 6 to find the closest (Ra, Ga)-pair for 
every simplex A. We output  the pair with the shortest distance as a closest 
(R, G)-pair. We now define tr = f(nYp(n)/mq(n)) 1/~y2-1)] and observe that tr y = C0(mtr) 
as long as we assume m > n and p(n) = ~0(m2). With this choice of tr we can prove 
the following result. 

Theorem 8. The algorithm above computes a BCP of a set of n red and a set of 
m >_ n green points in ~d in randomized expected time 

~--d(n, m) = C((nmq(n)) y/ty+ 1)p(n)l/tY+ 1) + mq(n)), 

assuming a solution to the post office problem with p(n) = [0 (n2 ) .  

Proof. The correctness of  the algorithm is based on the observation that O is in 
GA if {r, O} is a closest (R, G)-pair and A is the simplex containing r. 

The running time of the algori thm is C(mq(n)) if m > nYp(n)/q(n). Otherwise it is 

~ (  ay + na + ma + aJ -  ~ (nAm~-I/Y(P(na))I/y(q(nA))x-~/Y + mAq(n~x)))" 

Because n _< m and tr y ~ (9(mtr) as long as p(n) e (~(m2), which we assume, this is 
bounded  by 

We show below that the expected value of ~.~- nAm ~ is (9(n(m/a) ~) and the expected 
value of  y'~- m~ is r  y- 1). For  the given choice for tr, we thus obtain the expected 
running time given ,in the theorem. [ ]  

Using Chazelle's [Ch]  and Clarkson's  [C12] results we can set p(n) = (9(1) and 
q(n) = C(log 2 n) in three dimensions and p(n) = (9(n ~) and q(n) -- 6~(log n) in d > 4 
dimensions. This implies the following result if we drop the assumption that m >_ n. 

Corollary 9. A BCP of a set of n red and a set of m green points in three dimensions 
can be computed in randomized expected time 

(9((nm log n log m) 2/a + m log 2 n + n log 2 m). 

In d dimensions, d >_ 4, the problem can be solved in expected time 

(~((nm) 1-1/([d/21+1)+~ + m log n + n log m) 

for any constant s > O. 
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It is interesting to compare  the time bound of the three-dimensional  BCP 
algori thm with the currently best upper  bound on the number  of b ichromat ic  
min imum distance pairs which is (9(n:/am ~/~ + n + m) [CEGS] .  To  complete  the 
proof  of  the theorem we still need to establish the claimed expectations. Fol lowing 
[CEG § and [CS] we start  with an elementary lemma. Recall that  Ys is the set 
of simplices in bv-Vor(T) for all T _~ S with ]TI -< (d + 1) a. 

Lemma  10. For a.fixed point r ~ R there are at most (d + 1)2 simplices A in J-v,~ 
that contain r and have I rey(A ) ~ l~] = 1. 

Proof. For  every set E' ~_ E there is a unique simplex Az, e@v,~z, with r e A z ,  
and reg(A~,)c~ E ' =  ~ (see L e m m a  7). Now consider a simplex A e J - w ~  that  
contains r and [reg(A)c~ El = 1. Let {0} = reg(A) c~ E. Clearly, A = As\lg t. The 
result follows since A~\/g I = Az if 0 q~ Ta~ (that is, 0 is not one of the points defining 
Az), and since I Ta~l -< (d + 1) 2. [ ]  

With this result we can now go ahead and prove  the claimed expectations. 

Lemma  11. I f  X, c G is chosen at random, we have 

0 < ~ < 1  

and 

E [  ~ ma]=(r~(mrr~-~). 
LA~#- J 

Proof. Consider  the first equation. We observe that  the sum is the same as 
Y'.~= t g~, where #~ is the cardinali ty of  G A for the simplex A containing the point  
rj ~ R. Since the expectat ion is additive, and since by Jensen's inequality E[9~] < 
(E[gj]) ~ for 0 < cr < 1, we can concentrate  on showing that  E[gl] = C(m/rr). 

Let r ~ R  be fixed and let g = ]G~,] for the simplex Ao~bv-Vor(U w Ig) with 
r ~ A  o. We want  to show E[g]  = r Define 9--~ = { A ~ - s [ r ~ A } ,  let IA[ = 
Ireg(A) c~ G], and let Pr  A denote the probabi l i ty  that  A = A 0 under the assumpt ion  
that r e  A. With these definitions, E[9]  = ~a~ .~ - ,~ ]A] '  Pra.  

By L e m m a  7, we can bound  Pr  A as follows. Clearly, A = A o for A E.Y-~,~c if 
and only if A E ~--~ ~ ~ and reg(A) c~ Y = ~ .  Now recall that  there is a unique set 
T A c U w G with ]TA] < (d + 1) 2 such that  A ~ #-wz  i fand  only if T A __q U w Z (this 
is true because of our  general position assumption).  

O7-t To put  A in J v , ~ ,  we must  choose these ]TAI points. To  satisfy the second con- 
dition, the remaining a - [TA]  points must  be chosen from G\(reg(A)w TA). We 
thus have 

- I TAI J l \ a J  
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m - [ A I -  I 

\ a / ~ j ~ \  1 / 2  . - I T ~ I -  1 / / 2 . /  

Observe that the summand,  

1 / \  a - I T A I  - -  1 , / / \ a , / '  

i(~'- t is the probabil i ty that  A is a simplex in ~ v . z  with Ireg(A) n El = 1. The sum is 
therefore the expected number  of  such simplices. By the last lemma, this expecta- 
tion is at most  (d + 1) 2, which is a constant,  for constant  dimension. 

N o w  consider the second claim of  the lemma. We use a similar argument  as 
above, substituting the set ~-- for ~'-'. We thus obtain 

Z \ a / A j u ~ \  1 / \  a - I T A I -  1 / / \ a /  

Here, the sum on the r ight-hand side is the expected number  of simplices A with 
I reg(A) n E I = 1. Theorem 3.2 of [CS] can be used to show that this expectation 
is C(aT). For  completeness, we give a short  p roof  of this fact in the lemma below. [ ]  

L e m m a  12. The number of simplices A in ~'v~s with Ireg(A) n El = 1 is C(a~). 

Proof. In this proof  we write I AI for I reg(A) n El. Define g = {A �9 ,Y-v ~ s ll A I = 1 }. 
We intend to show that  [81 = C(a0. We choose a r andom sample X' c X of size 
a '  = ra/21 (we consider E as fixed). O n  the one hand, we know that the complexity 
of  the bv-tr iangulat ion of Vor(U u g ' )  is of the order  (9(a~). On  the other hand, 
the expected number  of simplices in bv-Vor(U u E') is 

,)/(;) >_ 
~,,~,r o" - I T,,I (o 

> I~1 = n ( l ~ l ) .  
- #' - (d + 1) 2 

[] 
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Putting Theorem 5 and Corollary 9 together, we obtain the main result of this 
section. 

Theorem 13. An E M S T  of  a set of  N points in E 2 c a n  be computed in expected 
time C(N 4/3 log 4/3 N) by a randomized algorithm. In d dimensions it can be computed 
in expected time ~ ( N  2-  2/(1d/2]+ 1)+~) for  any constant e > O. 

This result should be contrasted with the time bound of ( 9 ( N  2 - 1lid/21 + I)+ E) which 
is realized by using Clarkson's solution for the post office problem within Yao's 
algorithm. 

Remark. It should be noted that our algorithm does not solve the N F N  problem. 
This is due to the fact that we start by computing the Voronoi diagram of (a subset 
of) the green points, but solve the subproblems by computing the Voronoi diagram 
of the red points. Hence, it is important that our reduction is not to the N F N  
problem (as in [Y]), but to the simpler BCP problem. However, it is possible to 
solve the N F N  problem within the same time bounds given here using a 
complicated extension to our technique [AM]. We can thus consider this work 
as a further example of the fact that additional geometric insight (as, in our case, 
that of Section 3) usually leads to simpler or faster algorithms for a problem. 

6. Conclusion and Extensions 

This paper shows a close relationship between the EMST problem and the BCP 
problem in I :d. As a result we get an improved algorithm for the EMST problem. 
We have no reason to believe that our algorithm is optimal, so it remains an open 
question whether the running time can be further improved. 

It should be noted that the techniques developed in this paper permit the 
computation of minimum spanning trees for metrics with polyhedral unit ball, such 
as the L~- and the Loo-metric. The idea is to construct a sufficiently narrow fan 
as a refinement of the fan induced by the edges of the unit ball. The distances in 
every cone of this fan are then determined by only one dimension. We can thus 
apply the reduction from Section 4 and Yao's result to compute an EMST in time 
(9(N log ~ N). This is better than the algorithms of [GBT] for the L~-metric and 
dimension greater than 5, while for the Lo~-metric and for the Ll-metric with d < 5 
their algorithms are better by one or two log-factors. 

Theorem 14. Given a set S o f  N points in E d and a metric in ~d which has a 
polyhedral unit ball, an M S T  of  S with respect to that metric can be computed 
deterministically in time C(N log d N). 
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