
JOURNAL OF COMBlNATORIAL THEORY (A) 14, 341-363 (1973) 

Euclidean Ramsey Theorems. I 

P. ERD~S 

Mathematics Institute, Hungarian Academy of Science, Budapest 9, Hungary 

R. L. GRAHAM 

Bell Telephone Laboratories, Murray Hill, New Jersey 07971 

P. MONTGOMERY 

Systems Development Corporation, Huntsville Alabama 

B. L. ROTHSCHILD] 

University of California, Los Angeles, California 90024 

J. SPENCER’ 

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

AND 

E. G. STRAU~ 

University of California, Los Angeles, California 90024 

Received November 5, 1972 

DEDICATED TO THE MEMORY OF THEODORE S. MOTZKIN 

The general Ramsey problem can be described as follows: Let A and B be two 
sets, and R a subset of A x B. For a E A denote by R(a) the set {b E B I (a, b) E R}. 

R is called r-Ramsey if for any r-part partition of B there is some a E A with 
R(a) in one part. We investigate questions of whether or not certain R are 
r-Ramsey where B is a Euclidean space and R is defined geometrically. 

Work on this paper was supported in part by: lNSF Grant GP-33580X and *NSF 
Grant GP-28696. 

341 
Copyright 0 1973 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



342 ERDiiS ET AL. 

I. INTRODUCTION 

We are concerned in this paper with problems of the type illustrated 
as follows: IS it true that for any partition of the Euclidean plane into 
two classes (we say that the plane is two-color@, there exists a set of 
three points all in the same class forming the vertices of an equilateral 
triangle of side length 1 ? (We call such a set monochromatic.) 

In this example the answer is “no,” as can be seen by dividing the 
points (x, y) into two classes according to the parity of [2y/tiZ]. On the 
other hand, if we two-color the points of Euclidean 4-space, we have 

only to look at the five points of an equilateral simplex of side length 1 
to see that there must be a monochromatic equilateral triangle of side 

length 1. 
These examples, then, suggest the following general question: Let K 

be a finite set of points in Euclidean m-space for some m. Then is there 
an integer n, depending only on K and the integer r, such that for any 
r-coloring of Euclidean n-space there is a monochromatic configuration 
K’ congruent to K? 

In the case of an equilateral triangle with r = 2, we saw that the answer 
is “yes,” and that the minimal possible value for n satisfies 2 < n < 4. 

We shall see later that the exact number is n = 3. 
These questions can be considered special cases of the general Ramsey 

problem, described as follows: Let A and B be two sets, and R a subset 
of A x B. For a E A denote by R(a) the set (b E B / (a, 6) E R}. R is said 
to have the Ramsey property for r colors if for every partitioning of B 
into r classes (r-coloring of B), there is an a E A such that R(a) is contained 
in only one class (monochromatic). The general Ramsey problem is to 
characterize those R for which the Ramsey property holds. For instance, 
suppose A is the set of Z-subsets of an n-set S, and B is the set of k-subsets 
ofS.LetR={(a,b)IbCa}. 

THEOREM 1 (Ramsey [7]). If n is large enough (depending only on 1, k, r), 

R satisfies the Ramsey property for r colors. 

The type of questions we are concerned with here, as indicated above, 
are questions in which R is determined by geometric considerations. For 
instance, in the example above, B is the set of points of Euclidean n-space, 
En, and A is the set of triples of these points forming equilateral triangles 
of side 1. R is just the inclusion relation. We saw that for r = 2 and n = 4 
the Ramsey property holds, while for Y = 2 and n = 2 it does not. 

The theorem of van der Waerden [9] on arithmetic progressions was 
the first important case in which R was determined geometrically. In this 



EUCLIDEAN RAMSEY THEOREMS 343 

case we can take B to be the positive integer points on the real line, 
A the subsets of 1 equally spaced points of arbitrary distance (length 1 

arithmetic progressions), and R the inclusion relation. 

THEOREM 2 (van der Waerden [9]). R has the Ramsey property jtir 

all r. 

(Actually, van der Waerden’s Theorem is stronger, and says that if B 
consists only of the first n integer points, where n depends on I and r, 
then R satisfies the Ramsey property for r colors.) 

Van der Waerden’s Theorem was generalized by Gallai [6] and others 
[3, I]. The generalization is as follows: Let K be a set of k points in 
Euclidean m-space, En’. Let B be the set of points E7” and A the set of 
k-sets in E” similar (in fact homothetic, that is, similar without rotations) 
to K. Let R be the inclusion relation. 

THEOREM 3 (Gallai). R has the Ramsey property for all r. 

Again, as in van der Waerden’s Theorem, B need only consist of a 
finite set of appropriately chosen points. This is due to the “compactness 
argument” (see [8], p. 69) which, when apphed to the Ramsey property, 
becomes the following: 

PROPOSITION 4. For sets A and B suppose R satisfies the Ramsey 
property for r colors with R(a) finite for all a E A. Then there are jinite 
subsets A’ C A, B’ L B with R(a’) C B’ for all a’ !C A’ such that the induced 
relation (dejined for A’ x B’ by (a’, b’) E R’ iff (a’, b’) E R) satisfies the 
Ramsey property for r cobrs. 

Theorem 3 is like the case above of the unit equilateral triangle except 
that similarity replaces congruence. In general, we can consider a property 
RJK, n, r), where K is a finite set of points in En, r is an integer, and H 
is a group of transformations on En as follows: 

R,(K, n, r): For any r-coloring of the points of En there is a mono- 
chromatic configuration K’ which is the image of K under some element 
of H. (This, of course, is the statement that, if B is the set of points of En, 
A the set of images of K under H, and R the inclusion relation, then R 
satisfies the Ramsey property for r colors.) 

We are interested in whether for a given K, r, and H there is an n for 
which R,(K, II, r) is true. In particular, we are primarily concerned with 
the group of Euclidean motions (congruences), and we will drop the 
subscript H in RH(K, n, r) when this group is considered if this causes 
no confusion. (In our example, where K was a unit equilateral triangle, 
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we saw that R(K, 2, 2) was false, but R(K, 4, 2) was true.) We remark 
that, if R(K, n, r) is true, then so is R(K’, n, r) for any K’ similar to K. 

In Sections 3, 4, and 5 we will investigate configurations K such that 
for each r there is an n such that R(K, n, r) is true. These will be called 
Ramsey configurations. Not all finite configurations are Ramsey, as we 
shall see later. We begin first with some special cases. 

2. EXAMPLES 

Certain special cases of R(K, n, r) are already known. For instance: 

THEOREM 5. Let P be a pair of points distance d apart. Then R(P, 2, 7) 
is false, while R(P, 2, 3) is true. 

Proof. We refer the reader to [4] and [2] for proofs. However, we 

include the proof for R(P, 2, 3) since it consists only of Figure 1, to 
which we shall refer later. In it there are seven points of which at most 
two can simultaneously not be distance d apart. 

FIG. 1. All edges have length d. 

As promised in the introduction, we show that R(S, , 3, 2) is true, 
where S, is the equilateral triangle of side 1 (or equivalently of side d). 

THEOREM 6. R(S, , 3, 2) is true. 

Proof. Let E3 be 2-colored, say red and blue. Then choose any pair 
of points distance 1 part and both the same color, say red (Theorem 5). 
Now either there is a third red point at distance 1 from both of these, 
and we are done, or else there is an entire circle of blue points at distance 1 
from both. This circle has radius d3/2. Now choose any two points on 
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the circle distance 1 apart. If there is a third point at distance 1 from both 
which is blue, we are done. Otherwise there is an entire circle of red 
points (in a plane perpendicular to the plane of the blue circle). If this 
second alternative holds for each pair of points on the blue circle distance 1 
apart, then, as we move around the blue circle, we obtain a whole family 
of red circles which define a degenerate torus (no hole in the center, due 
to self intersection). The equatorial radius of this torus is (~‘2 + 2/Q/2. 
Thus we can find three points on the equator mutually (~‘6 + 3)/4 > 1 
apart. Moving symmetrically from these three points along the surface 
of the torus toward the middle, we can find three points mutually 1 apart. 
Since they are on the torus, all three are red, and the proof is complete. 

We next consider the unit square C, . The argument used below was 
suggested by S. Burr. 

THEOREM 7. R(C, , 6, 2) is true. 

Proof. Consider the 15 points (X, , X, ,..., X,) in E6 defined by having 
four entries equal to 0 and two entries equal to l/ ~‘2. These 15 points 
can be represented by edges in the complete graph on 6 vertices, where 
the edge between vi and vj corresponds to the point with I/d/z in the i 
and j coordinates, 1 < i <j .< 6. Any 2-coloring of E6 determines, in 
particular, a 2-coloring of the 15 points. This determines a 2-coloring 
of the edges of the complete graph on 6 vertices. 

It is well known that in any 2-colored complete 6-graph there exists 
a monochromatic quadrilateral. That is, there must be four vertices, 

us, and vq for instance, such that the four edges (vlvz), (vzvs), 
~r&~~and (u& all h ave the same color. But this means that the corre- 
sponding points in E6 all have the same color, l/ 1/Z(l IOOOO), I/ d/z(Ol IOOO), 
l/2/2(001 loo), 1/~‘Z(100100). Since these form the vertices of a unit 
square, the theorem is proved. 

We note that R(C, , 2, 2) is false, as we see by coloring (x, y) according 
to the parity of [y]. Whether it is true for n = 3,4, 5 is undecided. 

THEOREM 8. !f’ T is any set of three poinrs, R(T, 3, 2) is true. 

Proof. Let T be a triangle with sides a, b, and c (where a + b may 
equal c in the degenerate case). Let E3 be 2-colored, say with red and blue. 
Then by Theorem 6, we can find some equilateral monochromatic (say 
red) triangle ABC of side a. Consider Figure 2 in the plane of ABC. The 
triangles ABE, DBC, GFC, EFH, ACH, and DEG are all congruent. 
Then, by choosing the angle EBC properly, we can let them all be con- 
gruent to the original triangle T. 
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FIG. 2. 

Now A, B, and C are all red. Thus, if there are no monochromatic 
triangles congruent to T, by considering triangles ABE, DBC, and ACH, 
we see that E, D, and H are blue. Then triangle DEG forces G to be red. 
But triangles CFG and EFH force F to be blue and red, respectively, a 
contradiction. Thus one of the six triangles must be monochromatic. 

We note that for some triangles (e.g., S,) R(T, 2, 2) is false. In at least 
one case, the 30”-60” right triangle, it is true, as we see below. 

THEOREM 9. Let d > 0, and let Tl , T, , T3 be any three triangles such 
that T, has a side of length d, T, a side of length 4Td, and T3 a side of 
length 2d. Then for any 2-coloring of E2, there is a triangle T which is 
congruent to one of Tl , T2, T3 and which is monochromatic. 

Proof. By the proof of Theorem 8 above, it is sufficient to show that 
we must have a monochromatic equilateral triangle with one of the three 
side lengths d, d/‘;d, 2d. Let E2 be colored red and blue, and let 
u = d( 1 , 0), 0 = d( l/2, ~‘5/2). By Theorem 5 we may assume (0,O) 
and u are both red. 

Suppose none of the three kinds of equilateral triangles occurs. Then v 
and u - v must both be blue. This forces 2u to be red, which in turn 
forces 2v to be blue. But then u + z) can’t be red or blue (because of 
triangles (u, 224, u + v) and (v, 2v, u + v)), a contradiction. 

COROLLARY 10. Let T be a 30”-60” right triangle. Then R( T, 2, 2) is 
true. 
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The only triangle for which R( T, 2, 2) is known to be true is the 30”-60” 

right triangle, and the only one for which it is known to be false is the 
equilateral triangle. We conjecture that R( T, 2, 2) holds unless T is 
equilateral, and, moreover, that any 2-coloring of E2 with no monochro- 
matic equilateral triangle of side d in fact has monochromatic equilateral 
triangles of side d’ for all d’ # d. 

THEOREM 11. Let L be the conjiguration of points in E2 given by 
(- 1, 0), (0, 0), (1, 0), and (1, 1). Then R(L, 3, 2) is true. 

Proof. Color E3 red and blue. Then by Theorem 8 there are three 
points, A, B, C, in a line distance 1 apart and all the same color, say red. 
Suppose there is no monochromatic L’ congruent to L. 

Consider the two circles of radius 1, C, and C, with centers A and C, 
respectively, and perpendicular to the line ABC. Both circles must be 
completely blue, or else we have a red L’. Now consider the circle C, of 
radius 1, centered at B and also perpendicular to ABC. This circle must 
be entirely red, or together with two points on C, and one on C, we get 
a blue L’. 

Let S be the sphere of radius 42 centered at B, and let s’ be the set 
of points on S which are at most distance 1 from C, . S’ is just S truncated 
by the planes of C, and Cc . All points of S’ must be blue. For each such 
point s is distance 1 from some point x on C, . Let y be the point on C, 
diametrically opposite x. Then yBx is perpendicular to sx, since s.xB 
is a right triangle. Thus sxBy is congruent to L, and s must be blue. 

Consider a point p in the plane of C, and distance 2 from B. Then p 
must be blue, or together with B and two points on C, we get a red L’. 
Now consider a point q on S’, in the plane of C, and distance 1 from p. 
The line joiningp and q meets S’ in another point r, which must be distance 
1 from q. p, q, and r are all blue. Thus the circle of radius 1, center r and 
perpendicular to the line pqr must be red, or we get a blue L’. But this 
is a contradiction since this circle meets S’, which is all blue. 

3. CONFIGURATIONS THAT ARE Nor RAMSEY 

We recall that a configuration (set) K in Euclidean space is Ramsey if 
for each r there is an n for which R(K, n, r) is true. For instance, if K is 
the equilateral triangle of side length 1, then R(K, 2r, r) holds (since the 
unit simplex in EzT has 2r + 1 points, and thus any r-coloring yields 
three points with the same color.) 

We next consider a class of configurations which are not Ramsey. We 
illustrate first with some special cases. 



348 ERD& ET AL. 

THEOREM 12. Let LI, denote the conjiguration of k collinear points 
separated by unit distance. Then R(L, , n, 4), R(L, , n, 3), and R(L, , n, 2) 
are false for all n. 

Proof. For the case of L, , let each x E En be colored according to 
the residue of [I x I21 (mod 4). Now suppose we have three points x, x + u 
and x - u, where u has length 1. If all three have the same color, there 
must be integers a,, a2, a,, an integer r, 0 < r < 4, and numbers Bi, 
0 < Bi < 1, i = 1, 2, 3, so that 1 x I2 = 4a, + r + %1, / x - u I2 = 

da2 + r + 02, and / x + u j2 = 4a, + r + e3. This implies that 
1 + 2x . u = 4(a, - a,) + 8, - 8, , and I - 2x . u = 4(a, - a,) -1 %2 - 8,. 
Hence 4(a, + a3 - 2a,) - 2 + (%, + %2 - 28,) = 0, a contradiction since 
Bi -=c 1. Thus R(L, , n, 4) is false. 

For the case of L, , we color the points x E En according to the residue 
[2 1 x I”] (mod 3). Suppose x + iu, 1 < i < 4, u a unit vector, are the 

same color. Let ai = I x + iu 12. Then we have 2a, + 2a, = 4a, -F 4, 
and 2a, + 2a4 = 4a3 + 4. Since all four points are the same color, if 
we let fi be the fractional part of 2a, , 1 < i < 4, we get, by reduction 
modulo 3 to reduced residues, fi + f3 = 2fz + 1 and f2 + f4 = 2f3 + 1. 
Adding these, we get fi + f4 = f2 + f3 + 2, an impossibility. 

For the L, case we color the x in En according to the parity of [I x 12/6]. 

Let x + iu, 1 < i < 6, be the same color, where u is a unit vector. Let 
Ui = iIX+iu12, I ,( i < 6. Then ai+l +- aimI = 2a, + l/3, for 
i = 2, 3, 4, 5, and all [ai] have the same parity. We claim that this is 
impossible. 

By replacing each ai by ai + (i - 4)[a,] + (3 - i)[a,], we may assume 
[a,] = [aa] = 0, and thus that each [ai] is an even integer. The identities 

a2 = 2a, - a, + l/3, 

a5 = 2a, - a3 + l/3, 

a, = 2a, - a3 + l/3, 

a, = 242, - a4 + l/3, 

a, + a6 = a3 + a4 + 2 

are easily verified. 
Using the first two equations, we find a2 and a5 are contained in the 

interval (-2/3, 7/3). But [az] and [as] are even, so a, and a5 are in 
Z u [2, 7/3). If a2 > 2, then 

4 < 2a, + a5 = 3a, + 1 < 4, 

a contradiction. Hence a2 E Z, similarly a5 E Z. By a similar process we get 
a, E Z and a, E I. But then 2 < a3 + a4 + 2 = a, + a6 < 2, a contradiction. 

We say that a configuration K = {v, , v, ,..., vk} of points in Em is 
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spherical if it is imbeddable in the surface of a sphere, that is, if there is 
a center x and a radius r so that / vi - x ) = r for all vi E K. 

THEOREM 13. If K is not spherical, then K is not Ramsey. 

To prove this we require two lemmas. 

LEMMA 14. The set K = {vO ,..., vlc} is not spherical if and only if there 
exist scalars c, ,..., clc not all 0 such that: 

(1) 5 Ci(Vi - vo) = 0, 
i=l 

f 4 vi I2 - j vg I”) = b # 0. 
i=l 

Proof. (We use vi2 to mean / vi I”.) Assume K is spherical, with center 
w  and radius r, and suppose (1) holds. Then 

Vi2 - Vo2 = (Vi - W)” - (Vg - W)2 + 2(Vi - Vg) ' W = 2(Vi - Vo) ' W, 

and 

jl C&i” - vgs) = 2w * i C&i - v,). 
i=l 

Hence (2) does not hold. 
Now suppose K is not spherical. It is sufficient to assume that K is 

a minimal non-spherical set. That is, all subsets are spherical. Since 
every non-degenerate simplex is spherical, it follows that the vectors 
vi - v0 , 1 < i < k, are linearly dependent. There exist ci , 1 < i < k, 
not all 0, satisfying (1). Assume ck # 0 and that {v, ,..., vkPl} is on a 
sphere with center w  and radius r. Then 

i Ci(Vi” - vo2) = g CiKVi - WI” - 6-o - VI 

= q&2 - vo2) f 0, 

and (2) holds. This proves Lemma 14. 

LEMMA 15. Let cl ,..., ck , b be real numbers, b # 0. Then there exists 
an integer r, and some r-coloring of the real numbers, such that the equation 

f ci(xi - x,,) = b # 0 
i=l 

5S=/r4/3-6 
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has no solution x0 , x1 ,..., xk where all the xi have the same color (mono- 
chromatic solution). 

The proof of this lemma, which some may consider of greater interest 
than Theorem 13, we defer until Section 4 below. It extends the funda- 
mental work of R. Rado [6]. 

Proof of Theorem 13. Let K be a non-spherical set {v, ,. .., v~}. For an 
arbitrary n we exhibit a coloring of En avoiding any monochromatic set K 
congruent to K. 

By Lemma 14, there are real numbers, cr , cz ,..., cB , not all 0, such that 
equations (1) and (2) of Lemma 14 hold. By Lemma 15 there is some 
integer r and some r-coloring x of the real numbers such that equation (3) 
of Lemma 15 has no monochromatic solution. (That is, x is a function 
from the real numbers to (1, 2,..., r), where the r colors, or classes, are 

the x-l(,j), I <,j ,( r.) We now color E” by the coloring x* given by 
x*(v) = x(v2). Thus the colors form spherical “shells” around the origin. 

Now we observe that equations (1) and (2) remain valid if K is replaced 
by any k + 1-tuple of points congruent to K (using the same choice of Q). 
For (1) is clearly invariant under any affine transformation and thus 
certainly under isometries, while (2) is invariant under isometries fixing 
the origin, since then the v? remain unchanged. Furthermore, (2) remains 

valid after translations as well, since if we translate by z we get 

i Ci[(Vi + 2)” - (v. + z)“] = j Ci(Vi2 - vgi?) + 22 * i Ci(Vi - vo) 
i=l 

= -f ci(v; - v:) = b. 
i=l 

Thus (1) and (2) both hold for any {v,,‘,..., v,‘} congruent to K. 
In particular, if we have a monochromatic (v~‘,..., vk’} congruent to K, 

then letting xi = (vi’)” - (v,‘)~ we obtain a monochromatic solution 
to (3), contrary to the choice of the coloring x. This completes the proof 
of Theorem 13 for finite sets. The case in which K is infinite is immediate 
by considering an appropriate finite subset. 

Theorem 13 establishes the necessity of a set being spherical if it is 
to be Ramsey. The sufficiency of this condition remains undecided. The 
sufficiency of a stronger condition is established in Section 5 below. 
We note that the number of colors used depends on the ci , which in turn 
depend on the configuration K. The dependence on the ci appears explicitly 
in the proof of Theorem 16 (Lemma 15) below. 

The coloring used in the proof of Theorem 13 was spherical. That is, 
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any sphere centered at the origin has points of only one color. We might 
ask whether other kinds of colorings could be used to show sets other 

than non-spherical sets to be non-Ramsey. In particular, suppose S is 
a “nice” surface (closed, bounded, separating En into two disconnected 
regions) which is entirely visible from the origin. That is for each point 
s E S, the line segment joining the origin and s meets S only at s). Then E” 
can be decomposed into “concentric” surfaces S, = (as I s ES}, 01 a non- 
negative real number. An S-coloring is a coloring which is constant on S, 
for each 01. We might hope that for some S an S-coloring could be used 
to show some configuration to be non-Ramsey. Any such configuration 
would, of course, not be imbeddable in any S, . However, any non- 
degenerate simplex which is imbeddable in a sphere is also imbeddable 
in some S, if n is large enough, depending on the configuration (see 
Lesley O’Connor’s thesis [5] for a discussion of this and related problems). 
Thus no non-degenerate simplex can be shown to be non-Ramsey by 
an S-coloring. 

4. EXTENSION OF RADO'S RESULTS ON MONOCHROMATIC 

SOLUTIONS OF NON-HOMOGENEOUS EQUATIONS 

Our object here is to prove Lemma 15 above. Actually, we prove a 
somewhat stronger result that will be useful later in Section 6 to get a 
generalization of Theorem 13. 

THEOREM 16. Let cl , c2 ,..., ck , b f 0 be elements of a jield F. Then 
there exists a finite coloring x of F so that 

i ci(xi - xi’) = b 
i=l 

has no solution x1 , x1’, x2 , x2’ ,..., xk , xk’ E F with x(xJ = x(xi’), 
1 <i<k. 

Proof. Following Rado, we observe that it is sufficient to prove this 
theorem for the field F, = U(c, ,..., c,), where I7 is the prime field of F. 
To see this choose a Hamel basis B with b E B for F over F,, and assume 
that we have a coloring x of F, for which Theorem 16 holds when 

xi , xi’ E FO , 1 < i < k, and b is replaced by 1. Now color x E F by 
X*(X) = x(x), where x = xb + ... is the B-expansion of x. 

Then 

f c&xi - x,‘) = b with x*(xi) = x*(xi’) 
61 
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leads to 

5 Ci(Xi - Xi’) = 1 with x(xJ = x(xi’), 
i=l 

a contradiction. We can therefore prove the theorem by proving it first 
for prime fields, then for pure transcendental extensions, and then for 
finite extensions. 

Case 0. F = II, theprime$eld. This case is essentially given by Rado. 
If 17 is finite, we color all elements with distinct colors so that x(x<) = x(x<‘) 
implies xi = xi’, and (4) has no solution with x(x$) = x(x~‘). 

If 17 = Q, the rational numbers, assume without loss of generality 
that the ci and b are integers. Let p be a prime not dividing b, and let A4 
be an integer satisfying M > Cr=, / ci I. Now let x be a coloring of the 
rationals given by x(x) = x(x’) if and only if [x] 3 [x’] (modp) and 
[M(x)] = [M{x’)], where [x] is the integer part of x and {x} is the frac- 

tional part. Thus x is an Mp-coloring. 
Now if x(xJ = x(xi’) and 

b = i ci(xi - xi’) = f cdxi] - [xi’]) + f ci({x,> - (xi’>), 
i=l i=l i=l 

then the first sum on the right is an integer divisible by p which differs 
from b by at least 1, since b is not divisible by p. The second sum satisfies 

a contradiction. This completes Case 0. 

Case 1. Purely trancendental extensions. That is, we assume that 
the theorem holds for the field F and show that it also holds for F(y), 
where y is transcendental over F. Multiplying by a suitable polynomial 
we can assume that all ci and b are in F[ y]. We may also assume b(0) # 0; 
for, if F is infinite, we may replace y be y - a and b(0) by b(a) for any 
a E F if necessary; if F is finite, we first make a finite extension F’ of F 
(for which the theorem holds trivially) such that b(y) does not vanish 
identically on F’, and again replace y by y - a. 
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Now let m = maxlGiGk deg ci(y) and write ci = 22, cijy’. For each 
xi , xi’ E F(y) we have Laurent series expansions 

xi = Y4(Y> + -f aijy-j, 
j=O 

x; = y&‘(y) + f a& y-j, 
j=O 

where the sums on the right have only a finite number of non-zero terms, 
aij , aii E F, Ai( y) and Ai’ are in F(y), and &(O) and Ai’ are in F. 
Comparing the constant terms on both sides of (4) gives 

E ~ Cij(Uij - U:j) = b(0) # O. 
i=l j=o 

By hypothesis we can find a coloring x of F so that this has no solu- 
tions with x&J = ~(a&), I < i < k, 0 < j < m. If we now color 
x = yA(y) + z,T, ajy-’ by the “product color” X*(X) = (~(a,),..., x(u,)) 

(that is, x*(x) = x*(x’) if and only if ~(a?) = ~(a~‘) for allj = 0, I,..., m), 
then there is no solution of (4) in F(y) with x*(xi) = x*(q), 1 < i < k. 

Case 2. Finite extensions. We now assume that the theorem holds 
for F and prove it for a finite extension L of F. Let [L : F] = d, and let 
w1 ,..., wd be a basis for L over F. We can then write: 

d 

d 

xi = c ui&os, 

a=1 

d 

Xi' = c u;*oJs ) 

6=1 

b = f b&o, ) 6, f 0, 
6=1 

and 
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Comparing coefficients of w1 , in (4) we obtain 

By hypothesis, we can find a coloring x of F so that this has no solution 

with x(uis) = ~(a&), 1 < i < k, 1 < /3 < d. If we color each x = c& usws 
by the product coloring X*(X) = (~(a,),..., ~(a~)), as above in Case 1, 
then we see that (4) can have no solution in L with x*(xJ = x*(xi’) for 
all i. This completes Case 2 and the proof of Theorem 16. We note that 
in both Cases 1 and 2 the number of colors was dependent on the degrees 
of the ci (over the appropriate field). In Case 0, where 17 = Q, the number 

of colors depended on the magnitudes of the ci and the prime divisors 
of b. 

It is natural to ask whether Theorem 16 can be extended to expressions 

in which the linear forms on the left-hand side of (4) are replaced by a 
homogeneous form of higher degree. This question is settled negatively 
below. 

THEOREM 17. If Q is colored with k colors then the equation 
(x1 - yl)(xz - yz) = 1 ulwuys has solutions with color xi = color yi 
(i = 1, 2). 

Proof. By van der Waerden’s Theorem [9] there is an arithmetic 
progression with k! (2k + 1)2 elements all of which are colored alike so 
x1 - yr = dn has monochromatic solutions with n = 1,2,..., k! (2k + 1)2 
for some d > 0. 

Now consider the numbers 

1 1 1 
d(k + l)! ’ dk! (k + 2) ‘**.’ dk! (2k + 1) 

two of them, say 

1 1 
X2=dk!(k+i) 

and 
‘“=dk!(k+j)’ 

have the same color and 

1 . . 1 
x2 -Y”=dk!(k:i);k+j) =dn’ 

where n < k! (2k + I)“. 
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By the proof of Theorem 16 we see that in Theorem 13 the number of 

colors needed to color ET” and to avoid a monochromatic K’ congruent 
to K depends on the number theoretic properties of the distances between 
points of K. In certain special cases, however, we can obtain an upper 
bound on the number of colors depending only on the number of points 
in K. The following is essentially the iteration of Case 1 in Theorem 16, 
followed by an application of Case 0. 

COROLLARY 18. If K = (v~,..., vk) is a minimal non-spherical set (all 
subsets are spherical), and the constants ci in (1) and (2) of Lemma 14 are 

such that cc/cl , cQ/cl ,..., cklcl are algebraically independent over Q, then 
every En has a coloring (in spherical shells) with (2k)” colors so that there 
is no monochromatic K’ congruent to Kin En. 

Proof. It suffices to show that there is a (2k)k-coloring of R, the real 
numbers, so that equation (3) has no real solutions x,, , ?rl ,..., xk which 
are monochromatic. 

As in the proof of Theorem 16, Case 1, we may assume that b # 0. 
Thus we may assume b = 1, c1 = 1, and c2 ,..., ck are algebraically 
independent transcendentals. Proceeding as in Case I we expand the xi 
in Laurent series in cS 

xi = 1.. + aizc12 + ailc;’ + ai0 + ai,-lC2 + ... 

so that comparing the constant terms in (3) we get 

(alo - a,,> + (a,, - a,,> + c3(a30 - aoo> + . + da,, - ad = 1. 

Expanding the a<j Laurent series in cQ we get 

and 

aij z ... + aij2cG2 + aijlcil + aijo + aij-lc3 + ... 

(a 100 - ad + ho - ad + (a3o1 - ad + ... + ck(akoO - a,,,) = 1. 

Repeating this process we finally get 

ho...o - aoo...o> + (a2lo...o - aolo.+J + (a3010...o - aoolo...o) 

+ ... + ~abO...O1 - aoo...ol) = 1, 

where the ai,...,ik are rational numbers. 
Now we color the rationals with 2k colors as follows: Two rationals a 
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and a’ have the same color if and only if [a] = [a’] (mod 2) and 
[k(u)] = [k{a’}]. It is then clear that the equation in the CZ~,~~...~~ above has 
no monochromatic solution, since the left side would equal an even 
integer plus k fractions each less than I/k in absolute value. 

The product coloring 

x*w = (Xh.. .o>, X(~ilO.. .o>,. . ., X(%..o1)> 

has (2k)k colors and yields no monochromatic solution to (3). 
For three collinear points we have a slightly better result. 

COROLLARY 19. IfK = {v,,,vl, v,}, where (v, - v,J + IX& - vO) = 0 
and cy. 6 Q (the rutionuls), then for every E” there is a spherical coloring 
with 16 colors avoiding monochromatic sets congruent to K. 

Proof. If (II is transcendental, we can apply the previous corollary, 
obtaining 42 = 16 colors. If (Y is algebraic, as in the proof in Theorem 11, 
it suffices to 16-color the reals, [w, so that 

(Xl - x*) + 4x2 - xg) = b # 0 (5) 

has no monochromatic real solution. As above, we may assume b = 1. 
It is sufficient to 16-color Q(a), as in the proof of Theorem 16. Assume 
the minimal polynomial of 01 is 

xn - an-lxn-1 - u,-~x”-~ - ... - a, E Q[x]. 

Setting xi = CyLi xiicG and equating constant terms in (5) yields 

(x10 - xoo) + a,(x2,,-l - XO,~-I) = 1. (6) 

Now define x(c) = [2c] (mod 4). Then the product coloring 
x*(xi) = (x(x3, x(u,,x~,+~)) is a 16-coloring of Q(U). If x*(x0) = x*(x1) = 
x*(x2), then x1,, - xoO = 2K + E, K an integer, and 0 < E -C l/2, and 

4x2,,-, - xoA = 2L + 6, L an integer and 0 < 6 < l/2. This 
contradicts (6), completing the proof. 

We observed at the beginning of Section 3 that if LY = 1 then 4 colors 
suffice. It remains open whether in fact there is some r such that r colors 
suffice for all 01, rational or irrational. More generally, it is unknown 
whether for any k there is a number r of colors depending only on k such 
that r colors suffice to prevent a monochromatic K for any non-Ramsey K 
with k + 1 points. 
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5. CONFIGURATIONS THAT ARE RAMSEY 

We observed at the beginning of Section 3 the obvious fact that the 
equilateral triangle is Ramsey. Similarly, if K is a regular simplex of 
k + 1 points, then R(K, kr, r) always holds, and thus K is Ramsey. These 
and the configurations derived from them by the theorems below are 
the only ones that are presently known to be Ramsey. 

If Kl C En, K, C Em we define Kl x K, in En+ to be the set of points 

{(xl ,... , x, ,Y, ,...,Y,,> /(xl ,..., x,1 E&, (~1 ,...,Y,)~&~. 

THEOREM 20. If Kl and Kz are Ramsey, then so is Kl x Kz . 

Proof. By the compactness principle (Proposition 4 in Section l), for 
any integer Y there is an integer n1 and a finite set T C En1 such that every 

r-coloring of Tyields a monochromatic K,’ congruent to Kl . Let 1 T 1 = t. 
Similarly, for Kz there is some n2 and some finite set S in E”z such that 
every #-coloring of S yields a monochromatic K,’ congruent to K, . 

Consider the set T x S in E nl+az. Let T x S be r-colored by x. Now 
define a coloring x* on S by letting x*(u) = x*(u’), II, u’ ES, if and only 
if x(v x u) = x(v x u’) for all v E T. This is an #-coloring of S. Hence 
there is some K,’ congruent to K, in S on which x* is constant. Let 
u,, E K,‘. Define a coloring x** on T by x**(v) = x(v x II,,). This is an 
r-coloring of T. Hence there is a K,’ monochromatic and congruent to Kl . 
But then x is monochromatic on K,’ x K,‘, since, by choice of x*, 
x remains constant as we vary the points in K,‘, and, by the choice of 

X 
** , x remains constant as we vary the points of K,‘. This completes the 

proof. We obtain a (probably very weak) bound on the size of n for which 
R(K, x K, , n, r) holds. Namely, if R(K, , n, , r) and R(K, , n2, ml) hold, 
then R(K, x K, , n, + n2, r) holds. 

We use Theorem 14 to obtain a class of Ramsey configurations. We 
say that a brick in En is any set congruent to a set 

B = ((x1 ,..., x,) / xi = 0, ai ; ai > 0; 1 < i < n}. 

That is, B is the set of vertices of a rectangular parallelepiped. 

COROLLARY 21. Any brick is Ramsey. 

ProoJ Since the sets Ki = (0, ai} are simplices, this is a direct result 
of iterating Theorem 20, as B = Kl x K, x ... x K, . The bounds 
obtained from Theorem 20 on the dimension as a function of the number 
of colors are colossal. However, better and more explicit bounds are 
obtained in Part II of this paper (to appear). 
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COROLLARY 22. Any subset of the vertices of a brick is Ramsey. 

We remark that the proof of Theorem 20 does not necessarily yield 
the best bounds for the dimension required for the Ramsey property to 
hold. For example, the argument in Theorem 20 gives a bound of n = 10 
for R(C, , n, 2), in contrast to n = 6 from Theorem 7. Similarly, for any 
rectangle, Theorem 20 gives y1 = 10, whereas a similar but more careful 
argument will yield n = 8. In particular, we could have replaced n2 = 8 
in Theorem 20 (for this case) with n2 = 6, since the monochromatic 
edge of the triangle T (needed to assure the existence of a monochromatic 
pair with given distance) can occur only in 6 different ways. 

The regular unit simplex of k points is itself a subset of a brick, namely, 
in the cube in Ek with side length l/d2. Let an l-dual of a simplex of n 
points be the set obtained by taking the centroids of each of the (y) 
I-point subsimplices. The l-dual is the simplex itself, and the (/z - l)- 
dual is the usual dual. We see then that any Z-dual of a regular simplex 

is Ramsey (by Theorem 1 [Ramsey’s]). Among the sets obtained this way 
is the regular octahedron, the 2-dual of the tetrahedron. We can realize 
the l-duals of regular simplices as subsets of bricks as well. For taking the 
regular simplex of n points to be, for instance, {(1, 0 ,..., 0), (0, 1, 0 ,..., 0) ,..., 

a..., 0, I)}, the points of the I-dual are all points (x1, x2 ,..., x,) where 
all but I of the xi are 0, and these 1 are equal to 1/1/i. These are clearly 

vertices of a cube of side I/ d/f. 
Some simplices are not realizable as subsets of bricks. For instance, 

any simplex such that three points in it determine a triangle containing 
an obtuse angle cannot be so realized. One can ask whether having all 
angles non-obtuse is sufficient for a simplex to be imbeddable in a brick. 
In the case of the tetrahedron, we can answer the question in the affirma- 
tive, but for the 5-point simplex the answer is negative. 

The condition that no angle be obtuse is equivalent to the following 
property: For any three vertices v1 , v2 , v, the distances between them 

d 43, 12 > dZ3 satisfy d;L2 + d& - d;” > 0, the triangle inequality for the 
squares of the sides. For the case of five points, the following set of 
distances are the distances of a simplex which cannot be imbedded in 
a brick: d12 = d23 = d13 = ti2, d14 = d24 = dS4 = d,, = d25 = dS5 = 1, 
da5 = 2/ ~‘3. We can see this by observing that, since bricks are spherical, 
any imbedding of the simplex in a brick would determine a center 51 
equidistant from all points of the simplex. This is clearly impossible. 

THEOREM 23. Let dij, 1 < i < j < 4 be six distances satisfying 

di” + dfk 3 dtk for each i, j, k. Then there is a 6-dimensional brick such 
that a subset of four of its vertices realize these six distances. 
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Proof. Let v1 , v2 , vQ , vg be the vertices we are going to choose, and 
let them first be vertices of a 7-dimensional brick as follows: 

01 = (0, 0, 0, (2% o,o>, 02 = a 0, 0, a5,@6,Q,), a4, 

03 = a %,a3 9 (20, a6 ,4), 04 = (a1 9 0, 3 0, 9 0, a,). a3 a5 

They are vertices of an a, x u2 x ... x u, brick. What we must show is 
that we can choose the ui nonnegative with one ui being 0. We have six 
equations, one for each edge of the tetrahedron: 

d& = u4’ $- as2 + uG2 + uT2, 

dF3 = u2* + u32 + aG2 + q2, 

dz3 = uz2 + a3’ + a42 + a52, 

dF4 = aI2 + a3’ + a52 + a,‘, 

d,, = aI2 + a32 $ u42 + ug2, 

dth = aI2 + uz2 + u52 + ue2. 

Now considering the three equations corresponding to the edges of a 
triangular face, say the 12-, 23-, 13-edges, we can solve for certain pair- 
wise sums of the ui2. For instance, from the 1, 2, 3 triangle we get 

a22 + a32 = d& + d,2, - d& 
2 ’ 

a42 + u52 = dk + d,2, - 4, 
2 ’ 

UG2 + UT2 = 62 + 43 - d,2, 
2 . 

These are all nonnegative by the condition on the dfj (non-obtuse). Doing 
this for each of the four faces, we eventually get nonnegative solutions 
for each pair ui2 + ui2 where i E (3, 5,6}, j E {I, 2,4, 7). 

Now choose the smallest ui2 + uj2, say uI2 + u32. Looking at the 
equations for ui2 + uj2 with i = 3 or j = 1 we see that there is a unique 
solution with a, = 0 and uj > 0 for all j. Since the other equations must 
be consistent with these six, they are also satisfied. Thus we have solved 
for u2, a3 ,..., a, so that the given tetrahedron is a subset of the vertices 
of an u2 x ... x u7 brick. 
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We showed in Section 3 that for a configuration to be Ramsey it is 
necessary that it be spherical. In this section we see that a sufficient 
condition is that it be a subset of a brick. It is an open question whether 
either of these conditions is both necessary and sufficient. In particular, 
the simplest configuration which the Ramsey property is undecided is 
three points forming an obtuse triangle. (If they form an non-obtuse 

triangle, it is Ramsey by Theorem 23, and if they are collinear it is not 
Ramsey by Theorem 13.) 

We point out one more relation between bricks and spheres. We say 
that a configuration is sphere-Ramsey if for each r there is an integer IZ 
and a real number d such that every r-coloring of a sphere S of dimension 
at least PZ and radius at least d yields a monochromatic configuration 
K’ c S congruent to K. 

THEOREM 24. Every brick is sphere-Ramsey. 

Proof. The proof is just like that for Theorem 20 and Corollary 21. 

We first observe that a sphere of radius at least dk/2(k + 1) and dimen- 
sion at least k + 1 contains the k + 1 vertices of a regular unit simplex. ~__ 
Letting k = r and d = a dk/2(k + 1) we see that the theorem is true 
for the one-dimensional brick of length a. 

If S, is the (n - l)-sphere of radius d, , and S, is the (m - I)-sphere 
of radius d,,, , then S, x S, is contained in the (m + n - 1)-sphere of 

radius ddn2 + dm2. Using this fact we can argue exactly as in the proof 
of Theorem 14 to show that, if Kl is sphere-Ramsey and K2 is sphere- 
Ramsey, then Kl x K, is sphere-Ramsey. This shows, then, that all 
bricks are sphere-Ramsey. 

6. GENERALIZATIONS: Z-RAMSEY CONFIGURATIONS 

A set K in E* is I-Ramsey if for every r there is an N, depending only 
on r, I and K, such that every r-coloring of EN yields a set K’ congruent 
to S such that the points of K’ are colored with at most 1 colors. We see 
that the previous notion of Ramsey is just 1 Ramsey by this definition. 
Theorem 13 can now be generalized as follows: 

THEOREM 25. If K cannot be imbedded in I- 1 concentric spheres, 
then K is not m-Ramsey for m < 1. 

We use two lemmas, as in the proof of Theorem 13. 
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LEMMA 26. Let x1 ,..., x1 , y1 ,..., yt be (not necessarily distinct) points 

of En. Then there exists a point a E E” such that / xi - a / = 1 yi - a 1, 
1 < i < 1, zfand only iffor allscalars cl , C, ,..., cl with C,“=, ci(Xi - yi) = 0 
we have J&, ci(xi2 - yi2) = 0. 

Proof. Assume that there exists an a in En so that 1 xi - a / = 1 yi - a I 
for i == 1, 2 ,..., 1. Then 

= i$ Ci(Xi2 - yt) - 2a ’ i Ci(Xi - ya). 
i=l 

Thus z;=, ci(xi2 - yi2) = 0 whenever I:=, ci(xi - yi) = 0. 
Conversely, the existence of a point a E En with j Xi - a / = I yi - a /, 

i = l,..., I, is equivalent to the consistency of the set of equations 
2(x+ - yi) . a = xi2 - yi2, 1 < i < I, where the variables are the coordi- 
nates of a. This system is consistent if and only if every linear combination 
annihilating the left-hand side also annihilates the right-hand side. That is 
g=, C&Xi - yi) = 0 implies & ci(xi2 - yi2) = 0. 

LEMMA 27. Let K = {x1 ,..., x1, y1 ,..., yl} be a set of 21 not neces- 
sarily distinct points of En so that there exists no point a E En with 
lxi-a/ =Iy,-a~foralli,l <i<I.Thenthereisanumberr=r(K) 
of colors so that every En can be r-colored such that for every K’ congruent 
to K in En the colors of xi’ and yi’ are not all the same, i = 1, 2,..., 1. 

Proof According to Lemma 20 there exist constants c1 ,..., cl so that 
C:=, ci(xi - yi) = 0 and C,“=, ci(xi2 - yt) = b # 0. Now by Theorem 16 
there exists a finite coloring x of the reals so that the equation 
C,“=, ci(ui - vi) = b has no solution with x(u,) = x(Q 1 < i < 1. 
Thus, if we use the spherical coloring x*(x) = x(x”), the equation 
z.i=l ci(Xi2 - yi2) = b has no solutions with x(x>) = x(yi2), I < i < I 
(Or X*(Xi) = x*(yi) for all i). 

Proof of Theorem 25. Assume for a finite K that for every sphere- 
coloring of En there exists a set K’ congruent to K colored in m d 1 - 1 
colors. Each such coloring gives a partition P of K in the disjoint union 
KI v K3 u ... u K, = K with the Ki congruent to distinct Ki’ each of 
which is monochromatic. 

For each finite K there is only a finite number M of such partitions P. 
If for each P there is a spherical coloring xP of En that prevents the exis- 
tence of a set K’ congruent to K with each Ki’ monochromatic, then, 
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using the product coloring x = (xp, ,..., xp,), we get a finite coloring of 
En preventing any K’ congruent to K with fewer than 1 colors. 

Now, by assumption, the sets K1 ,..., K,n do not lie on the union of m 
concentric spheres. Therefore, for each / Ki / > 1 we can label the points 

of Kj as x~,Y~~,...,Y~~~, and there can be no point a so that 
/ xi - a / = 1 yij - a / for all pairs xi , yij , 1 < j < ki , 1 < i < m. 

By Lemma 27 it is possible to color En with a finite spherical coloring x 
in such a way that for no K’ congruent to K do we have x(x>:‘) = x(yij) 
for all i, j. In other words, not all Ki’ can be monochromatic. This proves 
Theorem 25 for finite K. The infinite case follows immediately. 

THEOREM~~. IfK=K,xK,x...xK,andforeachi, l<ii<t, 
Ki is finite and Ii-Ramsey, then K is Ill, ... I, RamseJj. 

Proof. We clearly need only to prove this for t = 2. So let Ki be 
&-Ramsey, i = 1, 2. By the compactness argument (Proposition 4 in 
Section 1), for any r we can find finite sets A, and A, such that whenever 
A, is rlKII-colored it contains an &-chromatic K,’ congruent to K, , and 
whenever A, is rlAzl-colored it contains an Z,-chromatic K,’ congruent 

to K1 . 
Now A, x A, is contained in some En, for n large enough. Any 

r-coloring x of En induces the r-coloring x of A, x A, . Each of the points 
x E A, can be associated with the 1 A, I-tuple of colors determined by the 

x(x x Y>, Y E A, . This is, then, an rlRzl-coloring x* of A,. Now, by 

choice of A, , there is K,’ C A, such that x* has only ZI different values 

on K,‘. 
Now define a coloring x* * on A, by letting x**(y) = x**(y’) if and 

only if x(x x y) = x(x x y’) for all x E K,‘. This is an rlKll-coloring 
of A, and thus there is a K,’ congruent to Kz such that x**(y) has at 
most I2 different values for y E K,‘. 

By definition of the colorings x* and x** we see that x(x x y) takes 
only ZIZZ distinct values on K,’ x K,‘. This establishes the theorem. 

Among the open questions that remain are whether Theorem 28 is 
valid if K is infinite. Also, generalizing from the I = 1 case, it is undecided 
whether any set which is in the union of 1 concentric spheres must be 
I-Ramsey. 
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