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Abstract

In this paper a new method for Euclidean reconstruction
from sequences of images taken by uncalibrated cameras,
with constant intrinsic parameters, is described. Our ap-
proach leads to a variant of the so called Kruppa equations.
It is shown that it is possible to calculate the intrinsic param-
eters as well as the Euclidean reconstruction from at least
three images.

The novelty of our approach is that we build our calcu-
lation on a projective reconstruction, obtained without the
assumption on constant intrinsic parameters. This assump-
tion simplifies the analysis, because a projective reconstruc-
tion is already obtained and we need ‘only’ to find the cor-
rect Euclidean reconstruction among all possible projective
reconstructions.

1. Introduction

There exist several different methods to make Euclidean
reconstruction, that is to reconstruct the object up to Eu-
clidean transformations. However, in reconstruction with-
out any knowledge about the scene, the scale ambiguity is
always present, because it is impossible to distinguish be-
tween a large object far away and a small object close to the
camera. This means that it is only possible to reconstruct
the object up to similarity transformations, that is Euclidean
transformation plus a uniform change of scale. In the se-
quel the term Euclidean reconstruction will always mean
reconstruction up to similarity transformations.

It is well known that it is possible to reconstruct an ob-
ject up to similarity transformations, given images from cal-
ibrated cameras, see [11]. The drawback of this calibrated
reconstruction is that the cameras have to be calibrated be-
fore the reconstruction can be made.

When making projective reconstruction, the cameras
need not be calibrated and reconstruction can be made di-
rectly. One drawback with projective reconstructions is that
the object is only reconstructed up to projective transfor-
mations. Thus the resulting reconstruction might have se-
vere projective distortions. Sometimes this reconstruction
is sufficient, but in other cases it would be desirable to make
a more precise reconstruction, for example up to similar-
ity transformations. The intrinsic parameters are allowed to
change arbitrarily between the different views in projective
reconstruction. However, it is unlikely that all the intrinsic
parameters can change drastically between the different ex-
posure times if the images are obtained from a sequence with
a short time interval between subsequent images. For exam-
ple, the skew and aspect ratio are often constant when the
same camera is used, because they depend primarily on the
geometry of the light sensitive elements in the camera.

In some applications it is even possible to assume that
the intrinsic parameters are constant for all images in the se-
quence. In particular, if the images are taken with exactly
the same camera, without change of focus or zoom, this is
the case. This problem, reconstruction from constant intrin-
sic parameters, have been considered in [3] and [6], but we
will give a different formulation here. The difference be-
tween our approach and that of [3], is that the latter only
uses the epipolar transformations between image

�
and im-

age � , while we are using a complete representation, using
the camera matrices as a starting-point, to impose the Eu-
clidean constraints. In [6] a large minimisation problem is
solved using the camera matrices and the reconstruction as
parameters. A number of solutions to smaller minimisation
problems is used to give a starting-point to the final minimi-
sation. The special case where the camera is known only to
rotate between subsequent images have been studied in [5].

The motivation for our approach, starting with a projec-
tive reconstruction, is that there exists a lot of good methods
to obtain a projective reconstruction from image sequences

�
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taken by uncalibrated cameras. Once such a reconstruction
is obtained, it is often desirable to present it in some Eu-
clidean space. If it is known that the intrinsic parameters
have been unchanged during the sequence such a Euclidean
reconstruction can be obtained afterwards, without using the
image data; only the camera matrices and the reconstruc-
tion is used. If accuracy is essential, it is possible to use
this result as a starting-point of a nonlinear global optimi-
sation procedure, using all image data, as in the last step of
the method outlined in [6]. A similar method (starting with a
projective reconstruction) has recently been outlined in [13].
They proceed in two steps, first making affine reconstruction
and then Euclidean and need at least � images. We proceed
directly towards a Euclidean reconstruction and need only �
images.

2. Projective reconstruction

When some a priori information about the cameras is
available, e.g. constant intrinsic parameters, one way to use
this information is to make reconstruction in two steps.

1. Make projective reconstruction from uncalibrated
cameras, that is without using the extra information.

2. Use the extra information to pick out a class of Eu-
clidean equivalent configurations among all projec-
tive equivalent configurations obtained from the un-
calibrated reconstruction.

Given a sequence of images �������
	����
 , where the image ���
is represented by the image coordinates of matched points in
the sequence. Assume that the image coordinates ������������� in
image � have been obtained from the corresponding object
coordinates ����������� � and the � :th �"!�� camera matrix #$�
using the standard pinhole camera model:

%'&( � �� ��

)*,+ # � &--( � � � �
)/..* � (1)

where
% � is the inverse relative depth of the point, see [9].

The goal of a projective reconstruction technique is to calcu-
late both the camera matrices, #0� , and the object coordinates
from the image coordinates.

There exists several techniques to make projective recon-
struction, see [1], [7], [12], [8]. Any of these methods is ap-
plicable for the forthcoming analysis.

When projective reconstruction from a sequence,� � � � 	����
 , of images has been made, this reconstruction is
usually represented by the coordinates of the object in pro-
jective normal form. Another equivalent way to represent
this information is to give a representation of the camera ma-
trices, � #1� � 	�2�1
 , in the sequence. Thus the camera matrices

obey 3 �145#1��6�� �

+
� �
787
79��:;� (2)

where

3 � denotes extended image coordinates in image � , 6
denotes extended object coordinates in one reconstruction
and 4 means equality up to scale. In our approach to Eu-
clidean reconstruction we will use the camera matrices, # � ,
as a representation of the projective reconstruction.

Since all projective transformations of the object are pos-
sible reconstructions, we can replace 6 by <6 , where 6=4> <6 in (2), for any nonsingular �?!@� matrix

>
. In this way

it is always possible to arrange that the first camera matrix,#0
 , is #$
 +BA�C D�E0F 7
The second camera matrix, #0G , can then be chosen uniquely
up to a choice of the plane at infinity and the global scale,
that is # G +BA�H G DJI G F �
where

H G belongs to a � -parameter family of �"!K� matri-
ces and

I G is defined up to a scale factor. This can be seen
from the fact that when # 
 has been chosen as above, then a
coordinate transformation&--( � � � �

) ..* 4 > &--( <� <� <� �
) ..* + &--( �

ELELEE
�
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�
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) ..* &--( <� <� <� �
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can be made without changing #�
 . This denotes a � -
parameter family of transformations. The parameter Q rep-
resents a uniform change of scale and in the sequel we may
assume that Q +

�
, which gives a � -parameter family of

transformations. The three remaining parameters � M � N � O �
determines the plane at infinity. The following definition is
convenient.

Definition 2.1. By a solution to the uncalibrated recon-
struction problem for a sequence, � � � � 	����
 , is meant a se-

quence of camera matrices � #1� � 	����
 , with #$
 +SA�CTD�E0F , such
that (2) is valid.

Observe that the # � :s are unique up to a multiplication by
a � !U� matrix of the same type as

>
in (3), since the inverse

of such a matrix has the same form.

3. Problem formulation

In this section we assume that the camera is modelled by
a pinhole camera

%V&( � � �
)*,+ &(�W1X Y �[ZE

W�\ �]ZE E
�

)*�A�^ � D`_a^ � I � F &--( � � � �
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with the same W X , W \ , Y , � Z and � Z for each camera. HereW X and W \ represents magnifications in the � and � direction
in the optical system, that is the focal length and the aspect
ratio, Y describes the skew that model nonrectangular light
sensitive elements in the CCD-array, and ��� Z ���]Z � denotes
the principal point, that is the orthogonal projection of the
focal point onto the image plane.

Suppose that a solution to the uncalibrated reconstruction
problem is known, that is a sequence � #�� � 	�2��
 of camera ma-
trices, obeying (2).

Problem 3.1. Given a sequence of images taken with a
camera, modeled in (4), with constant intrinsic parameters
and a solution to the uncalibrated reconstruction problem.
What kind of reconstruction can be obtained and how many
images are needed?

According to (4) the camera matrices #$� , obtained from
the solution to the uncalibrated reconstruction problem, can
be written # � > 4 � A�^ � D1_K^ � I � F � (5)

where
>

stands for an appropriate projective change of co-
ordinates in the object and

� + &(�W1X Y � ZE
W \ � ZE E

�

)* 7 (6)

We may assume that

^ 
 + C
and

I 
 + �E in (5), since the
origin and the orientation of the first camera can be chosen
arbitrarily. This observation means that

> + &--( W1X Y �[Z EE
W�\ ��Z EE E
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that is an � -parameter family of projective transformations.
We now reformulate Problem 3.1.

Problem 3.1. Given a sequence of camera matrices,� #1� � 	����
 , with #$
 + A�CTD E0F
, find M , N , O and

�
such that

for all � , #1� � �
EA M N O F � � 4 � A�^ � D0_K^ � I � F �

where

^ � denotes arbitrary rotation matrices and

I � denotes
arbitrary vectors.

Observe that given one such solution, � # � � 	����
 , all other
possible camera matrices giving the same Euclidean recon-
struction can be obtained from right multiplication with� ^ _a^ IE

��� � (8)

where

^
denotes a ��! � orthogonal matrix and

I
a ��! �

vector, that is a 	 -parameter family of reconstructions rep-
resenting rotations, translations and change of global scale.

4. Solution

Looking at the first three columns in (5) gives#��1<> 4 � ^ � � (9)

where <> denotes the first three columns of
>

. It follows that#1�0<> <>�
 # 
� 4 � ^ � ^ 
� � 
 + ��� 
 � (10)

that is

# � � ��� 
 A M`N O F �� 
 A M N O F 
 M G�
 N G�
 O G � # 
� 4 ��� 
 7 (11)

The equations in (11) are related to the so called Kruppa
equations, found in [10], [4] and [3].

Definition 4.1. For a given #$� , the constraints on
�

and
A M N O F in (11) are called the Kruppa constraints.

We have shown the following theorem.

Theorem 4.1. Given a sequence, � ��� � 	�2��
 , of images taken

by cameras with constant intrinsic parameters. Let � #1� � 	����

be a solution to the uncalibrated reconstruction problem.
Then it is possible to make reconstruction up to similarity
transformations if and only if the Kruppa constraints are ful-
filled, when :�� � .
Proof. The Kruppa constraints in (11) contain � equations,
because the matrices of both members are symmetric, and
the homogeneity reduces the number of equations with

�
.

Furthermore, it can be shown that these equations, in gen-
eral, are independent, in the sense that they define transver-
sal intersections of hyperplanes. The first camera matrix# 
 + A�C D E0F

automatically fulfils the Kruppa constraints.
Then each camera matrix, # � , apart from the first one, gives� equations in the unknowns, W$X , W1\ , Y , � Z , ��Z , M , N and O .
This shows that it is in general possible to obtain a unique
solution when � images are available.

5. Example

Consider the three images in Figure 1 of a scene consist-
ing of simple blocks. We have extracted ��� corresponding
points (corners) in the images. This was done manually in
order to avoid false matches and to illustrate the applicabil-
ity of our approach. The chosen coordinate system in each
image has its origin in the centre, the � -axis in horisontal di-
rection and the � -axis in vertical direction. Finally all coor-
dinates were divided by � E�E in order to get coordinates be-
tween

_
�

and
�
, which increases the accuracy of the results.



Figure 1. Above: Three images of a simple scene consisting of blocks, taken by the same camera
(constant intrinsic parameters). Below: Euclidean reconstruction from three different views.

First a projective reconstruction was obtained using the
reduced trilinear tensor, first introduced in [14], see also
[8]. The

� � components of the reduced trilinear tensor was
calculated linearly directly from the reduced affine coordi-
nates in the images. From the tensor components the ki-
netic depths and translational vectors were calculated, also
linearly, see [8] again. Finally, the camera matrices and
the projective reconstruction were obtained from a simple
change of coordinates from reduced affine coordinates to
original image coordinates. The following camera matrices
were obtained:

# �
+ &( �

ELE EE
�
E EEPE

�
E )*

# � + &(
E 7 � � 	 	 _aE 7 � � 	 �

_aE 7 E ��� �
E 7 ��� 	 �E 7 ��� E � E 7 � ��	 � E 7 E�E ���
E 7 E � � 	_aE 7 � 	�� � E 7 E ��� 	 � 7 E�E � � _aE 7 E � E �

)*
# � + &(

E 7 � E �]� _aE 7 E � ��� E 7 E�E � E E 7 E � � E_aE 7 E E � 	 E 7 	]��� E E 7 E � � � _aE 7 � �]� �_aE 7 E � E � E 7 � � 	�� E 7 � �]��� _aE 7 E � � �
)*

(12)

This technique is simple to use and all calculations made are
linear, i.e. using singular value decomposition of matrices.
This means that the noise is not modelled accurately, but we
get a fast solution. Since there are one step further to go in
order to get a Euclidean reconstruction it is not worth the
time to use a more sophisticated method at this stage.

In order to recover the intrinsic parameters and the plane
at infinity (11) was used in the formE +

� ��� � � M � N � O � % � �	� ++ ��� 
 _ % � #�� � ��� 
 A M N O F �� 
 A M`N O F 
 M G 
 N G�
 O G � # 
� 7
(13)

The following goal function was used to formulate an opti-
misation problem:


 � � � M � N � O � % 
 � % G � ++BD�D
� 
]� � � M � N � O � % 
 � D2D � 
 D�D � G � � � M � N � O � % G � D�D � � (14)

where

D�D
�
D�D
� denotes the Frobenius norm. As a starting-point

the following was used

� Z + &( �
E EE _ � EE E

�

)* �
� M Z � N Z � O Z � + � _ � � _ � ��� � � � % 
 � % G � + � � � � ��� (15)

where the minus sign before element � � � ��� in
� Z is needed

because the coordinate systems in the images were neg-
atively oriented. The initial values for � M Z � N Z�� O Z � and� % 
 � % G � were obtained from (13) by inserting

� Z and notic-
ing that (13) is linear in � M Z � N Z � O Z � and � % 
 � % G � . 
 was then



minimised using Nelder-Meads simplex method, chosen be-
cause it is a robust method, giving the following result:� + &( � 7 �]� � �

E 7 E � � � _aE 7 E�E � �E _ � 7 E 	 ��� E 7 E�E ���E E
� 7 E�E E�E

)*
> + &--( � 7 �]� � � E 7 E � � � _aE 7 E�E � �

EE _ � 7 E 	 � � E 7 E�E ��� EE E
� 7 E�E E�E E_

� 7 � 	 E � _aE 7 � � � � �[7 ��� ��� �

)/..* (16)

Using
>

in (16) the camera matrices # � in (12) can be
transformed to new camera matrices, <# � , using <# � + # � > ,
giving the following camera matrices:

<#$
 + &( � 7 �]� � �
E 7 E � � � _aE 7 E�E � �E _ � 7 E 	 � � E 7 E�E ���E _aE 7 E E�E�E � 7 E�E E�E

)*
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<#1G + &( � 7 ��� � �
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E � � 7 � � E �E 7 � 	 � � _ � 7 E � 	�� E 7 E ��� �_aE 7 � � � � _aE 7 E ��� � E 7 � 	�� 	
)*

(18)

<# � + &( � 7 � � 	�� E 7 � � E�E E 7 � � � �E 7 � � � � _
� 7 � �

E�E _
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Making ��� -decomposition of <#�� gives the following � -
matrices: &( � 7 �]� � �

E 7 E � � � _aE 7 E�E � �E _ � 7 E 	 ��� E 7 E�E ���E E
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� 7 E�E E�E
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E 7 E ��� � E 7 �
E
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These matrices are close to
�

in (16). Finally the Euclidean
reconstruction is obtained from the projective one using the
projective transformation defined by

>
in (16). The result-

ing Euclidean reconstruction is shown from three different
viewpoints in Figure 1. The result seems to be close to the
real solution.

We remark that if one wants as good accuracy as possible,
this solution can be taken as a starting-point in a big min-
imisation problem, where all object points, all rotation ma-
trices, translation vectors and intrinsic parameters are used
as parameters and the distance between projected points and
detected points in the images are minimised as described in
[6]

6. Conclusions

In this paper we have described a situation, where Eu-
clidean reconstruction is possible, when some a priori infor-
mation of the camera is available.

When the camera has constant intrinsic parameters, it is
possible to make Euclidean reconstruction from the Kruppa
constraints. This can, in general, be done uniquely when at
least � images are available.

A property of this reconstruction technique is that the
constraints are based on a projective reconstruction, ob-
tained as if the cameras were uncalibrated with different in-
trinsic parameters. This approach divides the problem into
two steps. The first step is projective reconstruction, which
is well known. The second step is imposing the constraints
that gives Euclidean reconstruction. The assumptions about
the cameras are easier to handle using this two-step proce-
dure. Similar ideas of a stratified approach can be found in
[2].
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[9] A. Heyden and K. Åström. A Canonical Framework for Se-
quences of Images. Proc. IEEE Workshop on Representation
of Visual Scenes, pages 45–52, 1995.

[10] E. Kruppa. Zur Ermittlung eines Objektes Zwei Perspektiven
mit innerer Orientierung. Sitz-Ber. Akad. Wiss., Wien, math.
naturw. Kl. Abt. IIa, 122, 1939-1948.

[11] S. J. Maybank. Theory of Reconstruction from Image Mo-
tion. Springer-Verlag, Berlin, Heidelberg, New York, 1993.

[12] R. Mohr and E. Arbogast. It can be done without camera cal-
ibration. Pattern Recognition Letters, 12(1):39–43, 1991.

[13] M. Pollefeys, L. Van Gool, and A. Oosterlinck. The mod-
ulus constraint: a new constraint for self-calibration. Proc.
ICPR’96.

[14] M. E. Spetsakis and J. Aloimonos. A Unified Theory of
Structure from Motion. Proc. DARPA IU Workshop, pages
271–283, 1990.


