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Abstract

In this paper the special case of reconstruction from
image sequences taken by cameras with skew equal to0
and aspect ratio equal to1 has been treated. These type
of cameras, here called cameras with Euclidean image pla-
nes, represent rigid projections where neither the principal
point nor the focal length is known. It will be shown that
it is possible to reconstruct an unknown object from images
taken by a camera with Euclidean image plane up to simi-
larity transformations, i.e., Euclidean transformations plus
changes in the global scale.

An algorithm, using bundle adjustment techniques, has
been implemented. The performance of the algorithm is
shown on simulated data.

1. Introduction

During the last years there has been an intensive rese-
arch on the possibility to obtain reconstructions up to an
unknown similarity transformation (often calledEuclidean
reconstruction), without using fully calibrated cameras. It
is a well-known fact that it is only possible to make re-
construction up to an unknown projective transformations
(often calledprojective reconstruction) when nothing about
the intrinsic parameters, extrinsic parameters or the object
is known. Thus it is necessary to have some additional in-
formation about either the intrinsic parameters, the extrinsic
parameters or the object in order to obtain the desired Eu-
clidean reconstruction.

One common situation is when the intrinsic parameters
are constant during the whole (or a part) of the image se-
quence. This approach leads to the well-known Kruppa
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equations. These equations are highly nonlinear and dif-
ficult to solve numerically. Several attempts to solve this
problem have been made, see [6, 2, 5]. In [3] the same pro-
blem is solved by a global optimisation technique, where a
lot of smaller optimisation problems have to be solved in
order to get a starting point for the last optimisation.

Another constraint, called themodulus constrainthave
been used in [8], to obtain Euclidean reconstruction from
constant intrinsic parameters. This formalism has been ex-
tended to the case when the focal length is varying between
the different imaging instants, see [7]. The practical impli-
cations of this result is questionable since when the focal
length varies, by zooming, the principal point varies also.

The results presented in this paper is motivated by this
fact, that when a CCD-camera is used in order to capture
an image sequence and the zoom is used, as in active vi-
sion, both the focal length and the principal point varies.
However, it is often the case that the aspect ratio is equal
to 1 and the skew is equal to 0. This particular case of ca-
mera will be called acamera with Euclidean image plane
and represents a rigid perspective transformation from 3D
Euclidean space to a 2D Euclidean space, where neither the
principal point nor the focal distance is known.

An interesting application of this model is reconstruc-
tion from X-ray images used in medical investigations. The
X-ray images are rigid and can not deform affinely. This
means that the skew is equal to 0 and that the aspect ratio
is equal to 1, that is the camera has Euclidean image plane.
It is furthermore not possible to assume that the principal
point is located approximately in the center of the image,
since the centre of projection is determined by the position
of the X-ray source and the orientation of the photographic
plate, which can be freely moved around.

In this paper it is shown theoretically that Euclidean re-
construction is possible even when the focal length and
principal point are unknown and varying. The proof is ba-
sed on the assumption of generic camera motion and known
skew and aspect ratio. However, if the camera motion is not



sufficiently general, e.g. pure translation or circular motion,
then this is not possible. The theoretical result is verified by
experiments on simulated data both for general and restric-
ted camera motion.

2. The camera model

The image formation system (the camera) is modeled by
the equation

λ

�
�
x
y
1

�
� �

�
�
f f s x0

0 γ f y0

0 0 1

�
� �R � � Rt�

�
		�
X
Y
Z
1

�


� �

λx � K �R � � Rt�X � PX �

(1)

Here X � �X Y Z1�T denotes object coordinates in exten-
ded form andx � �xy1�T denotes extended image coordi-
nates. The scale factorλ, called thedepth, accounts for
perspective effects and
R�t � represent a rigid transforma-
tion of the object, i.e.R denotes a 3�3 rotation matrix and
t a 3�1 translation vector. Finally, the parameters inK re-
present intrinsic properties of the image formation system:
f representsfocal length, γ represents theaspect ratio, s
represents theskew, i.e. nonrectangular light sensitive ar-
rays can be modelled, and
x0 �y0� is called theprincipal
point and is interpreted as the orthogonal projection of the
focal point onto the image plane. The parameters inR and
t are calledextrinsic parametersand the parameters inK
are called theintrinsic parameters.

In this paper we will deal with cameras wheres� 0 and
γ � 1. Then (1) can be written
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Definition 2.1. A camera that can be modeled by (2) is cal-
led a camera with Euclidean image plane. An internal
calibration matrixK of type

K �
�
�
f 0 x0

0 f y0

0 0 1

�
� (3)

is called aEuclidean calibration matrix .

Observe that it is not necessary thatγ � 1 ands � 0 in
order to use the subsequent results. It is sufficient that they
are known, since then they can be compensated for by a
suitable change of coordinates.

The following result, shown in [4], will be needed later.

Lemma 2.1. A camera matrix

P �
�
�

uT

vT t
wT

�
� � (4)

normalised such that w�w� 1, represents a camera with Eu-
clidean image plane, if and only if


u �w� �
v �w� � 0 �

u �w� �
u �w� � 
v �w� �
v �w� � (5)

where a�b denotes the scalar product of a and b.

Observe that the conditionw�w� 1 can easily be fulfilled
by multiplying the camera matrix by a suitable constant,
since a camera matrix is only defined up to scale.

Now we have the necessary tools to prove that it is pos-
sible to obtain a Euclidean reconstruction, when sufficiently
many point correspondences are given in a sufficient num-
ber of images.

3. Euclidean reconstruction is possible

For a moment, we do not take into account the special
form of the camera matrices, (2), for cameras with Eucli-
dean image planes, and instead work with totally uncalibra-
ted cameras, as in (1). Then it is possible to make recon-
struction up to an unknown projective transformation. This
means that it is possible to calculate camera matricesPi ,
i � 1� � � � �m that fulfils

λixi � PiX � i � 1� � � � �m � (6)

wherexi denotes extended image coordinates in imagei and
λi denotes the corresponding depth in imagei. It can easily
be seen from (6) that given one such sequence of camera
matrices,Pi , i � 1� � � � �m, and a reconstruction,X, alsoPiH,
i � 1� � � � �mandH�1X is a possible choice of camera matri-
ces and reconstruction, whereH denotes a nonsingular 4�4
matrix. Multiplication ofX by such a matrix corresponds to
projective transformations of the object. In our caseH can
not be chosen arbitrarily since every camera matrix has to
obey the conditions in Lemma 2.1.

The next step is to show that given a sequence of ca-
mera matrices that solves the projective reconstruction pro-
blem and represents cameras with Euclidean image planes,
i.e. fulfils the conditions in Lemma 2.1, then the only pos-
sible transformationsH that preserve these conditions are
the ones representing similarity transformations. In order to
show this some notations will be introduced.

Denote byMP the manifold of all 3�4 projection ma-
trices, i.e., the set of all 3�4 matrices defined up to scale.
Denote byME the manifold of all camera matrices that re-
presents cameras with Euclidean image planes, i.e., all 3�4



matrices that can be written as in (2), and thus obeying the
conditions in Lemma 2.1. Denote the group of all projective
transformations, represented by 4�4 matrices, byGP. The
subclass of transformations that preserves the properties in
Lemma 2.1 is denoted byGE, i.e.

GE � �H � GP �
P � ME � � PH � ME � � (7)

This group represents the ambiguities in reconstruction
when using cameras with Euclidean image planes. This
group tells us what kind of reconstruction we can get un-
der the assumption of Euclidean image planes and it is our
goal to determine this group. Finally, the group of all si-
milarity transformations will be denoted byGS and will be
represented by

GS � �H � �λR t
0 1� �RRT � I � 0 �� λ � IR� � (8)

The group of similarity transformations is contained in
GE since

K �R � � Rt� �R� t �
0 1� � K �R�R �Rt� � Rt� � ME �

for all Euclidean calibration matricesK and all orthogonal
RandR�. Thus

GS � GE � GP �
Theorem 3.1. Let GE denote the class of transformations
in 3D-space that preserves the conditions in Lemma2.1
andGS the group of similarity transformations in 3D-space.
Then

GE
� GS �

Proof. From the discussion above we haveGS � GE.
Observe that the constraints on the camera matrices in

Lemma 2.1 only involve the first 3�3 submatrix. Use the
notation

H � �A b
c d� �

whereA is a 3�3 matrix. Assume thatP represents a ca-
mera with Euclidean image planes,H a projective transfor-
mation and

PH �K �R �t � �A b
c d� �

� �K 
RA	 tc� �K 
Rb	 td� � � ME �
(9)

ThenK 
RA	 tc� can be factorisedK 
RA	 tc� � K �R� where
K is a Euclidean calibration matrix andR� denotes an ort-
hogonal matrix. Since (9) is valid for anyP that represents
a camera matrix, i.e., for anyK, R andt, we first study the
caset � 0.

Assume thatA has the property that for every Eucli-
dean calibration matrixK and orthogonalR, it is possible

to factoriseKRA according toKRA� K �R�, for some Eu-
clidean calibration matrixK � and orthogonalR�. Then also
UAV has this property for every pair of orthogonal matrices
U andV, since

KRUAV� KR

AV � K �R


V � K �R� �
whereR

 andR


 denotes orthogonal matrices. Now, using
the singular value decomposition we can write

D1 � U1AV1 �
�
�
a 0 0
0 b 0
0 0 c

�
� �

and by a simple permutation of the rows and columns inU1

andV1 respectively, we can also write

D2 � U2AV2 �
�
�
b 0 0
0 c 0
0 0 a

�
� �

ReplacingA by D1 and choosingR � I in (9), Lemma 2.1
givesa � b and replacingA by D2 givesb � c. Thus all sin-
gular values ofA are equal, which means thatA is a multiple
of an orthogonal matrix.

Consider now the case, wheret �� 0, and the condition
that for every Euclidean calibration matrixK, every ort-
hogonalR and everyt, K 
RA	 tc� can be factorised as
K 
RA	 tc� � K �R� for some Euclidean calibration matrix
K � and orthogonalR�. If RA	 tc can be factorised in this
way then so can
RA	 tc�V for every orthogonal matrixV.
ChooseV such thatcV � �s0 0�, then chooseR� 
AV��1

andt � �1 0 0�T. These choices gives


RA	 tc�V � RAV	 tcV �

�
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�
1 0 0
0 1 0
0 0 1

�
� 	 �

�
1
0
0

�
� �s 0 0� � �

�
1	 s 0 0

0 1 0
0 0 1

�
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and according to Lemma 2.1,s � 0, which in turn implies
c � �0 0 0�.

Summing up,H is of the form

H � �λR b
0 d� �

whereλ is a scalar andR an orthogonal matrix. Dividing
by d givesH � GS. ThusGE � GS from which the theorem
follows.

We remark that this theorem is valid only under the as-
sumption that the camera motion is sufficiently general.
This fact is used implicit in the formulation of the theorem
and in the proof, by requiring thatP � K �R � � Rt� can be
chosen arbitrarily.



4. Description of algorithm

A bundle adjustment algorithm was developed for esti-
mating all unknown parameters. This will briefly be descri-
bed. Letm denote the number of images andn the number
of points. Denote by� the bundle of all unknown para-
meters,� � �P1 � � � � �Pm�X1 � � � � �Xn�. Each such element
belongs to a non-linear manifold,M .

Introduce alocal parametrisation� 
∆x�, around�0 �
M according to

M �RN � 
�0 �∆x� �� � 
�0 �∆x� � M �
whereN � 9m	 3n. (9 parameters in each camera matrix
describing a camera with Euclidean image plane and 3 pa-
rameters for the coordinates of each reconstructed point.)
Let ∆x � �∆a1 � � � � �∆am�∆b1 � � � � �∆bn �T , so that∆ai para-
metrise changes in camera matrixPi and∆b j parametrise
changes in reconstructed pointXj . Each camera matrix is
written

Pi
� Ki

�Ri �ti � �
Changes inKi are parametrised

Ki 
�0 �∆x� �
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f 	 ∆ai 
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9�
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and changes in each object point,X j ,

X j 
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Introduce aresidual vectorY, formed by putting all re-
projected errors in a column vector.

These residuals depend on our measured image positions
xi j on our estimated parameters� .

The residual vectorY 
∆x� is a non-linear function of the
local parametrisation vector∆x. The sum of squared resi-
dualsf � YTY was minimised with respect to the unknown
parameters∆x, using the Gauss-Newton method. Lineari-
sation ofY 
∆x� gives

Y 
∆x� � Y 
0� 	 ∂Y
∂∆x


0�∆x �

We want to find∆x so thatY 
∆x� � 0, which gives

∆x � �
�

∂Y
∂∆x


0��†

Y 
0� �

where † denotes the pseudo-inverse. In practice it is useful
to use the Levenberg-Marquardt method. Let

A � ∂Y
∂∆x


0� � b � Y 
0� �

Instead of taking

∆x � �
ATA��1ATb � (10)

which might be numerically sensitive if
ATA� has small
singular values one uses the update

∆x � �
ATA	 εI ��1ATb �
whereε is a small positive number.

5. Experiments

The method was tested on simulated data. Two different
simulations were performed in order to show the perfor-
mance and robustness of the bundle adjustment algorithm.
Two further experiments were carried out using a restricted
camera motion. In the first case the camera is stationary and
the object is purely translating and in the second the camera
is stationary and the object is rotating around its center.

First simulation
First an experiment was performed with 10 points in 15 ima-
ges. The points were taken as random points with coordi-
nates between�300 and	300 units. The camera positions
were chosen at random approximately 1000 units away. All
point- and camera-parameters were estimated with the met-
hod described above. Each iteration of the minimisation
involves a matrix inversion of the following type


ATA�∆x � �ATb �
The singular values and ofATA give valuable information
of the stability of the estimated parameters. A plot of the
logarithm of the singular values are shown in Figure 1. No-
tice that the last 7 singular values are significantly smaller
than the others. These correspond to changes in translation,
orientation and global scale, i.e. to the unknown similarity
transformation. The matrixATA can also be used to esti-
mate the covariance matrix of the estimated parameters as

C�∆x� � ATA
2

�1

σ2 �e� � (11)

where e is the stochastic variable representing errors in
image coordinates. Under the assumptions that the errors



are of equal distribution and small so that the linearisation
holds with high accuracy, a non-biased estimate of the vari-
anceσ2 �e� is given by

σ̂2 �e� � f
2mn� 
9m	 3n� 7� �

where 2mn is the number of measurements and
9m	 3n�
7� is the number of estimated parameters (see [9]); 9 camera
parameters in each camera matrix describing a camera with
Euclidean image planes and 3 parameters for the coordi-
nates for each reconstructed point minus 7 parameters for
the unknown similarity transformation that is impossible to
recover, giving effectively 3n � 7 parameters in the recon-
struction.

Thus small singular values ofATA correspond to large
uncertainties in the estimated parameters.
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Figure 1. The logarithm of the singular values
of the Hessian, ATA�2.

The matrixATA has an interesting almost block-diagonal
structure. This structure can be used to simplify the solution
of (10), see for example [1, 3].

The standard deviationσ, the estimatêσ are presented
in Table 1, together with the focal lengthf and the position

x0 �y0� of the principal point of the first camera and the
RMS of reconstructed object positions in percent of overall
scale. This was done for different levels of noise, 0.1 pixels
up to 5 pixels in standard deviationσ �e�. Table 2 presents
some estimates, obtained from (11), of the mean or standard
deviations of the corresponding entities in Table 1.
Second simulation
Second an experiment was performed with 50 points in 20
images. The points were taken as random points with co-
ordinates between�500 and	500 units. The camera po-
sitions were chosen at random approximately 1000 units
away. All point- and camera-parameters were estimated
with the method described above.

σ σ̂ f x0 y0 ∆
0 0.000 2112.191 25.433 8.250 0.000

0.1 0.099 2096.894 33.395 6.853 0.371
0.2 0.198 2107.966 43.571 5.061 2.193
0.5 0.558 2143.423 56.123 31.375 1.727
1 0.887 1982.302 9.773 -16.357 3.611
2 1.907 2057.016 352.815 -22.979 11.247
5 4.825 1974.814 314.814 32.671 18.755

Table 1. Some estimated parameters and the
reconstruction error in the first simulation.

σ E �σ̂� σ � f1� σ �x0� σ �y0� E �∆�
0.1 0.100 4.070 2.480 2.514 0.459
0.2 0.200 8.140 4.961 5.029 0.918
0.5 0.500 20.351 12.402 12.572 2.296

1 1.000 40.701 24.804 25.144 4.591
2 2.000 81.402 49.609 50.288 9.183
5 5.000 203.506 124.021 125.720 22.957

Table 2. Some estimated standard deviations
and mean values in the first simulation.

The standard deviationσ, the estimatêσ are presented
in Table 3, together with the focal lengthf and the position

x0 �y0� of the principal point of the first camera and the
RMS of reconstructed object positions in percent of overall
scale. This was done for different levels of noise, 0.1 pixels
up to 10 pixels in standard deviationσ �e�. Table 4 presents
some estimates, obtained from (11), of the mean or standard
deviations of the corresponding entities in Table 3.

Comments
The proof that it is possible to obtain Euclidean reconstruc-
tion up to scale using uncalibrated cameras with zero skew
and aspect ratio equal to one, was based upon the assump-
tion that the camera motion was sufficiently general. In the

σ σ̂ f1 x0 y0 ∆
0.0 0.000 1010.752 4.435 1.355 0.000
0.1 0.102 1010.787 4.460 1.385 0.017
0.2 0.198 1012.072 4.723 1.271 0.135
0.5 0.510 1008.164 4.416 1.959 0.225

1 1.047 1010.795 5.023 2.970 0.251
2 2.009 1014.648 7.878 2.285 0.357
5 4.885 1007.924 12.647 -1.364 0.669

10 10.121 1020.446 -6.559 -7.934 2.033

Table 3. Some estimated parameters and the
reconstruction error in the second simula-
tion.



σ E �σ̂� σ � f1� σ �x0� σ �y0� E �∆�
0.0 0.000 0.000 0.000 0.000 0.000
0.1 0.100 0.122 0.118 0.131 0.036
0.2 0.200 0.245 0.236 0.261 0.073
0.5 0.500 0.612 0.589 0.654 0.182

1 1.000 1.225 1.178 1.307 0.364
2 2.000 2.450 2.355 2.614 0.728
5 5.000 6.124 5.888 6.536 1.821

10 10.000 12.248 11.775 13.072 3.642

Table 4. Some estimated standard deviations
and mean values in the second simulation.

case where the camera is stationary but the object is transla-
ting along a line and the camera is stationary and the object
is revolving around a fixed point or around a fixed axis, si-
mulations shows that there are 10 zero singular values in
each case. This indicates that reconstruction is only pos-
sible up to a 10 dimensional manifold involving the simila-
rity transformation group.

A comparison between Table 1 and Table 2 and between
Table 3 and Table 4 shows that the estimated quantities,
from (11), are in compliance with the experimental data;
at least for small levels of noise. It is also important to note
that many points are needed in many images since there are
so many unknown parameters. The first simulation with 10
points in 15 images with 300 equations and 158 unknown
degrees of freedom is much less stable than the second si-
mulation with 50 points in 20 images, (2000 equations and
323 unknown degrees of freedom). Notice, however, that
this information is obtained directly from the estimate of
the covariance matrix (11).

A crucial step in the algorithm is the initialisation. In
order to obtain a good convergence the initial data have to
be sufficiently accurate. This can be achieved if the focal
length and principal point is approximatively known for
each image. Once the initial data is close to the correct so-
lution the convergence of the bundle adjustment algorithm
is very fast.

It can be argued that at least 4 images are needed in order
to make a Euclidean reconstruction from Euclidean image
planes, see [4].

6. Conclusions

In this paper we have shown that it is possible to recon-
struct an unknown object from a number of its projective
images up to similarity transformations, i.e. angles and ra-
tios of lengths can be calculated. This is possible even when
the focal distance and the principal point change between
the different imaging instants. The only thing we need to
know about the cameras is the aspect ratio and the skew.

These parameters are defined by the geometry of the light
sensitive area and need only be measured once for each ca-
mera. In many cases it is reasonable to assume that the skew
is 0 and the aspect ratio is 1. This is called a camera with
Euclidean image plane.

The paper contains a theoretical proof of this fact as well
as an experimental validation using simulated data. In these
experiments a bundle adjustment technique has been used to
estimate all undetermined parameters, i.e. the reconstructed
object, the relative position of the cameras, the focal lengths
and principal points at the different imaging instants. Using
this optimisation procedure, the Hessian gives valuable in-
formation about the stability of the solution. For example, it
is clearly seen that only 7 parameters, corresponding to cho-
ice of origin, orientation and global scale, can not be esti-
mated. These corresponds to the unknown similarity trans-
formation.
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