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Glossary
3D Euclidean symmetry: the symmetry group of
3D space; includes 3D translations, rotations, and
inversion.
3D point groups: subgroups of 3D Euclidean
symmetry; symmetry groups of molecules; includes
rotations, mirrors, and inversion.
3D space groups: subgroups of 3D Euclidean
symmetry; symmetry groups of crystals; includes
rotations, mirrors, glides, screws, inversion, and
discrete translations.
Equivariant: changes deterministically under
operation of group elements.
Equivariant model: a machine learning model that
can handle equivariant quantities as input, intermediate
data, and output and uses equivariant (i.e., tensor)
operations.
Equivariant operations: operations on equivariant
quantities (i.e., geometric tensors); for example, dot
products, cross-products, tensor products; includes
invariant operations.
Euclidean neural networks: neural networks that
are equivariant to 3D Euclidean symmetry.
Geometric tensors: equivariant properties of 3D
physical systems; includes invariant scalars.
Invariant: does not change under operation of group
elements.
Neural networks: a subset of machine learning
methods where models must be differentiable; model
weights are updated using gradients of the error; also
known as deep learning.
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Understanding the role of symmetry
in the physical sciences is critical for
choosing an appropriate machine-
learning method. While invariant
models are the most prevalent
symmetry-awaremodels, equivariant
models such as Euclidean neural
networks more faithfully represent
physical interactions and are ready
to take on challenges across the
physical sciences.

Euclidean Symmetry Is the Freedom
to Choose a Coordinate System
There is no inherent way to orient physical
systems; yet we still need to choose a co-
ordinate system to articulate their geometry
and physical properties (Figure 1A). Unless
coded otherwise, machine-learnedmodels
make no assumption of symmetry and are
sensitive to an arbitrary choice of coordinate
system. To be able to recognize a 3D pat-
tern in any orientation, such a model will
need to be shown roughly 500 rotated ver-
sions of the same example, a process
called data augmentation. One of the
motivations of explicitly treating symmetry
in machine-learning models is to eliminate
the need for data augmentation, so that
the model can instead focus on, for
example, learning quantum mechanics.
In 3Dspace,wecan transformbetweencoor-
dinate systems using elements of Euclidean
symmetry [3D rotations, 3D translations,
and inversion (x, y, z) → (−x, −y, −z),
which includes mirror symmetry]; hence, we
say that 3D space has Euclidean symmetry.

One useful way of categorizing machine
learning models applied in the physical
sciences is by whether they use symmetry
and, if so, where they use invariant (see
Glossary) versus equivariant operations.
Between the two types of symmetry-aware
models, invariant models eliminate coordi-
nate systems by dealing only with quantities
that are invariant to the choice of coordinate
system (scalars), while equivariantmodels
preserve how quantities predictably change
under coordinate transformations.

Invariance Is Easier to Deal with
Than Equivariance
There is good reason for the popularity
of invariant scalar features for machine
learning; scalars can be given to any ma-
chine learning algorithm without violating
symmetry. More practically, scalars are
easier to handle than geometric tensors
and invariant models are high (if not top) per-
formers on many existing benchmarks [1].

It is common practice to use equivariant
operations to generate invariant features for
machine learning models. For example,
SOAP [2] descriptors are equivariant func-
tions that operate on the geometry and
atom types of local atomic environments
to produce invariant scalars (Figure 2A).
Geometry in invariant models is reduced to
bond lengths, bond angles, dihedral angles,
and other scalar invariants of geometric
elements; Figure 1B describes the invariant
versus equivariant properties of 3D vectors.
Invariant models can yield equivariant
quantities, but only through gradients of the
equivariant operations used in featurization
[3]; this may not be practical or possible
depending on the quantity of interest.

When Invariance Is Not Enough
Physical systems and their interactions
are inherently equivariant. With an invariant
model, a featurization method must be
used to represent a naturally equivariant
physical system in terms of invariant fea-
tures. With an equivariant model, a physical
system can be articulated using the same
means used by many physical simulations:
with geometric coordinates and any relevant
quantities you need to describe the system
(e.g., external fields, atom-wise properties
such as velocities). Even if the desired
target is a scalar, the interactions that yield
that scalar may not be scalar in nature; for
example, the only way to interact a particle
with charge q and velocity vwith an external

magnetic field B
!

is to use the equivariant

cross-product, F
!¼ q v!� B

!
, or the dif-

ference between the momentum p! and
the charge-weighted vector potential

qA
!
,H ¼ j p!− q A

→j2=2m. To predict quan-
tities that are fundamentally generated from
equivariant interactions: (i) equivariant inter-
actions must be included in the scalar
featurization used for an invariant model
(which requires knowing to include those
interactions); or (ii) an equivariant model
may be used, whichmaymakemore accu-
rate or efficient predictions because it has
more expressive operations [4]. The more
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Figure 1. Examples of Equivariant and Invariant Properties of Geometric Objects in 3D. (A) A system
of molecules described by two different coordinate systems. (B) A 3D vector has a magnitude (orange), direction
(pink), and location (purple), which are invariant (filled square) or equivariant (open square) under (table from top to
bottom) 3D translations, rotations, and inversion. The magnitude is a scalar and thus invariant to all of these
operations. (C) In Euclidean symmetry there are four ‘vector-like’ geometric tensors that transform distinctly
under (table from top to bottom) inversion, perpendicular rotation by π, and parallel reflection: a vector, a
pseudovector, a double-headed vector, and a helix [5].

Figure 2. Visualizing Equivariant Properties as Spherical Harmonic Projections. (A) A simplified exa
equivariant operations. The local atomic environments of the two carbons in an ethane molecule can be p
with negative magnitudes set to zero). The coloring on the projection surface signifies the distance from the
in the visual by rows of equal degree L and columns of equal order m, form a geometric tensor in t
harmonics). One method of computing scalars from these two geometric tensors is by computing the ‘pow
the dot product. This results in seven scalars (one for each L used in the projection). (B) A symmetric 3 × 3
signal. The magnitude of the signal at a given angle is interpreted as a radial distance and the projection is
(C), yellow indicates the maximum value and dark purple the minimum value, which in this case can be n
Euclidean neural networks when given a tetrahedron geometry (top) and octahedron geometry (bottom) as
than the inputs.
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exotic or complex a property, the more
likely there are non-trivial geometric tensor
interactions at play (e.g., multipole interac-
tions, antisymmetric exchange).

Euclidean Neural Networks Are
Equivariant Models
Neural networks are one of the most
flexible machine learning methods since
the only requirement is that the network
be differentiable. A neural network is a
function f that takes in inputs x and
trainable parametersW to produce outputs
y, f(x,W) = y. Given pairs of inputs x and
target output ytrue, a neural network is
TrendsTrends inin ChemistryChemistry

mple of how invariant descriptors are derived from
rojected onto spherical harmonics (shown for L ≤ 6
origin. The coefficients of the projection, organized

he irreducible basis (the same basis as spherical
er spectrum’, which is the tensor generalization of
matrix and its visualization as a spherical harmonic
colored to signify the magnitude. For both (B) and

egative. (C) The output of three randomly initialized
input. The outputs have equal or higher symmetry
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trained by computing derivatives of the

loss [e.g., L ¼ ðy − ytrueÞ2 ] with respect to
trainable parametersW, and updatingW ac-
cording to a learning rate η,W ¼ W þ η ∂L

∂w.

First proposed in 2018, Euclidean neural
networks (tensor field networks [6],
Clebsch–Gordan nets [7], 3D steerable
CNNs [8], and their descendants [9,10])
are a flexible, general framework for learning
3D Euclidean symmetry equivariant func-
tions that can be trained on the context of
a given dataset. To achieve equivariance
in Euclidean neural networks, scalar multi-
plication is replaced by the more general
tensor product and convolutional kernels
are restricted to be composed of spherical
harmonics and learnable radial functions,

Wð r!Þ ¼ RðjrjÞY lmð̂rÞ. Scalar nonlinearities
must also be replaced with equivariant
equivalents.

Due to these mathematical complexities,
Euclidean neural networks can be challeng-
ing to implement; however, there are open-
source implementations (e.g., e3nn is an
open-source PyTorch library that combines
the implementations of [6,8] and imple-
ments a variety of additional equivariant
layers and utility functions for converting
and visualizing geometric tensors)i.

Equivariance has also been encoded in
other machine learning approaches such
as kernel methods by using equivariant
kernels and an equivariant definition of co-
variance [11]. Euclidean neural networks
can learn equivariant functions that generate
scalar invariants or equivariant kernels for
use with these traditional machine learning
methods.

Euclidean neural networks can be used to
build end-to-end models for the prediction
of physical properties (e.g., molecular dy-
namics forces) from atomic geometries and
initial atomic features (e.g., atom types).
They can be used to manipulate atomic
geometries and craft hierarchical features
[12]. The only difference between models
for these varied purposes is how equivariant
operations and learnable equivariant
modules are composed.

Euclidean Neural Networks
Naturally Handle Geometric
Tensors, Point Groups, and
Space Groups
Euclidean neural networks provides a
mathematically rigorous framework for
articulating scientific questions in terms of
geometric tensors and their tensor interac-
tions. Inputs, outputs, and intermediate
data are completely specified by their
transformation properties.

Geometric tensors take many forms and
can represent many different quantities: nu-
merical geometric tensors, atomic orbitals,
or projections of geometry. Figures 1C
and 2B give additional examples of this
variety.

Another particularly useful aspect of
handling Euclidean symmetry in full generality
is that you get all subgroup symmetries
(e.g., 3Dpoint groups, 3D space groups)
for free. Figure 2C shows an example of
how the output of even randomly initialized
Euclidean neural networks will have equal
or higher symmetry than the input.

Since these networks intrinsically uphold any
and all selection rules that occur in physical
systems, they act as ‘symmetry compilers’
that check your thinking about the data
types of your physical system. Using these
models requires more forethought than a
traditional neural network; in exchange,
they cannot learn to do something that
does not symmetrically make sense.

Beginning to Uncover Features of
E(3) Equivariant Models
Euclidean symmetry is a simple assumption
that has many unintuitive consequences:
geometry, geometric tensors, normal
modes, selection rules in spectroscopy,
space groups, point groups, multipole in-
teractions, second-order phase transitions,
and so on. Likewise, the uses for Euclidean
symmetry equivariant machine learning
models may similarly surprise us in the
as-yet-untapped modes of investigation
they offer. For example, we recently found
that the gradients of Euclidean neural
networks can be used to find symmetry-
implied ‘missing’ data unbeknown to the
researcher (e.g., order parameters of
second-order phase transitions [13]). By
bounding learnable functions of physical
data to be equivariant to 3D Euclidean
symmetry, we can ask more targeted ques-
tions with machine learning and explore the
full-ranging consequences of our funda-
mental assumption of symmetry.
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