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The euclidean path integral remains, in spite of its familiar problems, an important

approach to quantum gravity. One of its most striking and obscure features is the

appearance of gravitational instantons or wormholes. These renormalize all terms in

the Lagrangian and cause a number of puzzles or even deep inconsistencies, related

to the possibility of nucleation of “baby universes.” In this review, we revisit the early

controversies surrounding these issues as well as some of the more recent discussions of

the phenomenological relevance of gravitational instantons. In particular, wormholes are

expected to break the shift symmetries of axions or Goldstone bosons non-perturbatively.

This can be relevant to large-field inflation and connects to arguments made on the basis

of the Weak Gravity or Swampland conjectures. It can also affect Goldstone bosons

which are of physical interest in the context of the strong CP problem or as dark matter.

Keywords: string theory, quantum gravity, euclidean wormhole, axions, particle physics -cosmology connection,

inflation, weak gravity conjecture, gravitational instanton

1. INTRODUCTION

It is reasonable to think that a consistent theory of quantum gravity has to allow for topology
change. Indeed, if the euclidean path integral has any relevance at all, then it appears unnatural
to forbid 4-manifolds with non-trivial topology. After all, they are locally indistinguishable from
R
4. Further evidence in favor of topology change comes, for example, from string theory: String

interactions and loops rely entirely on topology change in the worldsheet theory, the latter being a
relatively well-understood examples of 2d quantum gravity. In addition, 10d supergravity theories
with their stringy UV completion involve controlled examples of topology change. These occur if
one dynamically moves through special loci in Calabi-Yau moduli space, e.g., through a conifold
point.

However, our point of departure will be more simple minded, focusing on topology change
in 4d effective quantum gravity. Consider the evolution of 3d spatial manifolds in time. It is
natural to think that in the course of this evolution an R

3 can transit to an R
3 plus an S3 “baby

universe,” which subsequently reunite becoming again an R
3 (cf. Figure 1). This can be viewed

as a tunneling transition, which gains quantitative support from the existence of a corresponding
euclidean solution—the Giddings-Strominger wormhole (Giddings and Strominger, 1988a). While
topology change has been discussed before (Wheeler, 1955; Regge, 1961; Hawking, 1978, 1987,
1988; Ellis et al., 1984; Lavrelashvili et al., 1987), the Giddings-Strominger solution (Giddings and
Strominger, 1988a) and especially the application to the cosmological constant problem suggested
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by Coleman (1988c) led to an enormous spike of
activity (Coleman, 1988a; Giddings and Strominger, 1988b,
1989b; Grinstein and Wise, 1988; Hawking and Laflamme,
1988; Lee, 1988; Rubakov, 1988; Abbott and Wise, 1989; Brown
et al., 1989; Burgess and Kshirsagar, 1989; Choi and Holman,
1989; Coleman and Lee, 1989, 1990a,b; Duff, 1989; Fischler
and Susskind, 1989; Gilbert, 1989; Grinstein, 1989; Grinstein
and Hill, 1989; Klebanov et al., 1989; Nielsen and Ninomiya,
1989; Polchinski, 1989b; Preskill, 1989; Preskill et al., 1989; Rey,
1989; Tamvakis, 1989; Carlip and De Alwis, 1990; Grinstein
and Maharana, 1990; Grinstein et al., 1990; Hawking, 1990a,b,
1991a,b; Hawking and Page, 1990; Tamvakis and Vayonakis,
1990; Lyons and Hawking, 1991; Linde, 1992; Twamley and Page,
1992; Kaplunovsky, unpublished; see Coleman et al., 1991 for an
early overview).

As part of these investigations, severe problems in the
resulting picture of a macroscopic spacetime surrounded by
baby universes were uncovered (Fischler and Susskind, 1989;
Kaplunovsky, unpublished; Polchinski, 1989b; Hawking, 1990b).
While the interest has then subsided, important results have
continued to appear over the years (Kallosh et al., 1995; Nirov
and Rubakov, 1995; Barcelo et al., 1996; Gibbons et al., 1996;
Rubakov and Shvedov, 1996a,b; Green and Gutperle, 1997; Rey,
1999; Gutperle and Sabra, 2002; Bergshoeff et al., 2004, 2005;
Maldacena and Maoz, 2004; Collinucci, 2005; Bergshoeff et al.,
2006; Dijkgraaf et al., 2006; Arkani-Hamed et al., 2007b; Bergman
and Distler, 2007; Chiodaroli and Gutperle, 2009a,b; Cortes and
Mohaupt, 2009; Mohaupt and Waite, 2011; Betzios et al., 2018).
It has, however, neither been shown that wormholes and baby
universe are unphysical nor has a satisfactory overall picture
been developed. Thus, euclidean wormholes or gravitational
instantons have remained a lurking fundamental issue in our
understanding of quantum gravity. We emphasize that this issue
is not easily dismissed as a problem of the UV completion. On the
contrary, large wormholes tend to be as puzzling as small ones,
such that the problems appear to be there even in the low-energy
effective theory1.

More recently, the interest in wormholes has been renewed
in the context of large-field inflation, axion-physics, and the
widespread excitement (see e.g., Cheung and Remmen, 2014;
Brown et al., 2015, 2016; de la Fuente et al., 2015; Hebecker et al.,
2015; Heidenreich et al., 2015; Montero et al., 2015; Rudelius,
2015; Bachlechner et al., 2016; Choi and Kim, 2016; Junghans,
2016; Kaloper et al., 2016; Kappl et al., 2016; Kooner et al., 2016;
Klaewer and Palti, 2017) about the Weak Gravity Conjecture and
the Landscape/Swampland paradigm (Vafa, 2005; Arkani-Hamed
et al., 2007a; Ooguri and Vafa, 2007, 2016; Brennan et al., 2017).
This is natural since wormholes have the potential to break global
symmetries, such as the shift symmetry of the axion. In addition,
they may be considered the macroscopic, gravitational version
of instantons in pretty much the same way as charged black

1In this review we focus on large wormholes. An interesting and closely related
topic, which lies beyond the scope of this work, are topological fluctuations of
spacetime at small scales (the Planck scale Wheeler, 1955; Hawking, 1978 or string
scale Iqbal et al., 2008) as constituents of a microscopic description of quantum
gravity.

FIGURE 1 | Wormhole corresponding to the creation and absorption of a

baby universe.

holes are the macroscopic version of charged particles. Thus,
the interest in the Weak Gravity Conjecture and its implications
for phenomenology naturally lead to an enhanced interest in
(euclidean) wormholes (Hebecker et al., 2015; Montero et al.,
2015; Heidenreich et al., 2016; Harlow, 2016; Alonso andUrbano,
2017; Hebecker et al., 2017; Hertog et al., 2017; Ruggeri et al.,
2018; Shiu and Staessens, 2018).

Our review is motivated in several ways: First, as just
explained, it is timely to reconsider the wormhole issue in view
of the growing interest in generic quantum gravity constraints
on effective field theories. Second, the unsolved problems from
the 90’s are, in our opinion, as important as ever. Additionally,
one of the main phenomenological targets in the otherwise
rather theory-driven wormhole debate have always been axions2.
Since axions are becoming more and more central in Beyond-
the-Standard-Model research, scrutinizing their generic features
is of particular importance. Finally, we believe that the post-
90’s theoretical developments of AdS/CFT, holography and
(gravitational) entanglement have not yet been fully exploited in
the context of euclidean wormholes. Thus, significant technical
progress may be expected concerning the fundamental issues
raised by those objects.

In the long run, we can think of two different outcomes:
On the one hand, wormhole effects may turn out to be absent
from certain theories, in particular from the 4d quantum gravity
describing the real world. This would solve many puzzles.
Advocates of this possibility have to address a number of
questions. In particular, what is the specific mechanism behind
this “wormhole censorship”? As we will argue, it appears
difficult to imagine such a mechanism which would not also
forbid topology change in general. This, of course, would be
a radical step. Related to this: How can we forbid wormholes
in 4d while maintaining their central role in the 2d quantum
gravity known as string theory? Furthermore, if wormholes are
forbidden, what is the generic gravitational effect responsible
for the breaking of global shift symmetries of axions? On the
other hand, if wormholes exist, they represent a radical departure
from standard interpretations of effective field theories. As we
will describe, the correct understanding of their effects requires
solving numerous fundamental problems. In the hope that these
questions can be successfully addressed in the near future, we

2We will use the name axion for any shift-symmetric periodic scalar, even if
unrelated to QCD.
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consider it worthwhile summarizing the state of the art and
describing themain puzzles and open issues posed by wormholes.

We start in section 2 by recalling how instantons (of
either gauge-theoretic or stringy nature) generate a potential
for any scalar to which they are minimally coupled. We then
describe the famous Giddings-Strominger solution (Giddings
and Strominger, 1988a), which corresponds to a throat with cross
section S3, connecting two points inR

4 (cf. Figure 1). The throat
is supported byH3 flux, and the dual ofH3 is the field strength of
an axion. This axion then naturally couples to the two wormhole
ends, which can locally be interpreted as instanton and anti-
instanton. The axionic shift symmetry is potentially broken by
a “dilute gas” of such wormholes. We also briefly comment on
dilatonic instantons as they generically arise in string theory,
emphasizing that it has by now been established that wormhole
solutions do really arise in string-derived models (Tamvakis,
1989; Bergshoeff et al., 2005; Arkani-Hamed et al., 2007b; Hertog
et al., 2017).

Next, in section 3, we discuss how the low-energy effective
action is corrected by wormholes (of Giddings-Strominger type
and, more generally, by any “spacetime handles” of the form
displayed in Figure 1). We follow the pioneering work by
Coleman (1988c) and Preskill (1989). Crucially, in contrast
to instantons, wormholes induce a bilocal action, which has
the potential to break locality or even quantum coherence.
However, the bilocal correction can be turned into a local one
by introducing appropriate auxiliary integration variables (α
parameters). Alternatively, this can be captured by thinking
in terms of a “state of baby universes,” the absorption and
emission of which is described by operators a† and a. In this
language, the α parameters are simply the eigenvalues of α̂ =
a + a†. If the (infinitely many) α parameters take definite and
not excessively large values, effective 4d locality and the dilute
gas approximation are maintained. However, exact predictivity
for Lagrangian parameters on the basis of some underlying
microscopic theory is lost.

Section 4 is devoted to phenomenological applications. The
early literature focuses on the indeterminacy of effective coupling
constants. In particular, Coleman argued that the cosmological
constant is statistically driven to zero value by the distribution
of α parameters and their interplay with large-scale 4d gravity
(Coleman, 1988c). The violation of axionic shift symmetries and
other global symmetries has also been studied from the beginning
(see e.g., Rey, 1989). More recently, the shift symmetry of a large-
f axion has been discussed in the context of wormholes and their
interplay with the Weak Gravity Conjecture (Hebecker et al.,
2015; Montero et al., 2015; Heidenreich et al., 2016). We review
some of this discussion, pointing out in particular difficulties
in making strong, generic arguments against large-field axionic
inflation (Hebecker et al., 2017). Additionally, we discuss possible
wormhole effects on axions with f < MP (including but not
limited to the QCD axion) following (Alonso and Urbano, 2017).
These may be relevant to ultralight dark matter, axion stars and
black hole superradiance.

Open conceptual issues are the main subject of section 5.
There are many of those, making the whole subject interesting
but at the same time very difficult. We start with the

FKS catastrophe (Fischler and Susskind, 1989; Kaplunovsky,
unpublished), which turns Coleman’s cosmological constant
calculation into an argument for an overdensity of large
wormholes. We go on to briefly discuss the generic problems of
euclidean quantum gravity and, in particular, the negative-mode
problems possibly affecting the Giddings-Strominger solution
(Rubakov and Shvedov, 1996a; Alonso and Urbano, 2017;
Hertog et al., 2017). Finally, we discuss the quantum cosmology
involving macroscopic universes and a baby universe state. This
can be relatively well undestood in a 1d toy model, but becomes
already rather complicated in 2d quantum gravity. The latter
case has of course received particular attention since its “large
universe” may be the worldsheet of a fundamental string, while
the baby universe state is represented by the dynamical target
space of string theory. Finally, we analyse the Wheeler-DeWitt
perspective as well as issues arising in the AdS/CFT paradigm.
We conclude in section 6.

2. FROM INSTANTONS TO WORMHOLES

In this section we describe the simplest wormhole configurations,
extrema of the euclidean action of Einstein gravity coupled to
axionic fields (and possibly dilatons). We start with a brief
description of the related but much better understood case of flat
spacetime, where instantons arise as euclidean saddle points of
gauge theories.

2.1. Instantons
Let us start by recalling the familiar case of a 4d gauge theory with

L = 1

2g2
tr FµνF

µν . (1)

For simplicity the gauge group is taken to be SU(2). The
euclidean path integral necessarily involves certain finite action
configurations (instantons) for which the field strength is non-
zero in the vicinity of some point x0 ∈ R

4 and falls off quickly as
|x− x0| → ∞. Moreover, the value of

n = 1

8π2

∫

tr(F ∧ F) (2)

is integer, with n = ±1 characterizing a single instanton or anti-
instanton (see e.g., Coleman, 1979; Vainshtein et al., 1982; Tong,
2005; Bianchi et al., 2008; Vandoren and van Nieuwenhuizen,
2008). The minimal action for such n = ±1 configurations is

S = 8π2

g2
. (3)

The underlying solutions have 8 moduli: the components of x0,
a size modulus, and three zero modes associated to global SU(2)
transformations.

In calculating the partition function of the theory, one has
to sum over any number of such instanton or anti-instanton
configurations and integrate over all their moduli. This can be
done very explicitly (see below) in the so-called dilute instanton
gas approximation, i.e., assuming that the regions where F is
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FIGURE 2 | Gauge theory instantons as well-separated, localized lumps of

field strength.

FIGURE 3 | Euclidean brane instanton as particle-antiparticle fluctuation

wrapping the compact space.

significantly non-zero are much smaller than their distance.
Unfortunately, this clashes with the fact that a large contribution
comes from very extended instantons, making the calculation
e.g., in the practically interesting case of QCD non-trivial. A
relevant toy model can however be obtained by Higgsing the
gauge theory at M ≫ 3, with 3 the confinement scale. The
largest instantons now have size ∼ 1/M and the dilute gas
approximation can be parametrically controlled (cf. Figure 2).

Another equally familiar case is that of stringy or exotic
instantons. To recall this case, start with the toy model of a 5d
gauge theory on R

1,3 × S1. Clearly, if charged particles exist,
this theory has tunneling processes in which a particle-anti-
particle pair emerges from the vacuum and annihilates after
passing around the S1 in opposite directions (cf. Figure 3). In
the euclidean theory, this corresponds to a 0-brane wrapped on
the S1 at some point x0 ∈ R

4. The generalization to string
compactifications with appropriate Dp-branes (or Ep-branes,
with “E” for euclidean) wrapped on (p+ 1)-cycles of the compact
space is obvious (for reviews see e.g., Akerblom et al., 2007;
Blumenhagen et al., 2009; Ibanez and Uranga, 2012).

Crucially, in both of the above examples a shift symmetric,
periodic scalar coupling to the instantons is naturally expected
to be present. In the first case, it is the analog of the QCD axion,

coupling through

L ⊃ θ tr(F ∧ F)/8π2. (4)

In the second case, it is the “Wilson-line” scalar descending from
the 5d gauge field or, more generally, the 4d scalar descending
from the Ramond-Ramond Cp+1-form field dimensionally
reduced on the appropriate (p+ 1) cycle.

For us, the above prelude serves only to motivate the following
model theory of generic (or fundamental) instantons: It is defined
by the partition function

Z =
∫

DφDθ e−S[φ,θ]
∞
∑

n=1

∞
∑

n=1

1

n!n!

n
∏

i=1

(∫

d4xiM
4 e−SI+iθ(xi)

)

n
∏

ı=1

(∫

d4xı M
4 e−SI−iθ(xı )

)

, (5)

which can of course be extended to a prescription for calculating
Greens functions in the usual way. In this theory, the instantons
are fundamental, zero-dimensional objects coupling to the axion-
like field (just axion from now on) in the mathematically natural
way: The axion is interpreted as a zero-form gauge potential
which simply has to be evaluated at the position of the charged
object (in the stringy language a D(−1) brane)3. Furthermore, φ
stands for all other fields in the model and SI is the instanton
action. It arises (together with the typical instanton scale M) as
the tunneling suppression factorM4 exp(−SI), which can also be
interpreted as the instanton density.

Famously, the instanton and anti-instanton sum exponentiate
and the two exponents involving θ combine to produce a cosine.
This gives

Z =
∫

DφDθ exp

(

−S[φ, θ]+
∫

d4x 2M4e−SI cos(θ(x))

)

.

(6)
We emphasize that, apart from possible corrections to the dilute
gas approximation, this is exact. Furthermore, it can be easily
extended to situations in which the instantons couple, in addition
to the necessary topological coupling to the zero-form θ , to other
fields. For example, SI may depend on the background values of
some of the degrees of freedom denoted by φ.

2.2. Giddings-Strominger Solution
At the end of the previous section, we advertised the point
of view that instantons coupled to axions are a limiting case
of the general concept of a p-form gauge theory: In this case
p = 0 and the charged object is zero-dimensional. By analogy
to the gauge theory, one then expects the existence of objects
akin to black branes. In other words, there might exist purely
gravitational solutions charged under the axion which represent

3Note that this coupling remains imaginary even in the euclidean formulation. A
pragmatic way to see this is to recall that θ is introduced as a periodic variable. A
possibly deeper way is to think of instantons as tunneling events in the lorentzian
theory and of exp(iθ) as a relative phase between initial and final state. The latter is
of course not affected by Wick rotation.
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the continuation of instantons into the high-mass (or high-
tension) regime.

An object which fulfills such an expectation at least partially is
the Giddings-Strominger wormhole (Giddings and Strominger,
1988a), sometimes also referred to as a gravitational instanton. It
is based on the euclidean action (MP = 1)

S =
∫

d4x
√
g
(

− 1

2
R+ f 2

2
gµν∂µθ∂νθ

)

. (7)

Equivalently, one can use the dual formulation in terms of a
2-form gauge theory with field strength H3 = dB2:

S =
∫

d4x
√
g
(

− 1

2
R+ 1

2f 2
1

3!
HµνκH

µνκ
)

. (8)

At the classical level, the duality relation is simply H = f 2 ∗ dθ .
However, the equivalence of the two theories extends, of course,
to the full quantum systems. To see this, the dualization must
be done under the path integral and care must be taken to
get the signs of the kinetic terms right. The outcome is that,
both in the euclidean and in the lorentzian versions, the fields
have standard (non-ghostlike) kinetic terms on both sides of
the duality (see Burgess and Kshirsagar, 1989; Collinucci, 2005;
Bergshoeff et al., 2006; Arkani-Hamed et al., 2007b; Hebecker
et al., 2017 for details). The wormhole solution to be discussed
momentarily exists only in the euclidean theory, but both in the
0-form and 2-form formulation. However, while the B2/H3 fields
are real, the corresponding values of θ/dθ are imaginary.

Now, the relevance of an “instanton-like” euclidean solution
is, of course, that it defines a saddle point of the path integral
and hence a very specific, easily quantifiable contribution to
the partition function. For the B2 path integral, the Giddings-
Strominger saddle point is then right in the standard integration
domain, i.e., “on the real axis” of field space. By contrast, in the θ
path integral the corresponding saddle point is “on the imaginary
axis,” requiring the deformation of the contour and raising the
question whether such complex saddles contribute. Complex
saddles are certainly known to contribute in certain cases (for
a toy model relevant to the present setting see Arkani-Hamed
et al., 2007b). Thus, while we favor the (real) B2 formulation
for obvious reasons in what follows, there is nothing wrong in
principle with the θ formulation4.

After these preliminaries, let us describe the solution
(Giddings and Strominger, 1988a). It can be motivated by
starting from a field theory instanton and including gravitational
backreaction: If an instanton couples to an axion θ , the dual
theory carries non-zero 3-form flux,

∫

S3
H = n , n ∈ Z , (9)

4Occasionally, the impression is raised that the θ formulation requires a wrong-
sign kinetic term if one wants the wormhole solution to exist. While this
perspective might technically be equivalent to what was said above, we find it
conceptually misleading. In our reading, one studies a well-defined physical theory
without ghost fields. It is only the desire to estimate the contribution from a certain
complex saddle which leads one to work with imaginary θ temporarily.

FIGURE 4 | Wormholes: A semiwormhole (Left), a wormhole connecting two

distinct large asymptotically flat universes (Center) and a wormhole on a

single universe (Right).

on any sphere containing n instantons (or an instanton of charge
n). Placing the instanton(s) at the origin and assuming spherical
symmetry, it is immediately clear that one must have

H = n ǫ

2π2
. (10)

Here ǫ is defined as the volume form of S3 in the description of
R
4 as R+ × S3.
The aboveH automatically satisfies the Bianchi identity dH =

0 and the equation of motion d ∗ H = 0 (for any spherically
symmetric metric). It induces a non-zero energy momentum
tensor and the corresponding Einstein equation is solved by

ds2 =
(

1+ C

r4

)−1
dr2 + r2d�2

3, C = − n2

24π4f 2
. (11)

Here d�2
3 denotes the round metric on the unit sphere.

This geometry is asymptotically flat for r → ∞ and has
a coordinate singularity at r = r0 ≡ |C|1/4. The space
given by restricting r ∈ [r0,∞) forms what is often termed
a semiwormhole (see Figure 4). Gluing two such solutions at
the 3-spheres defined by r = r0, one obtains a smooth
wormhole connecting two flat universes (see Figure 4). A
topologically distinct, approximate solution can be obtained if
the two asymptotically flat regions of Figure 4 are interpreted
as distant parts of the same universe—cf. Figure 4. One then
has a wormhole joining two regions of the same large universe.
This becomes exact in the limit that the two wormhole ends are
infinitely far apart.

The wormhole action is particularly easy to compute using the
trace of the Einstein equation:

Sw = 1

f 2

∫

H ∧ ∗H = n2

2π2f 2
2

∫ ∞

r0

dr

r
√
r4 + C

= π
√
6

4
· |n|
f
.

(12)
Notice the factor 2 appearing because a wormhole consists of two
solutions of the form of (11), each restricted to r > r0.

The most straightforward interpretation of this is as follows:
Suppressed by an overall factor exp(−Sw), the partition function
includes processes in which an S3 baby universe supported byH3-
flux “bubbles off” at some space-time point x and is absorbed
later on at y (x, y ∈ R

4). From the low-energy perspective, this
is equivalent to an instanton (of charge n and action Sw/2 ∼
|n|/f ) at x and a corresponding anti-instanton at y. Calculational
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control in semiclassical gravity requires r0 ∼
√

|n|/f ≫ 1. This
should then give rise to a cosine potential for θ and further
instanton-induced operators. It has, however, been argued that,
in contrast to the instantonic situation, no such potential is
induced because of the unavoidable pairing of instanons and
anti-instantons (Heidenreich et al., 2016). Counterarguments
have been given (Hebecker et al., 2017), based essentially on the
intuition that local physics is ignorant of the overall constraint
on instantons vs. anti-instantons in a very large space-time (recall
that the action stays finite as |x− y| → ∞). However, this debate
is overshadowed by a much deeper issue which will permeate
the rest of this review: Once one allows for wormholes, one
has effectively allowed for baby-universes propagating between
points x and y. But then such baby universes must also be allowed
to be part of the initial and final states of any process. More
generally, there exits a “baby-universe state” in addition to our
space-time and any wormhole effects (such as the naive cosine
potential) depend on it.

2.3. Dilatonic Wormholes
Before coming to the physical effects of wormholes and baby
universes, we want to briefly comment on generalizations
of the Giddings-Strominger solution which involve a dilaton
(Giddings and Strominger, 1988a, 1989b; Bergshoeff et al., 2006;
Heidenreich et al., 2016; Hebecker et al., 2017). This is important
since such dilatons are always present in the simplest stringy
models allowing for wormholes.

Consider an action in which the axionic kinetic term depends
on a further massless scalar field φ,

S =
∫

d4x
√
g
(

− 1

2
R+ 1

2
K(φ)gµν∂µθ∂νθ +

1

2
gµν∂µφ∂νφ

)

,

(13)
or equivalently

S =
∫

d4x
√
g
(

− 1

2
R+ 1

2
F(φ)HµνκH

µνκ + 1

2
gµν∂µφ∂νφ

)

,

(14)
with F ≡ 1/(3!K). As before, spherical symmetry ensures
that the equation of motion for H is automatically satisfied. A
new, non-trivial differential equation for the radial profile of φ
arises. Remarkably, the differential equation for grr (the only non-
trivial part of the Einstein equation) decouples and the metric
(11) remains a solution5. We will not discuss the solution φ(r)
in any detail. It is, however, interesting to note that, switching
from H3/B2 to dθ/θ for the moment, the common trajectory
{φ(r), θ(r)} describes a geodesic in field space. This generalizes
to the case of several axionic and several non-axionic scalars (cf.
Footnote 5 and Arkani-Hamed et al., 2007b).

5In fact, the metric (11) solves the equations of motion of the more general action

S =
∫

d4x
√
g
(

− 1

2
R+ 1

2
GIJ (φ)g

µν∂µφ
I∂νφ

J
)

, (15)

where a set moduli φI and a (non-positive-definite) metric GIJ on moduli space
have been introduced (Arkani-Hamed et al., 2007b).

FIGURE 5 | Extremal (Left) and cored (Right) gravitational instanton.

Motivated by stringy and supergravity examples, we now
restrict attention to the special case

F(φ) = 1

3! f 2
exp(−βφ). (16)

Without loss of generality one can assume β ≥ 0. Three different
classes of solutions can be distinguished: First, as long as β <

2
√
2/3, the Giddings-Strominger wormhole continues to exist

(metric of 11 with C < 0). This is the case of our main
interest. Second, there is the extremal gravitational instanton,
corresponding to C = 0. The geometry is a flat space-time with
the origin removed, but φ diverges as one approaches r = 0.
Third, there are “cored gravitational instantons,” corresponding
to C < 0. In this case one has a curvature singularity at
r = 0 (cf. Figure 5). The last two cases have the significant
drawback that they are not fully controlled within the low-energy
effective theory and we will hence not discuss them further
(see however Bergshoeff et al., 2006; Heidenreich et al., 2016;
Hebecker et al., 2017).

In the simplest (usually highly supersymmetric) string
compactifications, axions are always accompanied by a dilatonic
scalar or saxion, as above. However, the simplest models do
not allow for β < 2

√
2/3. Naively, one may then hope that

wormholes do not arise in consistent theories of quantum gravity.
But it turns out that the problem with the allowed β range can
be overcome (Tamvakis, 1989; Bergshoeff et al., 2005; Arkani-
Hamed et al., 2007b; Hertog et al., 2017). The underlying idea
is simple: A wormhole can be charged under several axions, each
with its own saxion with a certain β . The trajectory which the
solution follows in the saxionic field space involves all the axions
and can be characterized by a single effective β . The latter can be
in the desired range even if the β-values of the ingredients were
not6. Thus, one can by now be certain that Giddings-Strominger
wormholes exist in the euclidean version of supergravity theories
coming from string theory. This makes all the puzzles to be
discussed below even more troubling7.

6The necessary condition for the existence of wormholes and the way in which
multiple axions help to satisfy it can also be discussed in the language of time-like
geodesics in the axion/saxion field space, cf. Footnote 5.
7A simpler but less rigorous argument that wormholes are “not in the swampland”
can be given as follows: Surely somewhere in the string theory landscape there
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3. THE EFFECT OF WORMHOLES

Two results of the previous section are essential for what follows.
First, a dilute gas of instantons can be resummed (or “integrated
out”) to obtain a correction to the effective action. Second, a very
similar contribution to the path integral arises in gravitational
theories with an axion. The objects to be summed over are
wormholes or gravitational instantons. The main novelty is that
they couple to the low-energy degrees of freedom (including
the background metric) at two spacetime points rather than just
at one. We now want to discuss the correction to the effective
action arising in this second case following (Coleman, 1988c;
Preskill, 1989; Coleman and Lee, 1990b). We note that, while
the specific Giddings-Strominger solution discussed above may
be the simplest and best understood euclidean wormhole, the
following analysis does not rely on any of its details.Whatmatters
is that the euclidean path integral includes contributions from
topologies like that of Figure 4 (on the right). All that we will use
is that they are exponentially suppressed by a sufficiently large
euclidean action and that the coupling to soft field modes occurs
at two uncorrelated points (Hawking, 1988, 1990b).

3.1. The Bilocal Action
We begin with a heuristic derivation of the bilocal action which
captures the effect of wormholes at the semi-classical level. For
this, we first recall the field theoretic partition function with
instantons, Equation (5), and restrict it to the one-instanton
sector for notational simplicity:

Z1 =
∫

Dφ Dθ e−S[φ,θ]
(∫

d4x e−SI+iθ(x)
)

. (17)

Here the prefactor M4 has been reabsorbed in the instanton
action. (To be careful, one should then either work in Planck
units or at least choose x dimensionless.)

The above is unnecessarily explicit in that θ has been separated
from all the other fields φ. At the same time, it is oversimplified
in that only the dependence of the instanton action on θ has been
kept: SI[θ] ≡ SI + iθ . A more general version, in which θ is just
one of the many fields denoted by φ, reads

Z1 =
∫

Dφ e−S[φ]
(∫

d4x e−SI [x,φ]
)

. (18)

Here SI[x,φ] is the single-instanton tunneling action for the
space-time point x in a background field φ. It is clear that
obtaining this action in a concrete model is highly non-trivial:
One would have to find the analog of the well-known instanton
or wrapped-euclidean-brane solution in an, in general non-
constant, background of all fields in the theory. However, we are
satisfied with an approximation: the fields φ are restricted to be

exists a low-energy effective theory containing an ungauged abelian Higgs model.
Clearly, the globalU(1) of this model will not be exact. The resulting effective axion
will thus have a non-perturbatively generated cosine potential. This potential is in
general exponentially suppressed and hence very small. The saxion, i.e., the radial
direction of the complex Higgs scalar, is stabilized. Thus, wormholes based on this
effective axion will exist.

soft relative to the instanton scale M. The action can then be
expanded in terms of local operators:

SI[x,φ] = SI + c1φ(x)+ c2φ
2(x)+ c3(∂φ(x))

2 + · · · . (19)

Here SI is the instanton action on the unperturbed background,
say at φ ≡ 0. With this, the transition to wormholes is simple.

Indeed, the wormhole analog of (18) is

Z1,w =
∫

Dg Dφ e−S[g,φ]
(∫

d4x
√

g(x)

∫

d4y
√

g(y)e−Sw[x,y,g,φ]
)

.

(20)
Here

∫

Dg stands for the integral over all soft (relative to the
wormhole size) metrics on the topologically trivial background
universe into which the wormhole is inserted. In addition, φ
stands for all further fields, including the axion or the dual 2-
form8. As before, appealing to our restriction to soft fields and
metric configurations, the wormhole action can be written as a
series of local operators at x and y:

Sw[x, y, g,φ] = Sw + c1φ(x)+ c1φ(y)+ c3φ(x)φ(y)+ · · ·
+c4(∂φ(x))

2(∂φ(y))2 + · · · (21)

For simplicity terms depending on a non-trivial metric
background have not been displayed. It is clear that such terms,
involving various curvature invariants at x and at y as well
as products thereof, will also be present. The crucial novelty
compared to the instanton case is that one is dealing with a
double functional Taylor expansion and that products of local
operators involving all fields will in general arise. Thus, one
generically has the bilocal expression

Sw[x, y, g,φ] = Sw +
∑

ij

1̃ijOi(x)Oj(y), (22)

or, equivalently,

e−Sw[x,y,g,φ] = 1

2

∑

ij

1ijOi(x)Oj(y). (23)

In the last expression, the exponential exp
(

∑

ij 1̃ijOiOj

)

has

been expanded and the suppression factor exp(−Sw) has been
absorbed in the new coefficients1ij:

1ij ∼ e−Sw . (24)

Finally, one inserts (23) in (20) and writes down analogous
expressions for any number of wormholes. In doing so, the dilute
gas approximation is used, i.e., that typical distances between
wormhole ends are much larger than the wormhole diameter.
The sum exponentiates, exactly as in the instanton case, giving

Zw =
∫

Dg Dφ e−S[g,φ]+ I (25)

8If one uses specifically the Giddings-Strominger solution, the value of the axion
corresponds to the one far away from the wormhole. The fast change of the axion
inside the throat is not part of what we want to call the background field.
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with the bilocal action

I = 1

2

∫

d4x
√
g

∫

d4y
√
g
∑

i,j

1ijOi(x)Oj(y). (26)

3.2. Local Action Involving α Parameters
Following Coleman (1988c) and Preskill (1989), one can give
the action I a local form at the expense of introducing a set
of auxiliary parameters αi. Up to some irrelevant normalization
factor, one has

eI =
∏

i

(∫

dαi

)

exp



−1

2

∑

i,j

αi1
−1
ij αj





exp

(

∑

i

αi

∫

d4x
√
gOi(x)

)

. (27)

It is natural to write the original action S of our physical system
using the basis of local operators as in the wormhole action I
above:

S[g; λ] =
∑

i

λi

∫

d4x
√
gOi(x). (28)

Here λi are the coupling constants. For example, λ1, λ2, and
λ3 could be the cosmological constant, the coefficient of the
Einstein-Hilbert term, and of the R2-term, respectively. To
minimize the notational complexity, we suppress the dependence
on the non-metric fields φ here and below. Of course, all of the
above holds with as many further fields as one needs.

Comparing (27) and (28), one sees that the effect of
wormholes amounts to shifting the coupling constants of the
original action: λi → λi − αi. Put differently, one can use the
“shifted” action S[g; λ − α], remembering of course to integrate
over the α parameters. The partition function with wormhole
effects included (see Equation 25 and recall that we suppress φ)
now reads

Zw =
∫

Dg e−S[g;λ]+I[g]

=
∫

Dg Dα G(α) e−S[g;λ−α]

=
∫

Dα G(α)

[∫

Dg e−S[g;λ−α]
]

, (29)

with G(α) = exp
(

− 1
2

∑

i,j αi1
−1
ij αj

)

the gaussian weighting
factor. In the above, we also use the somewhat sloppy notation
Dα for the integration over all αi, in spite of the fact that the index
i is discrete.

In the last expression in (29), one recognizes the familiar
partition function without wormholes inside the square brackets.
The wormhole effect is reduced to shifting the coupling constants
of that theory by αi. Since these α parameters are constants in
space and time, one can take the point of view that they simply
have to be measured and no relevance should be ascribed to the
gaussian weight factor governing their distribution. By contrast,
one may argue that statistical predictions for their values are

FIGURE 6 | The effective action considered as an amplitudes (Left) and an

amplitude including semiwormholes (Right).

possible, which of course involves this weight factor. This is a
multiverse-type situation, discovered (and discussed by many
authors) long before the string theory multiverse entered the
stage.

3.3. Baby Universes
The physics behind α parameters becomes more lucid if one
thinks of the wormholes in terms of S3 baby universes which
are emitted and absorbed by our macroscopic space-time (left
hand side of Figure 6). To derive the corresponding formulae,
one considers the situation with a single operator and hence a
single α parameter for notational simplicity. Equation (27) then
reads

eI =
∫

dα√
2π

exp

(

−1

2
α2 + α

√
1

∫

d4x
√
gO(x)

)

, (30)

obtained after rescaling α → α
√
1 and introducing the

normalization factor 1/
√
2π for later convenience.

Equation (30) can be viewed as a power series in O(x)
encoding the sum of process in which baby universes are created
and annihilated at locations corresponding to the various values
taken by x. All of this has of course to be inserted under the Dg
integral over soft backgroundmetrics. Tomake this manifest, one
defines baby universe creation and annihilation operators a†, a
satisfying the usual commutation relation [a, a†] = 1. The state
with no baby universes |0〉 is referred to as the baby universe
vacuum. The normalized state with n baby universes is then given
by

|n〉 = (a†)n√
n!

|0〉. (31)

The analogs of the conventional position operator of the
harmonic oscillator and its eigenstates are defined as

α̂ = a+ a†, α̂|α〉 = α|α〉. (32)

Since the ground state obeys |0〉 ∼
∫

dα exp(−α2/4)|α〉, one
immediately sees that

〈0|(a+ a†)n|0〉 =
∫

dα√
2π

exp

(

−1

2
α2
)

αn. (33)

This allows one to rewrite (30) according to

eI =
∫

dα√
2π

exp

(

−1

2
α2
)

exp
(

α Õ

)

= 〈0| e(a+a†) Õ |0〉,
(34)

where Õ is an abbreviation for Õ =
√
1
∫

d4x
√
gO(x).
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Equation (34) can be considered a convenient formal
expression for a power series in Õ. But it is much more than
that: It formalizes the interpretation of the partition function
and of the process depicted on the left hand side of Figure 6 in
terms of a baby universe Hilbert space. Equation (34) calculates
the amplitude relating two spatial slices of the parent universe,
allowing for any number of wormholes to be insterted between
initial and final time.

The most important point here is that, in this approach, it
is both easy and obviously necessary to allow for more general
initial and final states: There is simply no reason to treat those
as baby universe vacua. For example, one can also consider
the transition amplitude between states with n1 and n2 baby
universes:

〈n2|e(a+a†) Õ|n1〉. (35)

In fact, arbitrary states ψ1 and ψ2 can be considered, another
relevant case being that of so-called α-vacua:

〈α|e(a+a†) Õ|α〉 = eα Õ . (36)

Here we ignore the divergent prefactor related to the δ-function
normalization of “momentum eigenstates.”

It is easy to see that, for an arbitrary number of operators and
arbitrary initial and final states, the above amplitude generalizes
to

〈ψ2| exp
(

∑

i

√

1ii

∫

d4x
√
gOi(x)(ai + a†

i )
)

|ψ1〉. (37)

Here, a basis of local operators has been chosen such that the
matrix 1ij is diagonal. The a†

i and ai carry the same index as
the local operators and create or annihilate baby universes of
type i. If everything is based on the Giddings-Strominger solution
of lowest charge, one may think of these baby universes as of
transverse spheres S3 in a perturbed wormhole geometry (or
some appropriate quantum superposition thereof).

The Hamiltonian (a + a†) Õ was first derived by Coleman
(1988a) by summing explicitly over all possible wormhole and
semiwormhole configurations. For completeness, we now briefly
explain this computation, for the case of a single type of
wormhole for simplicity. Consider a 4-manifold M of the type
shown in the right hand side of Figure 6. The initial boundary
consists of a large 3-manifold parent universe and n1 incoming
baby universes. Of those, n1 − r later on merge withM. The final
boundary consists again of a large 3-manifold and n2 outgoing
baby universes, n2 − r of which emerged from M. Thus, r baby
universes simply travel from the initial to the final boundary
without interacting with the parent universe. Furthermore m
baby universes form complete wormholes on M. The path
integral sums over all such configuration:

∑

r,m

e−S
∣

∣

n1 ,n2
. (38)

As before, one assumes that each semiwormhole attached to the
parent universe contributes a factor Õ =

√
1
∫

d4x
√
gO(x).

Taking into account the combinatorics and carrying out the
summation overm yields

∑

r,m

e−S
∣

∣

n1 ,n2
=
√

n1!
√

n2! e
Õ

2/2
min (n1,n2)
∑

r=0

Õn1+n2−r

(n1 − r)! (n2 − r)! r!

= 〈n2|e(a
†+a)Õ|n1〉. (39)

Here the second equality follows by applying Baker-
Campbell-Hausdorff in the form exp[(a + a†)Õ]=
exp(a†Õ) exp(aÕ) exp(Õ2/2) and inserting the identity operator
written as a sum over |r〉〈r|. Thus, the language of a and a†

introduced earlier is nothing but a convenient way of counting
wormhole topologies.

3.4. The Perspective of α-vacua and the
Wormhole Density
It is clear that the appearance of α parameters in the path
integral has the potential to change physics dramatically:
Since these parameters are space-time independent, the whole
universe (including its time evolution) can be thought of as a
superposition of independent universes, each with a specific set
of fixed α parameters.

This has become even more apparent in the last subsection,
when the baby universe state characterized by the α parameters
was introduced. Since all effective operator coefficients or
couplings are shifted according to λi → λi − αi , the baby
universe state determines the 4d low-energy effective field theory.
A whole landscape of such theories, equivalent to the space of
α-vacua, exists. At this level, every hope of predicting coupling
constants from some fundamental theoretical principle appears
to be lost.

The situation might not be, however, quite as bad: for
transitions among baby universe vacua an integral over the α
parameters with a very specific measure arises. This makes sense
in a compact euclidean universe, for example for a large 4-sphere
(or a set of large 4-spheres), where no initial or final baby universe
state is required. Specifically a 4-sphere geometry is reminiscent
of the Hartle-Hawking definition (Hartle and Hawking, 1983)
of the Wheeler-DeWitt wave function of the universe (DeWitt,
1967; Wheeler, 1967). Thus, one may think of the integral over
α parameters (with the concrete measure derived earlier) as of a
preferred wave function of the baby universe state. This point of
view allows for at least a statistical prediction of effective coupling
constants.

It is essential that the α-parameters are eigenvalues of the
Hamiltonian governing the interaction of our large-scale 4d
world with the baby-universe state. This was derived above and it
can also be seen intuitively: one can not distinguish in principle
whether a wormhole attached at a given position x corresponds
to a baby universe being absorbed or being created. Hence one
always encounters the combination (a+a†)O(x) ≡ α̂O(x) in the
effective Hamiltonian. When an operator coefficient is measured,
one is projected to a subsector of the theory belonging to a certain
eigenvalue α. Further dynamical evolution can not change this
value.

As a consistency check one can estimate the density of
wormhole ends following Preskill (Preskill, 1989). This is crucial
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to understand the validity of the dilute gas approximation.
Returning to the perspective of the bilocal action, section 3.1,
one can focus on a single operator, the cosmological constant.
According to (26), the effect of wormhole insertions is then
encoded in

eI ∼ e
1
2V

2
41 =

∞
∑

n=0

1

n!

(1

2
V2
41

)n
, (40)

whereV4 =
∫

d4x
√

g(x) and1 ∼ e−Sw . Here the n-th order term
corresponds to n wormholes. The dominant contribution to the
sum comes from terms with n ∼ Nw ≡ 1

2V
2
41, such that the

wormhole density in typical configurations is

Nw

V4
= 1

2
V41. (41)

One arrives at the disturbing conclusion that this density grows
with the volume V4 .

Fortunately, the result changes if one considers physics at fixed
α. According to (36) the wormhole sum is now encoded in

eα V4
√
1 =

∞
∑

n=0

1

n!

(

α V4

√
1
)n
. (42)

This sum is dominated by terms with n ∼ Nw,α ≡ α V4
√
1. A

non-divergent density of wormhole ends in spacetime follows:

Nw,α

V4
= α

√
1. (43)

Thanks to the suppression factor
√
1 ∼ e−Sw/2, this

density is expected to be very small for large wormholes
with a correspondingly large euclidean action. The problem
encountered above in the vacuum-to-vacuum amplitude, |0〉 →
|0〉, appears to have been resolved. Technically, the reason is that
the sum has been re-organized by combining events where a
wormhole is absorbed and created at the same point: a, a† →
(a + a†). However, together with the suppression factor e−Sw/2

comes, of course, the unknown parameter α. In the integration
over α, the problem of an overdensity of wormhole ends can in
principle reappear. This is the subject of section 5.1

3.5. Multiple Large Universes
Only the case of one large parent universe with many small-
scale wormholes attached has been considered so far. It is,
however, completely logical to allow for multiple large universes.
Wormholes can connect one large universe to itself or to another
large universe, cf. Figure 7. When all wormholes are integrated
out, the large universes become disconnected.

Following Fischler and Susskind (1989) and Preskill (1989),
one can single out one particular large universe and consider the
expectation value of an observableA(x) in that universe. Keeping
the values of the α parameters (which are common to all large
universes) fixed for the moment, one has

〈A(x)〉α =
∫

Dgd e
−S[gd;λ−α]A(x). (44)

FIGURE 7 | Large universes connected by wormholes—figure adapted from

Fischler and Susskind (1989).

Here Dgd (with “d” for disconnected) stands for the
integration over all large-scale metrics, including a summation
over manifolds with many components. Making this
summation over the number of disconnected components
explicit,

〈A(x)〉α =
∞
∑

N

1

N!

N
∏

n=0

(∫

Dgn e
−S[gn;λ−α]

)∫

Dg e−S[g;λ−α]
A(x)

= exp
(

∫

Dg′e−S[g′;λ−α]
)

∫

Dg e−S[g;λ−α]
A(x). (45)

Here, in the first line, g is the metric on the distinguished
large universe and gn are the metrics on the other disconnected
components. The second line used the fact that the sum over
disconnected geometries exponentiates, introducing the variable
g′ for the metric on a generic such component.

Reinstating the α-integration gives

〈A(x)〉 =
∫

Dg Dα G(α) P(α) e−S[g;λ−α]
A(x) , (46)

with the probability distribution

P(α) = exp
(

∫

Dg e−S[g;λ−α]). (47)

In the calculation of the partition function, i.e., without the
insertion of a local operator, no connected component is singled
out. The sum over topologies then exponentiates without the
need to split of one of the factors:

Z =
∫

Dα G(α) P(α). (48)

As discussed later, the double exponential P(α) is
responsible both for the initial excitement in wormhole
physics (Coleman’s solution to the cosmological
constant problem Coleman, 1988c) as well as for
a particularly serious conceptual problem (the FKS
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catastrophe Fischler and Susskind, 1989; Kaplunovsky,
unpublished).

4. PHENOMENOLOGICAL APPLICATIONS

4.1. Random Values of Couplings
and the Cosmological Constant Problem
If one accepts that euclidean wormholes contribute to the path
integral, one may clearly be concerned that all of the familiar
local physics will break down. The reason is that the action of
the wormhole contributions does not grow with the separation of
the two points where they attach to our macroscopic spacetime.
The possible loss of quantum coherence has also been initially
discussed in this context. However, it has quickly been established
(Coleman, 1988a; Giddings and Strominger, 1988b) that a local
effective field theory description can be recovered by introducing
α parameters in the path integral or, equivalently, α vacua in the
canonical approach (cf. the discussion in the last chapter).

The implications of this are nevertheless quite dramatic:
All coupling constants depend on the α vacuum, i.e., on
the a priori unknown baby universe state. This state is an
unavoidable additional piece of information which has to come
on top of the quantum-field-theoretic initial conditions given
on a Cauchy surface of our spacetime manifold. By measuring
couplings one is effectively determining some of the infinitely
many α parameters. There seems to be no hope of predicting
these couplings on the basis of a unique theory of everything,
even if the latter was known to us. From a modern point of
view, this is of course very similar to the situation which has
anyway been widely accepted after the advent of the string
theory landscape (Bousso and Polchinski, 2000; Giddings et al.,
2002; Kachru et al., 2003; Susskind, 2003; Denef and Douglas,
2004). In fact, both ways of randomizing coupling constants
may be at work simultaneously. The familiar deep issue of the
measure problem of enternal inflation (the leading candidate
mechanism for populating the landscape) has a cousin in the
form of the measure on or the dynamics of the baby universe
state.

The above situation may be viewed as the generic
phenomenological implication of euclidean wormholes or
gravitational instantons. For the initial popularity of this
paradigm, it was crucial that an apparently very successful
attempt was made early on to derive a statistical prediction for
one of the couplings—the cosmological constant (Coleman,
1988c) (for early applications of wormholes to other
phenomenologically relevant couplings see Grinstein and
Wise, 1988; Choi and Holman, 1989; Gilbert, 1989; Nielsen and
Ninomiya, 1989; Preskill et al., 1989). In fact, a distribution
infinitely peaked at zero was found, making the prediction
exact. Subsequently many caveats were discovered such that the
“cosmological constant prediction” is not viewed as a central
motivation for wormhole physics at present. Nevertheless,
because of its intrinsic interest and its immense historical
importance we review the argument in the remainder of this
subsection (for reviews discussing this as well as other early

approaches to the cosmological constant problem see Weinberg,
1989; Carroll et al., 1992).

The argument is due to Coleman (1988c) and can be given
using just the leading terms of the bare gravitational action:

S[g] =
∫

d4x
√
g

(

3− M2
P

2
R+ · · ·

)

=
∫

d4x
√
g
∑

i

λiOi.

(49)
Here λ1 = 3 and λ2 = −M2

P/2 characterize the cosmological
constant and the Planck scale. As discussed before, including
the effects of wormholes and allowing for multiple large parent
universes (as in Figure 7) leads to the partition function
(cf. Equation 48)

Z =
∫

Dα exp



−1

2

∑

i,j

αi1
−1
ij αj





exp

(

∫

Dg exp

(

−
∫

d4x
√
g
∑

i

(λi − αi)Oi

))

. (50)

Since wormholes have been integrated out, the relevant metric in
the above expression refers to a single parent universe. As argued
in Coleman (1988c), this expression is dominated by values of α
which correspond to3eff = λ1 − α1 > 0. Furthermore, the sum
over topologies is dominated by spheres. The path integral over
metrics can then be estimated in the saddle point approximation:

Z =
∫

Dα exp



−1

2

∑

i,j

αi1
−1
ij αj





exp

(

exp

(

−
∫

d4x
√
g

(

3eff −
M2

P, eff

2
R

)))

, (51)

whereM2
P, eff = M2

P + 2α2 and the sum is restricted to i, j = 1, 2.
Thus, all one needs is the action of a 4-sphere solution with the
above effective Planck scale and cosmological constant. Given
that a 4-sphere of radius r has volume V4 = (8/3)π2r4 and scalar
curvature R = 12/r2, this action is

Ssphere = −
24π2M4

P, eff

3eff
. (52)

This gives

Z =
∫

Dα exp
(

− 1

2

∑

i,j

αi1
−1
ij αj

)

exp

[

exp

(

96π2

(

M2
P/2+ α2

)2

(

3+ α1
)

)]

, (53)

where α1 was redefined α1 → −α1.
The key point of this result is the double exponential

enhancement of the measure governing the α-parameter
integration at the point where the effective cosmological constant
vanishes.
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As already emphasized, serious caveats exist and the above
logic is nowadays generally not considered a valid solution to
the cosmological constant problem. First, the measured value of
the cosmological constant is not any more consistent with zero.
Second, firm evidence exists for cosmological inflation, and it
is not clear how such an early quasi-de-Sitter period fits in the
argument for vanishing 3. Finally, as we will discuss in detail in
sections 5.1 and 5.2, the above argument may run into problems
with an overdensity of wormholes (the FKS catastrophe) and the
sign or negative-mode problem of euclidean quantum gravity.

Nevertheless, reinterpretations of Coleman’s mechanism have
recently been explored in the context of the cosmological
constant and other fine tuning problems of the Standard Model
(Kawai and Okada, 2011, 2012; Hamada et al., 2014, 2015).
The authors take a Lorentzian approach to the dynamics of
multiple large universes connected by wormholes. Such a real-
time formulation avoids the problems of the euclidean path
integral of gravity, but at the same time modifies the conclusions
obtained by Coleman. The analysis is based on the Wheeler-
DeWitt wave function for a system of multiple large universes
emerged in an evolving baby universe gas. By tracing out
the unobserved large and baby universes, a density matrix ρ
describing our large universe is derived. The dependence of ρ
on the universe volume z and on the couplings of the effective
action, i.e., on the wormhole-induced α parameters, is studied. A
problematic feature is the divergence of integrals over universe
volumes z arising in the density matrix calculation. It is treated
by an IR cutoff zIR corresponding to a maximum universe size.
Under these assumptions, it is argued that the density matrix
ρ peaks at vanishing cosmological constant, as in Coleman’s
mechanism, albeit with a much milder power-law dependence.
This is interpreted as a prediction for a vanishing effective
cosmological constant at asymptotically large times.

4.2. Axion Potentials From Wormholes
The main current phenomenological interest in wormholes lies
in their interplay with axions. Axions have been an important
ingredient in models of particle physics and cosmology since
they were first proposed as solutions to the strong CP problem,
and have found much wider applications ever since, e.g., as
components of dark matter or as inflaton candidates. From
a top-down perspective, axions are among the most generic
outcomes of string compactifications, and are hence extremely
well motivated (see e.g., Arvanitaki et al., 2010).

Axions enjoy a global shift symmetry φ → φ + ǫ that
prevents the appearance of a potential at the perturbative level.
It is only non-perturbative effects such as charged instantons
and wormholes that can break these symmetries and give
axions a mass. In fact, the explicit example of the Giddings-
Strominger wormhole arises in the presence of axions and
carries a corresponding charge given by (9). This is precisely
the type of object required to generate an axion potential, as we
review next following Rey (1989) (see also Alonso and Urbano,
2017).

Recall the discussion of section 3.3 on the wormhole
correction I[g,φ] to the low energy effective action of a large
parent universe propagating in a plasma of baby universes. It is

given by the effective Hamiltonian (37), which can be written in
the form Rey (1989)

eI = 〈ψ2| exp
[

∑

n∈Z
e−Sw(n)/2Kn

∫

d4x
√

g(x)On(x)(an + a†
−n)

]

|ψ1〉.

(54)

Here, the exponential factor e−Sw(n)/2 has been extracted from
the matrix 1mn, making the dependence on it explicit. The
remainder is denoted by Kn. The states |ψi〉 live in the Fock
space of baby universes on which the parent universe propagates.

Correspondingly, an and a
†
n represent baby universe annihilation

and creation operators.
Baby universes associated to Giddings-Strominger wormholes

carry an axionic charge given by (9). That is, they satisfy [Q, an] =
−nan and [Q, a†

n] = na†
n, where Q generates the U(1) axionic

shift symmetry. This charge is the reason why the combination

(an + a†
−n) appears in (54), generalizing Equation (37): it is

impossible for an observer in the parent universe to distinguish
between the annihilation of a baby universe of charge n, and the
creation of a baby universe of charge −n. These two processes
hence generate the same local perturbation On. Total charge
conservation implies that the effective operators On(x) must be
charged as well [Q,On] = nOn, i.e., they transform as On(x) →
einǫOn(x) under the axionic shift φ → φ + ǫf . From this one
can deduce that the local operators must be of the form On(x) =
einφ/fOS(x), whereOS(x) is a singlet.

One can explicitly evaluate (54) by choosing the baby
universes to be in an α-eigenstate (introduced in section 3.3), i.e.,

|ψ1〉 = |ψ2〉 = |α〉, with (an+ a†
−n)|α〉 = αn|α〉.9 The correction

to the low energy action of a large parent universe propagating in
such a background is hence given by

I =
∑

n∈Z
e−Sw(n)/2Kn

∫

d4x
√

g(x)OS(x)|αn| exp
( inφ

f
+ iδn

)

(55)

=
∑

n∈N0

e−Sw(n)/2Kn

∫

d4x
√

g(x)OS(x)|αn| cos
(nφ

f
+ δn

)

where αn = |αn|eiδn . Of course, it is easy to consider propagation
between more general baby universe states. For example, |ψ1〉 =
|ψ2〉 = |0〉 would lead to an integral of (55) over αn with a
Gaussian measure analogous to (34).

The operatorOS can be expanded in a set of singlet operators,
e.g., O = 1 + aR + . . .. Of these, the most interesting one is
the unit operator, which leads to a potential for the axion. Taking

9Since the operator An : = an + a†
−n is not Hermitian, one may worry that

no basis of eigenvectors exists. To show its existence notice that the operators
Cn : = An + A†

n, C̄n : = i(An − A†
n) are Hermitian. A quick calculation shows

that [Cn, C̄m] = 0, thus Cn and C̄n can be diagonalized simultaneously with
an orthonormal basis. Since 2An = Cn − iC̄n these basis elements are also
eigenvectors of An. This also shows that the eigenvalues of An, which are precisely
the α-parameters, will generically be complex.
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into account only wormholes with charge n = ±1 the induced
potential is of the form

Vw(φ) ∼
|α1|
r40

e−
Sw
2 cos

(

φ

f
+ δ

)

. (56)

The coefficient of the potential is hard to calculate in general. In
most cases (in particular for f < MP) its precise value is not very
relevant due to the dominant exponential suppression e−Sw/2. In
the following, whenever an explicit estimate is needed, we will
follow (Alonso and Urbano, 2017) and use the wormhole neck
radius r40 = C = (24π4f 2M2

P)
−1 as in (56). At this stage, if no

other potential exists, the phase δ ≡ δ1 is unphysical and could be
absorbed by a shift in the axion field. Generically, in the presence
of other terms in the potential, there is no reason why δ1 should
not appear. The dimensionless parameter |α1| depends on the
baby universe state and is not predicted by the theory. For explicit
evaluations one can assume that |α1| is an order one parameter
(Alonso and Urbano, 2017). A possible justification could be the

expectation value
∫

d|α|e−|α|2 |α|2 = √
π/4 of order one. It is

not unreasonable to use the Gaussian distribution since the latter
appears when considering propagation between baby universe
|0〉-vacua. In principle, however, the α-parameters could take any
value.

4.3. Superplanckian Axions
4.3.1. Large Field Excursions and Inflation
One of the most interesting applications of axions is inflation (see
e.g., Baumann, 2011; Baumann and McAllister, 2015; Westphal,
2015 for reviews with emphasis on stringy contexts). The
perturbative shift symmetry that axions enjoy makes them ideal
inflaton candidates in models of large field inflation. In these
constructions, the inflaton traverses distances in field space larger
than the Planck scale, 1φ & MP. Generically, such large field
displacements imply a high UV sensitivity of the model since
higher-order terms in the potential, 1V(φ) ∼ φn+4/µn

UV ,
become relevant (here µUV . MP is a UV cutoff scale). This
may clash with the slow-roll requirement of a smooth potential.
Successful models of large field inflation hence demand a fine
control of UV corrections, as it is indeed provided by axions.

One of the main reasons for the current interest in large field
models is their prediction of observable primordial tensor modes
in the CMB. These are parametrized by the tensor-to-scalar ratio
r. Under mild assumptions, the Lyth bound (Lyth, 1997) relates r
to the inflaton field displacement,

1φ &
( r

0.01

)1/2
MP. (57)

The current experimental bounds (Ade et al., 2015, 2016b,a) are
r < 0.07 (95% confidence level, Planck, BICEP2/Keck-Array
combined), with near future experiments expected to strengthen
this bound significantly. The combination of these searches with
the Lyth bound and the UV sensitivity of large field inflation
provides an ideal playground for testing UV features of effective
field theories and possibly quantum gravity.

As already emphasized, the main challenge facing large field
models is the control of UV corrections. Symmetries are required

to avoid a drastic tuning of higher dimension operators. This
is naturally realized by axions since, due to the shift symmetry
φ → φ + ǫ, the axion potential vanishes automatically. This
symmetry is mildly broken by non-perturbative effects, such as
instantons and wormholes, which generate a periodic potential
of the form

V(φ) = 34
∑

n

e−Sn cos

(

nφ

f
+ δn

)

= 34e−S1 cos

(

φ

f
+ δ1

)

+ . . . . (58)

Here 3 is a typical UV scale and n-dependent non-exponential
prefactors have been suppressed. As discussed previously,
gauge instantons and axionic wormholes induce such potentials
(Equations (6) and (56), respectively). Different harmonics
correspond to instantons/wormholes of different instanton
number/axionic charge n.

The idea of natural inflation (Freese and Kinney, 2015) is to
use the n = 1 term in (58). Neglecting higher harmonics is
justified in many cases due to the expectation that e−Sn ≪ e−S1

for n > 1. Slow roll inflation then requires f > MP (notice that
the maximum field displacement of the canonically normalized
axion is 2π f ). In this simplest form, models of natural inflation
are disfavored by Planck (Ade et al., 2015, 2016a,b). However,
this can be remedied by small corrections, e.g., from higher
harmonics. More importantly, natural inflation continues to play
the role of a “benchmark model” exemplifying in the simpest way
the interplay between UV theory constraints and observations.
Our considerations also have applications in models of axion
monodromy (Silverstein and Westphal, 2008; McAllister et al.,
2010).

One might try to use wormholes to generate the inflationary
potential, but one immediately runs into difficulties.
Semiclassically, the charge-n wormhole action is Sn ∼ nMP/f .
In the regime of interest, f & MP, higher harmonics are not
sufficiently suppressed, e−Sn+1 6 ≪e−Sn , at least for terms with
n . f /Mp. Thus, there is no hierarchy between the first few
terms in the series (58) and hence no perturbative control.

A closely related and more profound issue is the fact that
the lowest charge instantons are microscopic and subject to
strong corrections. The spectrum of microscopic instantons does
not need to resemble the classical spectrum of macroscopic
wormholes (just like the spectrum of charged elementary
particles does not resemble the spectrum of Reissner-Nordstrom
black holes). This suggests that the dominant axion potential will
be generated by some microscopic non-perturbative effect, over
which one has little control, and macroscopic wormholes will
only induce higher corrections. The ideal situation for inflation
would then take the form

V(φ) = 34
inf cos

(

φ

f

)

+
∑

n> nc

34
we

−Sw(n)/2 cos

(

nφ

f
+ δn

)

.

(59)
Here 3inf is the scale of the inflationary potential, generated
by a microscopic instanton. The sum is only over macroscopic
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wormholes, i.e., those whose radius of curvature is larger than
the cutoff lenght.

Given this setup, one may ask how important the wormhole
contribution is Montero et al. (2015) and Hebecker et al. (2015).
To have a successfulmodel of inflation, it should be subdominant:

34
we

−Sw(n)/2

34
inf

≪ 1. (60)

Because of the exponential dependence, this constraint is highly
sensitive to the wormhole action Sw(n) = (π

√
6/4) |n|MP/f . The

dependence on the prefactor 3w is much milder and one can,
as in (56), write 34

w ∼ r−4
n = 24π4f 2M2

P/n
2, where rn is the

radius of the S3 at the neck of the wormhole. The constraint (60)
becomes

34
we

−Sw(n)/2

34
inf

∼ e−(3π3/2) r2nM
2
P

r4n3
4
inf

≪ 1. (61)

This bound takes its tightest form for the wormholes with lowest
charge. One should, however, only consider those which are
controlled in effective field theory, i.e., whose neck radius rn is
larger than a UV cutoff scale rn & µ−1

UV . This condition defines nc
in (59). The constraint can now be further rewritten in terms of
the cutoff (Hebecker et al., 2015, 2017)

e−(3π3/2)M2
P/µ

2
UV

34
inf
/µ4

UV

≪ 1. (62)

One sees that, parametrically, inflation is in trouble in theories
with a high cutoff, µUV ∼ MP. The reason is that one has
an O(1) number in the exponent, hence an O(1) numerator,
and a parametrically small denominator. However, taking into
account the surprisingly large numerical prefactor 3π3/2 and the
value 34

inf
∼ 10−8MP relevant for phenomenological large field

inflation, the conclusion changes dramatically. One finds that the
inequality (62) is saturated at µUV ≃ 2.5MP (corresponding
to rn ≃ 0.4MP). Thus, even the smallest controlled wormhole
solutions appear to be harmless (Hebecker et al., 2017).10

4.3.2. The Weak Gravity Conjecture (WGC)
The inflationary potential (59) is perfectly acceptable from a
(bottom-up) effective field theory perspective. As just discussed,
macroscopic wormholes do not affect this potential significantly.
However, one may be concerned that the contribution from
smaller wormholes was removed by hand, and this is, at least
naively, the dominant one. To argue for generic constraints

10The exponentials in (61) and (62) are highly sensitive to the precise definition
of the cutoff or, equivalently, the critical radius rc above which wormholes are
considered “macroscopic.” This was analyzed in Hebecker et al. (2017) using
string compactifications with gs = 1 and self-dual compactification radius R.
Equating the (appropriate power) of the wormhole S3 volume with the volume
of the compact torus, (2π2r3c )

2 ≡ (2πR)6, one obtains a suppression of e−S/2 ∼
10−68. Imposing instead that the great circle of the S3 be equal to the torus S1s,
2πrc ≡ 2πR, the suppression becomes e−S/2 ∼ 10−13. In neither of these cases are
macroscopic wormholes able to affect inflation. Nevertheless, minor modifications
of the definition of rc could change this conclusion.

coming from this regime, where one loses semiclassical control,
one has to resort to ideas about the quantum gravity swampland.

The concept of the swampland (Vafa, 2005) refers to the
set of apparently consistent low-energy effective field theories
which are, nevertheless, inconsistent with a UV completion
in quantum gravity. It arises most naturally in string theory,
where it represents the complement, in the space of effective
field theories, of the vast landscape of string compactifications.
Effective theories in the swampland are those that cannot arise
from a UV-complete fundamental theory, and in particular from
string theory.

Several criteria have been conjectured to discern whether
a given theory belongs to the swampland. Most of them
refer to properties of the spectra of operators charged under
gauge symmetries. The simplest and perhaps most solidly
founded of the swampland conjectures are the statements that
every symmetry must be local and that the whole lattice of
corresponding gauge charges consistent with charge quantization
must be populated (see e.g., Banks and Seiberg, 2011). That is,
for every symmetry there must exist a gauge potential (Aµ in the
case of a one-form), and there must exist states carrying every
possible set of charges (every integer charge for a singleU(1) with
an appropriate normalization).

A more stringent, albeit more speculative conjecture is the
WGC (Arkani-Hamed et al., 2007a): It states that at least some of
the charged states must be super-extremal, that is, their charge-
to-mass ratio must be larger than that of the corresponding
extremal gravitational solution:

zWGC ≡
( q

m

)

WGC
≥
(

Q

M

)

ext

. (63)

This is generally described as the statement that “gravity is
always the weakest force,” since when (63) is satisfied, the
gauge repulsion of two distant equal-charge objects dominates
their gravitational attraction. In case of a single U(1), the
extremal object corresponds to an extremal Reissner-Nordstrom
black hole, which in appropriate units satisfies zext = M−1

P .11

Since macroscopic gravitational solutions cannot be super-
extremal (super-extremal black holes contain a naked singularity,
violating cosmic censorship), one expects (63) to be satisfied by
microscopic objects. For such states, quantum corrections can
become relevant, pushing them away from extremality.

Now, what does all of this have to do with axions, wormholes
and inflation? In general, abelian gauge theories arise from p-
form gauge fields under which p-dimensional objects (i.e., whose
world-volumes are p-dimensional) are charged. The swampland
conjectures, and in particular the WGC, are expected to hold for
all possible p (Arkani-Hamed et al., 2007a). The case of particles

11The WGC has been motivated by the requirement that no stable bound
states with arbitrary charge should exist. Super-extremal objects implement this
requirement by permitting otherwise stable extremal black holes to decay through
Schwinger pair production. It remains to be rigorously proven, however, that this
requirement arises from fundamental consistency conditions. Unfortunately, the
exciting and active field of the WGC lies outside the scope of this review and we
limit ourselves to the axionic version and the consequences for natural inflation
since this directly relates to our main subject.
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with electric charge corresponds to p = 1, strings coupled to
a two-form field to p = 2 and, most relevant for our interests,
axions can be understood as p = 0 gauge fields, to which “zero-
dimensional” instantons/wormholes couple. This interpretation
can be made manifest by considering a standard one-form gauge
field in 5d, reduced on a circle to 4d. The component of the gauge
field along the circle, the Wilson line, becomes a periodic axion
in 4d, whose periodicity reflects the higher dimensional gauge
symmetry. In this way, one can relate the mass m and charge q
of a 5d particle to the action Sn and axionic charge n of a 4d
instanton, respectively. The WGC (63), when applied to axions
is hence expected to read

(

n

Sn

)

WGC

≥
(

N

SN

)

ext

. (64)

Just like extremal black holes satisfyM/Q ∼ eMP with e the gauge
coupling, one generally expects extremal instantons to satisfy
SN/N ∼ Mp/f . If the WGC (64) is satisfied by the instanton
of lowest charge n = 1, this means that S1f . MP. This is
incompatible with the basic requirements of large field natural
inflation (f & MP) in regimes of perturbative control, Sinst & 1.12

Setups in which the instanton that satisfies the WGC is not the
one of lowest charge have been proposed as a loophole to this
strong constraint (Rudelius, 2015; Brown et al., 2015, 2016) and
are being actively investigated (Hebecker et al., 2015)13.

The main difficulty in making the requirement (64) more
precise is to properly identify what one means by an extremal
instanton/wormhole. In setups where the axion arises from a 5d
gauge field, one can see that the higher dimensional extremal
black holes correspond to the extremal instantons introduced
in section 2.3. However, these setups always involve a dilaton
field (the radius of the compactification circle) for which the
coupling parameter β of Equation (16) is β = 2

√
2/3. Recall

from section 2.3 that wormhole solutions only exist for β <

2
√
2/3. Since themain interest (at least for inflation) is in the case

where the dilaton has been stabilized and disappears from the low
energy theory, i.e., β = 0, the relation to higher dimensional
black holes is lost, along with a rigorous notion of an extremal
instanton/wormhole.

Hence, with our current understanding, some amount of
guesswork is required to properly interpret (64) in a pure
axion-Einstein theory. Following Hebecker et al. (2017), we
will assume that, on the right hand side of the bound,
one needs to use the classical action of a macroscopic
wormhole. With this interpretation, the WGC states that some

12The loss of perturbative control has a particularly nice interpretation in string
theory compactifications, where one generically finds that trans-planckian axions
f & MP arise only in regimes where either the string coupling becomes strong, or
Kaluza-Klein/winding modes become light (Banks et al., 2003).
13More generally, current approaches to large field axion inflation can be
roughly divided into multi-axion (Kim et al., 2005; Dimopoulos et al., 2008) and
monodromy (Silverstein andWestphal, 2008; McAllister et al., 2010; Blumenhagen
and Plauschinn, 2014; Hebecker et al., 2014; Marchesano et al., 2014) models
(also useful in the relaxion mechanism Graham et al., 2015). The WGC and
related swampland ideas can be generalized to such setups, and lead to interesting
phenomenological features and constraints. The strength of these depends on
subtleties in the precise formulation of the WGC and is being intensely debated.

microscopic “wormhole” has a charge-to-action ratio larger than
its macroscopic counterpart, i.e., that Sn ≤ (π

√
6/4) |n|MP/f .

Finally, we return to the effective model of natural
inflation (59). As discussed before, the sum over macroscopic
wormholes is generically suppressed strongly enough to
be ignored. Ideally, one could hope that the uncontrolled
microscopic wormholes somehow disappear from the low
energy theory. However, the WGC implies14 quite the opposite,
namely that (at least some) microscopic wormholes/instantons
are less suppressed than their macroscopic counterparts and
inflation is strongly affected.

A possible caveat to this conclusion is the implicit assumption
that all instantons enter the potential with O(1) prefactors.
This, however, is not in principle required by the WGC. The
smoothness of the inflationary potential may be preserved if
the coefficients of dangerous corrections vanish or are highly
suppressed, i.e., if 1V ≪ 34

inf
(see de la Fuente et al., 2015 for

a model potentially realizing this possibility).
To discuss this point more generally, one can split the

correction to the potential according to

1V = 1V1 +1V2

1V1(φ) ∼
∑

n r
−4
n e−Sn for rn ≫ µ−1

UV
with
1V2(φ) ∼

∑

n r
−4
n (µUVrn)

α e−Sn for rn . µ−1
UV ,

(65)

with α > 0. Here 1V1 comes from macroscopic instantons or
wormholes and is harmless, as explained above. By contrast,1V2

comes from their microscopic counterparts and is dangerous
according to the WGC. The reason is that small, low-charge
instantons are not exponentially suppressed, e−Sn ∼ O(1) for
n ∼ O(1). However, the prefactor of those instantons can be
smaller than the naively expected r−4

n . This has been has been
parametrized by including a factor (µUV rn)α .

As an example, let the microscopic instantons be gauge
instantons of some non-abelian 4d gauge theory. The presence
of charged fermions of massm does not affect the contribution of
large instantons (relative to 1/m). By contrast, the contribution
of small instantons is suppressed by (mrn)α with α proportional
to the number of fermions (as in the lower line in (65)). An
analogous suppression can arise in the case of brane-instantons
due to the presence of fermionic zero-modes. These are generally
lifted by the SUSY breaking required for inflation. The formula
(65) is grossly oversimplified in that just a single threshold, µUV ,
occurs. It is only intended to illustrate how the smallness of
corrections could in principle come about. Indeed, one sees that
1V≪Vinf ∼ H2M2

P may be satisfied (for appropriate α) together
with H . µUV ≪MP. Finding specific implementations of such
a mechanism remains challenging.

To summarize: effects of macroscopic wormholes in the low
energy Einstein-axion theory are in general not strong enough to
constrain models of natural inflation. Nevertheless, expectations
based on the WGC place potentially strong bounds on such

14More precisely, this requires one of the stronger forms of the conjecture. For
example, one may demand that the instanton satisfying the bound Sn/n < MP/f

has n = 1 or at least n ∼ O(1).
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models. In particular, trans-Planckian axion decay constants are
expected to arise only in regimes where perturbative control is
lost, e.g., where microscopic wormholes/instanton spoil slow-roll
conditions. Several possible ways around such constraints exist
and are being actively studied. Whether such loopholes can be
implemented in specific (string theory) setups is the subject of
ongoing research.

4.4. Subplanckian Axions and Goldstone
Bosons
Sub-Planckian axions f < MP are not suitable to accommodate
inflation but they are extremely interesting in other
phenomenological setups. Again, it is their shift symmetry
and the resulting exponential suppression of their masses that
makes them stand out among the plethora of fields relevant at
low energy.

Let us repeat here for convenience the wormhole induced
axion potential (56):

Vw(φ) ≈
|α1|
r40

e−Sw/2 cos

(

φ

f
+ δ

)

. (66)

The mass induced by this potential is given by

m2 = 24π4M2
P|α1|e−Sw/2 = 24π4M2

P|α1|e
− π

√
6

8
MP
f . (67)

In contrast to trans-Planckian axions, for a decay constant
smaller than the Planck scale the wormhole contribution is
strongly suppressed through the exponential e−Sw/2. This ensures
that the axion is very light, making it suitable for many
phenomenological applications. The exponential dependence
implies that small changes in f drastically change the value of m,
allowing for a wide range of values for the mass. This observation
will be a recurring theme in the following.

Another feature specific to sub-Planckian axions is that even
wormholes of unit charge are macroscopic, in the sense that
the size of their throat r0 is larger than the Planck scale. This
is a rather peculiar property, but it is necessary for (66) to be
trustworthy. More in general, in an effective theory with UV
cutoff µUV , the validity of (66) requires r−1

0 ∼
√

fMP < µUV .
If the cutoff scale becomes too low, one may expect sizeable
corrections to the action of the wormholes with lowest charge.15

The results described in this section assume the validity of (66),
with Sw taking its classical value. The important caveat just
mentioned should nevertheless be taken into account when
interpreting these results.

We proceed now to review potential phenomenological
applications of axions with an induced wormhole potential of the
form (66). Significant parts of our discussion follows (Alonso and
Urbano, 2017)16.

15The scale µUV ∼
√

fMP itself arises in the context of the (magnetic) WGC as
an intrinsic UV cutoff. The unit charge wormhole lies precisely at this scale, and is
hence potentially subject to relatively sizeable corrections to its action.
16Mild discrepancies with the results of Alonso and Urbano (2017) arise from
the inclusion of a (Gibbons-Hawking-York) boundary contribution to the action
of a semi-wormhole in Alonso and Urbano (2017). Our perspective is that of a
summation over full wormholes, where no such contribution arises. The semi-
wormhole factor e−Sw/2 appears only effectively through a rewriting.

4.4.1. Black Hole Superradiance and Bosenovas
As just explained, axions play a special role in testing quantum
gravity, especially wormhole or baby universe effects. The reason
is their extremely suppressed potential. Furthermore, assuming
that the relevant α parameters take their natural O(1) value, the
potential and hence the mass are predicted in terms of the decay
constant.

However, a generic (in particular non-QCD) axion is hard
to observe. One classical possibility is black hole superradiance
(Damour et al., 1976; Zouros and Eardley, 1979; Detweiler, 1980).
This term characterizes the energy deposition by a spinning
black hole into a light scalar field, not-necessarily an axion, of
suitable mass. The relevance for the discovery of axions has been
emphasized in the context of the “string axiverse” (Arvanitaki
et al., 2010) and continues to receive much attention (see
e.g., Arvanitaki et al., 2015, 2017; Brito et al., 2017a,b; Cardoso
et al., 2018). A recent discussion in the wormhole context appears
in Alonso and Urbano (2017).

The dependence of superradiance on the most important
physics parameters are easily explained. Consider a spinning
black hole with massM, angular momentum J and typical radius
R ≡ M/8πM2

P. One generally uses the spin parameter a =
J/M to characterize its rotation, with a = R correspnding
to extremality.17 Superradiance is a classical instability which
draws energy from the black hole and deposits it in the field
oscillations of a light scalar, localized in a spherical region outside
the horizon. Very roughly, one may think in terms of (classical
analogs of) electron shells of an atom being populated by this
scalar. The effect relies on the black hole being near extremality
and on the Compton wavelength of the axion being comparable
to the black hole radius, R ∼ 1/m.

It is instructive to consider what happens if this latter
condition is not met (Arvanitaki et al., 2010): For an extremal
black hole and R ≫ 1/m, the instability time scale is given by
Zouros and Eardley (1979)

τ ≃ (107 R) exp (1.84mR). (68)

In this regime, the Compton wave length is small and only modes
with a large angular excitation superradiate. But such modes
experience a high and thick centrifugal barrier, leading to an
exponential suppression of the rate 1/τ . For subcritical a the
exponential suppression is even stronger. In the opposite regime
R≪ 1/m, one has (Detweiler, 1980)

τ = 24R (R/a) (mR)−9. (69)

In this limit, lowmodes are available for superradiance. However,
the potential well is now very wide and themodes spread out. One
may say that the scalar’s Compton wavelength is too large such
that the small overlap with the black holes induces a suppression.

Efficient superradiance hence requires a relation between the
black hole mass and the axion Compton wavelength. Stellar black
holes (2 − 100M⊙) correspond to axion masses of 10−13 −

17Intuitively, a is the radius which a shell with mass M, rotating at the speed of
light, would need to have to generate J. It can not exceed the Schwarschild radius
corresponding toM.
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10−10eV and supermassive black holes (106−108M⊙) to 10−19−
10−16eV. The crucial signal for an axion in one of these regions
would be gaps in the spectrum of rotating black holes. At present,
spin and mass observations of stellar black holes exclude the
range (Arvanitaki et al., 2015)

6× 10−13eV . m . 2× 10−11eV. (70)

Note that a detection of axion-induced superradiance is also
possible through gravitational waves. The gravitational wave
signals from, e.g., axion annihilation or axion transitions may
be detected by future experiments at LIGO, VIRGO and at LISA
(Arvanitaki et al., 2015, 2017; Brito et al., 2017a,b; Cardoso et al.,
2018).

In our context, i.e., for a pure-quantum-gravity potential, the
relation (67) between mass and decay constant may in principle
provide information beyond the generic axion case. Of course,
the mass is subject to the uncertainties from the α parameter and
fluctuation determinant. However, as can be seen by solving (67)
for f ,

f = MP (π
√
6/8)

ln(24π4M2
P|α1|/m2)

, (71)

the sensitivity to these uncertainties is extremely week. Indeed,
for |α1| = 1 the above excluded mass window corresponds to the
surprisingly narrow range 1.23×1016GeV. f . 1.28×1016GeV.
Thus, under the above assumptions, an axion discovery at the
edge of the present mass window would imply a very precise
determination of f . Similarly, the mass window 10−19eV. m .

10−16eV accessible via supermassive black holes translates to
1.06×1016GeV. f . 1.13×1016GeV. However, the key question
is then whether an independent measurement of f for such a
“quantum gravity axion” is conceivable.

It turns out that the answer to this question is positive:
To measure the mass, it suffices to study superradiance at
linear order. However, to get independent information about f ,
higher-order terms in the cos(φ/f ) potential have to be probed.
This is possible, for example, in the context of the so-called
bosenova. The term derives from analogous condensed matter
phenomena (Donley Elizabeth et al., 2001). In a bosenova, the
self-interactions of the growing axion cloud around the black
hole lead to a dynamical collapse: Part of the extracted energy is
ejected and the rest returned to the black hole. This may happen
multiple times until enough spin has been extracted from the
black hole and superradiance (at least for the given level) is lost
(Yoshino and Kodama, 2012).

Among the observable effects are a continuous gravitational
wave signal as well as bursts of gravitational waves. For the
continuous case, an analysis based on a possible axion cloud
of the stellar black hole Cygnus X-1 was reported in Yoshino
and Kodama (2015a). Assuming that the LIGO upper limit is
similar to that for gravitational waves from rotating distorted
neutron stars, an expected exclusion range was derived. For
1.1 × 10−12eV < m < 2.5 × 10−12eV, it restricts f to lie
below 1015–1016GeV. This can be understood intuitively since,
as f grows, the bosenova cuts off the superradiance instability

at higher axion densities, leading to larger signals. Notice that
the bound on f is in the range relevant for wormhole induced
potentials as discussed above. Realistic detection prospects exist
also for gravitational wave bursts (Yoshino and Kodama, 2015b).
Present limitations of the theoretical analysis are related to the
need for including backreaction and extending certain parts of
the numerics from the Schwarzschild to the Kerr solution (for
details see e.g., Yoshino and Kodama, 2015b).

4.4.2. QCD Axion
For the QCD axion an interesting observation can be made
(Alonso and Urbano, 2017). The total potential, including the
contribution from the usual QCD instantons, is given by

V(φ) = −34
QCD cos

(

φ

f

)

− 1

r40
e−

Sw
2 cos

(

φ

f
+ δ

)

, (72)

where the axion φ is defined such that the QCD instanton
induced potential is minimized at φ = 0. The phase δ is redefined
accordingly and is generically non-zero since there is no obvious
reason for the two terms in the potential to have the same
minimum. Furthermore, the |α1| parameter has been set to one.

The dependence of the axion mass on the decay constant is
interesting. With increasing f , the QCD contribution decreases
while the wormhole one grows. Hence, the axion mass features
a minimum as a function of f . It is not unreasonable to
expect, on theoretical grounds, that gravitational effects are
subdominant with respect to gauge contributions. This requires
that f . 1.4 × 1016 GeV. This bound can also be derived
from phenomenological considerations. The the phase of the
wormhole contribution implies a shift of the minimum of the
potential and hence a non-zero QCD θ-parameter θeff. The
experimental bound θeff . 10−10 coming from the neutron
electric dipole moment constrains the wormhole contribution.
Specifically, assuming sin(δ) ∼ O(1), one finds a bound on the
decay constant f . 1.2 × 1016 GeV. One might have suspected
that the tight requirement θeff . 10−10 would lead to a stronger
bound on f . This is not the case, however, due to the strong
exponential dependence of the wormhole contribution.

In the regime of small wormhole corrections, one can expand
the potential (72) and obtain the axion mass and effective θeff
parameter as functions of f ,3QCD andMP:

m2 ≈
34

QCD

f 2
+ 24π4M2

P cos(δ) exp
(

− π
√
6

8

MP

f

)

(73)

θeff ≈ 24π4 sin(δ)
f 2M2

P

34
QCD

exp
(

− π
√
6

8

MP

f

)

. (74)

Theminimal mass obtained from (73) ism & 4×10−9 eV. Notice
that the bound coming from superradiance described above is
irrelevant in this case.

4.4.3. Axions as Dark Matter
Despite its success on scales larger than 10kpc, the scale of
stellar distributions in typical galaxies, it is not clear yet if the
cosmological 3CDM model is consistent with observations at
smaller distances (Weinberg et al., 2015). The tension arises
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from the cuspy halo cores and an abundance of satellite
galaxies predicted by numerical simulations but incompatible
with observations. Using an extremely light scalar field with mass
10−22 − 10−21eV, it is possible to construct a model of dark
matter with the same large scale predictions as CDM, in which,
however, these problems are absent. The key idea here is that
the large Compton wavelength of a light particle can suppress
the formation of structures on sufficiently small scales. This dark
matter model goes by the name of Fuzzy DarkMatter (FDM) (Hu
et al., 2000).

Because of its extreme lightness, an axion with the induced
potential (66) is an ideal candidate for FDM. Information
about the possible values of f can be obtained by reproducing
the observed relic abundance via the misalignment mechanism
(Abbott and Sikivie, 1983; Preskill et al., 1983; Dine and Fischler,
1983). Assuming an initial misalignment angle of order one
θi = φi/f ≈ 1, the axion contribution to today’s energy density
(normalized by the critical energy density) is given by Arvanitaki
et al. (2010) and Kim and Marsh (2016) (see also Hui et al., 2017)

�ah
2 ≈ 0.1

(

f

1017GeV

)2
( m

10−22eV

)
1
2

(75)

where h = 0.678 is the dimensionless Hubble parameter.
Requiring that the axion accounts for (a large fraction of) the
measured dark matter energy density, i.e., that �ah

2 ≈ 0.1,
implies a relation between the axion mass and its decay constant.
For the FDM range of masses 10−22 . m . 10−21 eV the axion
decay constant must lie in the range 5.6× 1016 . f . 1017 GeV.

It is interesting to compare these relations to those predicted
by a wormhole induced mass (again using |α1| ∼ O(1) as a
benchmark) (Alonso and Urbano, 2017). Plugging (67) into (75),
one obtains that the correct relic density is obtained when f ≈
1016 GeV, which corresponds to an axionmassm ≈ 7×10−19 eV.
While still valid as a candidate for dark matter, this mass is above
the appropriate regime for the FDM scenariom . 10−21 eV. For
the FDM setup, the exponential suppression e−Sw/2 is too strong
to obtain the full dark matter relic abundance.

This conclusion is rather general and relates to the WGC
described in section 4.3.2: Consider a generic non-perturbative
axion mass m2 = M2

P e
−Si . A mass in the FDM range m .

10−21 eV requires Si & 220. At the same time, obtaining the
right relic abundance through Equation (75) requires a rather
large decay constant f & 5.6 × 1016 GeV. These two estimations
combined lead to the interesting but potentially troublesome
relation fSi & 5MP. The situation is similar to that of natural
inflation described in section 4.3.2: demanding the production
of enough FDM pushes instanton effects into the sub-extremal
range fSi & MP. This regime conflicts with the WGC which
requires the presence of super-extremal (and hence naively
dominant) instantons.

Of course, this conclusion is subject to several caveats. First,
the exponential dependence on the instanton action makes the
constraint highly sensitive to the precise extremality bound
that enters the WGC. As previously discussed, the WGC for
wormhole generated potential suggests fSi ≤

√
6πMP/8 ≈

0.96MP. Other setups (e.g., axio-dilaton instantons) provide

slightly different numerical bounds, but none of them seem
to prevent the conflict. Second, the dark matter abundance
expressed by Equation (75) assumes an initial angle of axion
misalignment θi = φi/f ≈ 1. Larger initial displacements can
lead to an enhanced axion density. Specifically, for generic−π <
θi < π , Equation (75) should read

�ah
2 ≈ 0.1

(

f

1017GeV

)2
( m

10−22eV

)
1
2
θ2i f (θi). (76)

The function f (θi) accounts for anharmonicities of the potential
when the initial value of the axion is close to maximum θi → π ,
where it diverges. Using the approximate analytic expression for
f (θi) given in Visinelli and Gondolo (2009), one can estimate that
an initial tuning θi ≈ 0.91π leads to the correct relic abundance
form ≈ 10−21 eV and fSi ≈ Mp.

A third caveat is the fact that, as discussed around
Equation (65), the energy scale at which instantons generate a
mass may be lowered if a UV cutoff µUV exists below the Planck
scale, e.g., due to the presence of fermionic modes. Consider an
axion mass of the form m2 = µ2

UVe
−Si , and assume that the

instantons saturate the bound fSi ≈ MP. It is easy to see that the
linear dependence of m on µUV (as opposed to its exponential
dependence on Si) requires an extremely low instanton scale. In
fact, for generic initial misalignment θi = 1, the cutoff scale
should be µUV ≈ 10−12 eV. When the potential is generated by
wormholes, a similar suppression could be in principle achieved
by tuning the |α1|-parameter.

Finally, as in its applications to large field inflation, mild
formulations of the WGC allow for loopholes in which sub-
extremal instantons dominate the potential, and hence avoid the
above constraints. In particular, systems with multiple axion are
being actively investigated in this respect (see e.g., Bachlechner
et al., 2018).

The above mechanisms can quite possibly reconcile axions
as candidates of FDM with the WGC. It is nevertheless
very interesting that such models, motivated mainly by their
phenomenological applications, are probing quantum gravity
constraints.

Whether fuzzy or not, axions and their induced gravitational
potentials provide well-motivated dark matter candidates.
Further phenomenological features, such as the formation and
stability of substructures (e.g., axion stars or oscillons) also
depend on the ratio of f and m. These will hopefully be
experimentally probed in the near future. Moreover, direct
detection experiments such as CASPEr (Jackson Kimball et al.,
2017) and HeXeniA (Crespo Urrutia et al., unpublished) can also
be expected to test the regime of extremely small (QCD-) axion
masses in the foreseeable future (see also Alonso-Álvarez and
Jaeckel, 2017).

In summary, there exists by now a whole set of promising
phenomenological directions probing very light scalars,
especially axions, which relate in a non-trivial way to quantum
gravity and gravitational instantons.
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5. CONCEPTUAL ISSUES

The discussion of wormholes presented so far has glossed over
some fundamental questions which may change our perspectives
on, or even invalidate, several of the results described in previous
sections. Some of these issues were recognized and thoroughly
discussed immediately after the first wormhole solutions were
constructed, while others have been raised more recently, when
wormholes have been considered in string and holographic
setups. It is fair to say, nevertheless, that none of them has been
fully understood yet. It is possible that the correct interpretation
of wormholes and topology change will remain obscure until
a controllable non-perturbative description of quantum gravity
is found. It may well be, on the other hand, that the puzzles
posed by wormholes can guide us in the pursuit of such a
theory.

5.1. FKS Catastrophe
Following Coleman’s intriguing proposal for a wormhole-based
solution to the cosmological constant problem (Coleman,
1988c), Fischler, Kaplunovsky and Susskind have argued that
an inconsistency may be hidden in the underlying calculation
(Fischler and Susskind, 1989; Kaplunovsk, unpublished).
Concretely, they extended Coleman’s argument by including
an R2 term in the action and by allowing for Wilsonian
renormalization group (RG) running. As a result, they
found an overdensity of wormholes, even of those with large
radius.

The analysis of Fischler and Susskind (1989) follows that of
Coleman (cf. section 4.1) very closely: The starting point is the
action

S[g] =
∫

d4x
√
g

(

3− M2
P

2
R+ γR2 + · · ·

)

=
∫

d4x
√
g
∑

i

λiOi (77)

with λ1 = 3, λ2 = −M2
P/2 and λ3 = γ . The partition function,

including wormholes and multiple large universes, reads

Z =
∫

Dα exp



−1

2

∑

i,j

αi1
−1
ij αj





exp

(

∫

Dg exp

(

−
∫

d4x
√
g
∑

i

(λi − αi)Oi

))

. (78)

As before, the integral over metrics is performed in the saddle
point approximation. This amounts to evaluating the action of
(77) on a sphere of radius r and extremizing in r. But, on
dimensional grounds, the R2 part of the action, evaluated on a
sphere, gives an r-independent contribution. Hence the euclidean
de-Sitter solution of Section 4.1 remains entirely unchanged. The
resulting partition function is an exact copy of (53), except that
the R2 part has to be added to the saddle-point action in the

double exponent:

Z =
∫

Dα exp
(

− 1

2

∑

i,j

αi1
−1
ij αj

)

exp

[

exp

(

96π2

(

M2
P/2+ α2

)2

(

3+ α1
) + (γ + α3)

)]

. (79)

Again, α1 has been redefined α1 → −α1, and γ and α3 have been
rescaled to avoid numerical prefactors.

Now, by the samemechanism that drives α1 to−3 (Coleman’s
solution of the cosmological constant problem), the parameter
α3 is driven to infinity. This will turn out to be problematic.
To explain the issue, the Wilsonian RG perspective is
useful.

Start with the effective action at some UV length scale ρUV.
The wormholes to be integrated out come in all sizes ρ > ρUV.
Indeed, even in the simple Giddings-Strominger case with a
single axion, the different wormhole charges give rise to a discrete
set of wormholes of different radii. Thus, one can think of going
down in energy in a renormalization-group-like way: One first
integrates out wormholes of sizes ρ ∈ [ρUV, ρ1], then those
with ρ ∈ [ρ1, ρ2], and so on (with ρUV < ρ1 < ρ2 < · · · ).
Very schematically, the previous formulae can be adjusted to this
perspective by

∫

Dα →
∏

ρ

∫

Dα(ρ) (80)

and

λi − αi → λi −
∑

ρ

αi(ρ). (81)

The above wormhole-induced change of the couplings follows
from iterating the basic step

λi(ρ +1ρ) = λi(ρ)− αi(ρ). (82)

In addition to (and intertwined with) this stepwise
renormalization by wormholes, the usual RG running takes
place. According to Fischler and Susskind (1989), the combined
effect may be described by a set of modified RG equations,

dλ̃i(ρ)

d ln(ρ)
= −β

(

λ̃i(ρ)
)

− α̃i(ρ) , (83)

where λ̃i = λiρ
dim(λi) and α̃i = αi(ρ)ρdim(αi) are the

dimensionless coupling constants and α parameters, respectively.
The first part of (83) is just the standard general form
of an RG equation, the additional α̃i terms encode the
wormhole effect. A redefinition of the αi is necessary when
deriving this from the above stepwise procedure (i.e., when
taking the continuum limit 1ρ → 0). This is left implicit
here.
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It will be useful for what follows to spell out the leading terms
in the β function for the simple three-operatormodel considered:

d3̃

d ln(ρ)
= 43̃+ c1 + 3̃/M̃2

P + γ /M̃2
P + · · · + α̃1(ρ) (84)

dM̃2
P

d ln(ρ)
= 2M̃2

P + c2 + 3̃/M̃2
P + γ /M̃2

P + · · · + α̃2(ρ) (85)

dγ̃

d ln(ρ)
= c3 + 3̃/M̃2

P + γ /M̃2
P + · · · + α̃3(ρ). (86)

Here the two leading terms 43̃ and 2M̃2
P correspond to the naive

scaling dimension of the operators. The terms ci arise through
the quartic, quadratic and logarithmic divergence of the three
operator coefficients in question. The numerical prefactors of all
other terms have been suppressed for brevity18.

As the above discussion shows, the Wilsonian procedure
of integrating out high-scale perturbative fluctuations and
wormholes induces a dependence of each effective coupling
constant λi on all the α parameters. The relevant distribution
function, e.g., in (79), hence becomes

P(α) = exp

(

24π2MP(α)4

3(α)
+ γ (α)

)

, (87)

where in the FKS truncation α ≡ {α1,α2,α3} and the analysis
is restricted to the single-universe-case for simplicity (hence no
double-exponent). We suppress the further complication that
one needs a different αi for each ρ, for the whole range of ρ. It is
sufficient to consider higher scales as having been integrated out,
such that P(α) is interpreted as governing the physics at some low
effective scale 1/ρ, with a single set of α parameters, αi = αi(ρ),
all belonging to that scale.

The next key point is to understand how the α parameters
are related to the wormhole density. To see this, return to the
simple toy model with only one wormhole type and thus one α-
parameter. Consider the Taylor-expansion of the α distribution:

P(α) =
∞
∑

n=0

cn α
n. (88)

Under the integral over the α-parameters, this can be rewritten
using baby universe operators, cf. (33). Thus, the nth term in
the expansion corresponds to an amplitude with the insertion of
n baby universe operators. It represents a configuration with n
wormhole ends. The average number of such wormhole ends is
then given by

N = 1

P(α)

∞
∑

n=0

n cn α
n = 1

P(α)
α
∂P(α)

∂α
, (89)

18A very naive way to derive, for example, the first equation is to write the loop
corrected cosmological constant in the schematic form 3 = 30 + c1µ

4 +
γµ6/M2

P + 3µ2/M2
P . Here the correction terms correspond to the usual one-

loop quartic divergence and the leading one-loop tadpole diagrams involving γ
and 3 itself. The expression (∂/∂ lnµ)(3/µ4) gives our desired perturbative β-
function if one identifies the regulator scale µ with 1/ρ. Explicit formulae for such
β-functions have more recently appeared in the context of “asymptotic safety,” see
e.g., Reuter (1998), Litim (2004), and Falls et al. (2016).

where P(α) appears in the denominator for normalization.
Utilizing (87) now gives

N ∼ −MP(3)4

3(α)2
α
∂3(α)

∂α
+ MP(3)2

3(α)
α
∂MP(3)2

∂α
+ α ∂γ (α)

∂α
,

(90)
where several unwieldy numerical prefactors were suppressed.

The curvature-squared of the classical 4-sphere solution is
∼ 3/M2

P. Dividing by the corresponding volume, V4 ∼ M4
P/3

2,
gives the wormhole density

ν = N

V4
∼ −α ∂3(α)

∂α
, (91)

where only the leading term in the limit of small 3 have been
kept. It is easy to see that the above logic goes through also in the
case of multiple α parameters, giving

ν ∼ −
∑

i

αi
∂3(α)

∂αi
. (92)

Since α3 is driven to infinity, the third term will dominate this
expression. The relevant α3 dependence of 3 follows from the
γ term on the r.h. side of (84). This is clear since γ involves an
additive α3 contribution according to (86). Thus,

ν ∼ α3
∂

∂α3
3 ∼ α3

∂

∂γ

(

γ

M2
Pρ

2
· 1

ρ4

)

∼ α3

M2
Pρ

6
. (93)

However, the maximum attainable density of wormholes of size
ρ is given by ν ∼ ρ−4. Since α3 is driven to large values, (93) will
saturate this bound, corresponding to the maximal α3 value

α3 ∼ M2
Pρ

2. (94)

It follows that the path integral is dominated by close packing
configurations. Moreover, this effect persists as ρ increases,
contrary to the expectation that large wormholes should be
suppressed.

Arguments against this so-called FKS or giant wormhole
catastrophe were raised in Preskill (1989) and Coleman and
Lee (1989), but both proposed resolutions were criticized
by Polchinski in Polchinski (1989b). According to Preskill
(1989), small wormholes can, when they are packed sufficiently
densely, “crowd out” larger wormholes. This “excluded volume”
resolution has been criticized in Polchinski (1989b) on the
grounds that it violates the Wilsonian RG perspective: The effect
of small wormholes should not bemore drastic than to change the
parameters of the effective action at lower energies. Moreover, an
explicit toy model calculation was presented to demonstrate that
the proposed excluded volume mechanism fails to suppress large
wormholes.

The argument of Coleman and Lee (1989) is related but
different at the technical level. Here, it is suggested that
small wormholes induce charge violating interactions which
are sufficiently strong to destabilize larger wormholes. From
a microscopic perspective, small wormholes “bleed off” the
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charge stabilizing the large ones. While this mechanism can be
consistent with a Wilsonian RG perspective, it is clearly peculiar
to the Giddings-Strominger and related wormhole solutions for
which charge (or 3-form flux) is essential. Polchinski (1989b)
argues against this resolution on the grounds that our focus on
classical saddle points is merely due to our technical inability to
treat more general topology-changing transitions (e.g., euclidean
wormholes which do not solve the classical equations of motion).
If included, such more general wormholes will not fall victim to
the destabilization effect of Coleman and Lee (1989), reinstating
the FKS catastrophe.

Finally, as emphasized in Hawking (1990b), the divergence of
the measure P(α) in certain regions of the α parameter space calls
for regularization. Depending on the cutoff procedure, different
preferred values for the α parameters and hence the effective
couplings may be obtained. This can affect both the original
argument for vanishing 3 as well as the “infinite force” driving
α3 to infinity and leading to the giant wormhole problem.

5.2. Euclidean Quantum Gravity and
Negative Modes
The most immediate suspicion that wormholes should give rise
to is that they are based on a very poorly understood sum over
four-geometries and topologies, described by the euclidean path
integral of quantum gravity. As is well known, this formulation
suffers from serious technical and interpretational pitfalls.

Of course, the non-renormalizability of quantum gravity
implies that the effective description in terms of the Einstein-
Hilbert action will break down at some UV scale (e.g., the
string scale) at which new degrees of freedom (excited string
modes) will become important. This should not, however, pose
an obstacle as long as considerations are restricted to wormholes
whose size is much larger than the UV scale, i.e., ρ≫ ℓUV .

Much more worrisome is the fact that the euclidean version of
the Einstein-Hilbert action is unbounded from below. Consider
a conformal transformation gµν → �2gµν , under which

S = −1

2

∫

d4x
√
g R −→ S = −1

2

∫

d4x
√
g�2R

−3

∫

d4x
√
ggµν∇µ�∇ν� (95)

By choosing a rapidly varying conformal factor �, one can
make the action arbitrarily large and negative, even when the
original metric gµν satisfies the equations of motion (Rµν = 0
in the absence of a cosmological constant). As a consequence,
saddle points of the action, including the Giddings Strominger
wormhole, necessarily possess negative modes.

This infamous conformal factor problem has been the subject
of much debate, and several prescriptions have been given
in order to avoid it. The most common approach, that of
Gibbons, Hawking and Perry (GHP) (Gibbons et al., 1978),
amounts to a rotation in the path integral contour such that
the conformal factor of the metric takes imaginary values
(see Schleich, 1987; Hartle and Schleich, 1988; Mazur and
Mottola, 1990 for further discussions). This prescription provides
us with a satisfactory action which is bounded from below,

but has dramatic consequences for Coleman’s argument for a
vanishing cosmological constant described in section 4.1 (and
perhaps more generally for Baum and Hawking’s mechanism
Baum, 1983; Hawking, 1984, of which Coleman’s is a particular
implementation). The vanishing of the cosmological constant
arises from divergent probability amplitudes of the form P(α) ∼
exp

[

exp
(

1
43(α)κ4(α)

)]

, whose ultimate origin is the conformal

factor problem. A complex contour of integration leads to
a better defined euclidean quantum gravity, but it results in

a crucial change of sign P(α) ∼ exp
[

exp
(

− 1
43(α)κ4(α)

)]

or P(α) ∼ exp
[

− exp
(

1
43(α)κ4(α)

)]

, depending on how

the contour rotation is precisely implemented. Either way,
these amplitudes give no explanation of the smallness of the
cosmological constant (Fischler et al., 1989; Polchinski, 1989c).

The conformal factor problem also obscures the correct
interpretation of wormholes in a different respect. It is well
known that, in non-gravitational theories, minima of the
euclidean action give a real contribution to the ground state
energy, breaking the degeneracy of classically equivalent vacua,
e.g., by inducing non-perturbative potentials for axions. In the
presence of a negative mode the corresponding contribution
to the energy becomes pure imaginary (from the one-loop
determinant contribution), signaling an instability of a classical
vacuum against tunneling (Coleman, 1979, 1988b). These
statements, however, do not generalize straightforwardly to
gravitational theories where there is no direct correlation between
the euclidean path integral and the WKB prescription, and so
the correct interpretation of negative modes remains unclear
in this case (Lavrelashvili et al., 1985; Tanaka and Sasaki,
1992; Lavrelashvili, 1998; Tanaka, 1999; Khvedelidze et al.,
2000; Lavrelashvili, 2000; Gratton and Turok, 2001; Hackworth
and Weinberg, 2005; Dunne and Wang, 2006; Lavrelashvili,
2006; Brown and Weinberg, 2007; Battarra et al., 2013; Yang,
2013; Lee and Weinberg, 2014; Lee, 2014; Koehn et al.,
2015).

The conformal factor problem would naively suggest that
there is an infinite number of negative modes around wormhole
solutions. The gravitational action, however, is largely redundant
due to its invariance under diffeomorphisms. In order to properly
count the number of the negative modes, one should carefully
fix the gauge and take constraints into account to identify
the physical degrees of freedom of the theory. The negative
modes in the conformal sector of the metric are expected to
be removed in the process, possibly by the GHP or similar
prescriptions. There is an important caveat, however, when one
tries to apply this procedure to wormholes. The gauge constraints
can only be properly taken into account in the real-time
theory, around solutions of the lorentzian equations of motion.
Topologically non-trivial manifolds such as wormholes do not
admit non-degenerate metrics, and hence cannot represent such
real solutions19.

19In two dimensions this is known as the Anderson-DeWitt problem (Anderson
and DeWitt, 1986) (see also Strominger, 1994), but it is generic to higher
dimensions as well (Horowitz, 1991).
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These subtleties in the interplay between gauge redundancies
and constraints, and the transition to euclidean space, have led
to contradictory statements regarding the role of negative modes
around wormhole solutions. Rubakov and Shvedov have argued
in Rubakov and Shvedov (1996a) that, after implementing the
GHP rotation, one physical negative-action deformation of the
Giddings Strominger wormholes exists. This was interpreted as
an instability of large parent universes against decay by emission
of baby universes. It has been argued (Barvinsky, 1998), however,
that such a negative deformation, being in the conformal sector
of the metric, should correspond to a gauge degree of freedom
and hence disappear from the spectrum. In fact, an alternative
computation in which physical modes were identified in the
Lorentzian theory (where the wormhole solution is complex), has
more recently found no negative modes (Alonso and Urbano,
2017). The issue becomes even more obscure in the presence
of extra scalar fields (such as the dilatons of section 2.3),
where scalar and metric deformations are intertwined (Kim
et al., 1997; Khvedelidze et al., 2000), or in the presence
of a cosmological constant. The appropriate interpretation of
negative modes around wormhole solutions is hence still an open
question.

The above considerations make it clear that the path integral
approach to quantum gravity and the role played by gravitational
instantons are still obscure. Our degree of understanding of
different issues is quite disparate. While still mysterious in many
aspects, the euclidean path integral has illuminated important
setups of quantum gravity, several of which involve non
trivial topologies (including the description of thermodynamic
properties of black holes Gibbons and Hawking, 1977, the
instability of hot flat space against black hole nucleation Gross
et al., 1982, or the instability of the Kaluza-Klein vacuum
Witten, 1982). It seems hence quite likely that topology change
through euclidean wormholes is unavoidable and, following the
arguments of section 3, will induce corrections in the low energy
effective action. The interpretation of the resulting path integral
is however still much open to debate.

Alternative formulations of effective quantum gravity will
ultimately be necessary to illuminate these issues. Recently,
an approach to the Lorentzian path integral based on Picard-
Lefshetz theory has been used in Feldbrugge et al. (2017a),
Feldbrugge et al. (2017b), Diaz Dorronsoro et al. (2017),
Feldbrugge et al. (2018), and Diaz Dorronsoro et al. (2018) to
explore certain aspects of quantum gravity. In this approach,
wormholes would correspond to complex extrema of the
Einstein-Hilbert-axion action. Picard-Lefschetz theory would
then determine how the contour in the path integral is to
be deformed into the complexified field space, and which
saddles contribute to the path integral. It would be interesting
to understand in this framework what the role played by
gravitational instantons and wormholes is.

In order to shed some light on the conceptual problems raised
by wormholes, we describe in the following sections toy models
in setups where topology change is better understood, namely,
theories of gravity in lower dimensions. Although some of the
simplifications that arise in such theories surely hide crucial
aspects of quantum gravity in four and higher dimensions, they

allow us to understand some fundamental aspects of wormholes
in relatively controlled settings.

5.3. One-Dimensional Universes: Feynman
Diagrams
In the next four subsections (Sections 5.3–5.6), we discuss the
dynamics of the baby universe state and its interplay with
the dynamics of our large universe. More precisely, almost all
of this discussion will be in the context of toy models, the
most developed and complex of which rely on 2d quantum
gravity (Polchinski, 1989a; Banks and Lykken, 1990; Banks
and O’Loughlin, 1991; Cooper et al., 1991; Hawking, 1991b;
Lyons and Hawking, 1991). Such baby-universe and quantum-
cosmology toy model calculations have been performed in the
context of non-critical string theory (Polchinski, 1989a; Banks
and O’Loughlin, 1991; Cooper et al., 1991) and will be the
subject of section 5.6. However, to prepare the stage, we will
start with 1d quantum gravity in the present section (Strominger,
1988; Hawking, 1991b), and its Wheeler-DeWitt formulation
with baby universes (Banks, 1988; Strominger, 1988; Fischler
et al., 1989; Giddings and Strominger, 1989a; Cooper et al., 1991)
in Sect. 5.4. Two-dimensional quantum gravity corresponding
to critical string theory (Hawking, 1991b; Lyons and Hawking,
1991) will be described in section 5.5.

As promised, we now start with the simplest case
following (Strominger, 1988; Hawking, 1991b). Consider
the one-dimensional diffeomorphism invariant theory with
action

S[X, e] =
∫

dτ
(

e−1gµν Ẋ
µẊν − em2) . (96)

This obviously describes a free particle moving in a target space
of D dimensions with metric gµν . Upon quantization of the fields
Xµ, one is dealing the quantum mechanics of that particle.

The interest here, however, is in interpreting this as a theory
of gravity in one dimension. In this sense, one can refer to the
particle as the universe, with euclidean worldline element given
by ds2 = e2dτ 2 and D matter fields Xµ. The parameter m2

hence corresponds to a one dimensional cosmological constant.
Of course, such a toy model lacks many interesting features
that arise in higher dimensions (to begin with, the Ricci
scalar vanishes identically in one dimension, and there is no
corresponding Einstein-Hilbert term in Equation 96). However,
studying topology change in the one dimensional model can
illuminate some points that are obscure in higher dimensions.

The theory described by Equation (96) is gauge invariant
under local time reparametrizations. One can conveniently fix
the gauge such that e = N, where N is constant20. It measures
the proper length of the worldline and hence, in a path integral
approach, it must be integrated over together with the matter
fields:

〈Xf |Xi〉0 =
∫ ∞

0
dN

∫ Xf

Xi

DX

exp

[

−
∫ 1

0
dτ
(

N−1gµν Ẋ
µẊν + Nm2)

]

. (97)

20In one dimension the vielbein e(t) coincides with the lapse function N(t). The
gauge is fixed such that this becomes a constant N(t) ≡ N.
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FIGURE 8 | Topologically non-trivial processes: (Left) a baby universe (dotted

line) is emitted from a parent universe (solid line). (Right) a wormhole is

represented by the emission and absorption of a baby universe line by a

parent universe.

Here (euclidean) time was chosen to run from τi = 0 to τf =
1. The subscript zero indicates that this corresponds to a path
integral of a single-component universe, i.e., a single line in the
absence of wormholes or baby universes.

Just as in higher dimensions, the action in (97) is unbounded
from below if the target space metric gµν has Minkowskian
signature. The negative mode arises in this case from the
matter field X0 associated to the target-space time direction.
The solution is clear here: one needs to Wick rotate the target
spacetime metric (i.e., X0 → iX0). That is, one considers the
propagation of the euclidean one-dimensional universe (particle)
through a euclidean D-dimensional target spacetime. From now
on, hence, gµν is considered to to have euclidean signature.

The path integral in (97) can be carried out explicitly, yielding
(Strominger, 1988; Hawking, 1991b)

〈Xf |Xi〉0 =
∫

dDP
eiP(Xf−Xi)

P2 +m2
(98)

where scalar products are taken with the target space metric gµν .
This is of course nothing but the euclidean propagator of a free
(as indicated by the subscript) scalar of massm in D dimension.

In order to discuss topology change and the emission of baby
universes, one can introduce in the path integral (the sum over
one-geometries) processes such as those shown in the Figure 8.
To reflect as closely as possible the higher dimensional case,
one would like to implement topology change as a process
in which small baby universes are nucleated from large ones.
Unfortunately, one dimensional universes are pointlike and there
is no notion of big or small. One can, however, introduce baby
universes as a different species of particles (universes) with
much smaller mass than the parent universe. For concreteness,
introduce a single type of baby universe with zero mass:mb = 0.

The effect of a single wormhole on a parent universe
propagator (right diagram of Figure 8) is given by

〈Xf |Xi〉1 =
∫ ∞

0
dN

∫ Xf

Xi

DXe−S[X,N]

(

−λ2N2
∫ 1

0
dτ1

∫ 1

0
dτ2〈X(τ2)|X(τ1)〉0,b

)

=
∫ ∞

0
dN

∫ Xf

Xi

DXe−S[X,N]

(

−λ2N2
∫ 1

0
dτ1

∫ 1

0
dτ2

∫

dDP
eiP[X(τ2)−X(τ1)]

P2

)

(99)

where λ controls the coupling between parent and baby
universes. Upon summing over arbitrary numbers of wormholes,
their contribution exponentiates in a standard fashion to yield

〈Xf |Xi〉 =
∞
∑

n=0

1

n!
〈Xf |Xi〉n =

∫ ∞

0
dN

∫ Xf

Xi

DXe−S[X,N]−I[X,N]

(100)
where S is given by (96), and I is the bilocal wormhole
contribution:

I[X,N] = λ2
∫

dDP

P2

(∫

dτ2 N eiPX(τ2)
)(∫

dτ1 N e−iPX(τ1)
)

.

(101)
As in previous discussions of bilocal operators, one can introduce
(complex) α parameters to make the action local, at the expense
of having variable coupling constants:

e−I[X,N] =
∫

Dα(P)e−
∫

dDP P2|α(P)|2

exp

[

λN

∫ 1

0
dτ

∫

dDP
(

α(P)eiPX + c.c.
)

]

. (102)

All this discussion resembles closely the description of
wormholes in four dimensions. The one-dimensional theory
has split into super selection sectors, labeled by α(P), which
determine an infinite set of new couplings on the worldline.
The target space momentum P labels the different species of
wormholes, in analogy to the index i of the generic wormhole
parameters αi in previous sections. Following the analogy with
higher dimensional wormholes, one would affirm that the

couplings α(P) have a probability distribution e−|α|2 .
One can also use the advantageous perspective of a parent

universe as a particle propagating inD dimensions. Asmentioned
before, the sum over parent universe one-geometries, in the
absence of baby universes, is nothing but the propagator of a free
scalar field8(X) inD dimensions. The sum over non-trivial one-
geometries is represented naturally by the sum over (connected)
Feynman diagrams, where the field 8(X) has a cubic coupling
to a light baby-universe scalar field φ(X). That is, all the results
described previously can be derived from a quantum field theory
in D-dimensional target space, with action:

S[8,φ] = 1

2

∫

dDX
√
g
(

gµν∂µ8∂ν8

+gµν∂µφ∂νφ +m282 + λ82φ
)

. (103)

It is in fact easy to check that equation (100) is reproduced by

〈Xf |Xi〉 =
∫

D8Dφ 8(Xi)8(Xf )e
−S[8,φ]. (104)

One can furthermore see that the α(P) parameters induced in
the worldline effective action by wormholes are nothing but the
Fourier modes of the baby universe field

φ(X) =
∫

dDP α(P) e−iPX . (105)
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The D-dimensional space on which this (8,φ)-theory lives is
nothing but the superspace (in Wheeler’s sense) of the one-
dimensional universe.

5.4. The Wheeler-DeWitt Perspective
It is also instructive to take a canonical rather than path integral
approach to wormholes. The basic ingredient in the canonical
treatment of quantum gravity is the Wheeler-DeWitt (WDW)
equation, which imposes time reparametrization invariance as a
constraint on the wave function of the universe. We follow the
discussion of Strominger (1988).

In a one dimensional theory with action given by (96), a single
universe is described by a wave function on superspace 8(X).
After fixing the gauge e(τ ) = N, the action is invariant under
time translations τ → τ + const, which are generated by the
Hamiltonian

H = gµνPµPν/4+m2. (106)

Here, Pµ are the canonical momenta for the matter fields
Pµ = 2

N gµν Ẋ
ν . Invariance of the quantum theory under these

transformations is imposed by the WDW equation

H8(X) = 0 (107)

where Pµ = −i∇µ. Equation (107) should describe the dynamics
of a one-dimensional (pointlike) universe, i.e., its propagation in
target spacetime or superspace. It is not, however, a Schrödinger-
type equation, but rather a Klein-Gordon equation in a (possibly
curved) D-dimensional background. This, together with our goal
of describing a system of an arbitrary number of universes,
naturally suggests that 8(X) should be treated like a quantum
field in superspace rather than as the wave function of a single
universe.

With this interpretation, the linear WDW equation describes
the dynamics of a free quantum field, which acts on the
Fock space of an arbitrary number of universes propagating
in superspace21. One expects that (107) only represents the
leading approximation to a theory of interacting universes. In
fact, such a theory was already introduced in the previous section.
The superspace action S[8,φ] of equation (103) describes the
dynamics of a parent universe field 8(X), interacting with a
baby universe field φ(X) through a λφ82 coupling. The resulting
equation of motion for8,

(

∇2 −m2)8 = λ8φ , (108)

indeed generalizes the WDW equation to the case of interacting
universes.

A meta-observer capable of measuring different multi-
universe states would straightforwardly interpret this theory
as a quantum field theory of point-like particles propagating
in D-dimensional spacetime. However, the interpretation is
much more subtle for an observer living on the worldline of
a single parent universe propagating in a background of baby

21Despite being a free theory, interesting dynamics, such as universe production,
can arise if the target spacetime metric gµν is curved (Fischler et al., 1989).

universes. Such an interpretation was described in section 5.3:
The sum over one-geometries (Feynman diagrams) derived from
the superspace action (103) is reproduced by the worldline
action modified by an infinite set of α-parameters, representing
the baby universe field φ(X). In order for the single parent
universe approximation to be valid, one has to make sure that
the background metric in superspace is adiabatic, and that
interactions among universes are small.

In the classical limit of the superspace theory, one can consider
the baby universe to be in an eigenstate that satisfies the baby
universe equations of motion. That is, one can replace φ(X) by a
solution α(X) of the equation

∇2α = 0 (109)

where the backreaction of parent universes has been neglected22.
The gravitational worldline theory of the parent universe in such
a classical baby universe background is given by the action:

S =
∫

dτ

(

1

N
Ẋ2 − Nm− Nλα(X)

)

(110)

The worldline observer would measure a potential given by α(X),
which in turn is determined by the superspace equations of
motion (109).

Of course, when quantum fluctuations of the baby universe
field are taken into account, the effective coupling constants
induced on the parent universe worldline theory are no longer
deterministic and are subject to the superspace quantum
uncertainty principle. One would conclude, for example, that
there is an intrinsic indeterminacy in the worldline potential
α(X) once its first derivative has been measured to a finite
accuracy. The interpretation of these quantum uncertainties in
the worldline couplings is still somewhat obscure.

The above logic should generalize to higher dimensional
theories. In the two-dimensional case, which will be considered
in more detail in the following sections, the setup is just
string theory. The WDW operator implementing time-
reparametrization invariance corresponds to the worldsheet
Hamiltonian H23. The WDW equation is then H8(X) = 0,
where 8(X) is the wave function of a single universe, a function
on superspace. In order to discuss multiple universes and
topology change, one promotes 8 to a quantum field, and
interprets the WDW equation as the linearized equation of
motion of the corresponding superspace theory (a string
field theory). This step is sometimes referred to as “third
quantization.” Topology change arises when one introduces
interactions between string fields, leading to a non-linear
generalization of the WDW equation. A two dimensional
observer would interpret this theory as a gravitational theory
on a genus zero worldsheet, with couplings determined by
the background configuration of baby-strings. These would

22Of course, this equation would in general be modified by self interaction terms
coming from a baby universe potential V(φ).
23More generally, the BRST operator which implements full reparametrization
invariance.
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represent, in turn, target space fields such as the metric, two-
form and the dilaton. In the classical limit of the superspace
theory, this background could be in a classical state satisfying the
equations of motion, which would in turn lead to a determination
of the worldsheet couplings. However, just as in one dimension,
quantum fluctuation in superspace would lead to an instrinsic
uncertainty in such couplings.

One can try to understand four dimensional wormholes in
analogy to the previous discussions. The main idea is to promote
the wave function of the universe to a field in superspace, and to
interpret theWDWequation as the linearized equation ofmotion
of the corresponding quantum field theory. Non-linearities arise
when interactions are introduced. These would represent the
effects of wormholes in themulti-universe theory. The qualitative
picture should be similar to the lower dimensional cases. Four
dimensional observers measure coupling constants that are
determined by a background of baby universes that propagate in
superspace. In the classical limit of superspace, these couplings
are determined by the corresponding equations of motion, but in
the quantum theory they are subject to the uncertainty principle.

Unfortunately, the infinite dimensional superspace of four
dimensional universes is too complicated for this approach to be
tractable in practice. One can drastically simplify the problem
by reducing superspace to a finite number of dimensions,
e.g., in mini-superspace approximations. An analysis of such
setups, with emphasis of phenomenological implications, has
been performed in Fischler et al. (1989) (see also Giddings and
Strominger, 1989a). Baby universes are modeled as small spheres,
interacting with large universes through non-linear terms in the
WDW equation. The main phenomenological focus is on the
cosmological constant problem, for which the outcome appears
to be negative: While a variant of the Baum-Hawking-Coleman
enhancement at 3eff → 0 is recovered, it occurs for empty
and cold universes rather than for inflationary or big-bang
cosmologies. A way beyond this negative result would require
a non-standard re-interpretation of boundary conditions in the
WDW equations in the multi-universe setting.

5.5. The Two-Dimensional Case: Critical
Strings
The one dimensional theory described above is useful in
many respects to understand wormhole properties in higher
dimensions. It still lacks, however, important ingredients, some
of which appear in the much richer context of two dimensional
quantum gravity.

The way non trivial one-topologies in the path integral
were introduced was rather ad hoc. In two dimensions, on the
contrary, the sum over non-trivial topologies arises naturally.
It is the basis of (perturbative) string theory. Furthermore,
the superspace of one dimensional theories of gravity is finite
dimensional, in contrast to the infinite dimensional superspace
of worldsheet and higher dimensional theories.

Hence, one would like to discuss string theories as two
dimensional models of quantum gravity. As is well known, in
critical string theory the two-dimensional metric can be (locally)
gauged away, and the resulting theory contains only the matter

fields Xµ, withµ = 1, . . . ,D, as physical degrees of freedom.24 In
conformal gauge, the two-dimensional action is given by

SP[X] =
1

2πα′

∫

d2z
(

∂Xµ∂̄Xµ + R80
)

. (111)

For simplicity, the D-dimensional background on which the
string propagates has a flat metric and constant dilaton, and all
other fields (tachyon, two-form, etc) vanish.

A single spherical universe with g handles (=wormholes)
attached corresponds to worldsheets of genus g > 0. Just like in
the general treatment of previous sections, one can take a dilute
wormhole approximation and replace these wormholes with local
operators at each endpoints. One can show that these operators
are nothing else than the standard vertex operators of string
theory (Lyons and Hawking, 1991).

These vertex operators are in one to one correspondence
with target spacetime fields. In the dilute gas approximation,
only the lowest string modes contribute significantly. These are,
other than possible tachyons, the target space metric, two-form
and dilaton fields. They correspond to the traceless symmetric,
anti-symmetric, and trace parts of the local vertex operators

Vµν(K; z) = ∂Xµ∂̄XνeiKX (112)

where X(z) are the embedding functions of the worldsheeet into
target space, and K is a target spacetime momentum.

As usual, upon summing over wormhole contributions with
such vertex operators attached to each end, one gets a bilocal
contribution to the two-dimensional effective action,

1S =
∫

dDK

[(∫

d2z1 V
µν(K; z1)

)

1µνρσ (K)

(∫

d2z2 V
ρσ (K; z2)

)]

, (113)

where 1µνρσ (K) is the wormhole action, which is nothing but
the D-dimensional target space propagator of massless gravitons,
two-forms and dilatons.

Once again, one can introduce a set of αµν(K) parameters to
turn this into a local contribution to the worldsheet action. The
resulting path integral is:

Z =
∫

DXe−SP[X]−I[X] (114)

where SP is the original Polyakov action, and the wormhole
contribution is given by a path integral

e−I[X] =
∫

Dαµν(K) exp

[∫

dDK α1−1α∗
]

exp

[∫

dDKαµν∂X
µ∂̄XνeiKX + c.c

]

. (115)

It is important to notice that, since wormholes have been
integrated out, the path integral (114) is only over a sphere,

24We are only considering bosonic degrees of freedom, e.g., by restricting attention
to bosonic string theory with D = 26.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 25 October 2018 | Volume 5 | Article 35

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Hebecker et al. Wormholes, Baby Universes and Applications

which is to be interpreted as the parent universe. The effects
of worldsheets with higher genus are encoded in the wormhole
contribution I[X] via α-parameters.

From the parent worldsheet point of view, wormholes
have introduced a randomness in the coupling constants. Of
course, this has a natural interpretation in target space: The α-
parameters, which can be conveniently denoted {αµν(K)} =
{Gµν(K),Bµν(K),D(K)}, simply describe the background of
metric, two-form and dilaton fields on which the string
propagates.

So far only the dominant wormhole contributions, coming
from massless string modes, have been considered. Massive
modes will of course contribute to terms of higher dimension
in the effective action, introducing an infinite set of α(K)-
parameters. Their quantization, i.e., the path integral over this
infinite set of target space fields, should lead to string field theory
(this interesting relation goes beyond the scope of this review).

5.6. Two Dimensional Quantum Cosmology
In this section we would like to consider two dimensional
quantum cosmology in baby universe backgrounds as a toymodel
of the four-dimensional case. String theory in critical dimensions
is not ideal for this purpose since the worldsheet metric can be
gauged away. One can nevertheless follow (Polchinski, 1989a;
Banks and Lykken, 1990; Banks and O’Loughlin, 1991; Cooper
et al., 1991; Carneiro da Cunha and Martinec, 2003) and can
consider a generally covariant theory with scalar matter fields Xi,
with i = 1, . . . ,D and general target space dimension D:

S = 1

8π

∫

d2σ
√
γ

[

γ ab∂aX · ∂bX + ωR+ λ
]

. (116)

Here γab is the worldsheet metric, λ is the cosmological constant,
and the topological ωR-term counts the genus of the worldsheet.
The signature of the D-dimensional X-space is taken to be
euclidean. It is useful to fix the gauge such that the metric
becomes γab = eφ γ̂ab, where γ̂ab is an arbitrary fiducial metric.
The path integral over worldsheet metrics reduces to that over
the Liouville field φ, with an action determined by the conformal
anomaly (Polyakov, 1981):

S = 1

8π

∫

d2σ
√

γ̂

{

γ̂ ab∂aX · ∂bX + λeφ

+26− D

12

[

γ̂ ab∂aφ∂bφ + 2R̂φ
]

}

. (117)

Here ω has been reabsorbed by a shift of φ and a rescaling of λ.
The equations of motion for φ are solved by metrics of constant
curvature R(γ ) = R(eφ γ̂ ) ∼ λ, supporting the interpretation of
λ as a two-dimensional cosmological constant.

Notice that in (117) the action for the metric degree of
freedom φ takes the same form as that for the matter fields
Xi. One can naturally interpret {φ,Xi} as parametrising a D +
1-dimensional target space on which the string propagates.
Interestingly, the target spacetime has euclidean signature for
D < 26, and lorentzian for D ≥ 2625. In the latter case, the

25For the Weyl invariant case of the critical string D = 26 the Liouville mode φ is
a gauge degree of freedom and disappears from the spectrum. Of course this is the

Liouville mode φ plays the role of a time-like coordinate in target
space. It is this situation that most closely resembles gravitational
theories in four dimensions (Polchinski, 1989a).

With this interpretation, Equation (117) corresponds to a
subset of a more general class of 2d gravitational theories, where
all D+ 1 scalars enter on equal footing,

S = 1

8π

∫

d2σ
√

γ̂

[

T(X)+
(

γ̂ abGµν(X)+ iǫabBµν(X)
)

∂aX
µ∂bX

ν + 2R̂8(X)+ . . .
]

(118)

with X0 corresponding to the Liouville mode φ. The function
T(X) plays the role of a cosmological constant. Preserving
two-dimensional diffeomorphism invariance at the quantum
level is equivalent to conformal invariance and imposes strong
constraints on the couplings {T, Gµν ,8,Bµν , . . .}, namely the
vanishing of their β-functions. These constraints correspond, in
(D + 1)-dimensional target space, to the equations of motion of
a tachyon, the metric, and the dilaton fields (setting Bµν = 0 for
simplicity):

∇2T − ∇8 · ∇T = V ′(T) , (119)

∇28− 2 (∇8)2 = 1

6
(D− 25)+ V(T) , (120)

Rµν −
1

2
GµνR = −2∇µ∇ν8+ Gµν∇28+ ∇µT∇νT

−1

2
Gµν(∇T)2 (121)

where V(T) = −T2 + . . . is the target space tachyon potential.
These equations describe the dynamics of the background on

which the string propagates. In our context, this background
is the “baby universe state” surrounding our spacetime. It is
a condensate of baby universes in the same sense that the
string target space is a condensate of string states. Since the
background equations of motion arise from the requirement
of diffeomorphism invariance of the worldsheet, they should
contain the 2d WDW equation. Non-linearities in these
equations go beyond the standard WDW framework and reflect
baby universe interactions. In other words, they come from
topology change.

A solution is given by the linear dilaton background

T(X) = 0, Gµν = ηµν , 8(X) = −
√

D− 25

12
X0. (122)

Notice that the dilaton controls the string coupling gs ∼ e8.
The semiclassical regime is realized in the limit D → ∞ for
positive X0. At early time X0, the theory is strongly coupled. In
the solution (122), the tachyon is balanced on top of its potential.
This vanishing of the two-dimensional cosmological constant
is obviously unstable against condensation of tachyons. In the

best studied case. Lower central charges D ≤ 1 have also received much attention
in the context of matrix models (see e.g., Klebanov, 1991; Ginsparg and Moore,
1993; Klebanov and Hashimoto, 1995; Martinec, 2004).
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linearized approximation V(T) = −T2, this happens with a
homogeneous profile (in the limit D → ∞)

T(X0) = λe

√

12
D X0

. (123)

This solution is valid for small values of T(X). Higher order
terms in the tachyon potential V(T) soon become relevant as the
tachyon rolls down, but are hard to compute. It is conceivable
that these terms produce aminimum away from zero, leading to a
stable solution with constant T. It has been argued (Cooper et al.,
1991) that this stability, i.e., the absence of growing modes in the
WDW equation, will be interpreted by the worldsheet observer
as the vanishing of the cosmological constant.

5.7. Wormholes in AdS/CFT
In the last few sections we have discussed the interpretation and
effects of wormholes in low dimensional theories, where they
are relatively well understood. However, given the simplicity of
these models, in particular of their gravitational sectors, one
should be very cautious when trying to extrapolate conclusions to
four dimensional setups. In order to properly tackle the puzzles
of wormholes, one needs to study them directly in theories of
quantum gravity in higher dimensions. For this, one of the main
tools presently at our disposal is the AdS/CFT correspondence.

Superstring theories in asymptotically AdS spacetimes are
dual to conformal field theories living on the boundary (Gubser
et al., 1998; Witten, 1998; Maldacena, 1999; Aharony et al.,
2000). The partition function of the CFT should be encoded
in a sum over all geometries with the correct asymptotics,
possibly including topologically non-trivial ones. If wormhole
configurations can be embedded in the low energy supergravity
theories that arise in string theory AdS compactifications, one
should arguably be able to interpret their effects, and in particular
the α-parameters they induce, on the field theory side.

This, however, poses severe problems (Bergshoeff et al., 2006;
Arkani-Hamed et al., 2007b; Hertog et al., 2017; Ruggeri et al.,
2018). It has been argued in Arkani-Hamed et al. (2007b) that
AdS wormholes clash with locality of the boundary field theory.
The cluster decomposition principle implies that for boundary
operatorsO1 andO2 separated by a large (Euclidean) time T, the
CFT correlator can be decomposed as

〈O1O2〉 = 〈O1〉〈O2〉 +O(e−ET) (124)

where E is non-zero if the vacuum of the theory is unique. (The
argument can also be extended to cases with a finite set of vacua.)
Using the AdS/CFT dictionary, the correlators in (124) should be
reproduced on the gravity side by a path integral over geometries.
If these include wormholes, α-parameters correct the effective
couplings. Hence, the two point function on the left hand side
of (124) should be given by

〈O1O2〉 =
∫

Dα e−α1
−1α〈O1O2〉α

=
∫

Dα e−α1
−1α〈O1〉α〈O2〉α +O(e−EαT) , (125)

where the correlators in the integrand are to be computed in the
AdS gravitational theory with α-shifted couplings. The second
equality assumes the factorization (at large T and for fixed α) on
the AdS side of the duality. We expect this not to be problematic,
at least in the classical limit26. One can similarly compute the
expectation values on the right hand side of (124):

〈O1〉〈O2〉 =
∫

Dα1 e
−α11−1α1〈O1〉α1

∫

Dα2 e
−α21−1α2〈O2〉α2 .

(126)
Equations (125) and (126) are inequivalent in general, in
contradiction with the locality requirement stated in (124). To
see this explicitly, assume that O1 and O2 are actually the same
operator, just inserted at different times t1 and t2. Then (125)
gives the expectation value of 〈O〉2α , interpreted as a function of

α and using a Gaussian probability distribution P(α) = e−α1
−1α .

By contrast, (126) corresponds to the square of the expectation
value of 〈O〉α , with the same α-distribution. These are equal
only if 〈O〉α is independent of α, i.e., if the expectation values
computed in AdS are independent of the couplings affected by
wormholes.

Another problem is that the presence of wormholes in AdS
can result in a violation of the BPS bound on the boundary super
Yang-Mills theory (Bergshoeff et al., 2006). Bulk axions source the
F∧ F operator on the boundary, while the accompanying dilaton
(always present in supersymmetric string compactifications)
sources the gauge kinetic operator F ∧ F̃. It can be shown
(Bergshoeff et al., 2006) that wormholes correspond, on the CFT
side, to configurations that violate the BPS bound, namely, for
which 〈|F − F̃|2〉 < 0. These are obviously inconsistent, and
pose a problem to the correct interpretation of wormholes in the
holographic framework.

One might hope that string theory prevents the presence of
wormholes in holographic setups where these paradoxes arise.
In fact axions are always accompanied by dilatons in superstring
compactifications and, as discussed in section 2.3, the existence
of regular wormholes solutions depends crucially on their
coupling. While the first wormhole constructions in AdS string
compactifications indeed were singular (Rey, 1999; Maldacena
and Maoz, 2004), regular solutions have been obtained more
recently (Arkani-Hamed et al., 2007b; Hertog et al., 2017; Ruggeri
et al., 2018). These analysis suggest that wormholes do exist
in controlled holographic setups and hence represent a sharp
paradox in AdS/CFT.

The correct resolution of this paradox is still not understood.
One possibility is that some mechanism in string theory prevents
topology change in holographic setups. One would need to
understand in this case how such a mechanism is implemented
and if it applies more generally to every string compactification.
It could also be that wormholes exist but their effect on the
effective action is not given in terms of α-parameters (e.g.,
because of issues with negative modes discussed in section 5.2).
Finally, another possibility is that the holographic dictionary, or

26Notice that, for some values of α, massless modes could arise, for which Eα = 0,
and the corrections in (125) would not be exponentially suppressed. This caveat
may affect the above argument, although it is not likely that it could reconcile the
different structures of (125) and (126).
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the correct understanding of the strongly coupled CFT, would
encode the α-parameters in a so far unknown manner. It is
conceivable that the CFT could develop a vacuum degeneracy in
its strong coupling regime which is not directly sees and which
is only accessible through the α parameters of the gravity dual.
Alternatively, one would recover the correct factorization of two-
point functions (124) if one considered the AdS theory to be in an
α eigenstate. It is however unknown how the CFT would encode
the appropriate value of α, or if there is a preferred α in string
compactifications.

Let us now turn to a related apparent puzzle that arises
when a wormhole connects two different AdS spacetimes
rather than two distant regions of one AdS space. Such a
geometry contains two boundaries and is hence dual to a pair
of CFTs. Since the boundaries are disconnected, one naively
expects CFT correlation functions of the type 〈O1(x1)O2(x2)〉CFT,
where x1 and x2 belong to different boundaries, to factorize
as 〈O1(x1)〉CFT1 〈O2(x2)〉CFT2 . But this contradicts the gravity
side computation: Here, the presence of the wormhole, which
connects the two dual AdS spaces, leads to non-trivial correlators
between operators on the different boundaries. This problem is
similar to the one described above, around (124)–(126).

In lorentzian signature the resolution of this puzzle is
well known (Maldacena, 2003): AdS geometries with multiple
boundaries always contain horizons that separate the different
boundaries (Galloway et al., 2001)27. The prototypical example
is an extended AdS-black hole which has two asymptotic AdS
regions connected by a non-traversable wormhole or Einstein-
Rosen bridge (see Figure 9). This geometry is dual to a pair of
CFTs in an entangled state, the correlators of which hence do
not factorize. Furthermore, the entanglement entropy of each
boundary CFT is related to the entropy of the horizon that
separates the boundaries. This can be explicitly checked with
the Ryu-Takayanagi (RT) or the covariant Hubeny-Rangamani-
Takayanagi prescription (Ryu and Takayanagi, 2006a,b; Hubeny
et al., 2007): The entanglement entropy of a spacelike region
A in the CFT is computed in the bulk by the area of a co-
dimension-two minimal surface with boundary anchored on ∂A.
As an example one can take A to be one of the boundaries of
an AdS-black hole geometry. Since each CFT lives on a sphere
one has ∂A = 0. The surface measuring the entanglement
entropy of A then detaches from the boundary and moves
into the bulk, becoming precisely the black hole horizon and
hence measuring its area. This relation between Einstein-Rosen
bridges and entanglement entropy has led to the remarkable
conjecture, known as ER=EPR (Maldacena and Susskind, 2013),
which says that entangled states (even microscopic ones) are
generally described by wormholes.

While lorentzian wormholes, including their description in
AdS/CFT, are a fascinating subject (see e.g., Visser, 1995;
Maldacena and Qi, 2018), the focus of the present review
is different: We are interested in euclidean wormholes, their
interpretation as tunneling events, and the resulting contribution
to the effective actions of gravitational theories. Unfortunately, it

27see however Fujita et al. (2011) and Arias et al. (2011).

FIGURE 9 | Extended AdS-black hole with two boundaries connected by a

wormhole or Einstein-Rosen bridge (horizontal line).

FIGURE 10 | Illustration of a 3d euclidean AdS wormhole geometry with the

two boundary components ∂M1 and ∂M2 corresponding to Riemann surfaces

(Maldacena and Maoz, 2004; Hubeny et al., 2007).

is not immediately clear how to carry over the above discussion,
especially the elegant resolution of the paradox, to this setting.

A promising way forward may be to consider euclidean rather
than lorentzian wormholes which connect AdS spaces with two
disconnected boundary components. The latter correspond to
two euclidean CFTs (Maldacena and Maoz, 2004). Euclidean
wormholes are different from their lorentzian counterparts in
that they do not posses a horizon separating the two boundaries.
In fact, the simplest examples are obtained by starting with global
AdS and modding out a discrete symmetry. In this case there are
no matter fields supporting the wormhole throat and one can not
think of the wormhole ends as being localized at arbitrary points
inside AdS spaces. Rather, the whole AdS space is the wormhole
(cf. Figure 10).

Due in particular to the absence of horizons, the relation of
these wormholes to entanglement entropy is not immediately
clear (Maldacena and Maoz, 2004). However, Hubeny et al.
(2007) have made a very intriguing suggestion (conceptually
related to their time-dependent generalization of RT) for
interpreting such euclidean wormholes in terms of entangled
CFT states. The idea is to focus on a CFT state corresponding,
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for example, to a 1-cylce A in ∂M1 in Figure 10. In this case the
entangling surface is the minimal-length 1-cycle in the bulk to
which A can be deformed. This relates to the minimal width of
the wormhole at its waist. Interesting extensions include those
to multiboundary wormholes (Balasubramanian et al., 2014),
to situations with inflating wormhole interiors (Fischetti et al.,
2015), and many others (see e.g., Mandal et al., 2015; Maxfield,
2015). In our context, the crucial question is whether such an
entanglement interpretation of euclidean wormholes holds the
key to resolving the problems described above. In particular,
it is tantalizing to think that some generalization of ER=EPR
can be applied to Euclidean wormholes, perhaps giving them a
description in terms of “entangled instantons.” Can one hope to
obtain a satisfactory interpretation of Coleman’s α-parameters
in holographic setups in this way? At a more modest level,
the mere existence of well-established entangelement entropy
interpretations of euclidean AdS wormholes strengthens the
case of this review by making it less likely that such exotic
objects can be dismissed altogether. Summarizing, it seems clear
that AdS/CFT correspondence and holographic entanglement
entropy suggest promising avenues to resolving the long-
standing puzzles posed by wormholes.

6. CONCLUSIONS

We have reviewed a number of issues, both theoretical
and phenomenological, arising in the context of gravitational
instantons, euclidean wormholes and baby universes. The more
recent interest in this old subject is related to the weak gravity
conjecture, which is further connected to the interplay between
charged microscopic objects and charged black branes. In the
special case of the axion or 0-form gauge field, this is the interplay
between microscopic instantons and gravitational instantons or
wormholes.

The latter case is, however, very special. Indeed, if one insists
that the macroscopic charged objects are not UV-sensitive,
then cored (i.e., singular) gravitational instantons are excluded
and the objects to be considered are the Giddings-Strominger
wormholes. Those can be interpreted as tunneling processes
in which an S3 baby universe is emitted in some region of
4d non-compact space-time and re-absorbed at an arbitrarily
distant location. Allowing such processes unavoidably introduces
a baby-universe state, characterized by so-called α parameters,
into our description of reality. This is a form of indeterminacy
reminiscent of that induced by the string theory landscape. It
is, however, of very different conceptual origin and potentially
more severe in that parameters are scanned in a continuous
way. While the axionic euclidean wormhole solution of Giddings
and Strominger played a prominent role in the inception of this
picture, it is really not that central: All one needs is some form of
topology change.

Crucially, not only the instanton-induced axionic cosine
potential is affected, but all coupling constants of the 4d
effective theory. Historically, Coleman’s suggested solution to
the cosmological constant problem played a crucial role in this
discussion. This was based on the attempt to integrate over

the α parameters together with the 4d geometry, producing a
probabilistic distribution of 3-values infinitely peaked at zero.
However, this has become less believable due to severe technical
problems and the fact that arguably a cold and empty universe is
predicted.

The more modest recent discussions of phenomenology have
mostly been limited to the axionic cosine potential, under the
assumption that the relevant α parameters take their arguably
natural O(1) value. For (effective) axions with f > MP, this is
relevant in the context of large-field inflation, where wormholes
could in principle have a sizeable impact in the inflaton potential
(Montero et al., 2015; Hebecker et al., 2017). However, it turns
out that in this regime only wormholes with large 3-form flux
are semiclassically controlled. As the UV cutoff is lowered,
the required charge grows together with the wormhole action,
and the induced potential falls exponentially. Thus, bounds
independent of microscopic instantons and the weak gravity
conjecture are hard to obtain. The potentially strong constraints
on large-field inflation arising from the weak gravity conjecture
are being intensely studied, and are one of the main reasons for
the current interest in wormhole physics (Montero et al., 2015;
Heidenreich et al., 2016; Hebecker et al., 2017).

By contrast, for small-f axions, even minimally charged
wormholes have radii above M−1

P and are semiclassically
controlled. This leads to interesting limits on, or even predictions
of, axion masses for axions without (or with highly suppressed)
microscopic instantons (Alonso andUrbano, 2017). Such bounds
have immediate phenomenological relevance for black hole
superradiance and light or ultralight dark matter. In the specific
case of the QCD axion, the wormhole-induced potential starts
to compete with the QCD-instanton effects at f ∼ 1016 GeV,
potentially spoiling the solution of the strong CP-problem at such
relatively large decay constants.

While the above phenomenological considerations are
intriguing and deserve further development, it is important to
emphasize that deep conceptual issues remain unresolved. First,
the Giddings-Strominger wormhole is a solution of euclidean
quantum gravity and the status of the latter is unclear. This
is in particular due to the negative modes associated with the
conformal factor. Also, the question of whether the Giddings-
Strominger solution has negativemodes beyond those generically
present in euclidean gravity, and how they should be interpreted,
is being controversially discussed. However, we consider it
unlikely that arguments along those lines can be strong enough
to entirely forbid wormhole-type tunneling events. Indeed, in
quantum mechanics, as a rule of thumb “anything that can
happen will happen,” even without a stable euclidean saddle
point. In this case one needs to understand which role, if any, is
played by topology change, and what are the resulting effects on
the low-energy effective field theory (e.g., whether α parameters
arise).

More drastically, one could argue that topology change may
be strictly forbidden. Indeed, in lorentzian signature no smooth
and everywhere defined metric can exists on a space-time “with
a handle.” Thus, if one wants to think of the corresponding
tunneling trajectory directly in the lorentzian theory, one is
forced to deal with (mildly) singular points. We can not rule out
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that this will probe unknown UV-features of the theory which
will rule out the desired transitions. However, it must also be
said string theory as our best candidate for a theory of quantum
gravity is built on topology change in 2d and includes many
examples of well-understood and controlled topology change
in 10d. Thus, we find a generic censorship of topology change
unlikely.

Accepting wormholes as a feature of the theory, the problems
do unfortunately not end: One has to deal with the α parameters
and simply integrating over them together with the metric
may lead to problems. One extreme instance of this is known
as the Fischler-Kaplunovsky-Susskind catastrophe, which states
that under reasonable assumptions the density even of large
wormhole ends in 4d space becomes large and the dilute-gas
approximation breaks down.

Stepping back and considering the role of α parameters
from a more fundamental perspective, one discovers that
simply integrating over them is too simplistic. Indeed, the
proper approach is the Wheeler-DeWitt equation describing
the full dynamics of a superposition of many large universes
interacting with a wormhole baby universe “gas” surrounding
them. A helpful 1-dimensional analogy which we described
is that of a heavy particle (electron) emitting and absorbing
light particles (photons), the cloud of which represents a
background field. The latter corresponds to the α parameters,
which hence have their own quantum dynamics. The Wheeler-
DeWitt equation in this case encodes a standard quantum
field theory. A more elaborate toy model takes the point of
view of an observer living on the worldsheet of a string that
propagates through target space. To this 2d observer, the sum
over worldsheet topologies of string theory represents a sum
over wormholes, and his α parameters correspond to target
space fields (metric, dilaton, etc.). Thus, understanding the values
of α parameters amounts to studying string field theory. Very
interesting investigations of this setting have been undertaken in
the context of “2d quantum cosmology” (Cooper et al., 1991).
In particular, in the context of non-critical strings, insights
into issues such as the emergence of time or the evolution
of cosmological parameters (in particular the cosmological
constant) and their interplay with wormholes appear to be within
reach.

Unfortunately, even in these toy models, firm conclusions are
hard to come by. Furthermore, the deep differences between one-
or two-dimensional theories of gravity and higher-dimensional
ones make the extrapolation of results highly speculative
(Fischler et al., 1989; Giddings and Strominger, 1989a). It is
conceivable that some mechanism forbids wormholes in four
dimensions while allowing them in two dimensions. However,

we are not aware of such a constraint. It is hence crucial
to obtain insight directly in higher dimensions. A powerful
tool we have at hand is the AdS/CFT correspondence. In this
context, wormholes pose a new type of puzzles. It has been
argued that, while wormholes can be embedded in AdS string
compactifications, their interpretation in terms of α parameters
lead to problems in the boundary field theory, such as non-
localities or violations of the BPS bound (Bergshoeff et al.,
2006; Arkani-Hamed et al., 2007b; Hertog et al., 2017; Ruggeri
et al., 2018). The resolution of this conflict remains to be
understood.

To summarize: the existence and effects of wormholes in
theories of gravity remains, after almost 40 years, an important
but enigmatic subject with both deep fundamental issues and
potential phenomenological applications to be explored. Despite
new insights into quantum gravity and string theory, progress
in our understanding of wormholes has been slow. Our picture
remains rather incomplete. Whether topology change (at low
energy) is required or forbidden in four and higher dimensions
remains to be conclusively settled. Either possibility opens new
questions to be addressed. If wormholes exists, their effects
lead, as we have discussed, to several puzzles to be resolved.
If wormholes are absent altogether, the censorship mechanism
at work needs to be understood. Furthermore, in this case
one should also ask what are the model- and UV-independent
objects (gravitational instantons) that break global axionic shift
symmetry. We believe that these questions deserve further
investigation.
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