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In addition to well-defined DNA repair pathways, all living organisms have evolved mechanisms to avoid cell 
death caused by replication fork collapse at a site where replication is blocked due to disruptive covalent modi-
fications of DNA. The term DNA damage tolerance (DDT) has been employed loosely to include a collection of 
mechanisms by which cells survive replication-blocking lesions with or without associated genomic instability. 
Recent genetic analyses indicate that DDT in eukaryotes, from yeast to human, consists of two parallel pathways 
with one being error-free and another highly mutagenic. Interestingly, in budding yeast, these two pathways are 
mediated by sequential modifications of the proliferating cell nuclear antigen (PCNA) by two ubiquitination 
complexes Rad6-Rad18 and Mms2-Ubc13-Rad5. Damage-induced monoubiquitination of PCNA by Rad6-Rad18 
promotes translesion synthesis (TLS) with increased mutagenesis, while subsequent polyubiquitination of PCNA 
at the same K164 residue by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Data obtained from recent 
studies suggest that the above mechanisms are conserved in higher eukaryotes. In particular, mammals contain 
multiple specialized TLS polymerases. Defects in one of the TLS polymerases have been linked to genomic insta-
bility and cancer.
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DNA damage tolerance

In the presence of spontaneous or carcinogen-induced 
DNA damage, living cells have to maintain and complete 
DNA synthesis or risk replication fork collapse. Since the 
process of DNA licensing is to ensure the genome is du-
plicated once and only once during each cell cycle, stalled 
or collapsed replication forks may not be able to restart, 
which often results in double-strand breaks (DSBs) and 
causes compromised genome integrity or cell death. In ad-
dition to highly conserved DNA repair pathways, all living 
organisms have evolved schemes to ensure continuation of 
DNA synthesis in the presence of damage. These schemes 
were originally termed DNA postreplication repair (PRR) 
due to observations of transient shortened nascent DNA 
structures following S phase in response to DNA damage. 
In bacteria and unicellular yeast, these shortened DNA 

segments can be measured by an alkaline sedimentation 
assay [1] or directly observed in electron micrographs [2]. 
In wild-type cells, these truncated DNA segments were 
restored to full length following a short recovery time. 
One typical experiment [1] involved the restoration of 
the nascent strand following UV exposure in nucleotide 
excision repair (NER)-deficient cells and was originally as-
sumed to represent a mechanism of DNA repair. However, 
further investigation revealed that, although the nascent 
fragments were re-annealed, the original UV-induced py-
rimidine dimers, which were responsible for the generation 
of single-strand gaps, often persisted in the genome [3, 
4]. It was argued that the replication-blocking lesion was 
not necessarily corrected, but rather transiently bypassed 
and carried over to the next generation. Perhaps it is more 
beneficial for the organism to tolerate DNA damage rather 
than to allow replication fork collapse. Since, unlike other 
DNA repair mechanisms, this pathway does not actually 
remove damage-induced lesions, we propose to use the 
term DNA damage tolerance (DDT) to describe this general 
phenomenon. In both prokaryotes and eukaryotes, DDT 
is accomplished by alternative mechanisms with rather 
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different biological consequences and these mechanisms 
appear to be evolutionarily conserved. In this review, 
we will focus on recent advances pertaining to cohesive 
DDT mechanisms mediated by covalent modifications of 
proliferating cell nuclear antigen (PCNA) in eukaryotes. 
Readers are encouraged to refer to recent review articles 
[5-7] for this general field.

DDT in prokaryotes

Early experiments using an NER mutant in Escherichia 
coli demonstrated DNA gap formation in the nascent strand 
opposite UV-induced thymidine dimers [8], suggesting 
replication restart downstream of the blocking lesion. Us-
ing an alkaline sedimentation assay, it was demonstrated 
that these gaps were transient [9] and the persistence of 
lesions in subsequent generations suggested the existence 
of a DDT mechanism in E. coli [4]. This damage tolerance 
mechanism is thought to be dependent upon the bacterial 
SOS response, in which single-strand DNA (ssDNA) is 
recognized and bound by the RecA protein [10], which 
promotes two parallel pathways. Activated RecA (RecA*) 
induces the self-cleavage of the LexA repressor that in turn 
allows the transcription of various genes required for DNA 
repair and cell survival [11]. SOS induces the expression of 
both DinB and the umuDC operon encoding two polymer-
ases, PolIV and PolV, respectively, for translesion synthesis 
(TLS). In addition, RecA* stimulates the cleavage of the 
regulatory subunit UmuD to form a fully functional PolV 
(UmuD’2-UmuC) [12, 13], and the RecA-ssDNA filaments 
are required for both homologous recombination and TLS 
[14]. This ssDNA-binding activity of RecA has been sug-
gested to induce fork regression forming a chicken-foot 
structure, or to act as a primer for TLS allowing DDT and 
replication restart [15], as illustrated in Figure 1.

Ubiquitination and sumoylation

It is apparent that, in bacterial cells, RecA plays central 
and multiple roles in DDT. In contrast, the eukaryotic 
RecA sequence homolog Rad51 and its various paralogs 
in higher eukaryotes inherit the ssDNA filament forma-
tion and homologous recombination activity but do not 
confer regulatory functions, nor are they required for DDT. 
Recent studies show that eukaryotes employ a completely 
different mechanism to coordinate DDT, namely covalent 
modifications of a substrate by ubiquitin (Ub) and small 
Ub-like modifier (SUMO), processes not found in bacteria. 
For this reason, it is important to briefly review the process 
of ubiquitination. Ub is a highly conserved 76 amino-acid 
protein that can be specifically attached to the ε-amino group 
of a Lys residue on a target protein in a three-step manner. 

Firstly, in an ATP-dependent manner, Ub is linked by a 
thioester bond to the Ub-activating enzyme (Uba or E1). 
Ub is then transferred to an active site cysteine residue of a 
Ub-conjugating enzyme (Ubc or E2), which often operates 
along with a Ub ligase (E3) for target specificity. Ub is then 
transferred to the target protein, forming an isopeptide bond 
between the C-terminus of Ub and the ε-amino group of a 
Lys residue. Covalently bound Ub is often further modified 
by sequential addition of Ub molecules to already bound Ub 
peptides to produce poly-Ub chains. The most characterized 
function of Ub modification is proteasome-dependent protein 
degradation of substrates modified with Ub chains joined 
sequentially at the Lys48 residue of the previous Ub [16]. 
However, it becomes clear that alternative Ub modifications 
influence diverse activities [17]. Such specifications may 
involve distinct linkages, such as Lys63-linked poly-Ub 
chains, or simple mono-Ub additions [18]. It is generally 
believed that these alternative Ub modifications differ from 
Lys48-linked Ub chains in that they often regulate the target 
protein activity instead of its degradation.

Eukaryotic cells also contain several classes of Ub-like 
molecules that adopt a Ub-like fold with conserved posi-
tioning of C-terminal residues for isopeptide bond forma-
tion and target protein modification [19, 20]. Each class 
employs a specific E2-E3 complex for target conjugation. 
SUMO is probably the most extensively characterized 
Ub-like molecule and its conjugation (sumoylation) often 
alters the target protein activity [21, 22].

Translesion synthesis
(Mutagenesis)

Nascent strand annealing
(Error-free DDT?)

Template switching
(Error-free DDT?)

Stalled replication fork

Figure 1 Possible mechanisms of DNA damage tolerance through 
replicative bypass of stalled replication forks. A triangle on the 
bottom template strand represents a replication block that stalls 
the replication machinery. Most organisms possess specialized 
polymerases capable of translesion synthesis across the block, 
often associated with an increased mutation rate. An error-free 
DDT utilizes newly synthesized sister chromatid as a template; 
however, it is subject to debate whether it is achieved through fork 
regression followed by nascent strand annealing and synthesis 
(the chicken-foot model), or through sister chromatid invasion fol-
lowed by synthesis and Holliday junction resolution (the template 
switching model).
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DDT in Saccharomyces cerevisiae

Eukaryote DDT has been most extensively characterized 
in the budding yeast S. cerevisiae. Initially an alkaline sedi-
mentation assay was employed to demonstrate the existence 
of DDT activity in yeast, and genetic analyses indicate that, 
in the absence of NER (rad1), UV-induced ssDNA gaps 
cannot be filled in the rad6 or rad18 mutants [23]. RAD6 
was the founding member of the PRR and mutagenesis 
pathway, one of the three major radiation repair pathways. 
However, historically, RAD genes that do not belong to 
either of the well-defined RAD3 (NER) or RAD52 (homolo-
gous recombination repair (HRR)) group were assigned to 
the RAD6 pathway [24, 25]. The rad6 mutant exhibits a 
mutator and slow growth phenotype, is defective in UV-
induced mutagenesis, and becomes extremely sensitive to 
killing by UV and a variety of DNA damaging agents [25, 
26]. The rad6 diploid is also defective in sporulation [27]. 
RAD6 was found to encode an E2 enzyme (Ubc2) [28] 
and its Ub conjugation activity is absolutely required for 
all of its functions [29]. The C-terminal polyacidic tail of 
Rad6 is required for its ability to polyubiquitinate histone 
H2B in vitro [30] and in vivo [31]. However, deletion of 
the entire Rad6 C-terminal tail has little effect on its role in 
DNA repair and UV-induced mutagenesis, and affects only 
sporulation [32]. The N-terminal 15 amino-acid sequence is 
nearly identical among all Rad6 homologs [33-36]; deletion 
of the first 9 amino acids from Rad6 (rad6∆1-9) abolishes 
sporulation, reduces cell survival after UV treatment, but 
surprisingly increases spontaneous and UV-induced muta-
genesis [37]. Furthermore, the N-terminus of Rad6 is also 
required for N-end rule protein degradation [29, 37, 38]: 
while the full-length Rad6 interacts with the E3 protein 
Ubr1, the Rad6∆1-9 protein is unable to form a complex 
with Ubr1 [37]. Rad6 is known to form a stable complex 
with Rad18 [39], and this complex displays Ub conjugation 
(from Rad6), ssDNA-binding and ATPase (from Rad18) 
activities [40]. However, Rad18 had not been defined as 
an E3 until the RING finger motif was discovered [41, 
42] and found in Rad18, and the physical interaction of 
Rad18 with the substrate Pol30 (PCNA) was demonstrated 
[43]. Like rad6, the rad18 mutant is extremely sensitive 
to killing by UV and a variety of DNA damaging agents, 
and displays a mutator phenotype [44]; however, unlike 
rad6, rad18 displays a signature spontaneous GC-to-TA 
mutation increase [45] and does not display slow growth 
and sporulation defects [26]. Hence, Rad6 appears to be a 
multi-functional E2 with different partners, and its DDT 
activity is exclusively achieved through interaction with 
Rad18 [5].

Further genetic analysis has demonstrated that the RAD6 
pathway can be divided into two parallel pathways, one be-

ing error-prone and another error-free. The error-prone or 
mutagenesis pathway was first discovered through genetic 
screens of rev mutants incapable of reverting the arg4-17 
and lys1-1 alleles in response to UV irradiation [46, 47]. 
REV1 was cloned and found to encode a 112-kDa protein 
[48] with deoxycytidyl transferase activity [49], whereas 
REV3 and REV7 encode two subunits of a non-essential 
DNA polymerase, Polζ, capable of bypassing thymine 
dimers more efficiently than Polα [50]. The rev mutants 
exhibit moderate sensitivity to a variety of DNA damaging 
agents, but with strongly compromised mutability [51]. 
Thus, the yeast mutagenesis pathway relies on a non-es-
sential DNA polymerase to bypass DNA replication blocks, 
or TLS, at the cost of increased mutagenesis.

The rad6 and rad18 mutations are epistatic to rev muta-
tions; however, it is apparent that TLS is not the only path-
way operated by RAD6-RAD18, since the rad6 or rad18 
mutants are much more sensitive to DNA damaging agents 
than the rev mutants [26]. An error-free branch within the 
RAD6 pathway had been proposed but not convincingly 
demonstrated until the identification and functional charac-
terization of MMS2 [52]. The mms2 mutant is moderately 
sensitive to a broad range of DNA damaging agents, and 
epistasis analysis places MMS2 within the RAD6 pathway. 
However, unlike rev3, the mms2 mutant displays a mas-
sively increased spontaneous mutation rate and this increase 
is dependent on REV functions. Furthermore, the mms2 
and rev3 mutations are synergistic with respect to DNA 
damage sensitivity and the double mutant is comparable 
to that of the rad18 single mutant [52, 53]. Based on these 
analyses, a model was proposed in which the RAD6 path-
way is composed of two independent subpathways: one is 
mediated by TLS that requires REV1, 3 and 7, whereas the 
other is mediated by error-free PRR that requires MMS2 
[52]. MMS2 encodes a protein homologous to Ubc but 
lacking the active Cys residue [52]. It turns out that Mms2 
forms a stable complex with a true Ubc, Ubc13, and that 
the Mms2-Ubc13 complex specifically catalyzes the for-
mation of Lys63-linked Ub chains [54]. Indeed, the ubc13 
mutant displays phenotypes indistinguishable from those 
of the mms2 mutant [55]. The cognate E3 for Mms2-Ubc13 
turns out to be Rad5, another RING-finger protein that in-
teracts with both Ubc13 and Rad18 [56]. RAD5 encodes a 
protein with DNA helicase and zinc-binding domains [57] 
and DNA-dependent ATPase activity [58]. Hence, at least 
two E2-E3 complexes, namely Rad6-Rad18 and Mms2-
Ubc13-Rad5, are required for DDT in yeast. In addition, 
RAD5 has been reported to promote instability of simple 
repetitive sequences [57] and to inhibit non-homologous 
end-joining of DSBs [59]. Indeed, Rad5 is involved in 
double-strand break repair independent of its ubiquitina-
tion activity [60].
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Sequential modifications of PCNA

PCNA (encoded by POL30 in budding yeast) forms a ho-
motrimer which circles the DNA and operates as a scaffold, 
often termed a processivity factor, to assemble a multitude 
of proteins required for DNA unwinding and synthesis, cell 
cycle progression and chromatin structure maintenance [7]. 
The involvement of this DNA-polymerase sliding clamp in 
DDT was first suggested by the isolation and characteriza-
tion of the pol30-46 allele [61]. pol30-46 is epistatic to rad6 
and rad18, but synergistic with rev3. The pol30-46 mutant 
is normal in UV-induced mutagenesis and DNA synthesis 
but displays significantly reduced PRR activity as judged 
by the alkaline sedimentation assay [61].

PCNA can be either ubiquitinated or sumoylated in 
budding yeast [43]. In response to DNA damage, PCNA 
is modified by a single Ub on the Lys164 residue and this 
process is dependent on the Rad6-Rad18 complex [43]. 
Ub modification appears to be limited to the PCNA that 
has been loaded onto DNA by replication factor C [62], 
suggesting that PCNA is monoubiquitinated only at stalled 
replication forks. In wild-type cells, polyubiquitinated 
PCNA was also observed upon DNA damage, and this 
modification is also at the Lys164 residue, linked through 
the Lys63 Ub chain, and requires functional MMS2, UBC13 
and RAD5 [43]. Hence, it is conceivable that the two ubiq-
uitination complexes Rad6-Rad18 and Mms2-Ubc13-Rad5 
sequentially ubiquitinate PCNA. Interestingly, the identical 
residue can also be targeted for sumoylation; the fraction 
of sumoylated PCNA increases during S phase as well as 
during extensive DNA damage, and this process requires 
yet another E2-E3 complex Ubc9-Siz1 [43, 63]. It is noted 
that PCNA can also be sumoylated at the Lys127 residue 
[43], and this specific modification does not appear to affect 
the DDT activity, but is required for the establishment of 
sister chromatid cohesion during S phase [64].

The discovery of PCNA covalent modifications imposes 
several functional implications. Firstly, it predicts that the 
pol30-164R mutation is epistatic to all DDT pathway mu-
tations. Indeed, Pol30-164R cannot be ubiquitinated and 
the pol30-164R mutation suppresses the severe sensitivity 
of rad6 and rad18 mutations [43]. Secondly, it predicts 
that monoubiquitinated PCNA promotes TLS, which was 
subsequently demonstrated [63]. Thirdly, the above model 
suggests that polyubiquitinated PCNA promotes error-free 
DDT. To date, this prediction has not been explored. Finally, 
it indicates that the Pol30-K164 sumoylation plays a role 
in the regulation of DDT. Interestingly, the pol30-164R 
mutant is less sensitive to DNA damage than rad6, rad18 
or the mms2 rev3 double mutant, suggesting that the Pol30-
K164 sumoylation sensitizes cells to DNA damage. This 
model is further strengthened by analyzing the effects of 

siz1 mutation that specifically affects sumoylation but not 
ubiquitination (UBC9 is an essential gene), and is remi-
niscent of the srs2 (suppression of rad six) mutation that 
was initially isolated by its ability to suppress the severe 
damage sensitivity of rad6 mutants [65]. Srs2 possesses 
a 3′ to 5′ DNA helicase activity [66, 67] that is crucial for 
recombination [67] and suppression of DDT defects [68, 
69]. Genetic data indicate that Srs2 negatively regulates 
recombination [70, 71] possibly by reversal of intermediate 
recombination structures [72-75]. Indeed, the DNA strand 
exchange mediated by Rad51 is inhibited by Srs2 through 
disruption of the Rad51-ssDNA filaments [76, 77], and it 
turns out that sumoylated PCNA has increased affinity for 
Srs2 [78, 79] and represses the Rad52-dependent recom-
bination pathway [80]. These observations collectively 
support the hypothesis that Srs2 serves as a molecular 
switch between homologous recombination and DDT [6], 
and further confirm that the sensor for this switch is the 
state of PCNA modification.

The current model of yeast DDT through covalent modi-
fications of PCNA is depicted in Figure 2.

Translesion
synthesis Error-free DDT

PCNA Rad6
Rad18

Ubc9
Siz1

Y-family
polymerase

Srs2 Homologous
recombination

Mms2
Ubc13
Rad5

U
U

U

U U U

?

S

S

Figure 2 DNA damage tolerance through covalent modifications 
of PCNA, a model well established in the lower eukaryote S. 
cerevisiae and presumably conserved in higher eukaryotes. The 
PCNA homotrimer is illustrated in different colors and can be modi-
fied by either SUMO (S) or Ub (U) at the same Lys164 residue 
[43]. In the latter case, monoubiquitinated PCNA can be further 
polyubiquitinated by the E2-E3 complex Mms2-Ubc13-Rad5 to 
form Lys63-linked chains. Sumoylated PCNA is known to recruit 
the Srs2 helicase to disrupt the Rad51-ssDNA filament and pre-
vent inappropriate homologous recombination; monoubiquitinated 
PCNA enhances affinity for Y-family polymerases to facilitate TLS, 
whereas polyubiquitinated PCNA is thought to promote error-free 
DDT, although it is unclear at present how this is achieved. Note 
that it is subject to debate whether just one or all three subunits of 
PCNA are modified to execute its functions. Modification of only 
one subunit is shown for simplicity.
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to provide an in-depth analysis of current literature on 
how monoubiquitinated PCNA leads to TLS. In addition, 
an accompanying review article (Gan et al. in this issue) 
provides an in-depth analysis of eukaryotic Polζ.

E. coli contains two Y-family polymerases, PolIV and 
PolV; both are DNA damage inducible and belong to the 
SOS regulon. PolIV has an extremely low affinity for the 
naked primer-template substrate and heavily relies on the 
β clamp (a bacterial functional homolog of PCNA) to load 
onto DNA [87, 88]. In vitro studies indicate that PolIV and 
its archeal homolog Dpo4 are relatively faithful polymer-
ases at the incorporation step and the low fidelity primar-
ily results from poor discrimination between correct and 
incorrect incoming nucleotides at the binding stage and the 
capacity to elongate mismatched primer template, which 
results in –1 frameshift mutations [89, 90]. Hence, PolIV 
promotes mutagenesis through three distinct mechanisms: 
replication error, TLS and incorporation of base analogs.

PolV plays a critical role in the most characterized 
damage-induced mutagenesis pathway. Like PolIV, DNA 
synthesis by PolV is strictly distributive, requires addi-
tional cofactors such as RecA, SSB and the β clamp, and 
can efficiently bypass essentially all lesions tested to date 
[91]. PolV accounts for the vast majority of UV-induced 
mutagenesis in E. coli [91]. Due to its notorious substrate 
plasticity, PolV must be placed under strict regulation; 
indeed PolV activity is controlled at both transcriptional 
and post-translational levels [81].

Budding yeast also contains two Y-family polymerases. 
Rev1, the first characterized eukaryotic Y-family member, 
is a deoxycytidyl transferase that inserts a dCMP efficiently 
opposite a template abasic site and is probably responsible 

1251

713

715

870

Rev1

Polη

Polι

Polκ

Polymerase domain                 BRCT                  Polη, ι, κ and Rev7 binding region

Rev1 binding domain                UBM                 UBZ                  PIP

Figure 3 Functional domains of Y-family polymerases. Only four well-defined human Y-family polymerases are illustrated with 
the relative position of their functional domains indicated. Numbers indicate total amino acids of each protein. Note that the poly-
merase domain can be divided into subdomains based on structural analysis, which makes each of them specialized for lesion 
recognition and bypass. Other domains are considered to perform regulatory roles. Figure adapted from [82]. Abbreviations used: 
BRCT, BRAC1 C-terminal domain; UBM, Ub-binding motifs; UBZ, Ub-binding zinc fingers; PIP, PCNA interacting peptide.

Y family DNA polymerases

Error-prone TLS can occur by the regular replicative 
polymerases or specialized, error-prone polymerases. 
Replicative polymerases include PolI, PolII and PolIII in 
prokaryotes, Pol1(α), Pol2(ε) and Pol3(δ) in yeast, and 
Polα, Polε and Polδ in higher eukaryotes. Errors can arise 
by simple incorrect base-pairing and/or lack of proofread-
ing. Frameshift mutations often occur in regions of repeated 
nucleotide sequences likely from slippage of the template 
strand. In addition, certain nucleotide repeats can readily 
form secondary structures that become recombination 
hotspots and fragile sites in the DNA, among which triplet 
repeats can also provide sources of extensive amino-acid 
expansion in the coding region [81]. Furthermore, repli-
cative polymerases may be required for extension from 
nucleotide insertion by a low-fidelity polymerase, thus 
stabilizing a potential mutation.

Essentially all TLS polymerases except one (i.e., Polζ) 
are Y-family polymerases that lack a 3′-5′ proofreading 
exonuclease activity and contain relatively non-restrictive 
active sites compared with the replicative polymerases 
[82] (Figure 3). Surprisingly, although members of this 
family of proteins have been studied for many years and 
implicated in mutagenesis or TLS, it was only at the end of 
the last century when they were reported as a novel class 
of DNA polymerases. This review is not intended to cover 
a comprehensive analysis of each Y-family polymerase. 
Readers are referred to excellent review articles that cover 
this topic [82-86] and an accompanying review article (Mc-
Culloch and Kunkel in this issue) discussing the fidelity 
of eukaryotic DNA polymerases. Rather, this section aims 
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for 60-85% of the bypass events at a specific abasic site 
in vivo [49, 92]. It can also insert dCMP across template 
G or A, albeit to a lesser extent [49]. Structural analysis 
indicates that Rev1 does not facilitate base pairing between 
the template G and the incoming dCTP. Instead, the G is 
evicted from the DNA helix and the dCTP pairs with a 
protein “template” Arg residue [93], which ensures base 
selection in a DNA template-independent manner. The 
yeast rev1 mutant displays a complete loss of mutagenesis 
activity comparable to that of rev3, which cannot be ex-
plained by its dCMP transferase activity. Indeed, analysis 
of site-specific mutations confirms that the Rev1 enzymatic 
activity is not essential for TLS, but its BRCA1 C-terminal 
(BRCT) domain [94, 95] and/or a polymerase-associated 
domain (PAD) [96] are required for protein interactions. 
The C-terminal 100 amino acids of human Rev1 are suf-
ficient to interact with all other TLS polymerases [97] 
(Figure 3), implying a scaffold role of Rev1 in TLS. The 
Rev1 structure and functions appear to be highly conserved 
in higher eukaryotes. Experimental reduction of REV1 
expression in cultured human cells results in a decrease in 
UV-induced mutagenesis [98].

Polη in yeast is encoded by RAD30, whose inactiva-
tion [99] or mutations in the corresponding mammalian 
xeroderma pigmentosum variant (XPV) gene [100, 101] 
lead to an increased susceptibility to UV-induced DNA 
damage. Polη is able to correctly incorporate AA opposite 
cis-syn thymine-thymine dimers [102] with kinetics com-
parable to that of the opposite undamaged template [103]. 
This insertion fidelity is thought to be achieved through an 
induced-fit mechanism similar to replicative polymerases 
[104]. However, for other types of lesions including those 
induced by UV, such as cyclobutane pyrimidine dimers and 
TT (6-4) photoproducts, Polη has reduced affinity, poor in-
corporation rates or low fidelity [105]. Hence, Polη appears 
to be highly specialized and the only known “error-free” 
Y-family polymerase when bypassing thymine dimers.

Mammals contain two additional Y-family polymer-
ases. Polι is the only known DNA polymerase to date that 
violates the Watson-Crick base-pairing rule [106]. It relies 
on Hoogsteen base pairing as opposed to typical Watson-
Crick base pairing and thus operates with very low fidel-
ity [107]. This mechanism may facilitate read-through of 
replication-blocking minor groove purine adducts [108]. 
In vivo, uracil derived from cytosine deamination may 
be the desired target of Polι as it inserts a G opposite a 
template U [109].

Polκ is thought to be involved in the elongation step 
following mismatched bases or following damaged bases 
[110-112], and reads through bulky adducts such as modi-
fications by benzo[a]pyrene diol epoxide (BPDE) [113, 
114]. When nucleotides containing dG-N2-BPDE, the most 

potent carcinogenic compound produced by industrial and 
cigarette smoke, are used as template, Polκ can bypass the 
adduct with much higher efficiency than Polη or Polι by cor-
rectly inserting C opposite the bulky lesion [114]. However, 
when undamaged DNA or DNA containing some common 
lesions is used as template, Polκ exhibits extraordinarily 
low fidelity [115-117].

In summary, although each of its members has distinct 
base-pair specificity and specialized functions, Y-family 
polymerases are highly conserved (Figure 3) and gener-
ally allow significantly reduced base-pair fidelity and thus 
result in elevated mutagenic potential. The low fidelity of 
these polymerases suggests that their activities must be 
restricted to highly selective conditions in order to limit 
mutational events.

Regulated access of Y-family polymerases to the 
damage site

Because of the high probability of TLS polymerases 
being mutagenic, it is expected that these polymerases 
are tightly regulated, probably at different levels. At the 
transcriptional level, an example is that human and mouse 
POLK promoters contain xenobiotic responsive elements 
(XREs) that can be induced by polycyclic aromatic hydro-
carbons (PAHs), among which benzo[a]pyrene is the most 
characterized [118]. Hence, POLK is induced in response 
to specific DNA damage that can be bypassed by Polκ. 
The second regulatory mechanism is damage-induced ac-
cumulation at the replication foci stalled at DNA damage. 
Polη forms such foci in response to UV irradiation, and 
mutations with a functional polymerase motif but lack-
ing the domain for relocalization into the damage foci are 
found in the XPV patient [119]. Polι physically interacts 
and colocalizes with Polη to the damage-induced nuclear 
foci [120], suggesting that Polι plays a role in bypassing 
UV-induced lesions. In contrast, BPDE treatment specifi-
cally induces Polκ foci formation but not Polη foci [121], 
indicating lesion-specific recruitment of the cognate Y-
family polymerase. The mechanism of this lesion-specific 
recruitment is currently unknown.

Perhaps the most exciting advance in recent years is the 
discovery that all eukaryotic Y-family polymerases contain 
both PCNA interacting peptide (PIP) and Ub-binding do-
mains, including Ub-binding motifs (UBMs) or Ub-binding 
zinc fingers (UBZs) (Figure 3). Polη specifically interacts 
with monoubiquitinated but not unmodified PCNA [122], 
and the Ub-binding domains are essential for the accumula-
tion of Polι and Polη in replication foci. Similarly, the dam-
age-induced foci formation and UV resistance of Rev1 also 
requires UBMs [123]. Unlike other Y-family polymerases, 
Rev1 does not contain a PIP motif; instead, a recent study 
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suggests that Rev1 utilizes its BRCT domain to interact 
with PCNA [95]. Supporting this notion is the observation 
that the damage-induced foci formation of Polη [122, 124] 
and Polκ [125] is dependent on functional Rad18, presum-
ably because Rad18 is required for the generation of mono-
ubiquitinated PCNA. An ultimate support perhaps comes 
from an in vitro study [126], in which PCNA was found 
to be only ubiquitinated when appropriately loaded onto 
DNA. The ubiquitinated PCNA shows similar functional 
interactions as unmodified PCNA with replication factors 
such as Fen1, Lig1, RFC, Polδ and Polε, but, in addition, is 
able to activate Polη and Rev1 [126].

Although the above studies provide a paradigm for the 
restriction and recruitment of TLS polymerases to the dam-
age site, the overall model is challenged by other reports. 
One study shows that unmodified PCNA is sufficient to 
stimulate DNA synthesis by Polκ, primarily by reducing 
the Km to enhance correct nucleotide incorporation [127]. 
The direct challenge came from the in vitro reconstitution 
of the DNA synthesis reaction, in which PCNA monoubiq-
uitinated on all three monomers does not enhance affinity 
for any polymerases examined, nor does it enhance TLS 
activity by Y-family polymerases [128]. Furthermore, a 
recent report [129] showed that mutations in the UBZ motif 
of yeast Polη did not impair its in vivo or in vitro TLS func-
tions. The authors suggested an alternative model in which 
PCNA monoubiquitination may disrupt its interactions with 
a protein(s) that inhibits binding to the TLS polymerases. To 
date no such candidate protein has been identified, although 
we notice a recent report [130] that Mgs1, a protein with 
homology to E. coli RuvB and eukaryotic clamp loader 
protein RFC, as well as DNA-dependent ATPase activity 
and DNA-annealing activities [131, 132], associates with 
PCNA and appears to repress the RAD6 pathway in the ab-
sence of exogenous damage. Other concerns with the above 
paradigm include the stability of monoubiquitinated PCNA, 
particularly in mammalian cells, that extends past the ex-
pected time required to bypass the damage [122], which 
would allow persistent TLS with unnecessarily increased 
mutation rates. In addition, hydroxyurea treatment, which 
depletes the nucleotide pool and induces replication fork 
stalling, also results in PCNA monoubiquitination [120]. 
The stalled replication fork after this treatment is unlikely 
to benefit from TLS, raising doubt that mono-Ub is at the 
heart of polymerase switching.

PCNA modification may not be the only means of 
promoting TLS; DNA damage checkpoints have been im-
plicated in TLS. For instance, Rad9 of the S. pombe 9-1-1 
complex, which forms a PCNA-like heterotrimeric clamp, 
associates with Mms2, and a mutant form of Rad9 incapable 
of interaction promotes mutagenesis in a TLS-dependent 
manner [133]. In budding yeast the phosphorylation by 

protein kinase Mec1 induces the re-localization of Rev1 and 
Polξ to sites of DNA double-strand breaks independently 
of mono-Ub PCNA [134]. Furthermore, the budding yeast 
9-1-1 clamp physically interacts with the Rev7 subunit of 
Polζ and is partially required for spontaneous mutagenesis 
in a Polζ-dependent manner [135]. We wish to emphasize 
that the above observations did not directly conflict with 
the PCNA-TLS model.

Error-free DDT

Despite the advances made with PCNA and TLS in 
the past years, little is known about the molecular events 
leading to error-free DDT following PCNA polyubiquitina-
tion. Apparently, the error-free bypass has to utilize newly 
synthesized sister chromatid as a template, and, much like 
PCNA mono-Ub, poly-Ub of PCNA may provide a signal to 
initiate the process. Two possible models, namely template 
switching and replication fork regression, have been pro-
posed [5]. Template switching involves homologous sister 
chromatid invasion/cohesion, high-fidelity DNA synthesis 
and the subsequent resolution of a Holliday junction (Figure 
1). Fork regression (Figure 1) is thought to operate much 
as it does in bacteria, requiring ssDNA binding protein and 
RecA to produce a characteristic chicken-foot structure 
[15]. Experimental evidence to support a chicken-foot 
structure in eukaryotes came from a recent report [136] that 
yeast Rad5 has a DNA helicase activity that facilitates rep-
lication fork regression. In contrast, several recent reviews 
[137-139] suggest that the DNA damage checkpoint acts to 
prevent stalled replication fork regression, while error-free 
DDT is mediated by template switching. Alternatively, the 
two error-free DDT models may not be mechanistically 
different as they appear. Regardless of the mode of reac-
tion, it is abundantly clear that the error-free DDT process 
is highly conserved in the entire eukaryotic kingdom, from 
yeast to human. Sequence and functional homologs of 
all proteins involved in error-free DDT, including Mms2 
[140], Ubc13 [141] and Rad5 [142, 143], have been found 
in mammals, plants and other higher eukaryotes [144, 145]. 
For a few limited examples, suppression of the above genes 
resulted in phenotypes reminiscent of the corresponding 
yeast mutants [143, 146, 147].

DDT, genomic instability and cancer

Studies in the yeast model have clearly demonstrated the 
significance of DDT in maintaining genomic stability. The 
two branches within DDT, with one being highly mutagenic 
and another error-free, are likely kept to a dynamic balance 
in wild-type cells. However, in yeast cells defective in er-
ror-free DDT, spontaneous mutation rates can be elevated 
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by 30-fold, which would be viewed as a predisposition to 
cancer. It was postulated that error-prone TLS may consti-
tute a major source of genomic instability and cancer [148], 
although direct evidence is rather lacking.

Perhaps the best studied example of TLS and tumorigen-
esis is the discovery of mammalian Polη, whose gene was 
found mutated in all XPV patients examined. Polη co-local-
izes with Rev1 [149], Polι [120] and mono-Ub PCNA [124], 
suggesting that mutations in these genes may also be asso-
ciated with cancer. The level of translesion polymerases in 
normal and matched tumor cell lines has been investigated. 
Several lung cancer cell lines were found to overexpress 
Polκ, suggesting a role in promoting genomic instability 
and cancer [150]. In another study, however, transcript 
levels of TLS polymerases η, ι, κ and ζ are significantly 
reduced in various lung, stomach and colorectal cancers 
[151]. Clearly, more research is required to establish roles 
of DDT in tumorigenesis and carcinogenesis.
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