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EULER CHARACTERISTICS FOR GAUSSIAN FIELDS
ON MANIFOLDS

BY JONATHAN E. TAYLOR1 AND ROBERT J. ADLER2

Stanford University and Technion

We are interested in the geometric properties of real-valued Gaussian
random fields defined on manifolds. Our manifolds, M , are of class C3 and
the random fields f are smooth. Our interest in these fields focuses on their
excursion sets, f −1[u,+∞), and their geometric properties. Specifically, we
derive the expected Euler characteristic E[χ(f −1[u,+∞))] of an excursion
set of a smooth Gaussian random field. Part of the motivation for this comes
from the fact that E[χ(f −1[u,+∞))] relates global properties of M to a
geometry related to the covariance structure of f . Of further interest is the
relation between the expected Euler characteristic of an excursion set above
a level u and P[supp∈M f (p) ≥ u]. Our proofs rely on results from random
fields on R

n as well as differential and Riemannian geometry.

1. Introduction. In reviewing the literature on smooth random fields of the
past few decades, it is clear that the study of smooth random fields has profited
from classical ideas in integral geometry. Details of this approach can be found,
for example, in [18, 22] and the recent review [3].

The study of the Euler characteristic, χ , of the excursion sets f −1[u,+∞), of
a smooth random field f on R

n, began in the 1970s, both as a multiparameter
extension of the concept of the number of upcrossings of a one parameter process
and as an object of intrinsic interest in describing the properties of random fields. In
recent years, the study of the Euler characteristic of the excursions of random fields
has undergone a revival of sorts due to its applications in the statistics of medical
imaging and astrophysics (see, e.g., [5, 6, 21, 22]). The basic results used in all of
these applications are explicit formulae for the expectation E[χ(f −1[u,+∞))],
which has been computed for a large number of random fields defined on R

n,
combined with the following approximation for the distribution of the maximum
of a smooth, isotropic Gaussian random field or a so-called finite Karhunen–Loève
expansion constant variance Gaussian field [3, 18]
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Our main contribution will be the extension of these formulae for

E
[
χ
(
f −1[u,+∞)

)]
to the case in which f is a Gaussian field indexed by an abstract manifold M , with
or without boundary. Our motivation comes from this same class of applications,
in particular, the interest in extending results for isotropic fields on R

n to arbitrary
nonstationary fields on R

n and the emerging interest in fields defined on or
restricted to submanifolds of Euclidean space in applications such as medical
imaging. We also feel that the subject has significant mathematical interest in its
own right.

For isotropic Gaussian random fields and those with a finite Karhunen–Loève
expansion, E[χ(D ∩ f −1[u,+∞))] has a simple expression in terms of the
geometric properties of the parameter space D, which, as we already noted, leads
to an accurate approximation of P[supt∈D f (t) ≥ u]. More generally, if f is an
isotropic random field (satisfying certain regularity conditions) on D, a compact
set in R

n whose boundary ∂D is a C2 hypersurface, then

E
[
χ
(
D ∩ f −1[u,+∞)

)] =
n∑

j=0

aj,nMn−j (D)λj/2ρf,j (u)(1.1)

where Mj are integral invariants (under the group of isometries of R
n) referred to

as the Minkowski functionals of D, the aj,n are constants independent of f and D,
λ is a spectral parameter of the process and the functions ρj,f (u) are referred to
as Euler characteristic, or EC densities. For details see [22]. In the Gaussian (unit
variance) case, it was proven in [1] that for j ≥ 1,

ρj,f (u) = (2π)−(j+1)/2Hj−1(u)e−u2/2,

where Hj is the j th Hermite polynomial. For other examples of ρj,f for various
Gaussian related fields, see [1, 5, 6, 21].

Steiner’s formula [11, 15] (which can be used to define the Minkowski
functionals) states that the Minkowski functionals (Mj (D))0≤j≤n satisfy

Hn

(
T (D,ρ)

) =
n∑

j=0

ρj

j ! Mj (D)

where

T (D,ρ) = {x ∈ R
n :d(x,D) ≤ ρ}

is the ρ-tube around D in R
n, d(·,D) is the standard distance function

of D and Hn is n-dimensional Hausdorff measure. With this definition of the
Minkowski functionals, they can be extended to functionals of so-called “sets
of positive reach” [9]. Note, however, that they depend on the embedding of D
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in R
n. To see this, consider m > n, and note that the polynomials Hn(T (D,ρ))

and Hm(T (in,m(D),ρ)) with in,m the standard inclusion of R
n into R

m will be
different. For example, take a curve C in R

2. Then M1(C) will be proportional
to the arc length of C and M2(C) = 0, while M2(i2,3(C)) is nonzero and is also
proportional to arc length.

Weyl [10, 20] studied the volume of tubes around embedded submanifolds M

of Euclidean space, endowed with the Riemannian metric g induced by R
n. He

showed that the Minkowski functionals have a normalization independent of the
embedding dimension. Specifically, he showed that if we define the Lipschitz–
Killing curvatures of (M,g) as

Lj (M) = 1

(n − j)!ωn−j

Mn−j (M),

where rnωn is the volume of BRn(0, r), the r-ball in R
n, then the Lj (M) are

intrinsic to (M,g), that is, they do not depend on the embedding of M into R
n,

only on the Riemannian metric g. With this normalization [7, 11] Weyl’s Tube
formula has the form

Hn

(
T (M,ρ)

) =
n∑

j=0

Lj (M)ωn−j ρ
n−j .

Weyl also gave explicit formulas for the Lj (M) in the case when M has no
boundary

Lj (M) =




(2π)−(n−j)/2
∫
M

((
n − j

2

)
!
)−1

TrM(−R)(n−j)/2 Volg,

n − j ≥ 0 is even,

0, n − j is odd,

(1.2)

where Volg is the volume form of (M,g), R is the curvature tensor of (M,g) and
the trace TrM on the algebra of double forms is given pointwise by TrM(α) =
TrTpM(αp) (see Section 2.1). For the expression when M has boundary, see [7]
and Section 5.

Note that a real-valued Gaussian random field can always be viewed as a map �

from the parameter space, in this case a manifold M , into a Hilbert space, that is,
the RKHS of the field or L2(	,F ,P). If this map is smooth and nondegenerate,
that is if it is an immersion, then the random field induces a Riemannian metric
on M given by the pull-back �∗(〈·, ·〉L2(	,F ,P)) of the standard structure on
L2(	,F ,P). Specifically, the Riemannian metric is given by

gp(Xp,Yp) = E[XpfYpf ]
for tangent vectors Xp and Yp. The main results of the paper, Theorems
4.1 and 5.1, show that (1.1) holds for smooth Gaussian fields on a manifold M ,
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with the aj,nMn−j (D)λj/2 replaced by Lj (M), calculated with respect to this
pulled-back Riemannian metric.

The outline of the paper is as follows: in Section 2 we recall some of the
geometric material and linear algebra needed for the subsequent calculations. For
a more complete discussion of differential geometry, the reader is referred, for
example, to [4, 8, 12]. At the end of Section 2 we give a brief list of the notation
needed for what follows. In Section 3 we describe the regularity conditions we
will require our Gaussian random fields f to satisfy and give sufficient conditions
for them to hold. In Section 4 we derive a formula for E[χ(f −1[u,+∞))] when
f is defined on a manifold without boundary M and in Section 5, we treat the
case when M is a manifold with boundary. Finally, in Section 6, we conclude
with some examples, including nonstationary Gaussian random fields on R

n,
stationary fields on Lie groups, and isotropic fields on the sphere and spherical
caps.

2. Geometric material. In this section we recall the geometric material
needed in further sections. We begin by looking at random (specifically Gaussian)
double forms on a vector space V , some of which can, when V is equipped
with an inner product, be identified with random matrices. Following this, we
state a version of Morse’s theorem, which we later use to calculate the Euler
characteristic of excursions of Gaussian fields. We conclude this section with a
brief review of the relevant Riemannian geometry used in the sequel. In particular,
we describe the Riemannian geometry induced by certain nondegenerate random
fields.

2.1. Gaussian double forms. Given V an n-dimensional vector space, we
denote by (

∧∗(V ),∧) the Grassmann algebra of V equipped with the wedge
product ∧, that is,

∧∗(V ) = ⊕n
j=0 
j(V ), where


j(V ) =
{
α ∈ L

(
r⊕

j=1

V ;R

)
:α(vσ(1), . . . , vσ(j)) = εσ α(v1, . . . , vj )

∀v1, . . . , vj ∈ V,σ ∈ S(j)

}
,

with L(E;F) the set of linear maps between the vector spaces E and F , and S(j)

the symmetric group on j letters and εσ is the sign of the permutation σ . Recall
that the wedge product ∧ :
r(V ) × 
s(V ) → 
r+s(V ) for all r and s is defined
on α ∈ 
r(V ),β ∈ 
s(V ) by

α ∧ β = (r + s)!
r!s! A(α ⊗ β)

where A is the alternating projection.
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If BV ∗ = {θ1, . . . , θn} is a basis for V ∗, the dual of V , then a basis B∧∗(V ) for

∗(V ) is given by

B∧∗(V ) =
n⋃

j=1

{
θi1 ∧ · · · ∧ θij : i1 < i2 < · · · < ij

}
.

Any inner product 〈·, ·〉 on V extends naturally to an inner product 〈·, ·〉
on

∧∗(V ) as follows. Given any orthonormal basis BV = (v1, . . . , vn) for V ,
there is a uniquely defined dual basis BV ∗ = (θ1, . . . , θn) of V ∗. Carrying out
the construction of the basis for

∧∗(V ) as above and declaring this to be an
orthonormal basis defines the desired inner product.

We set 
r,s(V ) = 
r(V ) ⊗ 
s(V ), the linear span of the image of 
r(V ) ×

s(V ) under the map ⊗ and let

∧∗(V ) ⊗ ∧∗(V ) = ⊕∞
r,s=0 
r,s(V ). We define

the product · , which we refer to as the double wedge product, on
∧∗(V )⊗∧∗(V ),

the linear span of
⊕∞

r,s=0 
r(V ) ⊗ 
s(V ), as follows:

(α ⊗ β) · (γ ⊗ θ) = (α ∧ γ ) ⊗ (β ∧ θ).

We shall be most interested in the restriction of the double wedge product · to∧∗,∗(V ) = ⊕∞
j=0 
j(V ) ⊗ 
j(V ), which makes the pair (

∧∗,∗(V ), ·) into a
commutative algebra. For γ ∈ ∧∗,∗(V ), we define the polynomial γ j as the
product of γ with itself j times, and γ 0 = 1. We now fix an orthonormal basis
BV = (v1, . . . , vn) with dual basis BV ∗ = (θ1, . . . , θn) (as identified by 〈·, ·〉). Since
any inner product 〈·, ·〉 on V induces an inner product on

∧∗(V ), 〈·, ·〉 induces a
real-valued linear map on

∧∗,∗(V ), the trace, denoted by Tr, which acts on an
element γ = α ⊗ β

Tr(γ ) = 〈α,β〉,
and which we extend linearly. A quick calculation shows that for γ ∈ 
k,k(V ), we
have

Tr(γ ) = 1

k!
n∑

a1,...,ak=1

γ
(
(va1, . . . , vak

), (va1, . . . , vak
)
)
.

If there is more than one vector space under consideration, we will use the notation
TrV1 and TrV2 where necessary. For instance, if α is a section of

∧∗,∗(M), that is,
for each p, αp ∈ ∧∗,∗(TpM) where TpM is the tangent space to M at p, we write

TrTpM(αp)

and use the notation TrM(α) to denote the real valued function on M given by

TrM(α)p
�= TrTpM(αp).

If γ ∈ 
0,0(V ), then γ ∈ R and we define Tr(γ ) = γ . Note also that γ ∈

k,k(V ) can be identified with a linear map Tγ :
k(V ) → 
k(V ) by defining

Tγ

(
θi1 ∧ · · · ∧ θik

)
(w1, . . . ,wk) = γ

(
vi1 , . . . , vik ,w1, . . . ,wk

)
.
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We can then extend Tγ by linearity. Clearly the identity can be represented as

I =
n∑

i=1

θi ⊗ θi .

We shall need one useful formula [9] later when we calculate the expected Euler
characteristic of a Gaussian random field on a manifold M . Choose A ∈ 
k,k(V )

and choose 0 ≤ j ≤ n − k. Then

Tr(AIj ) = (n − k)!
(n − k − j)! Tr(A).(2.1)

For a more complete description of the properties of Tr, the reader is referred to
Section 2 of [9].

In later sections, we shall need to be able to evaluate the expectation
of determinants of symmetric matrices whose elements are Gaussian random
variables. We shall now derive such a formula, ignoring the symmetry requirement.
If we view an n × n matrix (Aij ) as representing a linear mapping TA from R

n

to R
n, with Aij = 〈ei, TAej 〉, then A can also be represented by γA ∈ 
1,1(Rn),

and from the discussion above,

det(A) = 1

n! TrR
n(

(γA)n
)
.(2.2)

This makes the calculations we have to do later much simpler as we exploit the
fact that (

∧∗,∗(V ), ·) is a commutative algebra.
We now come to the main computational tool in what follows, which simplifies

the formula for computing the expectation of the determinant of an n×n Gaussian
matrix to a formula no more complicated than the formula for E[Zn] where
Z ∼ N(µ,σ 2).

LEMMA 2.1. Suppose that W is a Gaussian double form, that is, there exists
a probability space (	,F ,P ) along with an F /B(
1,1(V )) measurable map W

such that, for any basis BV = {v1, . . . , vn} the matrix with entries W(vi, vj ) is
Gaussian. Then,

E[Wk] =
�k/2�∑
j=0

k!
(k − 2j)!j !2j

µk−2jCj

in the sense that, for all choices v1, . . . , vk, v
′
1, . . . , v

′
k ∈ V ,

E
[
Wk

(
(v1, . . . , vk), (v

′
1, . . . , v

′
k)
)]

(2.3)

=
�k/2�∑
j=0

k!
(k − 2j)!j !2j

µk−2jCj
(
(v1, . . . , vk), (v

′
1, . . . , v

′
k)
)
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where µ = E[W ] and C ∈ 
2,2(V ) is defined as

C
(
(v1, v2) ⊗ (v′

1, v
′
2)
)

= E
[(

W − E[W ])2(
(v1, v2) ⊗ (v′

1, v
′
2)
)]

= 2
(
E
[(

W(v1, v
′
1) − E[W(v1, v

′
1)]

)(
W(v2, v

′
2) − E[W(v2, v

′
2)]

)
− (

W(v1, v
′
2) − E[W(v1, v

′
2)]

)(
W(v2, v

′
1) − E[W(v2, v

′
1)]

)])
.

PROOF. We first prove that, in the case that µ = 0,

E[Wk] =



0, if k is odd,
(2j)!
j !2j

Cj , if k = 2j ,
(2.4)

from which the case µ �= 0 easily follows from the binomial theorem.
It is easy to show by induction that

W 2j
(
(v1, . . . , v2j ), (v

′
1, . . . , v

′
2j )

) = ∑
π,σ∈S(2j)

επεσ

2j∏
k=1

W(vπ(k), v
′
σ(k)).

We now evaluate its expectation, abbreviating the left-hand side by W 2j :

E[W 2j ] = ∑
π,σ∈S(2j)

επεσ E

[ 2j∏
k=1

W(vπ(k), v
′
σ(k))

]

= Kj

∑
π,σ∈S(2j)

επεσ

j∏
k=1

E
[
W(vπ(2k−1), v

′
σ(2k−1))W(vπ(2k), v

′
σ(2k))

]

= Kj

2j

∑
π,σ∈S(2j)

επεσ

j∏
k=1

E
[
W(vπ(2k−1), v

′
σ(2k−1))W(vπ(2k), v

′
σ(2k))

− W(vπ(2k), v
′
σ(2k−1))W(vπ(2k−1), v

′
σ(2k))

]

= Kj

22j

∑
π,σ∈S(2j)

επεσ

j∏
k=1

C
(
(vπ(2k−1), vπ(2k)), (v

′
σ(2k−1), v

′
σ(2k))

)

= Kj

2j
Cj

(
(v1, . . . , v2j ), (v

′
1, . . . , v

′
2j )

)
where Kj is a combinatorial constant, depending only on j . The only step that
needs justification is the step from the first to the second line, which is justified
by using the Wick formula for the expectation of a product of zero mean Gaussian
random variables. The Wick formula states that the expectation of a product of zero
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mean Gaussian random variables is the sum of the products of the expectations
of pairs, summed over all possible groupings into pairs. In the above expression,
however, we note that in the second line, we already have each possible grouping
into pairs for each of the summands in the first line.

It remains to calculate the constant Kj , and for this we use Lemma 5.3.2 of [1],
which we restate here, for completeness:

LEMMA 2.2. Let Z2n be a 2n × 2n symmetric matrix of Gaussian random
variables, with covariances satisfying

E
[
Z2n

ij Z2n
kl

] − E
[
Z2n

kj Z2n
il

] = δkj δil − δij δkl.

Then

E
[
det(Z2n)

] = (−1)n(2n)!
n!2n

.(2.5)

Setting V = R
2n with its standard inner product, and defining W(ei, ej ) = Z2n

ij ,

where (ei)1≤i≤2n is the standard basis for R
2n, we see that we are indeed in the

same situation as in the lemma and C = −I 2. Next, we note that

E
[
W 2n((e1, . . . , en), (e1, . . . , en)

)]

= E

[ ∑
π,σ∈S(2n)

εσ επ

2n∏
j=1

W(eσ(j), eπ(j))

]

= E
[
(2n)!det(Z2n)

]
= Kn

2n
(−1)nI 2n((e1, . . . , e2n), (e1, . . . , e2n)

)

= Kn

2n
(−1)n(2n)!,

where we have used (2.5). Equating the second and the fourth lines, combined
with (2.5), we see

Kn = (2n)!
n! .

This completes the proof. �

2.2. Morse’s theorem. In this section we state, without proof, a version of
Morse’s theorem for C2 Riemannian manifolds with boundary (N,h) isometri-
cally embedded in some orientable ambient manifold (M,g). Morse’s theorem
relates the Euler characteristic, a topological invariant, to the critical points of
nondegenerate functions, to be defined below. The interested reader is referred
to [13, 14, 19].
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First, we begin with some definitions and notation. For a manifold M , a critical
point of f ∈ C1(M) is a point p such that the differential of f , dfp ≡ 0, where
df is the one-form defined by dfp(Xp) = Xpf . The points {t ∈ R :fp = t and
dfp ≡ 0} are called the critical values of f and the points {t ∈ R :fp = t

and dfp �= 0} the regular values. For f ∈ C1(M), where (M,g) is a Riemannian
manifold, we recall that the gradient of f , ∇f , is the unique continuous vector
field such that

〈∇f,X〉 = Xf

for every vector field X. Next, we recall that the Hessian ∇2f of a function
f ∈ C2(M) on a Riemannian manifold (M,g) is the bilinear symmetric map from
C1(T (M)) × C1(T (M)) → C0(M), given by

∇2f (X,Y ) = g(∇X∇f,Y ) = XYf − ∇XYf,

where ∇ is the Levi–Civita connection of (M,g). Note that, ∇2f ∈ C0(
1,1(M))

and, at a critical point, the Hessian is independent of the metric g. A critical point p

is called nondegenerate if the bilinear mapping ∇2f (·, ·)|TpM is nondegenerate.
A function f ∈ C2(M) is said to be nondegenerate if all its critical points are
nondegenerate. The index of a nondegenerate critical point p is the dimension of
the largest subspace L of TpM , such that ∇2f (·, ·)|L is negative definite.

If O is an open set of M such that ∂O is a C2 embedded submanifold of M ,
then we call the C2 submanifold with boundary O, a C2 domain. In what follows,
we denote counting measure on a set S by #S , and for S ⊂ M , the restriction of f

to S by f|S . The proof of the following, which is an extension of Morse’s original
theorem to cases for which f −1[u,+∞) ∩ ∂M �= ∅, can be found in [19], or
derived as a corollary to Proposition A3 of [18].

THEOREM 2.3 (Morse’s theorem). (i) Suppose f is a nondegenerate function
on M and u is a regular value of f . Then,

χ
(
f −1[u,+∞)

) =
n∑

k=0

(−1)k#M

{
f > u,df = 0, index(−∇2f ) = k)

}
.

(ii) Suppose N is a compact C2 domain of M , with outward pointing unit
normal vector ν⊥, and f is a nondegenerate function on M such that f|∂N is also
nondegenerate. Suppose further that u is a regular value of f and f|∂N . Then,

χ
(
f −1[u,+∞) ∩ N

)
=

n∑
k=0

(−1)k#N

{
f > u,df = 0, index(−∇2f ) = k

}

+
n−1∑
k=0

(−1)k#∂N

{
f > u,df = 0, index(−∇2f ) = k, 〈∇f, ν⊥〉 > 0

}
.
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2.3. Densities of point processes on manifolds. In this section we state two
lemmas which deal with point processes on a manifold M , derived from smooth
random fields on M .

We call a map θ :	 → ∧∗(M)(
∧∗,∗(M)) a random (double) differential form

if the coefficients of θ with respect to the natural basis for
∧∗(M)(

∧∗,∗(M))

in any chart (U,ϕ) are F ⊗ B(M)-measurable. We can unambiguously talk of
the expectation E[θ], as well as its conditional expectation E[θ |G] for G ⊂ F , by
taking expectations of its coefficients. If, furthermore, a random differential form θ

is P-almost surely integrable, then Fubini’s theorem allows us to make sense out
of expressions like

E
[∫

M
θ

]
=

∫
M

E[θ].
We shall use random differential forms to count the critical points and their

indices in order to calculate E[χ(M ∩ f −1[u,+∞)] for both Gaussian and other
smooth random fields. To start, we state a lemma which generalizes Theorem 5.1.1
of [1] to manifold-valued random fields defined on a manifold M (i.e., H :M ×
	 → N , where N is some other manifold).

LEMMA 2.4. Let M and N be two oriented n-dimensional manifolds. Given
some probability space (	,F ,P ), suppose H is an almost surely C1 N -valued
random field on M , and G an almost surely continuous E-valued random field
on M where E is some topological space. We are interested in the number of
points in M such that H(p) = q0 and G(p) ∈ A, where q0 is some arbitrary point
in N and A is some open set in E. Suppose that, with probability 1:

(i) There are no points p ∈ M satisfying both H(p) = q0 and either
G(p) ∈ ∂A or Rank(H∗)p < n. Here Rank(H∗)p is the rank of the linear mapping
(H∗)p :TpM → TH(p)N .

(ii) There are only a finite number of points p ∈ M satisfying H(p) = q0.

Suppose further that we have a family (αε)ε>0 of n-forms on N and a chart
(U,ϕ) with coordinates (y1, . . . , yn) such that

αε(ϕ(p)) = βε(ϕ(p))

(
n∧

j=1

dyi

)

�= ε−nω−1
n 1{ϕ(p)∈B(0,ε)}

(
n∧

j=1

dyi

)
.

Then we have, with probability 1,

#{p ∈ M :H(p) = q0,G(p) ∈ A} = lim
ε→0

∫
M

1{G∈A}|H ∗αε|,
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where, for an n-form α on M ,

|α| = ∣∣dα/d�
∣∣ · �

for some volume form � that determines the orientation of M and

dα/d�
�= α(X1, . . . ,Xn)/�(X1, . . . ,Xn),

for any frame (X1, . . . ,Xn) of linearly independent vector fields on M .

PROOF. The proof of this is a straightforward modification of the proof of
Theorem 5.1.1 in [1]. �

The reason we use this rather than the original of [1] is that, when we later
take expectations, we can unambiguously talk about the expectation of the integral∫
M 1{G∈A}|H ∗αε| by taking the expectation of the coefficients of the differential

without worrying about triangulating the manifold and calculating the integrals
locally.

Lemma 2.4 gives an almost sure representation for certain point processes on M ,
while we are interested in the density of these point processes

E
[

lim
ε→0

∫
M

1{G∈A}|H ∗αε|
]
.

Under certain conditions, we can interchange the limit and expectation above to
get

E
[

lim
ε→0

∫
M

1{G∈A}|H ∗αε|
]

=
∫
M

lim
ε→0

E
[
1{G∈A}|H ∗αε|].

The following lemma gives sufficient conditions for this, in the case that H is an
R

n-valued random field.

LEMMA 2.5. Suppose (M,g) is an oriented Riemannian manifold and H =
(H1, . . . ,Hn) is an R

n-valued random field, satisfying the conditions of Lemma 2.4.
Further, suppose for any ε > 0,

P
[

max
1≤i≤n

sup
p∈M

sup
q∈Bτ (p,h)

|Hi(p) − Hi(q)| > ε

]
= o(hn)

and

P
[

max
1≤i≤n

sup
p∈M

sup
q∈Bτ (p,h)

|XHi(p) − XHi(q)| > ε

]
= o(hn)

for any unit vector field X, where Bτ (p,h) is the ball in the metric induced by g.
Further, suppose that

dE[1{G∈A}|H ∗αε|]
d Volg
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is bounded, for ε < ε0 by d�/d Volg for some integrable form �. Then,

E
[

lim
ε→0

∫
M

1{G∈A}|H ∗αε|
]

=
∫
M

lim
ε→0

E
[
1{G∈A}|H ∗αε|].

PROOF. This is also a straightforward modification of the proof of Lemmas
5.2.1 and 5.2.2 in [1]. �

2.4. The Riemannian structure induced by a smooth Gaussian field. In this
section we describe the Riemannian structure g induced on M by the field f in
terms of the covariance function of the field.

As mentioned in Section 1, the Riemannian structure induced by f is the pull-
back of the standard structure on L2(	,F ,P) and is given by

g(X,Y ) = E[Xf Yf ].
We now describe the Levi–Civita connection ∇ and the curvature tensor R

of (M,g) in terms of the covariance structure of f . The following relation, known
as Koszul’s formula (cf., e.g., [12]) gives a coordinate free formula that determines
∇ for C1 vector fields X,Y,Z we have

2g(∇XY,Z) = Xg(Y,Z) + Yg(X,Z) − Zg(X,Y )

+ g(Z, [X,Y ]) + g(Y, [Z,X]) − g(X, [Y,Z]).
A simple calculation then shows that

g(∇XY,Z) = E[(∇XYf )(Zf )] = E[(XYf )(Zf )].(2.6)

Next, we show how the curvature tensor of (M,g) is related to the covariance
structure of f . If g is C2, for C2 vector fields X,Y,Z,W , we have

E
[
(∇2f )2((X,Y ), (Z,W)

)]
= 2E

[∇2f (X,Z)∇2f (Y,W) − ∇2f (X,W)∇2f (Y,Z)
]

= 2E
[
(XZf − ∇XZf )(YWf − ∇Y Wf )

− (XWf − ∇XWf )(YZf − ∇YZf )
]

= 2
(
E[XZf YWf ] − g(∇XZ,∇Y W)

)
− 2

(
E[XWfYZf ] − g(∇XW,∇Y Z)

)
= 2

(
XE[Zf YWf ] − E[Zf XYWf ] − g(∇XZ,∇YW)

)
− 2

(
YE[XWfZf ] − E[Zf YXWf ] − g(∇XW,∇Y Z)

)
= 2

(
Xg(Z,∇Y W) − g(∇XZ,∇YW) − g(Z,∇[X,Y ]W)

)
− 2

(
Yg(∇XW,Z) − g(∇XW,∇YZ)

)
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= 2
(
g(∇XZ,∇YW) + g(Z,∇X∇Y W) − g(∇XZ,∇YW) − g(Z,∇[X,Y ]W)

)
− 2

(
g(∇Y ∇XW,Z) + g(∇Y Z,∇XW) − g(∇XW,∇YZ)

)
= 2

(
g(Z,∇X∇YW) − g(∇Y ∇XW,Z) − g(Z,∇[X,Y ]W)

)
= 2R

(
(X,Y ), (W,Z)

)
= −2R

(
(X,Y ), (Z,W)

)
,

where R is the curvature tensor of (M,g). Equivalently, as double differential
forms,

E
[
(∇2f )2] = −2R.(2.7)

From our assumptions, it is not clear that the terms XYWf and YXWf make
proper sense, though their difference, [X,Y ]Wf , which is what appears above, is
well defined.

2.5. Notation used in following sections. Here is the promised list of notation,
requested by a referee to ease the pain of some of the following technicalities:

M abstract manifold with or without boundary,

S(H) unit sphere in a Hilbert space H ,

Sρ(H) ρ-sphere in a Hilbert space H ,

(
∧∗(V ),∧) Grassman algebra of a vector space V ,

(
∧∗,∗(V ), ·) algebra of double forms of a vector space V ,

TrH trace on (
∧∗,∗(H), ·) of a Hilbert space H ,

I identity mapping in 
1,1(H) for a Hilbert space H ,

(M,g) abstract Riemannian manifold (M,g),

∇ Lévi–Civita connection of Riemannian manifold (M,g),

∇f gradient of a function f on a Riemannian manifold (M,g),

∇2f Hessian of a function f on a Riemannian manifold (M,g),

R curvature tensor of Riemannian manifold (M,g),

S second fundamental form of ∂M in M of a Riemannian manifold

with boundary (M,g),

Hj j -dimensional Hausdorff measure on a metric space (T , τ ),

Mj (D) j th Minkowski functional of D ⊂ R
n,

Lj (M) j th Lipschitz–Killing curvature of Riemannian manifold (M,g),

ωn volume of the unit ball in R
n,

Cf covariance function of a random field f .
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3. Suitable regularity. In this section we discuss the regularity conditions
we require our Gaussian random fields to satisfy. For a parameter space, T , if
we are given a nonnegative definite, symmetric function C :T × T → R, it is
well known that we can construct a Gaussian random field f on some probability
space (	,F ,P) with parameter space T and covariance function C.

Suppose that T is an open subset of R
n. We say that f has j th order derivatives

in the L2 sense if

lim‖t ′‖,‖s′‖→0
E[F(t, t ′)F (s, s′)]

exists for all s, t ∈ T and sequences s′, t ′ ∈ ⊕j
R

n, where F(t, t ′) is the
symmetrized difference

F(t, t ′) = 1∏j
i=1 ‖t ′i‖Rn

∑
s∈{0,1}j

(−1)j−∑j
i=1 si f

(
t +

j∑
i=1

si t
′
i

)
.

In this case, for (t, t ′) ∈ T × ⊕j
R

n, we denote the j th order derivative in the
direction t ′ by D

j

L2f (t, t ′), that is, Dj

L2f (t, t ′) is defined by the following L2 limit:

D
j

L2f (t, t ′) = lim
h→0

F(t, ht ′).

It is clear that D
j

L2f is also a Gaussian field on T × ⊕j
R

n, since, for each (t, t ′),
it is an L2 limit of Gaussian random variables. We endow the space R

n × ⊕j
R

n

with the product norm

‖(s, s′)‖n,j = ‖s‖Rn + ‖s′‖⊕j
Rn = ‖s‖Rn +

( j∑
i=1

‖s′
i‖2

Rn

)1/2

,

and we write Bn,j (y,h) for the h-ball centered at y = (t, t ′) in the metric induced
by ‖ · ‖n,j . Further, we write,

Tj,ρ = T ×
{
t ′ :‖t ′‖⊕j

Rn ∈ (1 − ρ,1 + ρ)
}

for the product of T with the ρ-tube around the unit sphere in
⊕j

R
n.

If the covariance function C is smooth enough, then the existence of j th order
derivatives in the L2 sense implies the existence of j almost surely continuous
derivatives. The following lemma gives sufficient conditions for the almost sure
j th order differentiability of f .

LEMMA 3.1. Suppose f is a centered Gaussian random field on T , a bound-
ed open set in R

n, such that f has a j th order derivative in the L2 sense.
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Suppose furthermore that there exists 0 < K < ∞, and ρ, δ,h0 > 0 such that for
0 < η1, η2, h < h0,

E
[(

F(t, η1t
′) − F(s, η2s

′)
)2]

(3.1)

<
K

(− log(‖(t, t ′) − (s, s′)‖n,j + |η1 − η2|))1+δ
,

for all ((t, t ′), (s, s′)) ∈ S(ρ,h) where

S(ρ,h) = {(
(t, t ′), (s, s′)

) ∈ Tj,ρ × Tj,ρ : (s, s′) ∈ Bn,j

(
(t, t ′), h

)}
.

Then, there exists a continuous modification, f̂ of f , such that f̂ ∈ Cj (T ), with
probability 1. Denoting the derivatives by Dj f̂ , we have, for any ε,M > 0,

P

[
sup

(t,t ′)∈T ×S(
⊕j

Rn)

sup
s∈BRn(t,h)

∣∣Djf̂ (t; t ′) − Djf̂ (s; t ′)
∣∣ > ε

]
= o(hM).

PROOF. If we define the Gaussian field

F̃ (t, t ′, η) =
{

F(t, ηt ′), η �= 0,

D
j

L2f (t, t ′), η = 0,

on Tj,ρ × (−h,h), an open subset of the finite dimensional vector space
R

n × ⊕j
R

n × R with norm

‖(t, t ′, η)‖n,j,1 = ‖(t, t ′)‖n,j + |η|,
the continuity of the j th derivative follows from well-known results for the
continuity of Gaussian processes on general spaces (cf. Chapter 4 in [2]).
The second conclusion follows from an application of the Borell–Cirelson
inequality [2]. �

Next, we define suitably regular Gaussian fields on manifolds.

DEFINITION 3.2. A Gaussian random field on a Ck (k ≥ 3) manifold M is
suitably regular if it satisfies the following conditions:

(i) f (·,ω) ∈ C2(M) almost surely.
(ii) The symmetric two-tensor field g induced by f is C2 and nondegenerate,

where g is defined by,

gp(Xp,Yp) = E[Xpf Ypf ].
In other words f induces a C2 Riemannian metric on M , given by the pull-back
of the standard structure on L2(	,F ,P ) under the map p �→ fp.
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(iii) For every ε > 0, X,Y ∈ C1(T (M)),

P
[

sup
p∈M

sup
q∈Bτ (p,h)

|XYfp − XYfq | > ε

]
= o(hn)

where τ is the metric on M induced by the Riemannian metric g.

The third condition replaces the analogous condition in Theorem 5.2.2 in [1].
The following lemma gives sufficient conditions for suitable regularity on a

compact Ck (k ≥ 3) manifold.

LEMMA 3.3. Suppose f is a Gaussian random field on a Ck (k ≥ 3) compact
manifold M that induces a C2 Riemannian metric on M as described above.
Furthermore, suppose that M has a countable atlas A = (Ui, ϕi)i∈I such that for
every i the Gaussian field fi = f ◦ ϕ−1

i on ϕi(Ui) ⊂ R
n satisfies (3.1) with j = 2,

T = ϕi(Ui) and f = fi and some Ki, δi, h0,i > 0. Then f is suitably regular.

PROOF. It follows from Lemma 3.1 that for any i, fi ∈ C2(ϕi(Ui)) almost
surely. Since A is countable it follows by definition that f ∈ C2(M) almost surely.
Furthermore since M is compact, there exists a finite atlas A′ with index set I (A′),
such that for every chart in A′, (3.1) holds with a K and δ independent of the chart.
Without loss of generality, we can choose A′ such that ϕi(Ui) is a bounded open
set in R

n.
Next we note that, for h small enough, denoting by τ the Riemannian metric

induced by f ,

sup
p∈M

sup
q∈Bτ (p,h)

|XYfp − XYfq | = max
i∈I (A′)

sup
p∈Ui

sup
q∈Bτ (p,h)∩Ui

|XYfp − XYfq |.

Therefore, to show

P
[

sup
p∈M

sup
q∈Bτ (p,h)

|XYfp − XYfq | > ε

]
= o(hn),

it is sufficient to show that it holds in every Ui . Denoting by τi the metric on ϕi(Ui)

induced by τ , and by di the standard metric on R
n restricted to ϕi(Ui), we have

for h sufficiently small, there exists C1i,C2i > 0, such that,

Bdi
(x,C1ih) ⊂ Bτi

(x,h) ⊂ Bdi
(x,C2ih).

So we just have to prove

P
[

sup
x∈ϕi(Ui )

sup
y∈Bdi

(x,h)∩ϕi(Ui)

∣∣XiY ifi(x) − XiY ifi(y)
∣∣ > ε

]
= o(hn),(3.2)

where Xi = ϕi∗X, Y i = ϕi∗Y . We can write XiY ifi(x) as follows:

XiY ifi(x) =
n∑

j=1

aj (x)
∂fi

∂xj

(x) +
n∑

k,l=1

bkl(x)
∂2fi

∂xk ∂xl

(x),(3.3)
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where the aj , bkl are bounded continuous functions on ϕi(Ui) (or, if necessary we
can enlarge the atlas A′ so that they are bounded). It follows from our assumptions,
that for all h,

sup
x∈ϕi(Ui )

sup
y∈Bdi

(x,h)∩ϕi(Ui)

sup
c∈S(Rn)

E

[(
n∑

k=1

ck

(
∂fi

∂xk

(x) − ∂fi

∂xk

(y)

))2]
< h2K ′

i ,

for some Ki > 0, expressible in terms of the variance of the second order
L2 derivatives of fi . Combining this with the fact that the functions aj and bkl

are bounded, and Lemma 3.1 completes the proof. �

4. Expected Euler characteristics for smooth Gaussian random fields
on manifolds without boundary. In this section we derive a formulae for
E[χ(f −1[u,+∞))] = E[χ(M ∩ f −1[u,+∞))] when f is a centered, unit
variance Gaussian random field defined on a compact, oriented, manifold M , with
or without boundary. We begin with the case when M has no boundary.

Part (i) of Theorem 2.3 enables us to derive a point set representation for the
Euler characteristic of a C2 manifold with boundary N . In particular,

χ
(
M ∩ f −1[u,+∞)

) =
n∑

k=0

(−1)k#M

{
f > u,df = 0, index(−∇2f ) = k

}
,

so that χ
(
M ∩ f −1[u,+∞)

)
can be represented as the total number of points in

n + 1 different point processes. Our assumptions on the Gaussian field will allow
us to use Lemmas 2.4 and 2.5, and we have the following:

THEOREM 4.1. Let f be a suitably regular, centered, unit variance Gaussian
field on a C3 compact manifold M (cf. Definition 3.2). Then

E
[
χ
(
M ∩ f −1[u,+∞)

)] =
n∑

j=0

Lj (M)ρj (u)

where Lj (M) are the Lipschitz–Killing curvatures (1.2) of M , calculated with
respect to the metric induced by f and ρj is given by

ρj (u) = 1

(2π)(j+1)/2

∫ ∞
u

Hj (t)e
−t2/2 dt

=



1

(2π)(j+1)/2 Hj−1(u)e−u2/2, j ≥ 1,

1 − �(u), j = 0,

where

Hj(x) =
�j/2�∑
l=0

(−1)lj !
(j − 2l)!l!2l

xj−2l
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is the j th Hermite polynomial and � is the cumulative distribution of a standard
Gaussian random variable.

PROOF. As mentioned above, we shall use Lemma 2.4 to count the critical
points of f in M above the level u, with index k and Lemma 2.3 to calculate
χ(M ∩ f −1[u,+∞)). In the notation of Lemma 2.4, N = R

n; E = R × Symn×n

(= the space of symmetric n × n matrices), M = M ∩ f −1[u,+∞) and q0 = 0.
The maps G and H are defined as follows: G = (f,−∇2fE) and H = ∇fE ,
where ∇2fE and ∇fE take values in Symn×n and R

n and are the coefficients
of the tensors ∇2f and ∇f read off in some fixed orthonormal frame field
E = (E1, . . . ,En). Specifically, they are defined by

∇2fE,ij = ∇2f (Ei,Ej )

and

∇fE,i = Eif.

Finally, we set Ak = {(x, T ) :x > u, index(T ) = k} ⊂ R×Symn×n. It follows from
the assumptions on f that it is almost surely nondegenerate (cf. Chapter 3 in [1]).
This implies that f has, almost surely, a finite number of critical points, which are
all nondegenerate. These are the regularity conditions needed for Lemma 2.4, so,
after applying Lemma 2.4 n + 1 times, we see that, with probability 1,

χ
(
M ∩ f −1[u,+∞)

) = lim
ε→0

∫
M

θε
f (u).

Here θε
f (u) is a random n-form on M , given in any chart (U,ϕ) with coordinates

(x1, . . . , xn) by

θε
f (u)|U =

n∑
k=0

(−1)k|∇f ∗
E(αε)|1Ak

(
f,−∇2f (Ei,Ej )

)

=
n∑

k=0

(−1)k
∣∣∣∣det

(
∂Eif

∂xj

)∣∣∣∣1Ak

(
f,−∇2f (Ei,Ej )

)

× βε(∇fE)

(
n∧

i=1

dxi

)
(4.1)

=
n∑

k=0

(−1)k
√

det(gij )|det(−EiEjf )|1Ak

(
f,−∇2f (Ei,Ej )

)

× βε(∇fE)

(
n∧

i=1

dxi

)

= det(−EiEjf )βε(∇fE)1[u,+∞)(f )Volg
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where αε(y) = βε(y)(
∧n

i=1 dyi) is a family of forms on R
n, satisfying the

requirements of Lemma 2.4.
What remains to be done to calculate E[χ(M ∩f −1[u,+∞))] is to interchange

the order of integration, (which will be justified by suitable regularity and
Lemma 2.5), calculate limε→0 E[θε

f (u)] and integrate the resulting expression
over M .

In order to apply Lemma 2.5, we must show that, for ε sufficiently small and
for every k,

dE[1{(f,∇2fE)∈Ak}|∇f ∗
Eαε|]

dVolg
≤ d�

dVolg
,

for some integrable form �. It suffices, then, to prove that for ε sufficiently small

dE[|∇f ∗
Eαε|]

dVolg
= E

[|det(EiEjf )|βε(∇fE)
] ≤ d�

dVolg
.

Noting that

EiEjf = ∇2f (Ei,Ej ) + ∇Ei
Ejf

the determinant in the above expression can be bounded by a polynomial in the
absolute value of the terms of ∇fE with coefficients depending only on ∇2fE .
Since the density of ∇fE is bounded and ∇2fE is independent of ∇fE , we can
indeed find such a �.

Continuing with the calculation,

lim
ε→0

E
[
det(−EiEjf )βε(∇fE)1f >u

]

=
∫ ∞
u

E
[
det(−EiEjf )

∣∣∇fE = 0, f = t
]
ϕf,∇fE(t,0) dt

=
∫ ∞
u

E
[
det

(−∇2f (Ei,Ej ) − ∇Ei
Ejf

)∣∣∇fE = 0, f = t
]
ϕf,∇fE

(t,0) dt

=
∫ ∞
u

E
[
det

(−∇2f (Ei,Ej )
)∣∣∇fE = 0, f = t

]
ϕf,∇fE

(t,0) dt

=
∫ ∞
u

1

n!E
[
Tr

(
(−∇2f )n

)∣∣∇fE = 0, f = t
]
ϕf,∇fE

(t,0) dt,

where ϕf,∇fE
is the joint density of f and ∇fE and in the last line we have

used (2.2). Since ∇2f is a Gaussian double form, we can use Lemma 2.1 to
calculate the above expectation. We first calculate the conditional expectation
of ∇2f , as well as that of (∇2f )2. We have

E
[
(∇2f )

∣∣∇fE = 0, f = t
] = −tI,

E
[(∇2f − E[(∇2f )|∇fE = 0, f = t])2∣∣∇fE = 0, f = t

] = −(2R + I 2)
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where I is the identity double form, determined by g, described in Section 2.1. The
proof of the above is straightforward, following the ideas Section 2.4 and making
specific use of (2.6) and (2.7), combined with standard results about multivariate
Gaussian conditional distributions. The expectation can thus be written as

(−1)n

n! E
[
TrM(∇2f )n

∣∣df = 0, f = t
]

=
�n/2�∑
j=0

(−1)j

(n − 2j)!j !2j
TrM

(
(tI )n−2j (I 2 + 2R)j

)

=
�n/2�∑
j=0

j∑
l=0

(−1)j

j !2j (n − 2j)! t
n−2j TrM

(
In−2l

(
j

l

)
(2R)l

)

=
�n/2�∑
l=0

(−1)l

l! TrM
(
Rl

�(n−2l)/2�∑
k=0

(−1)k

2k(n − 2k − 2l)!k! t
n−2k−2lI n−2l

)

=
�n/2�∑
l=0

(−1)l

l! TrM(Rl)Hn−2l(t)

where, in the last line, we have used (2.1). We conclude that

θf (u)
�= lim

ε→0
E[θε

f (u)]

=
�n/2�∑
l=0

[∫ ∞
u

1

(2π)(n+1)/2
Hn−2l(t)e

−t2/2 dt

]
(−1)l

l! TrM(Rl)Volg

=
�n/2�∑
l=0

ρn−2l(u)

(2π)l

(−1)l

l! TrM(Rl)Volg.

The conclusion of the theorem follows by integrating θf (u) over M . �

5. The manifold with boundary case. In what follows now we shall consider
the case when M is a manifold with boundary. In this situation, to use Morse’s
theorem we need to assume that M is an embedded submanifold with boundary
of some ambient manifold N and our fields f are suitably regular when viewed
as random fields on N . We do not have to consider M ⊂ R

n, M could be a
compact C2 domain of any ambient manifold N .

THEOREM 5.1. Let f be a suitably regular zero mean, unit variance Gaussian
field on a C3 manifold N (cf. Definition 3.2). Suppose M is an embedded
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C2 submanifold with boundary of N , the boundary being denoted by ∂M , with
outward pointing unit normal vector field ν. Then

E
[
χ
(
M ∩ f −1[u,+∞)

)] =
n∑

j=0

Lj (M)ρj (u),(5.1)

where Lj (M) are the Lipschitz–Killing curvatures of M , calculated with respect
to the metric induced by f and are defined by

Lj (M) = Lj (
◦

M) +
∫
∂M

Qj Vol∂M,g,

with

Qj =
�(n−1−j)/2�∑

k=0

1

(2π)ksn−j−2k

(−1)k

k!(n − 1 − j − 2k)! Tr∂M(Sn−1−j−2kRk),

where
◦

M is the interior of M , S is the second fundamental form of ∂M in M ,
defined by

S(X,Y ) = −g(∇Xν,Y )

and

sj = 2πj/2

�
(j

2

)
is the surface area of the unit sphere in R

j .

PROOF. Following the arguments in Theorem 4.1, we apply Lemmas
2.4 and 2.5 along with (ii) of Lemma 2.3. From these it follows that

E
[
χ
(
M ∩ f −1[u,+∞)

)] =
∫

◦
M

θf (u) +
∫
∂M

θ∂M
f (u)

where θ∂M
f (u) is an (n − 1)-form on ∂M . Assuming that the orthonormal frame

field E is chosen so that En = ν, the unit outward pointing normal vector field
on ∂M , we see that in any chart (U,ϕ) such that U ∩ ∂M �= ∅, we have

θ∂M
f (u) = 1

(2π)(n−1)/2

∫ ∞
u

∫ ∞
0

E
[
det(−EiEjf )1≤i,j≤n−1

∣∣f = t,

∇fE = (0, . . . ,0, y)
]

× ϕf,∇fE

(
t, (0, . . . ,0, y)

)
dy dt Vol∂M,g .

The conditional covariances remain the same as in the previous section, as we
are still conditioning on the vector (f,∇fE). Specifically, the restriction of ∇2f

to ∂M satisfies

E
[
(∇2f|∂M)2∣∣f = t,∇fE = (0, . . . ,0, y)

] = −(2R + I 2).



554 J. E. TAYLOR AND R. J. ADLER

As for conditional means,

E
[
XYf

∣∣f = t,∇fE = (0, . . . ,0, y)
]

= E
[∇2f|∂M(X,Y )

∣∣f = t,∇fE = (0, . . . ,0, y)
]

= −g(X,Y )t − S(X,Y )y

for any X,Y ∈ C2(T (∂M)). Equivalently,

E
[∇2f|∂M

∣∣f = t,∇fE = (0, . . . ,0, y)
] = −tI − yS.

The expectation in the expression for θ∂M
f (u), can then be written as follows:

(−1)n−1

(n − 1)! E
[
Tr∂M(∇2f|∂M)n−1∣∣f = t,∇fE = (0, . . . ,0, y)

]

=
�(n−1)/2�∑

j=0

(−1)j

(n − 1 − 2j)!j !2j
Tr∂M(

(tI + yS)n−1−2j (I 2 + 2R)j
)

=
�(n−1)/2�∑

j=0

j∑
l=0

(−1)j

(n − 1 − 2j)!
1

2j−l l!(j − l)! Tr∂M
(
(tI + yS)n−1−2j I 2j−2lRl

)

=
�(n−1)/2�∑

j=0

n−1−2j∑
k=0

j∑
l=0

(−1)j (n − 1 − 2l − k)!
(n − 1 − 2j − k)!k!

1

2j−l l!(j − l)!

× yktn−1−2j−k Tr∂M(SkRl)

=
n−1∑
k=0

�(n−1−k)/2�∑
j=0

j∑
l=0

(−1)j (n − 1 − 2l − k)!
(n − 1 − 2j − k)!k!

1

2j−l l!(j − l)!

× yktn−1−2j−k Tr∂M(SkRl)

=
n−1∑
k=0

�(n−1−k)/2�∑
l=0

�(n−1−k)/2�∑
j=l

(−1)j (n − 1 − 2l − k)!
(n − 1 − 2j − k)!k!

1

2j−l l!(j − l)!

× yktn−1−2j−k Tr∂M(SkRl)

=
n−1∑
k=0

�(n−1−k)/2�∑
l=0

(−1)lyk Tr∂M(SkRl)

k!l!

×
�(n−1−2l−k)/2�∑

i=0

(−1)i(n − 1 − 2l − k)!
(n − 1 − 2l − k − 2i)!

1

2i i! t
n−1−2l−k−2i
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=
n−1∑
k=0

�(n−1−k)/2�∑
l=0

(−1)lyk

l!k! Tr∂M(SkRl)Hn−1−2l−k(t)

=
n−1∑
m=0

�m/2�∑
l=0

(−1)lym−2l

l!(m − 2l)! Tr∂M(Sm−2lRl)Hn−1−m(t)

=
n−1∑
j=0

�(n−1−j)/2�∑
l=0

(−1)lyn−1−j−2l

l!(n − 1 − j − 2l)! Tr∂M(Sn−1−j−2lRl)Hj (t).

After integrating over (u,+∞) × (0,+∞) , we conclude that

θ∂M
f (u) =

n−1∑
j=0

Qjρj(u)Vol∂M,g.

The conclusion of the theorem now follows from integration over ∂M . �

6. Examples. In this section we derive the expected Euler characteristic for
some specific manifolds and random fields defined on them.

6.1. Nonstationary fields on R
n. Since R

n itself is a manifold, it is natural
to consider suitably regular Gaussian random fields f on R

n. We first fix T ,
a compact C2 domain in R

n. Furthermore, we can relax the C3 assumption present
in Theorem 5.1 because ∂T is a hypersurface in R

n. We now proceed to give an
outline of how one would calculate E[χ(T ∩ f −1[u,+∞))] by deriving a formula
for R in terms of derivatives of Cf the covariance function of f . In general,
though, it is obvious that there is no closed form for the expression in Theorem 5.1,
except as a universal functional of the derivatives of Cf . However, the integrals can
be calculated numerically for a specific example.

In order to carry out the numeric integration, we must evaluate the function
TrR

n
(Rk) for k = 1, . . . , �n/2�. If (Ei)1≤i≤n are the coordinate vector fields on

R
n [i.e., the natural basis in the global chart (Rn, i) where i is the inclusion map],

then it is an exercise to show that, for any C2 Riemannian metric g on R
n, with R

its curvature tensor,

RE
ijkl

�= R
(
(Ei,Ej ), (Ek,El)

)

=
n∑

s=1

[
gsl

(
Ei(�

s
jk) − Ej(�

s
ik)

) + �isl�
s
jk − �jsl�

s
ik

]

= Ei�jkl − Ej�ikl +
n∑

s,t=1

(�iksg
st�jlt − �jksg

st�ilt )
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where gij = g(Ei,Ej ), gij ,�ijk and �k
ij are defined by the following relations:

�ijk = g
(∇Ei

Ej ,Ek

) = 1
2 [Ejgik − Ekgij + Eigjk],

�k
ij =

n∑
s=1

gks�ijs,

n∑
k=1

gikg
kj = δij .

We saw in (2.6) that if g is the metric induced by a random field f ,

gp(∇XYp,Zp) = E[XYfpZfp],
from which

�ijk(x) = ∂3Cf (t, s)

∂ti∂tj ∂sk

∣∣∣∣
(x,x)

.

Denoting by (dei)1≤i≤n the dual basis of (Ei)1≤i≤n, we can express the
curvature tensor as

R = 1
4

n∑
i,j,k,l=1

RE
ijkl(dei ∧ dej) ⊗ (dek ∧ del).

For any measurable section (Xi)1≤i≤n of O(T ) with dual frames (θi)1≤i≤n such
that

θi =
n∑

i′=1

g
1/2
ii′ dei′,

where g1/2, given by

(g1/2)ij = g(Ei,Xj ),

is a (measurable) square root of g. It follows that

R = 1
4

n∑
i,j,k,l=1

RX
ijkl(θi ∧ θj ) ⊗ (θk ∧ θl),

where

RX
ijkl =

n∑
i′,j ′,k′,l′=1

RE
i′j ′k′l′g

−1/2
ii′ g

−1/2
jj ′ g

−1/2
kk′ g

−1/2
ll′

= R
(
(Xi,Xj ), (Xk,Xl)

)
.

We next define the curvature forms for the section X by

R = 1
2�ij ⊗ θi ∧ θj .
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From the definition of the double wedge product “·”, Rk can therefore be expressed
as

Rk = 1

2k

n∑
i1,...,i2k=1

(
k∧

l=1

�i2l−1i2l

)
⊗

(
k∧

l=1

(θi2l−1 ∧ θi2l
)

)
.

It follows that

Rk
(
(Xa1, . . . ,Xa2k

), (Xa1, . . . ,Xa2k
)
)

= 1

22k

n∑
i1,...,i2k=1

δ
(a1,...,a2k)
(i1,...,i2k)

( ∑
σ∈S(2k)

εσ

k∏
l=1

RX
i2l−1i2l aσ(2l−1)aσ(2l)

)

where, for all m,

δ
(c1,...,cm)
(b1,...,bm) =

{
εσ , if c = σ(b), for some σ ∈ S(m),

0, otherwise.

Therefore,

TrT (Rk) = 1

(2k)!
n∑

a1,...,a2k=1

Rk
(
(Xa1, . . . ,Xa2k

), (Xa1, . . . ,Xa2k
)
)

(6.1)

= 1

22k

n∑
a1,...,a2k=1

( ∑
σ∈S(2k)

εσ

k∏
l=1

RX
a2l−1a2laσ(2l−1)aσ(2l)

)
.

The same method can be used to derive a formula for Tr∂T (RkSj ) (j ≤ n−2k). We
also note that, the above calculation gives a formula that can be used to calculate
TrM(Rk) in any given chart for any Riemannian manifold (M,g).

6.2. Lie groups and stationary Gaussian fields. A Lie group G is a group that
is also a C∞ manifold, such that the map taking g to g−1 is C∞ and the map
taking (g1, g2) to g1g2 is also C∞. We denote the identity element of G by e and
by Lg and Rg the left and right multiplication maps and by Ig = Lg ◦ R−1

g the
inner automorphism of G induced by g.

We recall that a vector field X on G is said to be left invariant if for all
g,g′ ∈ G,

(
Lg

)
∗Xg′ = Xgg′ . Similarly, a covariant tensor field � is said to be

left invariant (resp. right invariant) if, for every g0, g in G, L∗
g0

�g0g = �g (resp.
R∗

g0
�gg0 = �g), � is said to be bi-invariant if it is both left and right invariant.

If h is a (left, right, bi-) invariant Riemannian metric on G, then it is clear
that, for every g, the map (Lg,Rg, Ig) is an isometry of (G,h). In particular,
the curvature tensor R of h, is (left, right, bi-) invariant. This means that for
Gaussian random fields that induce such Riemannian metrics, the integrals needed
to evaluate E[χ(M ∩ f −1[u,+∞))] are significantly easier to calculate.
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LEMMA 6.1. Suppose f is a suitably regular, centered, unit variance
Gaussian random field on a compact n-dimensional Lie group G, such that the
Riemannian metric h induced by f is (left, right, bi-) invariant. Then,

E
[
χ
(
M ∩ f −1[u,+∞)

)] =
�n/2�∑
l=0

ρn−2l(u)

(2π)l

(−1)l

l! TrTeG(Rl
e)µh(G),

where µh is the Riemannian measure of (G,h).

PROOF. We have to prove the following:∫
G

TrG(Rl)g dµh(g) = TrTeG(Rl
e)µh(G).

Suppose X,Y,Z,W are left-invariant vector fields. Since g′ �→ Lgg
′ is an isometry

for every g, we have

Rg

(
(Xg,Yg), (Zg,Wg)

) = Re

(
(Lg−1∗Xg,Lg−1∗Yg), (Lg−1∗Zg,Lg−1∗Wg)

)
= Re

(
(Lg∗)−1Xg, (Lg∗)−1Yg, (Lg∗)−1Zg, (Lg∗)−1Wg

)
= Re(Xe,Ye,Ze,We).

Therefore, if (Xi)1≤i≤n is an orthonormal set of left-invariant vector fields,

(Rg)l
(
(Xi1g, . . . ,Xilg), (Xj1g, . . . ,Xjlg)

)
= (Re)

l
(
(Xi1e, . . . ,Xile), (Xj1e, . . . ,Xjle)

)
,

from which it follows that

TrTgG
(
(Rg)

l
) = TrTeG

(
(Re)

l
)
,

which completes the proof. �

A natural class of examples which induce invariant Riemannian metrics on a
Lie group G are the stationary random fields on G. Since G is not necessarily
Abelian, Bochner’s spectral representation theorem does not hold and we must
distinguish between left and right stationary. For a discussion on representations
of stationary random fields on general groups, not just Lie groups, see [23]. We
say that a random field f on G is left stationary if for all n, and all (g1, . . . , gn),
and any g0, the following holds:

(
f (g1), . . . , f (gn)

) D= (
f ◦ Lg0(g1), . . . , f ◦ Lg0(gn)

)
where

D= means equality in distribution. We say that f is right stationary if

f ′(g)
�= f (g−1), is left stationary, and that f is bi-stationary if it is both left and

right stationary. As in the case where G = R
n, for a Gaussian random field f on G,
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there is a simple condition on the covariance function of f that implies stationarity.
Specifically, it is easy to check that if Cf satisfies

Cf (g1, g2) = C′
f (g−1

1 g2),

for some function C′ :G → R, then f is left stationary. Similarly, if Cf satisfies

Cf (g1, g2) = C′′
f (g1g

−1
2 ),

for some function C′′, then f is right stationary.
Intuitively, we expect a left-stationary random field to induce a left-invariant

Riemannian metric, which as the following lemma shows is indeed the case.

LEMMA 6.2. Let f be a (left, right, bi)-stationary random field on a Lie
group G with a derivative in the L2 sense. If f induces a Riemannian metric
h, then h is (left, right, bi-) invariant.

PROOF. We prove the result when f is left-stationary, the proofs are identical
for the right- or bi-stationary case. For a fixed g0 ∈ G, we define the random field

f g0 by f g0 = f ◦Lg0 . By left stationarity, for every g0, f g0 D= f as a random field.
In particular, the metric induced by f g0 is the same as that induced by f , in other
words, denoting by h the metric on G induced by f ,

hg(Xg,Yg) = E
[
Xgf Ygf

]
= E

[
Xgf

g0Ygf
g0
]

= E
[(

Lg0∗Xg

)
f
(
Lg0∗Yg

)
f
]

= (
L∗

g0
hg0g

)
(Xg,Yg).

This completes the proof. �

Next, we give an example of how to construct a (left, right)-stationary Gaussian
random field on a G. Note that the above lemma shows that we can only construct
smooth bi-stationary Gaussian fields on G if it is unimodular, that is, if any left
Haar measure on G is also right invariant. We give the construction for a left-
stationary field. The construction also immediately gives a construction for a right-
stationary Gaussian field as follows: if f is left stationary, then it is straightforward

to check that the process f̃ (g)
�= f (g−1) is right stationary.

We say G has a smooth (C∞) (left) action on a smooth (C∞) n-manifold M , if
there exists a map θ :G × M → M satisfying, for all x ∈ M , and g1, g2 ∈ G,

θ(e, x) = x,

θ
(
g2, θ(g1, x)

) = θ(g2g1, x).
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We write θg :M → M for the partial mapping θg(x) = θ(g, x). Suppose µ is a
measure on M , such that, for all g ∈ G,

θg∗(µ) � µ,

dθg∗(µ)

dµ
(x) = D(g),

where θg∗(ν) is the push-forward of the measure ν under the map θg and dν/dµ

is the Radon–Nikodym derivative of ν with respect to µ. We call such a
measure µ (left) relatively invariant under G. It is easy to see that D(g) is a C∞
homomorphism from G into the multiplicative group of positive real numbers, that
is, D(g1g2) = D(g1)D(g2), so that µ is left invariant with respect to G if, and only
if, it is left relatively-invariant and D ≡ 1, that is, D is the trivial homomorphism.

LEMMA 6.3. Suppose G acts smoothly on a smooth manifold M , and µ is
relatively invariant under G. Let D denote the related homomorphism from G

to R and let W be a Gaussian white noise on L2(M,B(M),µ). Then, for any
F ∈ L2(M,B(M),µ),

f (g) = 1√
D(g)

W(F ◦ θg−1),

is a left-stationary Gaussian random field on G.

PROOF. We must prove that

E[f (g1)f (g2)] = C(g−1
1 g2)

for some C : G → R. From the definition of W we have

E[f (g1)f (g2)] = 1√
D(g1)D(g2)

∫
M

F
(
θ
g−1

1
(x)

)
F
(
θ
g−1

2
(x)

)
µ(dx)

= 1√
D(g1)D(g2)

∫
M

F
(
θ
g−1

1

(
θg2(x)

))
F(x)θg2∗(µ)(dx)

= D(g2)√
D(g1)D(g2)

∫
M

F
(
θ
g−1

1 g2
(x)

)
F(x)µ(dx)

=
√

D(g−1
1 g2)

∫
M

F
(
θ
g−1

1 g2
(x)

)
F(x)µ(dx)

= C(g−1
1 g2).

This completes the proof. �

It is clear that the regularity of F determines the regularity of its related random
field f . For instance, it is easy to show that if F ∈ C0

c (M) (c for compact support),
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and

sup
x∈M

sup
g∈Bτ (e,h)

|F(x) − F(gx)| < K

(− logh)1+δ

where τ is the metric associated to a left-invariant Riemannian metric on G, then
the stationary field related to F has a continuous modification. It is also easy to
show that if F ∈ C3

c (M) and the left-invariant two-tensor h on G induced by F is
nondegenerate, then f , the Gaussian random field related to F is suitably regular.

The most natural example of a Lie group acting on a manifold is its action
on itself. In particular, any right Haar measure is left relatively-invariant. Another
natural example of a group G acting on M is given by G = GL(n,R)× R

n acting
on M = R

n. For g = (A, t) and x ∈ R
n we have

θ(g, x) = Ax + t.

In this example, it is easy to see that Lebesgue measure dx is relatively-invariant
with respect to G with D(g) = det(A). Furthermore, any Lie subgroup H ⊂ G

acts on R
n and Lebesgue measure is clearly relatively-invariant with respect to H .

Consider the following examples:
(i) H = R

n. In this situation the field constructed is just a stationary random
field on R

n in the usual sense.
(ii) H = R

+I × R
n, that is,

θ(g, x) = θ
(
(s, t), x

) = (sI )x + t.

This example was used in [17], though only up to n = 3 and with the assumption
that F(x) = F(−x). The calculations were done directly and did not use the fact
that the random field was in fact stationary.

(iii) H = G. This situation was studied in [16], but only up to n = 2, due to
the significant algebra involved. Even in the case n = 2, the symbolic computation
software MAPLE was used to perform the calculations. No use was made of the
fact that the random field was stationary in this situation either.

6.3. Spheres and spherical caps. Throughout this section, Zn will denote a
suitably regular isotropic Gaussian random field on R

n, such that both it and its
first order partial derivatives have unit variance.

For our first example, we restrict Zn to Sa(R
n), the sphere of radius a in R

n.
Since Sa(R

n) is a space of constant curvature a−2, we have

R = − 1

2a2
I 2

and hence

Ln−2l(Sa(R
n)) = 2an−2l−1π(n−2l)/2

�
(
n
2

) (n − 1)!
2l l!(n − 1 − 2l)! ,

Ln−2l−1 = 0,



562 J. E. TAYLOR AND R. J. ADLER

so that, by Theorem 4.1,

E
[
χ
(
Sa(R

n) ∩ Z−1
n [u,+∞)

)]

=
�(n−1)/2�∑

l=0

2an−2l−1π(n−2l)/2

�(n
2 )

(n − 1)!
2l l!(n − 1 − 2l)!ρn−2l(u).

As a second example, consider a spherical cap in Sa(R
n), that is, a geodesic

ball in Sa(R
n), which, without loss of generality, we center around the point

x = (0, . . . ,0, a). Since the spherical distance between two points x, y ∈ Sa(R
n)

is given by

d(x, y) = a cos−1(a−2〈x, y〉),
a geodesic ball of radius r is therefore

BSa(Rn)(x, r) = {
y ∈ Sa(R

n) : 〈x, y〉 ≥ a2 cos(r/a)
}
.

The interior terms of Ln−2l(BSa(Rn)(x, r)) required by Theorem 5.1 will clearly
be

Hn−1
(
BSa(Rn)(x, r)

) (n − 1)!
(n − 1 − 2l)!(2π)ll!

1

2la2l
.

As for the boundary terms, note that the boundary lies in the hyperplane
xn = cos(r/a), which implies that the shape operator of ∂BSa(Rn)(x, r) in Sa(R

n)

is equal to cos(r/a) times the shape operator of ∂BSa(Rn)(x, r) in the hyperplane
xn = cos(r/a), which is just (a sin(r/a))−1I . Using these facts we see that∫

∂BSa(Rn)(x,r)
Qj Vol∂BSa(Rn)(x,r)

=
�(n−2−j)/2�∑

k=0

aj

(4π)k

sn−1

sn−1−j−2k

(n − 2)!
(n − 2 − j − 2k)!

cot(r/a)n−2−j−2k

j !k! .

Substituting the interior and boundary terms into Theorem 5.1 gives us the required
formula for

E
[
χ
(
BSa(Rn)(x, r) ∩ Z−1

n [u,+∞)
)]

.
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