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EULER-LAGRANGE AND HAMILTONIAN FORMALISMS IN

DYNAMIC OPTIMIZATION

ALEXANDER IOFFE

Abstract. We consider dynamic optimization problems for systems governed
by differential inclusions. The main focus is on the structure of and inter-
relations between necessary optimality conditions stated in terms of Euler–
Lagrange and Hamiltonian formalisms. The principal new results are: an
extension of the recently discovered form of the Euler–Weierstrass condition
to nonconvex valued differential inclusions, and a new Hamiltonian condition
for convex valued inclusions. In both cases additional attention was given to
weakening Lipschitz type requirements on the set–valued mapping. The cen-
tral role of the Euler type condition is emphasized by showing that both the
new Hamiltonian condition and the most general form of the Pontriagin max-
imum principle for equality constrained control systems are consequences of
the Euler–Weierstrass condition. An example is given demonstrating that the
new Hamiltonian condition is strictly stronger than the previously known one.

1. Introduction

The model of dynamic optimization to be basically studied in this paper will
includes a differential inclusion

ẋ ∈ F (t, x)(1.1)

to represent the dynamics. In many respects, this is the most natural abstraction
of a controlled dynamical system, for it directly associates the set of possible ve-
locities ẋ with any given state x and moment t. It is also a very universal model,
for it embraces closed loop feedback control systems and others that cannot be
incorporated into standard models based on differential equations with control pa-
rameters explicitly entering the right-hand sides (see e.g. [9, 14] for more details).
It is finally a model in which the inherent nonsmoothness of dynamic optimization
reveals itself eloquently through the fact that the Hamiltonian of the system

H(t, x, p) = sup{p·y : y ∈ F (t, x)}
is typically a nondifferentiable function under natural assumptions (which even
assumes the value infinity if the set of velocities is unbounded).

Problems involving differential inclusions attracted attention at a very early stage
of development of optimal control theory (perhaps mainly in the Russian school in
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the beginning—e.g. [3, 12, 2]), but only progress in nonsmooth analysis provided
necessary equipment to tackle the problem and a push for intensive studies (e.g. [5,
9, 13, 14, 28, 29, 30, 31, 33, 39, 41, 42, 49, 53] and many more). As a result, a variety
of necessary optimality conditions were obtained that either followed the patterns
of the classical Euler–Lagrange or Hamiltonian formalisms or were based on the
Pontriagin maximum principle for “parametrized” problems of optimal control.
In each case two fundamental relations associated with the differential inclusion
appear in the statement of the necessary condition. One of them, by which the
formalisms differ, usually called the adjoint inclusion, is a differential inclusion
defining the adjoint trajectory or adjoint arc p(t), which is the basic Lagrange
multiplier associated with the optimal trajectory x∗(t). The other, common for all
realizations of both formalisms, called the maximum principle, states that

p(t)·ẋ∗(t) = H(t, x∗(t), p(t)), a.e.,(1.2)

or, equivalently, that the linear function y 7→ p(t)·y attains a maximum on F (t, x∗(t))
at ẋ∗(t). No unique form like this exists for adjoint inclusions in either of the
formalisms, and it would not be wrong to say that the story of developments in
optimal control of differential inclusions is, to a great extent, a story of the search
for the right way to write the adjoint inclusions.

The following is a very brief (and undoubtedly incomplete) account of the story.
We shall freely use basic notation and concepts of nonsmooth analysis, such as
subdifferential and normal cone, and refer to the next section for definitions and
information. To the best of our knowledge, a necessary condition for optimal con-
trol problems involving differential inclusions was considered for the first time by
Boltianski in [3]. It contained a Hamiltonian type adjoint inclusion which in the
subdifferential form can be written as follows:

− ṗ ∈ ∂xH(t, x, p),(1.3)

with ∂x being the partial subdifferential with respect to x. In fact, under the
assumptions of [3] the Hamiltonian function was even continuously differentiable in
x. The main assumption was the existence of some smooth “local sections” of the
inclusion. It was shown in [19] that Boltianski’s result actually follows from the
standard Pontriagin maximum principle. There were a number of subsequent results
(e.g. [53]) where a condition like (1.3) was obtained each time under the additional
assumption of the existence of families of some nice (say, smooth) selections of
F (t, ·) that typically cannot be verified. A recent example given by Zhu [53] shows
that without such assumptions (1.3) may fail to be a necessary condition at all
(even for convex valued F ).

Analogy with the subdifferential analysis carried out by Rockafellar [44] for vari-
ational problems with convex Lagrangians suggests, however, another form for the
Hamiltonian condition, namely

(−ṗ, ẋ) ∈ ∂H(t, x, p).(1.4)

In the context of differential inclusions such a condition, with ∂ being the general-
ized gradient, was first introduced by Clarke in his 1976 paper [5], which marked
a breakthrough of nonsmooth analysis into dynamic optimization, under the as-
sumption that F has closed bounded values and satisfies the Lipschitz condition
in x (in the sense that the Hausdorff distance between the values corresponding to
two different x is majorized by the norm of the difference of the arguments times
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a constant). Based on Clarke’s result, Loewen and Rockafellar [30, 31] extended
(1.4), by means of a sophisticated technique, to inclusions with unbounded values
satisfying weaker Lipschitz-like conditions.

Clarke’s proof was valid under the additional assumption that F is also convex-
valued (see also [9]). This assumption turned out to be central also in [30, 31]
and many other studies (containing “intrinsic” results in the sense that they do
not use any assumption about existence of additional objects such as selections or
approximation—see e.g. [13, 14]) unless a strong regularity assumption (typically,
at least one free end point) is imposed. The question of whether or not the adjoint
inclusion of one or another type and the maximum principle are jointly necessary
for optimality without the convexity and regularity assumptions remained among
the main unsolved problem in the theory.

The Euler-Lagrange adjoint inclusion was first obtained by Clarke (in the some-
what different context of a generalized Bolza problem) in the form

(ṗ, p) ∈ N(GraphF (t, ·), (x, ẋ))(1.5)

(see also [42]). The next step was made by Mordukhovich [37] (see [38, 39] for the
proof), who used his method of discrete approximations to show that (for F with
bounded convex values satisfying the Lipschitz condition in x and continuous in t)
the adjoint inclusion can be written in the form

(ṗ, ẋ) ∈ conv{(u, v) : p·v = H(t, x, p), (u, p) ∈ N(GraphF (t, ·), (x, v))}.
(1.6)

Essential for understanding the difference is that (1.5) contains Clarke’s normal
cone (which is a convex set), while (1.6) contains a (typically smaller) nonconvex
“approximate” normal cone earlier introduced by Mordukhovich [36] so that the
set of possible (ṗ, p) defined by (1.6) can even be nonconvex, contrary to the then
common belief in the necessity of “full convexification” in the adjoint inclusion.
Finally, Smirnov [49] (under the same conditions) and Loewen and Rockafellar
[31] (also for convex valued inclusions but with other assumptions substantially
weakened) established the adjoint inclusion in the form

ṗ ∈ conv{w : (w, p) ∈ N(GraphF (t, ·), (x, ẋ))}.(1.7)

As in (1.6), the approximate subdifferential enters into (1.7), so that (1.6) and (1.7)
coincide when the values of F are strictly convex (see e.g. [39]), but otherwise (1.7)
is strictly stronger than either of (1.5), (1.6).

Again, it is to be observed that in all three cases the convexity assumption on
F was really central in the absence of a strong regularity condition (as, say, a
free end point or the “calmness” condition [9], which may be difficult to verify).
Very recently Kaśkosz and  Lojasiewicz [29] obtained the Euler-Lagrange inclusion
in Clarke’s form (1.5) as a necessary condition without assuming F convex valued
(just bounded-valued satisfying the Lipschitz condition), and then Mordukhovich
[41] succeeded in obtaining (1.7) for the same setting. Both times, however, the
necessity of the maximum principle (1.2) jointly with the adjoint inclusion was not
established.

The question about the relationship between the Hamiltonian and the Euler-
Lagrange formalisms has been actively discussed lately. In the classical calculus of
variations the Euler equation and the Hamiltonian system are equivalent, provided
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the integrand is strongly convex with respect to the velocity argument. As a par-
tial generalization of this fact, Loewen and Rockafellar showed in [31] that for an
optimal control problem involving a convex valued inclusion (1.1) the existence of
an adjoint arc satisfying simultaneously (1.2), (1.4) and (1.7) can be stated as a
necessary condition for a minimum, provided a certain Lipschitz–like assumption
on F is satisfied. It was also shown by Rockafellar [47] that (1.4) implies (1.6) if the
Hamiltonian is finite valued and satisfies the Lipschitz condition, and the converse
follows from another partial dualization result announced by Ioffe [19], which is
actually an easy corollary of Theorem 3 of this paper. Thus, the Hamiltonian in-
clusion (1.4) with Clarke’s generalized gradients and the Euler-Lagrange inclusion
(1.6) with approximate subdifferentials turn out to be equivalent, at least for inclu-
sions with convex bounded values satisfying the Lipschitz condition. The situation
with nonconvex valued inclusions is probably more complicated. Examples given
by Kaśkosz and  Lojasiewicz [29] suggest that no equivalence of the above sort exists
without the convexity assumption.

Another question is the relationship between Pontriagin’s maximum principle
for a control system

ẋ = f(t, x, u), u ∈ U,(1.8)

and the known necessary conditions of either type for the corresponding differential
inclusions (1.1) with F (t, x) = f(t, x, U).

Kaśkosz and  Lojasiewicz [28] interpreted (1.8) as a family of equations

ẋ = f(t, x), f ∈ F ,(1.9)

where F are Carathéodory functions satisfying the Lipschitz condition with respect
to x and having the “decomposition” property: if f1 and f2 belong to F , then for
any measurable ∆, the function f equal to f1 for t ∈ ∆ and to f2 otherwise is
also in F , and obtained for it a necessary condition for optimality in the form of
Pontriagin’s maximum principle (actually a particular case of the one established
in [22]; see [33] for an alternative and shorter proof of the result of Kaśkosz and
 Lojasiewicz).

Applying this result to the collection of all selections of F (convex valued and
satisfying the Lipschitz condition), Kaśkosz and  Lojasiewicz obtained in [28] an-
other necessary condition for inclusion constrained problems, and Zhu [53] extended
their result to nonconvex inclusions (also bounded and Lipschitz) by elaborating on
a controllability theorem of Warga [52]. An obvious drawback of these conditions
is the absence of any analytic mechanism for obtaining selections (even in the case
of a convex valued inclusion). However, in [28] Kaśkosz and  Lojasiewicz furnished
an example showing that their condition can be stronger (better sorting away non-
optimal arcs) than Clarke’s Hamiltonian condition (1.2), (1.4). On the other hand,
it is not a difficult matter to construct an opposite example of a family of vector
fields for which the Kaśkosz– Lojasiewicz maximum principle is unable to recognize
a nonoptimal trajectory and, say, Clarke’s Hamiltonian condition can easily do this.

This paper is concerned with the three questions discussed above: (a) structures
of the Euler–Lagrange and Hamiltonian necessary conditions; (b) the interrelation
between them, and (c) the relation between them and Pontriagin’s maximum prin-
ciple. The two principal results of the paper are Theorems 1 and 2, stated in the
next section. Theorem 1 establishes necessity of the Euler-Lagrange formalism for
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problems with nonconvex valued F including the adjoint equation in the state-of-
the-art form (1.7), the maximum principle and the transversality condition. The
second theorem adds to this list of necessary conditions a Hamiltonian condition of
a new type

ṗ ∈ conv{w : (w, ẋ) ∈ ∂H(t, x, p)}(1.10)

for the case of a convex valued F . Moreover, it is shown that this inclusion follows
from (1.7) no matter whether there is a minimum in the problem or not. An
example is given showing that as a necessary condition, (1.10) is strictly stronger
that (1.4).

The proof of Theorem 1 is a combination of regularity arguments with a subse-
quent application of the necessary condition for a nonconvex Bolza problem recently
found by Ioffe and Rockafellar in [25] (quoted below as Theorem 3). A nice alterna-
tive proof of the condition was offered by Vinter and Zheng in a concurrent paper
[51]; they also use it to get a version of Theorem 1 under stronger Lipschitz type
requirements on F .

Theorem 2 is stated under different, generally much weaker, Lipschitz type re-
quirements, so the proof of necessity of the Euler inclusion, although following the
same scheme, is more technical. The second part of the theorem in which (1.10)
is proved to follow from (1.7) is an easy consequence of a general formula for the
subdifferential of a partially conjugate function (i.e. a function of two variables
obtained as a result of the Fenchel conjugacy operation applied to one of them)
established in Theorem 4 of this paper.

In this part, our study has a solid overlap with simultaneous research of Rock-
afellar [48] in which actual equivalence of (1.7) and (1.10) was proved under the
additional assumption that F depends continuously on x. Approximation argu-
ments have been used both in [48] and here, but the techniques were rather dif-
ferent: Moreau–Yosida approximation in [48] and a sort of elaboration on Clarke’s
approximation techniques ([9], Section 3.2).

Rockafellar’s equivalence theorem was the basis for parallel discovery by Loewen
and Rockafellar in [32] of the necessity of the Hamiltonian condition (1.7). The
assumptions applied in [32] and here in Theorem 2 are different in several points
(see the next section for a comparison). More substantial is the difference in the
“genealogies” of the Euler condition (1.10) here and in [32]: in both cases (1.10)
follows from the Euler-Lagrange inclusion (1.7), but the latter appears in [32] as
a derivative of a Hamiltonian type condition whereas here it emerges as the basic
fact from which all others follow.

We show further in Theorem 4 that Pontriagin’s maximum principle is a di-
rect consequence of the Euler formalism provided by Theorem 1. Observe in this
connection that the proof of the main result of [25] given by Vinter and Zheng in
[51] is based on the maximum principle and the variational principle of Ekeland.
This leads to the surprising conclusion that Pontriagin’s maximum principle for
systems (1.8), on the one hand, and the necessary optimality condition (1.2), (1.7)
for inclusion constrained problems are equivalent as mathematical theorems.

An interesting problem arises in connection with this and the very recent stud-
ies of  Lojasiewicz [35] (see also Sussmann [50]) containing extensions of the above
mentioned Kaśkosz– Lojasiewicz version of the maximum principle in which, in par-
ticular, the Lipschitz property is required only from the optimal vector field. These
results suggest that further attempts to weaken Lipschitz–type assumptions on F
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should be made to understand, in particular, whether a suitable formulation of the
Euler condition is valid which would imply this result. A few unsolved problems
along these lines are stated at the end of of Section 2. In Theorem 6 of the last sec-
tion we prove a generalization of the necessary condition of [25] for the generalized
Bolza problem [25] which implies the positive answer in “regular cases”.

The problem which remains unsolved, as it was for years, is whether a Hamilton-
ian formalism of either kind can be derived for problems not satisfying a convexity
assumption. As a corollary of the first two theorems, we get in Theorem 7 a
Hamiltonian condition in the form (1.10), (1.2) but under an additional normality
assumption which is an easily verifiable equivalent of a mild regularity requirement,
that also becomes available thanks to the development of the Euler formalism for
a generalized Bolza problem in the absence of convexity assumptions in [25] and
here. But the problem in general remains open.

The plan of the paper is the following. In the next section we state the problem
and the main theorems. In Section 3 we describe the basic concepts of nonsmooth
analysis involved in the statements and proofs. In Section 4 we prove Theorem 1.
In Section 5 we establish a formula for the subdifferential of a partially conjugate
function (Theorem 4) which is instrumental in the proof of Theorem 2 in Section
6. Section 7 contains the statements and the proofs of Theorems 5, 6 and 7 and an
example showing that the new Hamiltonian condition (1.10) is stronger than (1.4).

Acknowledgement
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2. Statements of the main theorems

The following notation will be used throughout the paper:
|x| for the Euclidean norm of x in Rn;
x·y for the inner product of x and y;
ρ(x,C) for the (Euclidean) distance from x to C (C ⊂ Rn);
B for the unit ball in Rn: B = {x ∈ Rn : |x| ≤ 1};
B(x, α) for the ball of radius α about x;
W 1,1 for the space of absolutely continuous functions x(t) on [0, 1]

with the norm ‖x(·)‖1,1 = |x(0)|+ ∫ 1

0 |ẋ(t)|dt.
The paper is mainly devoted to the problem (P) stated as follows:

minimize l(x(0), x(1)),
s.t. ẋ(t) ∈ F (t, x(t)),
(x(0), x(1)) ∈ S.

(P)

We shall fix an admissible element x∗(·) ∈ W 1,1 of (P) (i.e. a solution to the
differential inclusion (1.1) satisfying the boundary conditions (x∗(0), x∗(1)) ∈ S)
and assume throughout the following hypotheses on the components of the problem:

(H1): l(·, ·) is Lipschitz in a neighborhood of (x∗(0), x∗(1)) ∈ R2n;
(H2): S ⊂ R2n is a closed set;
(H3): the graph of F (t, ·) is closed for almost every t, and F is measurable with

respect to the σ-algebra B⊕L generated by products of Lebesgue measurable
subsets of [0, 1] and Borel subsets of Rn.
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There are also three “optional” hypotheses characterizing the behavior of F as
a function of x:

(H4): there are an ε > 0 and a summable nonnegative function k(t) such that

F (t, x) ∩B(ẋ∗(t), ε) ⊂ F (t, x′) + k(t)|x− x′|B
for all x, x′ with |x− x∗(t)|, |x′ − x∗(t)| ≤ ε a.e.;

(H5): there are a summable function k(t) and constants ε > 0, β > 0 such that

F (t, x) ∩B(ẋ∗(t), N) ⊂ F (t, x′) + (k(t) + βN)|x− x′|B a.e.(2.1)

for all x, x′ with |x− x∗(t)|, |x′ − x∗(t)| ≤ ε, and all N ;
(H6): there are an ε > 0 and a summable function k(t) such that

F (t, x) ⊂ F (t, x′) + k(t)|x− x′|B
for all x, x′ with |x− x∗(t)|, |x′ − x∗(t)| ≤ ε a.e.

We observe that (H6) characterizes the standard Lipschitz condition with respect to
the Hausdorff distance between sets, while (H4) and (H5) correspond respectively
to the pseudo Lipschitz condition introduced by Aubin in [1] and the “integrable
sub–Lipschitz” condition of Loewen–Rockafellar [31].

We observe further that the problem (P) covers a seemingly more general class
of problems in which the functional to be minimized has the form

l(x(0), x(1)) +

∫ 1

0

L(t, x(t), ẋ(t))dt,

provided L(t, x, y) satisfies the standard measurability requirements, is everywhere
finite and l.s.c in (x, y) for almost every t, and satisfies a suitable type of optional
Lipschitz condition for F (or ρ(y, F (t, x))) with respect to x. To see this it is
sufficient to introduce the set valued mapping Φ(x) = {(y, α) : y ∈ F (t, x), α ≥
L(t, x, y)} and consider the problem (P) with the inclusion replaced by (ẋ, µ̇) ∈
Φ(t, x) and with the additional terminal condition µ(0) = 0.

Nowhere in the paper do we consider state constraints. The main reason for
that is the desire to avoid technicialities, often tedious and heavy, that typically
accompany any work with the state constraints. However we do not expect any
substantial difficulties in incorporating such constraints in the frameworks of any of
the three main theorems, and we hope to study them elsewhere in a more technique-
oriented paper.

We are ready now to state the main results of the paper. In all of the statements
∂ and N stand for the limiting subdifferential and normal cone defined in the next
section.

We say that (λ, p(·)) ∈ R × W 1,1 is a nontrivial pair (of multipliers) if |λ| +
‖p(·)‖1,1 > 0.

Theorem 1. We posit (H1) – (H3) and (H5). If x∗(·) is a local minimum in (P)
in the W 1,1-norm topology, then there is a nontrivial pair of multipliers (λ, p(·))
satisfying the Euler inclusion (1.7), the maximum principle (1.2) and the transver-
sality condition

(−p(0), p(1)) ∈ λ∂l(x(0), x(1)) +N(S, (x(0), x(1)))(2.2)

together with x∗(·).
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As was mentioned in the introduction, Vinter and Zheng [51] simultaneously
proved a similar result. They actually assume that F satisfies the more restrictive
assumption (H6) rather than (H5), but it seems that their method (which does not
directly address the regularity alternative and uses somewhat lengthier calculations
and arguments instead) can also be used to prove Theorem 1.

Theorem 2. Let F be a convex valued multifunction satisfying (H1) – (H4). As-
sume further that

– either there is a constant K such that ρ(ẋ∗(t), F (t, x)) ≤ K|x − x∗(t)| if x is
within ε of x∗(·);
– or there is a Carathéodory selection y(t, x) of F satisfying the Lipschitz condition
in x with constant k(t) (say, the same as in (H4)) and such that y(t, x∗(t)) = ẋ∗(t).

If under these conditions x∗(·) is a local minimum in (P), then there is a nontriv-
ial pair (λ, p(·)) of multipliers satisfying simultaneously the Euler inclusion (1.7),
the Hamiltonian inclusion (1.8), the maximum principle (1.2) and the transversality
condition (2.2).

Moreover, for a convex valued F , under (H1) – (H4) alone, the Euler inclusion
(1.7) implies the Hamiltonian inclusion (1.8) and the maximum principle (1.2),
regardless of whether there is a local minimum in (P) at x∗(·).

We obtain the result of Loewen and Rockafellar [32] if we assume in addition
that the set valued mapping F (t, ·) is continuous a.e. (in the sense that xk →
x, y ∈ F (t, x) implies the existence of yk ∈ F (t, xk) converging to y) and that k(t)
of (H4) is essentially bounded, in which case the first of the two additional optional
requirements is satisfied.

Observe that the assumptions characterizing Lipschitzian behavior of F in The-
orem 2, although substantially weaker than (H5) in certain respects, do not cover it
completely. Needless to say, of course, Theorem 1 can be applied to convex valued
inclusions as well. A natural question is whether either of the theorems is valid
under the “intersection” of the assumptions. This question also closely relates to
the latest  Lojasiewicz necessary condition mentioned in the introduction. Below
we formulate some unsolved problems relating to this and other similar questions.

Problems. 1. Is the conclusion of Theorem 1 valid for non–convex valued inclu-
sions if we replace (H5) by (H4) (possibly augmented by the assumption that for
almost every t the set valued mapping F (t, ·) is continuous in the ε–neighborhood
of x∗(t) in the following sense: if xm → x and y ∈ F (t, x), then there is a sequence
of ym converging to y and such that ym ∈ F (t, xm) and/or by the assumption that
there is a selection of F as in the statement of Theorem 2)?

2. Is the conclusion of Theorem 1 valid if we replace (H5) by the following “sub-
Lipschitzness” assumption (cf. [46]): for any N there is a summable kN (t) such
that

ρ(y, F (t, x))− ρ(y, F (t, x′)) ≤ kN (t)|x− x′|
for all x, x′, y with |x− x∗(t)|, |x′ − x∗(t)| ≤ ε, |y − ẋ∗(t)| ≤ N?

3. Is the conclusion of Theorem 2 (for convex valued F ) valid under (H4) alone,
without additional assumptions (e.g. existence of a selection of F )?

The second problem can be considered as a step on the way to the first. But
it also has independent significance. Consider for instance the problem obtained
by adding to (P) an isoperimetric constraint, say, suppose we are interested in
necessary conditions for a local minimum in (P) but in W 1,p (1 ≤ p < ∞) rather
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than W 1,1 (an “intermediate minimum” in the terminology of Mordukhovich [41]).
In case of convex valued inclusion the corresponding necessary condition follows
easily from Theorem 2. But for nonconvex inclusions Theorem 1 does not allow us
to get the result for p other than 1. On the other hand, it would be an easy task if
Problem 2 has a positive answer.

3. The apparatus: subdifferentials and normal cones

Given a function f on Rn, we write u→f x to mean that u→ x and f(u) → f(x).
We denote by dom f = {x : |f(x)| <∞} the domain of f and by epi f = {(x, α) ∈
Rn × R : α ≥ f(x)} the epigraph of f .

With any f and any x ∈ dom f we can associate the following three subdiffer-
entials:

– the proximal subdifferential ∂pf(x) of f at x, which is the collection of y such
that

y ·h ≤ f(x+ h)− f(x) +O(|h|2), ∀ h;

– the Fréchet subdifferential ∂F f(x) of f at x, which is the collection of y such
that

y ·h ≤ f(x+ h)− f(x) + o(|h|), ∀ h;

– and the Dini subdifferential ∂−f(x) of f at x, which is the collection of y such
that

y ·h ≤ d−f(x;h), ∀ h,
where d−f(x; ·) is the Dini directional derivalive of f at x:

d−f(x;h) = lim inf
t→0,h′→h

t−1(f(x+ th′)− f(x)).

Each of the subdifferentials is a closed and convex set, and f is necessarily lower
semicontinuous at x if one of them is nonempty. The subdifferentials obviously
satisfy the inclusions

∂pf(x) ⊂ ∂F f(x) ⊂ ∂−f(x),

and it is not difficult to find examples when a smaller subdifferential is empty while a
bigger one is not. A truly remarkable fact is that, if we consider the subdifferentials
as setvalued maps, then the closures of their graphs under the f -convergence of
arguments coincide, namely

lim sup
u→fx

∂pf(u) = lim sup
u→fx

∂F f(u) = lim sup
u→fx

∂−f(u),

provided f is lower semicontinuous (see [21]). (Here u→f x means that u→ x and
f(u) → f(x).)

We denote the common limit as ∂f(x). If f is l.s.c. at x, we set ∂f(x) = ∂f̃(x),

where f̃ is the lower closure of f (i.e. the function whose epigraph is the closure of
epi f). Finally, if f is not l.s.c. at x, we set ∂f(x) = ∅. Various names have been
used for this object in the literature: generalized derivative [36, 38], approximate
subdifferential [18, 20, 27] or limiting proximal subdifferential [10]. As a rule we
shall call them just limiting in this article.

All four subdifferentials admit alternative geometric definitions: the interplay of
analytic and geometric characterizations proved to be a powerful and convenient
instrument in analysis of nonsmoothnesses. Given a set S ⊂ Rn and an x ∈ S, we
define the proximal normal cone Np(S, x) to S at x as the collection of all y such
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that x is the closest in S to x+ λy for sufficiently small λ, and the Fréchet normal
cone NF (S, x) to S at x as the collection of all y such that

y ·(u− x) ≤ o(|u − x|), ∀ u ∈ S.
We also consider the contingent cone to S at x:

T (S, x) = lim sup
λ→0

λ−1(S − x)

and denote by T ◦(S, x) its polar, i.e. the collection of Y such that y ·h ≤ 0 for all
h ∈ T (S, x). Then

Np(S, x) ⊂ NF (S, x) ⊂ T ◦(S, x)

and, if S is closed,

lim sup
u→Sx

Np(S, u) = lim sup
u→Sx

NF (S, u) = lim sup
u→S

T ◦(S, u)

(where u →S means “u → x & u ∈ S”). As in case of subdifferentials, we denote
the common limit as N(S, x) and set N(S, x) = N(clS, x) if x ∈ S (clS being the
closure of S).

The two way relationship between the analytic concept of a subdifferential and
the geometric concept of a normal cone is described by the two formulas below, in

which (∂̂, N̂) can be any of the four pairs (∂p, Np), (∂F , NF ), (∂−, T ◦) or (∂,N):

N̂(S, x) = ∂̂δS(x),(3.1)

where δS(x) is the indicator of S (i.e. function equal to zero if x is in S and +∞
otherwise) and

∂̂f(x) = {y : (y,−1) ∈ N̂(epi f, (x, f(x))}.(3.2)

For the limiting subdifferential and normal cone we have an additional pair of
characteristics when x ∈ S and S is closed:

N(S, x) =
⋃
λ≥0

λ∂ρ̃(x, S),(3.3)

where ρ̃ is the distance function associated with some norm in RN , no matter which
one, and

∂ρ̃(x, S) = N(S, x) ∩ B̃,(3.4)

where B̃ is the unit ball in the same norm. (For the other three subdifferentials
these relations are trivial consequences of convexity.)

It turns out further that the convex closed hull of N(S, x) always coincides with
the normal cone in the sense of Clarke to S at x (we denote the latter by N̄):

N̄(S, x) = conv clN(S, x),

and that the Clarke generalized gradient can be defined by

∂̄f(x) = conv cl (∂f(x) + ∂∞f(x)),

where ∂∞f(x) = {y : (y, 0) ∈ N(epi f, (x, f(x))) is the singular subdifferential of f
at x.

Systematic study of limiting subdifferentials started in the late 70s when Mor-
dukhovich [36, 37] introduced them using the geometric approach and obtained the
first optimality conditions involving such subdifferentials, and then an alternative
analytic approach was used by Ioffe [18, 21] to establish the basic calculus rules.



DYNAMIC OPTIMIZATION 2881

Many remarkable analytic properties of limiting subdifferentials were gradually dis-
covered [11, 21, 24, 27, 38, 40], etc., which made them one of the basic instruments
of nonsmooth analysis, especially as far as applications to optimization are con-
cerned. We refer to the above mentioned works for more details, and here only
quote the scalarization formula established in [21], which will be of special use in
the last section of this paper: given a mapping S : Rn 7→ Rm satisfying the Lipschitz
condition near x ∈ Rn, then (we set y = S(x))

∂ (p·S)(x) = {u : (u,−p) ∈ N(GraphS, (x, y))}.(3.5)

4. Proof of Theorem 1

4.1. Several remarks about the distance function. The function

G(t, x, y) = ρ(y, F (t, x))

will play a prominent role in the proof. This subsection contains several facts con-
cerning the (x, y)-dependence of the function, so we suppress the time dependence
till the end of the section.

Proposition 1 (e.g. [15]). Let F (x) be a set-valued mapping from Rm into Rn

which is pseudo-Lipschitz near (x̄, ȳ) ∈ Graph F with a constant K. Consider the
norm |(u, v)|K = K|u|+ |v| in Rm × Rn, and let ρK be the corresponding distance
function. Then

ρK((x, y),GraphF ) = ρ(y, F (x)) = G(x, y)(4.1)

for all (x, y) of a neighborhood of (x̄, ȳ). Therefore

N(GraphF, (x̄, ȳ)) =
⋃
λ≥0

λ∂ρ(ȳ, F (x̄)) =
⋃
λ≥0

λ∂G(x̄, ȳ).

Proof. We have for (x, y) sufficiently close to (x̄, ȳ)

K|x− u|+ |y − v| ≥ K|x− u|+ ρ(y, F (u)) ≥ ρ(y, F (x))

whenever v ∈ F (u). This shows that ρK(Graph F, (x, y)) ≥ ρ(y, F (x)) for such x
and y. The reverse inequality is trivial, so the first statement is true. On the other
hand, as was described in the previous section,

N(GraphF, (x̄, ȳ)) =
⋃
λ≥0

λ∂ρK((x̄, ȳ),GraphF )

and comparison with (4.1) gives the second equality.

We further observe that

(u, p) ∈ ∂G(x, y) ⇒ |p| ≤ 1 and |p| = 1 if G(x, y) > 0.(4.2)

Indeed, the same relations are trivially valid for, say, the Dini subdifferential, and
are preserved when passing to the limit.

Proposition 2. Set H(x, p) = max{p ·y : y ∈ F (x)}. Then the relation p ·y =
H(x, p) is equivalent to the following condition: there is an α ∈ (0, 1] such that

G(x, u)−G(x, y) − αp·(u− y) ≥ 0, ∀u ∈ Rn.
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Proof. Given a Q ⊂ Rn and f(y) = ρ(y,Q), the Young–Fenchel transform of f is

f∗(v) = sup
y

(v ·y − f(y)) =

{
supy∈Q v ·y if |v| ≤ 1;

∞ if |v| > 1.

Applying this to G(x, ·), we see that for |p| ≤ 1 the equality p ·y = H(x, p) is the
same as

p·y −G(x, y) = max
u

(p·u−G(x, u)),

which implies the desired inequality with 0 < α ≤ min{1, |p(t)|−1} if p 6= 0; if p = 0,
the result is trivial.

Proposition 3. Assume that F has the following property: y∗ ∈ F (x∗) and there
are constants ε > 0, k1 > 0 and a nonnegative nondecreasing function r(t) on
[0,∞) (possibly extended–real–valued) such that

F (x) ∩B(y∗, N) ⊂ F (x′) + r(N)|x − x′|B, ∀N, and ρ(y∗, F (x)) ≤ k1|x− x∗|,
provided |x− x∗|, |x′ − x∗| ≤ ε. Then for any y and any δ ∈ (0, ε) we have

ρ(y, F (x′))− ρ(y, F (x)) ≤ r(2|y − y∗|+ k1δ)|x− x′|
if |x− x∗|, |x′ − x∗| ≤ δ.

Proof. Take x, x′ within δ of x∗ and a y ∈ Rn. Let u ∈ F (x) be the nearest to y
in F (x), that is, |u− y| = ρ(y, F (x)). We have (as ρ(y∗, F (x)) ≤ k1‖x−x∗‖ ≤ k1δ)

|u− y∗| ≤ |y − y∗|+ ρ(y, F (x)) ≤ 2|y − y∗|+ k1δ = N1,

so that u ∈ F (x′) + r(N1)|x− x′|B. The latter implies that

ρ(y, F (x)) = |u− y| ≥ ρ(y, F (x′))− r(N1)|x− x′|,
which is the desired inequality.

4.2. Regularity. The following proposition plays a central role in the proof of ne-
cessity in Theorems 1 and 6. Let ϕ(t, x, y) be a function on [0, 1]×Rn ×Rn which
is non-negative, lower semicontinuous in (x, y) (possibly extended-real-valued) and
satisfies measurability requirements sufficient to ensure that ϕ(t, x(t), y(t)) is mea-
surable if x(t) is continuous and y(t) is measurable, and such that ϕ(t, x∗(t), ẋ∗(t)) =
0 a.e. We shall call such a function a test function for x∗(·).
Proposition 4. We posit (H1) – (H3). Let ϕ(t, x, y) be a test function for x∗(·).
If x∗(·) is a local minimum in (P), then the following alternative is always valid:

• either there is an N > 0 such that the function

M(x(·)) = l(x(0), x(1)) +N(

∫ 1

0

ϕ(t, x(t), ẋ(t))dt+ ρ((x(0), x(1)), S))

has an unconditional local minimum in W 1,1 at x∗(t);

• or there is a sequence {xk(·)} converging to x∗(·) in W 1,1 and such that for any
k = 1, 2, ... the function

Mk(x(·)) =

∫ 1

0

ϕ(t, x(t)ẋ(t))dt + ρ((x(0), x(1)), S) + k−1‖x(·)− xk(·)‖1,1

attains an unconditional local minimum in W 1,1 at xk(·) and either (xk(0), xk(1) 6∈
S or ẋk(t) 6∈ F (t, xk(t)) on a set of positive measure.
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Proof. Let Φ denote the set of feasible elements in (P), that is, of such x(·) ∈W 1,1

which satisfy ẋ(t) ∈ F (t, x(t)) a.e. and (x(0), x(1)) ∈ S. Assume first that there
are δ > 0, C > 0 such that the distance (in W 1,1) from x(·) to Φ is not greater

than C(
∫ 1

0
ϕ(t, x(t), ẋ(t))dt + ρ((x(0), x(1)), S)) whenever ‖x(·) − x∗(·)‖1,1 ≤ δ. If

so, then for any x(·) sufficiently close to x∗(·) there is a u(·) ∈ Φ such that

‖x(·)− u(·)‖1,1 ≤ C(

∫ 1

0

ϕ(t, x(t), ẋ(t))dt+ ρ((x(0), x(1)), S)).

On the other hand, as u(·) ∈ Φ, we have

l(x∗(0), x∗(1)) ≤ l(u(0), u(1)) ≤ l(x(0), x(1)) + 2r‖x(·)− u(·)‖1,1,

where r is the Lipschitz constant of l. Combining these two inequalities, we see,
taking N = 2Cr, that M(x(·)) ≥ l(u(0), u(1)) ≥ M(x∗(·)), so that the first of the
two claimed possibilities takes place.

If no δ and C with such properties exist, then there is a sequence of uk(·) ∈W 1,1

converging to x∗(·) and such that

0 < ak = dist(uk(·),Φ) ≤ 2k(

∫ 1

0

ϕ(t, uk(t), u̇k(t))dt + ρ((uk(0), uk(1)), S)).

The function on the right is nonnegative and ak → 0. By the variational principle
of Ekeland (applied to the function in the parentheses) there are xk(·) ∈ W 1,1 such
that ‖xk(·)−uk(·)‖ ≤ ak/2 and Mk(·) attains a local minimum at xk(·) as claimed.
It remains to observe that xk(·) 6∈ Φ, which means that either (xk(0), xk(1)) 6∈ S or
ẋk(t) 6∈ F (t, xk(t)) on a set of positive measure.

Of course, this proposition is a variation on the regularity theme (cf. [15]), but
it offers greater flexibility in choosing test functions. Clarke seems to have been the
first to use such constructions, as early as in 1976 (see [9, 10]), without emphasis on
the difference between the regular and irregular cases and with ϕ equal to G(t, x, y);
we find it extremely helpful to also use other test functions in proofs. Following
tradition, we say that the problem is ϕ-regular at x∗(·) if the possibility takes place.
Otherwise we say that the problem is irregular (with respect to ϕ).

4.3. Proof of the theorem. The proof is a result of joint application of Propo-
sition 4 and the following basic fact about generalized Bolza problems with every-
where finite integrands established in [25]

Consider the following problem:

minimize J(x(·)) = l(x(0), x(1)) +

∫ 1

0

L(t, x(t), ẋ(t))

with L being everywhere finite.

Theorem 3. Suppose that x∗(·) gives a local minimum to J in W 1,1. Assume that
(a) l(x,y) is l.s.c. in a neighborhood of (x∗(0), x∗(1));
(b) L is B ⊕ L-measurable and lower semicontinuous in (x, y);
(c) for any N there are an ε > 0 and a summable function kN (t) such that

L(t, x, y)− L(t, x′, y) ≤ kN (t)|x − x′| and L(t, x, y) ≥ −k(t)

if |x− x∗(t)| < ε, |x′ − x∗(t)| < ε, |y − ẋ∗(t)| ≤ N .
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Then there is a p(·) ∈ W 1,1 such that

ṗ(t) ∈ conv{w : (w, p(t)) ∈ ∂L(t, x∗(t), ẋ∗(t))};
L(t, x∗(t), u)− L(t, x∗(t), ẋ∗(t))− p(t)·(u− ẋ∗(t)) ≥ 0, ∀ u;

(p(0),−p(1)) ∈ ∂l(x(0), x(1)).

We apply Proposition 4 with G(t, x, y) as a test function. Let the problem be
G-regular at x∗(·). Then there is a λ > 0 such that x∗(·) is a local minimum in
W 1,1 of the function

J(x(·)) = λl(x(0), x(1)) + ρ((x(0), x(1)), S) +

∫ 1

0

G(t, x(t), ẋ(t))dt.(4.3)

In this case by Theorem 3 there is a p(·) such that

ṗ(t) ∈ conv{w : (w, p(t)) ∈ ∂G(t, x∗(t), ẋ∗(t))};
G(t, x∗(t), y)−G(t, x∗(t), ẋ∗(t))− p·(y − ẋ∗(t)) ≥ 0, ∀ y;

(p(0),−p(1)) ∈ λ∂l(x∗(0), x∗(1)) + ∂ρ((x∗(0), x∗(1)), S).

(4.4)

If the problem is not G-regular, then by Proposition 4 there is a sequence {xk(·)}
norm converging to x∗(·) in W 1,1 and such that each function

Mk(x(·)) = ρ((x(0), x(1)), S) +

∫ 1

0

Gk(t, x(t), ẋ(t))dt+ εk−1|xk(0)|

attains at xk(·) a local minimum in W 1,1, and for any k either (xk(0), xk(1)) does
not belong to S or ẋk(t) does not belong to F (t, xk(t)) on a set of positive measure.
Here

Gk(t, x, y) = G(t, x, y) + k−1|y − ẋk(t)|.
(As always, we may assume that the ẋk(t) converge to ẋ∗(t) almost everywhere.)
Each of these problems also satisfies all the assumptions of Theorem 3 near its
solution xk(·). Indeed, only the assumption (c) needs verification; but it easily
follows from (H5) and Proposition 3 applied with r(N) = k(t) + βN .

This means that there are functions pk(·) such that

ṗk(t) ∈ conv{w : (w, p(t)) ∈ ∂G(t, xk(t), ẋk(t))};
G(t, xk(t), y)−G(t, xk(t), ẋk(t))− pk(t)·(y − ẋk(t)) ≥ 0, ∀ y;

(pk(0),−pk(1)) ∈ ∂ρ((xk(0), xk(1)), S) + k−1B.

and either max{|(pk(0)|, |pk(1)|} = 1 if (xk(0), xk(1)) 6∈ S (if we take the sum norm
in Rn × Rn to define ρ((x(0), x(1)), S)) or |pk(t)| = 1 for all t of a set of a positive
measure on which ẋk(t) 6∈ F (t, xk(t)) (by (4.2)). As we observed above, one of
these two possibilities must occur.

On the other hand, the sequence of (pk(0), pk(1)) is bounded, and also |ṗk(t)| ≤
k(t)+β|ẋk(t)| by (H5). This means that pk(·) form a weakly precompact sequence,
so by Mazur’s theorem there is a sequence of convex combinations qk(·) of pk(·)
converging to a certain p(·) in the W 1,1-norm, and, assuming that q̇k(t) → ṗ(t)
almost everywhere, we conclude that p(·) satisfies (4.4) with λ = 0. The latter is
obvious as far as the last two relations of (4.4) are concerned. To see that the limit
function also satisfies the first, we first observe that

(w, p) ∈ ∂G(t, xk(t), ẋk(t)) ⇒ |w| ≤ k(t) + β|ẋk(t)|.
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Together with the upper semicontinuity property of limiting subdifferentials and
uniform convergence of pk(·) this gives

conv{w : (w, p(t)) ∈ ∂G(t, xk(t), ẋk(t))}
=
⋂∞
m=1 conv{w : (w, p) ∈ ∂G(t, xk(t), ẋk(t)), |p− p(t)| ≤ 1/m},

from which the first inclusion of (4.4) follows as q̇k(t) converge to ṗ(t) almost
everywhere.

Finally, the limit function p(·) cannot be identically equal to zero, for pk(·)
converges to it uniformly and each of them is equal to one at least at one point.

Thus, in either case there is a nontrivial pair (λ, p(·)) satisfying (4.4). The
first of these relations implies the Euler inclusion (1.7) by Proposition 1 and (3.3),
the second implies the maximum principle (1.2) by Proposition 2, and the third
coincides with the transversality condition (2.1).

This completes the proof the theorem.

5. Partial dualization of subgradient inclusions

5.1. Statement of the dualization theorem. In this section we first give a
description of subgradients of the partial conjugate to a partially convex function
which is the basis for derivation of the Hamiltonian necessary condition in the next
section. We shall consider a function f(x, y) on Rm×Rn and denote by f̄(x, p) the
Fenchel conjugate of f as a function of y only:

f̄(x, p) = sup
y

(p·y − f(x, y)).

Let us agree to say following [32] that f is Aubin continuous near (x, y) if the set
valued mapping x 7→ epi f(x, ·) is pseudo-Lipschitz near (x, y, f(x, y)).

Theorem 4. Let f(x, y) be a lower semicontinuous function which is convex in y,
finite at (x̄, ȳ) and Aubin continuous in x near (x̄, ȳ). Then

(ū, p̄) ∈ ∂f(x̄, ȳ) ⇒ −ū ∈ conv{w : (w, ȳ) ∈ ∂f̄(x̄, p̄)} ⇒ (−ū, ȳ) ∈ ∂cf̄(x̄, p̄).

Remark. In [48] Rockafellar proves that the sets

conv{w : (w, p̄) ∈ ∂f(x̄, ȳ)}
and

− conv{w : (w, ȳ) ∈ ∂f̄(x̄, p̄)}
coincide, provided that f is Aubin continuous near (x̄, ȳ) and epi f(x, ·) depends
continuously on x near x̄ . Theorem 4, thus, states only a “half” of that (the first
set is contained in the second), but without any requirement on the global behavior
(epi-continuity).

5.2. Mollifying a convex function. Let f be a convex lower semicontinuous
function on Rn which is finite at least at one point. Define fε by

epi fε = epi f + εB,

where B is the unit ball in Rn × R associated with the norm

|(x, α)| =
√
|x|2 + α2.

Clearly,

fε(x) = min
|u|≤ε

(f(x− u)−
√
ε2 − |u|2)(5.1)
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and the minimum is attained at some u with |u| < ε if x belongs to the interior of
dom f (which is an immediate consequence of the standard summation rule of the
convex subgradient calculus).

Proposition 5. Given p ∈ Rn, set l =
√

1 + |p|2. Then
(a) p ∈ ∂f(x) ⇒ p ∈ ∂fε(x+ ε

l p) & fε(x+ ε
l p) = f(x)− ε

l ;

(b) p ∈ ∂fε(x) ⇒ p ∈ ∂f(x− ε
l p);

(c) fε ∈ C1 in the interior of its domain, that is, p ∈ ∂fε(x) ⇔ p =
∇fε(x);

(d) f(x) = max
|u|≤ε

(fε(x+ u) +
√
ε2 − |u|2) and for each x at which f is differen-

tiable the maximum is attained at a unique point u with |u| < ε.

Proof. Geometrically, the first two statements are clear as the epigraph of fε is the
epigraph of f plus the unit ball (Euclidean). Analytic arguments follow.

(a) Denote by ū the point at which min(−p·u−√ε2 − |u|2) is attained: ū = ε
l p.

Set y = x+ ū. Then f(y − u) ≥ f(y − ū) + p·(ū− u) for any u, and, consequently,

f(y − u)−
√
ε2 − |u|2

≥ f(y − ū) + p·(ū− u)−
√
ε2 − |u|2 ≥ f(y − ū)−

√
ε2 − |ū|2,

which means that

fε(y) = f(x)−
√
ε2 − |ū|2 = f(x)− ε

l
.

Likewise

fε(y + v) = inf
u

(f(y + v − u)−
√
ε2 − |u|2)

≥ inf
u

(f(x) + p·(ū+ v − u)−
√
ε2 − |u|2)

≥ fε(y) + p·v + inf
u

(p·(ū− u) +
√
ε2 − |ū|2 −√ε2 − |u|2)

= p·v + fε(y),

that is, p ∈ ∂fε(y).

(b) If p ∈ ∂fε(x) and the minimum in (5.1) is attained at a certain ū, then for
all u, v

f(x+ v − u)−
√
ε2 − |u|2 − (f(x− ū)−

√
ε2 − |ū|2) ≥ p·v.

In particular

f(x+ v − ū)− f(x− ū) ≥ p·v
which means that p ∈ ∂f(x − ū), so that applying (a), we obtain the desired
conclusion.

(c) This is a consequence of the fact that the conjugate of fε, namely f∗ε (v) =

f∗(v) + ε
√

1 + |v|2, is a strictly convex function.
(d) Replacing x− u by y in (5.1), we see that

f(y) ≥ fε(y + u) +
√
ε2 − |u|2, ∀ u.

On the other hand, if p ∈ ∂f(y), then by (a)

f(y) = fε(y +
ε

l
p)−

√
ε2 − ε2

l2
|p|2,
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which implies the formula. The uniqueness of a minimum again follows from the
fact that we maximize a strictly concave function (which is

√
ε2 − |u|2).

5.3. Two useful properties of limiting subdifferentials.

Proposition 6. Let f be an (extended–real–valued) l.s.c. function which is finite
at x̄. Let {fk} be a sequence of l.s.c. functions such that ρ((x, α), epi fk) →
ρ((x, α), epi f) for all (x, α) of a neighborhood of (x̄, f(x̄)). Then

∂f(x̄) ⊂ lim sup
(k,x,fk(x))→(∞,x̄,f(x̄))

∂pfk(x).

Proof. Let x be sufficiently close to x̄ and u ∈ ∂pf(x). This means that there is a
λ > 0 such that (x, f(x)) is the unique nearest point in epi f to (xλ, αλ), xλ =
x + λu, αλ = f(x) − λ. Let (xk, αk) be any point in epi fk which is nearest to
(xλ, αλ). Then (xk, αk) → (x, f(x)) (as ρ((xλ, αλ), epi fk) → ρ((xλ, αλ), epi f) and
epi f contains no point nearest to (xλ, αλ) other than (x, f(x))) and (hk, βk) =
(xλ − xk, αλ − αk) is a proximal normal to epi fk at (xk, αk). We have (hk, αk) →
λ(u,−1), so that (hk, αk) = λk(uk,−1), where λk → λ, uk → u. As λ > 0, the
vector (uk,−1) is a proximal normal to epi fk (at least for large k) at (xk, αk),
which can only be if αk = f(xk) and uk ∈ ∂pfk(xk). It remains to recall that ∂f(x̄)
is the upper limit of ∂pf(x) when x→ x̄ and f(x) → f(x̄).

Proposition 7. Let f(x, y) be an l.s.c. function which is convex in the second

argument. If (ū, p̄) ∈ ∂̂f(x̄, ȳ), where ∂̂ stands for either proximal or Fréchet or
Dini subdifferential, then p̄ belongs to the subdifferential of f(x̄, ·) at ȳ in the sense

of convex analysis. The same is true for ∂̂ being the limiting subdifferential if, in
addition, f is continuous near (x̄, ȳ). In each case f being continuous at (x̄, ȳ)
implies that f̄ is lower semicontinuous at (x̄, p̄).

Proof. The first statement is immediate from the definitions in Section 2. Let
us check that the same conclusion holds if (ū, p̄) ∈ ∂f(x̄, ȳ) and f is continuous
near (x̄, ȳ). Indeed, in this case we have a sequence of (xk, yk, uk, pk) converging
to (x̄, ȳ, ū, p̄) and such that f(xk, yk) → f(x̄, ȳ) and, say, (uk, pk) ∈ ∂−f(xk, yk).
Therefore f(xk, y)−f(xk, yk) ≥ pk·(y−yk) for all y. Passing to the limit as k →∞
we get by continuity that for y sufficiently close to ȳ the inequality f(x̄, y)−f(x̄, ȳ) ≥
p·(y− ȳ) holds. And this is precisely p ∈ ∂yf(x, y). To check the last statement we
notice that if f is continuous at (x̄, ȳ) and (xk, pk) → (x̄, p̄), then

lim inf f̄(xk, pk) ≥ lim(pk ·ȳ − f(xk, ȳ)) = p̄·ȳ − f(x̄, ȳ) = f̄(x̄, p̄).

5.4. Proof of Theorem 4: the case of a Lipschitz function. We shall first
prove the theorem under the additional assumption that f(x, y) satisfies the Lip-
schitz condition with constant K near (x̄, ȳ) (recall that it is convex in y by as-
sumption). Consider the function fε(x, y) which is the ε-mollification of f with
respect to y only:

fε(x, y) = min
|u|≤ε

(f(x, y − u)−
√
ε2 − |u|2),

and denote by f̄ and f̄ε the conjugates of f and fε with respect to y:

f̄ε(x, p) = sup
y

(p·y − fε(x, y)).

We notice that if f satisfies the Lipschitz condition in the ball of radius r around
(x̄, ȳ), then fε satisfies the Lipschitz condition with the same constant at least in the
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ball of radius r−ε (if, say, we endow Rm×Rn with the norm |(x, y)| =
√|x|2 + |y|2).

Fix an ε > 0 and an (x, y) within r − ε of (x̄, ȳ) such that fε is differentiable at
the point. Let (u, p) = ∇fε(x, y). Then, of course, p = ∇yfε(x, y), which means
that

f̄ε(x, p) = p·y − fε(x, y),(5.2)

in particular, f̄ε is lower semicontinuous at (x, y). It follows that

d−f̄ε((x, p); (h, q)) = lim inf
(h′q′)→(h,q)

t↘0

t−1(f̄ε(x + th′, p+ tq′)− f̄ε(x, y))

≥ lim inf
(h′q′)→(h,q)

t↘0

t−1((p + tq′)·y − fε(x+ th′, y)− p·y + fε(x, y))

= q ·y − u·h,
which means that

(−u, y) ∈ ∂−f̄ε(x, p).(5.3)

Denote by Sε(x, y) the collection of limits of sequences of (uk, pk) = ∇fε(xk, yk)
corresponding to xk → x, yk → y. It follows from Proposition 5(c) and the
continuity of gradients of convex function ([43], Theorem 25.7) that pk → p(y) =
∇yfε(x, y). In other words, the elements of Sε(x, y) have the form (u, p(y)), with
the same second component for all of them.

For any sequence of (xk, yk) → (x, y) with (uk, pk) = ∇yfε(xk, yk) → (u, p(y))
we have by (5.2)

lim f̄ε(xk, pk) = lim(pk ·yk − fε(xk, yk)) = p(y)·y − fε(x, y) = f̄ε(x, p(y)).

Together with (5.3) applied to (xk, yk, uk, pk), this allows us to conclude that

(u, p) ∈ Sε(x, y) ⇒ (−u, y) ∈ ∂f̄ε(x, p).
Moreover, as |uk| ≤ K, we can be sure that |u| ≤ K.

By definition ∂cfε(x, y) = convSε(x, y), so that

(u, p) ∈ ∂cfε(x, y) ⇒ p = p(y) and − u ∈ conv {w : (w, p) ∈ ∂f̄ε(x, p), |w| ≤ K}.
(5.4)

We notice further that (by the standard conjugacy formula for an infimal con-
volution [43])

f̄ε(x, p) = f̄(x, p) + ε
√

1 + |p|2,
and by the standard rules of subdifferential calculus (e.g [20, 38])

∂f̄ε(x, p) ⊂ ∂f̄(x, p) + {0} × εB,

or in other words,

(w, y) ∈ ∂f̄ε(x, p) ⇒ ∃v, |v| ≤ ε s.t. (w, y − v) ∈ ∂f̄(x, p).(5.5)

By Proposition 6, (ū, p̄) ∈ ∂f(x̄, ȳ) implies the existence of a sequence

{(xk, yk, uk, pk, εk)}
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converging to (x̄, ȳ, ū, p̄, 0) and such that

(uk, pk) ∈ ∂fεk(xk, yk) ⊂ ∂cfεk(xk, yk).

By (5.4), (5.5), this means the existence of αik, wik, vik, k = 1, ...,m + 1, such
that

αik ≥ 0,
m+1∑
i=1

αik = 1;
m+1∑
i=1

αikwik = −uk|wik| ≤ K; |vik| ≤ εk

and

(wik, yk − vik) ∈ ∂f̄(xk, pk).

We observe also that f̄(xk, pk) → f̄(x̄, p̄). Indeed, lim inf f̄(xk, pk) ≥ f̄(x̄, p̄) as f̄ is
l.s.c. at (x̄, p̄) by Proposition 7. On the other hand,

f̄(xk, pk) ≤ f̄εk(xk, pk) = pk ·yk − fεk(xk, yk) → p̄·ȳ − f(x̄, ȳ) = f̄(x̄, p̄).

Assuming (by taking subsequences, if necessary) that αik and wik converge to
some αi and wi respectively, we get from here that

−ū =
∑

αiwi; |wi| ≤ K; (wi, ȳ) ∈ ∂f̄(x̄, p̄),

and, consequently,

−ū ∈ conv {w : (w, y) ∈ ∂f̄(x̄, p̄)}.
This completes the proof of the theorem in the case of a Lipschitz function.

5.5. Completion of the proof. Consider the function

ϕ(x, y, α) = ρ((y, α), epi f(x, ·)).
It is convex in (y, α) and satisfies the Lipschitz condition in the neighborhood of
(x̄, ȳ, ᾱ), ᾱ = f(x̄, ȳ). Applying the result of the previous subsection, we conclude
that

(v̄, q̄, β̄) ∈ ∂ϕ(x̄, ȳ, ᾱ) ⇒ −v̄ ∈ conv{v : (v, ȳ, ᾱ) ∈ ∂ϕ̄(x̄, q̄, β̄)},(5.6)

where ϕ̄ is the conjugate to ϕ with respect to (y, α).
An easy calculation shows that |(q, β)| ≤ 1 and β ≤ 0 whenever (y, α) ∈

domϕ(x, ·), and if, actually, β < 0, then

ϕ̄(x, q, β) = |β|f̄(x, q/|β|).(5.7)

Going further with still simple but rather tedious calculation, we find from (5.7)
that

(v, y, α) ∈ ∂ϕ̄(x, q, β) ⇒ (
v

|β| , y) ∈ ∂f̄(x,
q

|β| )(5.8)

if β < 0 and |(q, β)| ≤ 1.
On the other hand, (ū, p̄)∈∂f(x̄, ȳ) is equivalent to (ū, p̄,−1)∈N(epi f, (x̄, ȳ, ᾱ))

and (as was explained in Section 3)

N(epi f, (x, y, α)) =
⋃
λ≥0

λ∂ρK((x, y, α), epi f),

where ρK is the distance function associated with the norm |(x, y, α)| = K|x| +
|(y, α)| in Rm ×Rn ×R and K is the Lipschitz constant of ϕ in a neighborhood of
(x̄, ȳ, ᾱ). By Proposition 1
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ρK((x, y, α), epi f) = ρ((y, α), epi f(x, ·)) = ϕ(x, y, α)(5.9)

in a neighborhood of (x̄, ȳ, ᾱ).
The final circumstance we have to take into account is that by (3.4) for any set

S and any x ∈ S we have the inclusion λ∂ρ(x, S) ⊂ ∂ρ(x, S) whenever 0 ≤ λ ≤ 1,
so that we always can find a positive η such that

η(ū, p̄,−1) ∈ ∂ϕ(x̄, ȳ, ᾱ) and η|(p̄,−1)| < 1.(5.10)

Together with (5.6), (5.8) this gives

−ηū ∈ conv{v : (v, ȳ, ᾱ) ∈ ∂ϕ̄(x̄, ηp̄,−η)}
= conv{v : ( vη , ȳ) ∈ ∂f̄(x̄, p̄)},

from which we get the desired inclusion by setting v = ηw. This completes the
proof of the theorem.

6. Convex valued inclusions. Proof of Theorem 2

In this section we prove Theorem 2 for convex valued F . The statement of
Theorem 2 actually consists of two independent parts. The first says that the Euler
inclusion (1.7) and the transversality condition (2.2) are necessary for optimality in
(P) under certain assumptions; the second states that, in a more general situation,
the Hamiltonian condition (1.10) and the maximum principle (1.2) follow from the
Euler inclusion, no matter whether the corresponding trajectory is optimal or not.
The proofs of the statements are also separate and independent. We start with the
second, which is an easy consequence of Theorem 4.

6.1. Hamitonian condition and the maximum principle. Suppose now that
F satisfies (H1) – (H4) and the Euler inclusion is satisfied for x∗(·) and some p(·).
If (w, p(t)) ∈ N(GraphF, (x∗(t), ẋ∗(t))), then by Proposition 1 there is a λ > 0 such
that (w, p(t)) ∈ λ∂G(t, x∗(t), ẋ∗(t)). As G is continuous (even Lipschitz continuous)
near (x∗(t), ẋ∗(t)), Proposition 6 guarantees that p(t) belongs to the subdifferential
of G(t, x∗(t), ·) in the sense of convex analysis, which is a property equivalent to the
Weierstrass condition, and it remains to refer to Proposition 2 to get the maximum
principle.

Furthermore, |p(t)| ≤ λ by (3.4). We now recall (see the proof of Proposition 2)
that the Fenchel conjugate of λG(t, x.·) is H(t, x, p) if |p| ≤ λ, so applying Theorem
5, we conclude that (w, ẋ∗(t)) ∈ ∂H(t, x∗(t), p(t)).

6.2. Necessary condition for generalized Bolza problems with constraints
on derivatives. To prove the first part of Theorem 2 we shall use test functions
obtained by restricting G(t, x, y) to bounded sets of y’s. Theorem 3 cannot be
applied in this case in the way it was used in the proof of Theorem 1. Instead, we
need its modification, whose proof is actually similar and can be easily recovered
from the proof of Theorem 1 in [25].

Let R(t) be a set valued mapping from [0, 1] into Rn. Consider the problem of
minimizing the functional

J(x(·)) = l(x(0), x(1)) +

∫ 1

0

L(t, x(t), ẋ(t))dt

over all x(·) ∈ W 1,1 such that ẋ(t) ∈ R(t) almost everywhere. Let x∗(·) be a
solution to the problem. We assume the following:
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(A1): l(x, y) satisfies the Lipschitz condition near (x(0), x(1));

(A2): R(t) is a measurable set valued mapping with closed convex values having
nonempty interiors;

(A3): L(t, x, y) is extended-real–valued and B⊗L-measurable, and there are an
ε > 0 and a summable function k(t) on [0, 1] such that L(t, ·, ·) satisfies the
Lipschitz condition with constant k(t) in a neighborhood of every point (x, y)
with |x− x∗(t)| < ε, y ∈ R(t).

Lemma 1. If under the assumptions (A1) – (A3), x∗(·) is a local minimum of J(·)
in W 1,1 and the measure of the set {t : ẋ∗(t) ∈ intR(t)} is positive, then there is
a p(·) ∈ W 1,1 such that

ṗ(t) ∈ conv{w : (w, p(t)) ∈ ∂L(t, x∗(t), ẋ∗(t)) + {0} ×N(R(t), ẋ∗(t))};
L(t, x∗(t), u)− L(t, x∗(t), ẋ∗(t)) − p(t)·(u− ẋ∗(t)) ≥ 0, ∀ u ∈ R(t);

(p(0),−p(1)) ∈ ∂l(x(0), x(1)).

(6.1)

6.3. Euler inclusion and the transversality condition. We are ready to prove
the first part of the theorem. Actually, we shall prove a slightly more general fact.

Claim. Suppose that there are a measurable set ∆ ⊂ [0, 1], a summable function
k(t) on [0, 1] and constants ε > 0, K > 0 such that for x within ε of x∗(t), F
satisfies (H4) and the distance from ẋ∗(t) to F (t, x) is majorized by K|x − x∗(t)|
if t ∈ ∆, and F satisfies the Lipschitz condition (H6) with the same k(t), for
t ∈ [0, 1]\∆. If under these assumptions x∗(·) is a local minimum in (P), then
the Euler inclusion (1.7) and the transversality condition (2.2) are satisfied by a
nontrivial pair (λ, p(·)).

Assume that we have already proved the claim. Then to prove that the Eu-
ler inclusion and the transversality condition hold under the assumptions of the
first part of Theorem 2 when the distance from ẋ∗(t) to F (t, x) is majorized by
K|x− x∗(t)|, we need to just set ∆ = [0, 1].

When there is a Carathéodory selection y(t, x) of F satisfying the Lipschitz
condition with the constant k(t) (we may assume this constant coincides with that
of (H4)) and such that y(t, x∗(t)) = ẋ∗(t), for any N we set ∆N = {t : k(t) ≤ N}
and consider the set valued mapping

FN (t, x) =

{
F (t, x), if t ∈ ∆N ,

{y(t, x)}, if t 6∈ ∆N .

Then, of course, x∗(·) is a local minimum in the problem (PN ) obtained if we
replace F by FN . Clearly, this problem satisfies the conditions specified in the
claim. Applying the claim to this latter problem, we conclude that there is a
nontrivial pair (λ, p(·)), say, such that

λ+ max
t∈[0,1]

|p(t)| = 1,(6.2)

satisfying the Euler inclusion on ∆N and, outside of ∆N , the inclusion

ṗ(t) ∈ ∂(p(t)·y(t, ·))(x∗(t))
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(following from the scalarization formula (3.5)). It follows that for t 6∈ ∆N

|ṗ(t)| ≤ k(t)|p(t)|.(6.3)

The same is true for all other t as well, since in view of Proposition 1, (H4) implies
that

(w, p) ∈ N(GraphF, (x∗(t), ẋ∗(t))) ⇒ |w| ≤ k(t)|p(t)|(6.4)

Denote by ΛN the collection of pairs (λ, p(·)) satisfying the Euler inclusion (1.7)
on ∆N , the transversality condition (2.2) along with the normalization condition
(6.2) and the inequality (6.3) for almost all t. As we have seen, ΛN 6= ∅ for all
N . On the other hand, (6.2) and (6.3) imply that every ΛN is weak compact. The
same argument as at the end of the proof of Theorem 1 based on the application
of Mazur’s theorem along with (6.4) and upper semicontinuity of the mapping
x 7→ N(S, x) (see e.g. [20]) shows that every ΛN is actually weak closed, hence
weak compact. It follows that there is a pair (λ, p(·)) belonging to all ΛN . Clearly,
this pair satisfies (1.7) almost everywhere, and (2.2), as claimed by the theorem.

It remains to prove the claim. Set

ϕ(t, x, y) =

{
G(t, x, y), if t 6∈ ∆ or t ∈ ∆ and |y − ẋ∗(t)| ≤ ε,

∞, otherwise.

In other words, this function is the restriction of G(t, x, ·) to

R(t) =

{
Rn, if t 6∈ ∆,

B(ẋ∗(t), ε), if t ∈ ∆.

Clearly, we can use ϕ as a test function. Applying Proposition 4 in the same way
as in the proof of Theorem 1, we conclude that either there is a λ > 0 such that
x∗(·) is an unconditional local mininum of

J(x(·)) = λl(x(0), x(1)) + ρ(S, (x(0), x(1))) +

∫ 1

0

ϕ(t, x(t), ẋ(t))dt

in W 1,1, or there is a sequence {xk(·)} ⊂ W 1,1 converging to x∗(·) in W 1,1 and
such that for every k the functional

Mk(x(·)) = ρ(S, (x(0), x(1))) + k−1|x(0)− xk(0)|+
∫ 1

0

ϕk(t, x(t), ẋ(t))dt

attains a (finite) local minimum in W 1,1 at xk(·). Here ϕk(t, x, y) = ϕ(t, x, y) +
k−1|y − ẋk(t)|.

Let us check that both J and Mk satisfy the condition of our lemma. Again
only the condition (A3) needs to be verified, namely that ϕ satisfies the required
Lipschitz condition. According to the assumptions specified in the claim, we can
write

F (x) ∩B(ẋ∗(t), N) ⊂ F (x′) + r(t, N)|x′ − x|B
for x′ within ε of x∗(t), and

r(t, N) =


K, if t ∈ ∆, N ≤ ε,

∞, if t ∈ ∆, N > ε,

k(t), if t 6∈ ∆.

By Proposition 3
ρ(y, F (x′))− ρ(y, F (x)) ≤ s(t)|x′ − x|
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for, say, x′, x within δ = ε/3K of x∗(t) and y within ε/3 of ẋ∗(t) and s(t) equal to
K for y ∈ ∆ and to k(t) outside of ∆. This means that (A3) is satisfied for J , and
also for Mk with sufficiently large k as the xk(·) converge uniformly to x∗(·).

As ẋ∗(t) ∈ int R(t) for every t, application of the lemma in the first (regular)
case immediately leads to proof of the claim. So we consider the second (irregular)
case in greater detail.

By the lemma, for every k there is a pk(·) ∈ W 1,1 such that

ṗk(t) ∈ conv{w : (w, pk(t)) ∈ ∂G(t, xk(t), ẋk(t))

+{0} × (N(R(t), ẋ∗(t))) +B(0, k−1)};
(p(0),−p(1)) ∈ ∂ρ(S, (xk(0), x(1))) +B(0, k−1 × {0}.

(6.5)

It follows that there is a qk(·) such that for almost all t

ṗk(t) ∈ conv{w : (w, qk(t)) ∈ ∂G(t, xk(t), ẋk(t))};
pk(t)− qk(t) ∈ N(R(t), ẋk(t)) +B(0, k−1).

(6.6)

It follows from (6.4) that |ṗk(t)| ≤ k(t) a.e., which means that the sequence of pk(·)
is weak precompact in W 1,1. We may assume without loss of generality that it
converges weakly in W 1,1, and hence uniformly, to some p(·). Clearly, this function
satisfies the transversality condition, and the already used argument involving the
Mazur theorem (as we can, as always, assume that ẋk(t) converge to ẋ∗(t) almost
everywhere) readily leads to the conclusion that it also satisfies the Euler inclusion
together with x∗(·). It remains to show that p(·) is not identically zero. As pk are
all continuous and converge uniformly, all we need to verify is that that there is a
positive constant c such that pk(t) ≥ c at least at one point t for each k.

Proposition 4 states also that for each k either (xk(0), xk(1)) does not belong
to S, or ẋk(t) 6∈ F (t, xk(t)) on a set of positive measure. In the first case we have
|(pk(0), pk(1))| ≥ 1 − k−1, so if this is the case for infinitely many indices k, then
pk(·) goes to one at least at one of the end points.

Now assume that (xk(0), xk(1)) ∈ S for all k. In this case for any k there is
at least one τ such that (6.6) holds and ẋk(t) 6∈ F (t, xk(t)) for t = τ . The latter
implies that |qk(τ)| = 1. If for such τ we have ẋk(τ) ∈ intR(τ) , then the normal
cone to R(τ) at ẋk(τ) reduces to zero and we have |pk(τ)| ≥ 1− k−1 ≥ 1/2.

Otherwise τ ∈ ∆ and |ẋk(τ) − ẋ∗(t)| = ε. Choose a δ > 0 so small that for any
y with |y| = ε and any line segment meeting the ball of radius δ around zero we
have (y− v)·y ≥ −(ε/2)|y− v|, where v is the point in the segment which is closest
to y. Let k0 be so big that |xk(t) − x∗(t)| < δ for all t. This means that there
is a v ∈ F (τ, xk(t)) with |v − ẋk(τ)| < δ. Let z be the closest element to ẋ∗(τ)
of F (τ, xk(τ)). As G(τ, ·, ·) is continuous, it follows from Proposition 7 that qk(τ)
belongs to the subdifferential (in the sense of convex analysis) of G(τ, xk(τ), ·) at
ẋk(τ). This means that qk(τ) is the unit vector proportional to ẋk(τ) − z. On
the other hand, as F is convex valued, the line segment joining v and z belongs to
F (τ, xk(τ)). This means that

qk(τ)·(ẋk(τ) − ẋ∗(τ)) ≥ −(1/2)|ẋk(τ) − ẋ∗(τ)| = −(1/2)ε.

Finally, the normal cone to R(t) at ẋk(τ) is the ray generated by ẋk(τ) − ẋ∗(τ).
Therefore for any element a of the cone we have qk(τ)·a ≥ −(1/2)|a|, and a simple
calculation gives |qk(τ) + a| ≥ 2/3. It follows that |pk(τ) ≥ (2/3)− k−1 ≥ 1/2 also
in this case. This proves the claim and the theorem.
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7. Applications and examples

7.1. The Pontriagin maximum principle. In this subsection we show that the
Pontriagin maximum principle for open loop optimal control problems is a corol-
lary of the Euler formalism of Theorem 1. We shall prove this for the maximum
principle in the form of Kaśkocz and  Lojasiewicz [28] (which is equivalent to an
earlier result established in [22]). In fact we shall prove even a stronger result, in
which the transversality condition uses smaller limiting subdifferentials instead of
the generalized gradient of Clarke in [21, 28]. As a consequence, we get that the
necessary optimality condition for differential inclusions stated in [28] (with the cor-
responding refinement of the transversality condition) also follows from Theorem
1.

Consider a family F of (generally non-autonomous) vector fields f(t, x) defined
in the tube t ∈ [0, 1], x ∈ Γ(t) = {x : |x− x∗(t)| < ε}. We assume that the family
satisfies the following decomposability condition:

(D): If f1 ∈ F and f2 ∈ F and ∆ is a measurable subset of [0, 1], then the field
f coinciding with f1 for t ∈ ∆ and with f2 outside of ∆ also belongs to F .

We assume further

(H7): Any f ∈ F is a Carathéodory function, and there is a summable k(t)
(depending on f) for which the inequality |f(t, x) − f(t, x′)| ≤ k(t)|x − x′|
holds whenever x, x′ ∈ Γ(t).

Consider the following problem:

minimize l(x(0), x(1)),

s.t. ẋ = f(t, x), f ∈ F ,
(x(0), x(1)) ∈ S.

(P1)

Theorem 5 ([28]). We posit (H1), (H2), (H7) and (D). If x∗(·) is a solution
of (P1) and f∗ is the corresponding vector field, then there are a λ ≥ 0 and a
p(·) ∈W 1,1 such that either λ > 0 or p(·) is not identically zero and the relations

− ṗ(t) ∈ ∂̄x(p(t)·f∗(t, x∗(t))) a.e.(7.1)

and for any other f ∈ F
p(t)·f∗(t, x∗(t)) ≥ p(t)·f(t, x∗(t)) a.e.(7.2)

hold along with the transversality condition (2.2).

Proof. Take a finite collection of fields f1, . . . , fk and a δ > 0 and define the set
valued mapping F (t, x) = F (δ, f1, . . . , fk, t, x) as the union of f∗(t, x) and those
fi(t, x) for which |fi(t, x∗(t))−f∗(t, x∗(t))| > δ. It is an easy matter to get from (H7)
that both (H3) and (H5) are satisfied for F so defined. Consider the problem (P)
with this F . It follows from (D) that x∗(·) is a solution of the problem, so Theorem
1 can be applied and there are a λ0 and p(·), not equal to zero simultaneously and
satisfying (1.2), (1.7) and (2.2) with the given F . It follows from the definition of
F that ẋ∗(t) is an isolated point of every F (t, x∗(t)). Therefore

N(GraphF (t, ·), (x∗(t), ẋ∗(t))) = N(Graphf∗(t, ·), (x∗(t), f∗(t, x∗(t)))).
As f∗(t, ·) satisfies the Lipschitz condition near x∗(t), the scalarization formula (3.5)
shows that

(w, p) ∈ N(Graphf∗(t, ·), (x∗(t), f∗(t, x∗(t))))
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if and only if

−w ∈ ∂(p·f∗(t, x∗(t))),
which together with (1.7) (through the fact that Clarke’s generalized gradient of
a Lipschitz function is the convex hull of its limiting subdifferential) immediately
leads to (7.1). On the other hand, the maximum principle (1.2) implies in our case
that

p(t)·f∗(t, x∗(t)) ≥ p(t)·fi(t, x∗(t)), if |fi(t, x∗(t)) − f∗(t, x∗(t))| > δ.(7.3)

Denote by Λ(δ, f1, ..., fk) the collection of pairs (λ0, p(·)) satisfying (7.1), (7.3)
and (2.2) along with the normalization condition

λ0 ≥ 0, λ0 + max
0≤t≤1

|p(t)| = 1.

Then Λ(δ, f1, ..., fk) is a nested family of weak compact subsets of R × W 1
1 (for

|ṗ(t)| ≤ k∗(t) ∈ L1 for all elements of Λ(δ, f1, ..., fk) by (H7)) and the normaliza-
tion is weak continuous on bounded sets. Therefore there is an element (λ0, p(·))
common to all Λ(δ, f1, ..., fk) . This completes the proof of the theorem.

7.2. A strengthening of the Euler formalism for the generalized Bolza
problem. Recently  Lojasiewicz extended Theorem 5 to the case when only the
optimal field f∗ satisfies the Lipschitz hypothesis (H6) while the others are just
naturally bounded Carathéodory functions (see [35, 50]). If the problem formulated
at the end of Section 2 is valid, then the same arguments as in the proof of Theorem
5 will also lead to the proof of this new extension.

Here we give a simple proof of a strengthened version of Theorem 3 which implies
the positive answer to the problem under a regularity assumption.

Consider a function f(x) on a Banach space X , and let Q ∈ X be a set on which
f(x) is bounded from above. For any m = 1, 2, . . . we set

fm(x) = sup
u∈Q

(f(u)−m‖u− x‖).

(In other words, Fm is the sup–convolution of f and m‖ · ‖.)
Proposition 8 (cf. [16]). The following statements are true:

(1) fm(x) ≥ f(x), ∀ x ∈ Q;
(2) fm(x) = f(x) on Q if f satisfies on Q a Lipschitz condition with constant

≤ m;
(3) fm satisfies the Lipschitz condition with constant m;
(4) fm(x) converges decreasingly to f(x) at every x ∈ Q at which f is u.s.c.

Proof. (1) is obvious as fm cannot increase with m. If f satisfies on Q a Lipschitz
condition with constant k ≤ m, then f(x) ≥ f(u)−m‖u− x‖ for u, x ∈ Q, which
gives (2); (3) follows from the simple calculation

fm(x) − fm(x′) = supu infv(f(u)− f(v) +m(‖v − x′‖ − ‖u− x‖)
≤ supu infv(f(u)− f(v) +m‖u− v‖) +m‖x− x′‖
≤ m‖x− x′‖.

Finally, if f is u.s.c. at x ∈ Q, then, given an ε > 0, we can choose a δ > 0 such that
f(u) ≤ f(x) + ε if u ∈ Q is within δ of x. Then for m so big that f(u) ≤ f(x) +mδ
for all u ∈ Q we have fm(x) ≤ f(x) + ε.
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Now we consider the same functional as in 4.3:

J(x(·)) = l(x(0), x(1)) +

∫ 1

0

L(t, x(t), ẋ(t))dt.

Our purpose is to prove the following result.

Theorem 6. Let x∗(·) be a local minimum of J(·) in W 1,1. Assume that

(i) l(u, v) is lower semi–continuous (extended–real–valued);
(ii) L(t, x, y) is B ⊗ L-measurable;
(iii) for almost every t the function L(t, ·, ·) is everywhere finite, lower semicon-

tinuous in (x, y), continuous in x for any fixed y, and for any N there is a
summable function c(t) such that L(t, x∗(t), y) ≥ c(t) a.e. if |y−ẋ∗(t)| ≤ N ;

(iv) there are an ε > 0 and a summable function k(t) on [0, 1] such that

|L(t, x, y)− L(t, x′, y)| ≤ k(t)|x − x′|, if |x, x′ − x∗(t)| < ε, |y − ẋ∗(t)| < ε.

Then there is an adjoint arc p(t) such that the following three conditions are
satisfied: the Euler inclusion:

ṗ(t) ∈ conv{w : (w, p(t)) ∈ ∂L(t, x∗(t), ẋ∗(t))};(7.4)

the Weierstrass condition:

L(t, x∗(t), u)− L(t, x∗(t), ẋ∗(t))− p(t)·(u− ẋ∗(t)) ≥ 0, ∀ u;(7.5)

and the transversality condition

(p(0),−p(1)) ∈ ∂l(x(0), x(1)).(7.6)

The basic difference with Theorem 3 is that here we impose a weaker require-
ment on Lipschitzean (in x) behavior of L: namely we assume that the set valued
mapping epiL(t, x, ·) is pseudo-Lipschitz at points of the solution, whereas in [25]
it is assumed sub-Lipschitz in the sense of Rockafellar [46].

Proof. Set

Lm(t, x, y) = sup
|u−ẋ∗(t)|≤ε

(L(t, x, u)−mk(t)|u− y|)

and define Jm(·) exactly as J but with Lm instead of L under the integral.
By Proposition 7, Lm(t, x, y) ≥ L(t, x, y) and, by virtue of (iv), Lm(t, x, y) =

L(t, x, y) if (x, y) is within ε of (x∗(t), ẋ∗(t)). It follows that

Jm(x(·)) ≥ J(x(·)) ≥ J(x∗(·)) = Jm(x∗(·))
for all x(·) in a neighborhood of x∗(·). Furthermore, Lm(t, ·, y) satisfies the Lipschitz
condition with constant mk(t), so the above quoted theorem of [25] can be applied
to Jm. It follows that for any m the set Λm of adjoint curves p(·) satisfying the Eu-
ler condition (7.4). (as Lm and L coincide in a neighborhood of (x∗(t), ẋ∗(t))), the
Weierstrass condition obtained from (7.5) on replacing L by Lm, and the transver-
sality condition (7.6). Now the standard compactness argument based on (iv) (and
not once used here in this paper) implies the existence of an adjoint arc common
to all Λm. It remains to note that, as L(t, ·, y) is continuous, Lm(t, x, ·) converges
to L(t, x, ·) everywhere for every x almost everywhere in t, which implies that the
Weierstrass condition (7.5) also holds for any adjoint arc common to all Λm. This
completes the proof of the theorem.
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If we now assume that the problem (P) is regular (that is, G-regular with
G(t, x, y) = ρ(y, F (t, x)), as in the proof of Theorem 1), then applying the “regular
part” of the proof of Theorem 1 with Theorem 3 replaced by Theorem 6 and tak-
ing into account that the continuity requirement in Problem 1 implies continuity
of G with respect to x, we arrive at the positive answer to Problem 1 under the
regularity assumption.

7.3. A Hamiltonian condition for a nonconvex inclusion. As was mentioned
in the introduction, the question of whether or not a Hamiltonian type necessary
optimality condition exists for nonconvex differential inclusions remains among the
oldest unsolved problems in the theory of necessary conditions in optimal control.

An obvious first step in the search for such a necessary condition in an unrelaxed
problem is to verify whether the solution of the problem remains a local minimum
of its relaxation (which is the problem obtained by replacing F (t, x) by its convex
closure F̄ (x)). If the answer is yes, then any necessary condition in the second
problem is also a necessary condition in the first and, in case of the Hamiltonian
condition, this answers the question completely, provided F̄ satisfies appropriate
analytical requirements, because the problem and its relaxation have the same
Hamiltonian.

Let us say that the problem (P) is normal at x∗(·) if for any (λ, p(·)) satisfying
the three relations of the Euler formalism (the Euler condition (1.7), the maximum
principle (1.4) and the transversality condition (2.2)) we have λ > 0.

Proposition 9. Suppose that the assumptions of Theorem 1 are satisfied with (H5)
replaced by the standard Lipschitz condition (H6). Suppose further that x∗(·) is a
solution of (P) and the problem is normal at x∗(·). Then x∗(·) is also a local
minimum in the relaxed problem with F̄ replacing F in (1.1).

Proof. We first observe that under the normality assumption the problem is G-
regular with G(t, s, y) = ρ(y, F (t, x)). Indeed, if this were not true, then arguing
as in the proof of Theorem 1, we would find a sequence of xk(·) converging to x∗(·)
in W 1,1 such that the function

Mk(x(·)) = ρ((x(0), x(1)) +

∫ 1

0

G(t, x(t), ẋ(t))dt+ k−1‖x(·)− xk(·)‖1,1

attains a local minimum at xk(·) and either (x(0), x(1)) 6∈ S or ẋk(t) 6∈ F (t(xk(t)))
on a set of positive measure. By the assumption

|G(t, x, y)−G(t, x′, y)| ≤ k(t)|x− x′|, if |x, x′ − x∗(t)| < ε,

so applying Theorem 3 we conclude as in the proof of Theorem 1 that there is a
nonzero p(·) such that (1.7), (1.2) and (2.2) are satisfied for p(·), x∗(·) and λ = 0,
in contradiction to the normality assumption.

As (P) is G-regular, there is a constant N such that x∗(·) is an unconditional
local minimum of the functional

J(x(·)) = l(x(0), x(1)) +N(ρ(x(0), x(1)) +

∫ 1

0

G(t, x(t), ẋ(t))dt).

Let Ḡ(t, x, y) be the convexification of G with respect to the last variable. The
relaxation theorem of [25] shows that x∗(·) is also a local minimum of the functional
J̄(·) obtained by replacing G by Ḡ under the integral. It is easy to see, on the other
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hand, that Ḡ(t, x, y) = ρ(y, F̄ (t, x)) and therefore x∗(·) is a local minimum in the
relaxed problem obtained from (P) by replacing F by F̄ .

We observe further that F̄ satisfies the Lipschitz condition of the proposition
with the same ε and k(t) (provided it is valid for F ), which means that we can
apply Theorem 2 for the relaxed problem (P) and conclude with the following
statement.

Theorem 7. We posit (H1) – (H3) and (H6). Let x∗(·) be a solution of (P),
and let the problem be normal at x∗(·). Then there is a nontrivial pair (λ, p(·))
satisfying the Hamiltonian condition (1.10), the maximum principle (1.2) and the
transversality condition (2.2).

7.4. Example: the new Hamiltonian condition (1.10) is strictly stronger
than (1.4). Namely, we construct below a set valued mapping F (x) such that

conv{w : (w, ȳ) ∈ ∂H(x̄, p̄)} 6= {w : (w, ȳ) ∈ ∂̄H(x̄, p̄)}(7.7)

(where ∂̄ stands for the generalized gradient of Clarke) so that the set on the left
can be strictly smaller.

Fix a closed set S and set

F (x̄) = S, F (x) = C(x)S,

where C(x) for any x is a linear isomorphism of Rn depending continuously on x.
Then

H(x, p) = sup{p·y : y ∈ C(x)S} = sup{p·C(x)v : v ∈ S} = ϕ(C∗(x)p),

where ϕ is the support function of S.
If S is bounded, then ϕ is continuous, so that if C∗(x) satisfies the Lipschitz

condition with respect to x, by the scalarization formula (3.5)

∂H(x, p) =
⋃

v∈∂ϕ(0)

∂ψv(x̄, p̄),

where ψv(x, p) = v ·C∗(x)p = C(x)v ·p. As this function is linear in p, we have

∂ψv(x̄, p̄) = (∂xψv(x̄, p̄), C(x̄)v).

Therefore (w, 0) ∈ ∂ψv(x̄, p̄) implies v = 0 and, consequently, w = 0.
Thus to construct an example satisfying (7.7), we need to find a set S and

a continuous family C(x) of linear isomorphisms of Rn such that 0 ∈ S and
∂̄H(x̄, p̄) = conv ∂H(x̄, p̄) contains a point (w, 0) with w 6= 0.

For example, let n = 2 and S = {(y1, y2) : |y1| ≤ 1, y2 = 0}, so that ϕ(q) = q1.
Let further

C∗(x) =

(
1 |x1|
1 1

)
; p̄ = (0, 1), x̄ = (0, 0).

Then H(x, p) = |p1 + |x1|p2|; moreover, ∂̄H(x̄, p̄)) is the convex hull of four points
(±1, 0,±1, 0), which is {(w, 0, y, 0) : max{|w|, |y|} ≤ 1}. This means that {w :
(w, 0) ∈ ∂̄H(x̄, p̄)} = [−1, 1].
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