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Simulations of a gas–liquid stirred reactor including bubble breakage and coales-

cence were performed. The filtered conservation equations for the liquid phase were

discretized using a lattice-Boltzmann scheme. A Lagrangian approach with a bubble

parcel concept was used for the dispersed gas phase. Bubble breakage and coales-

cence were modeled as stochastic events. Additional assumptions for bubble breakup

modeling in an Euler–Lagrange framework were proposed. The action of the reactor

components on the liquid flow field was described using an immersed boundary condi-

tion. The predicted number-based mean diameter and long-term averaged liquid veloc-

ity components agree qualitatively and quantitatively well with experimental data for a

laboratory-scale gas–liquid stirred reactor with dilute dispersion. Effects of the pres-

ence of bubbles, as well as the increase in the gas flow rate, on the hydrodynamics

were numerically studied. The modeling technique offers an alternative engineering

tool to gain detailed insights into complex industrial-scale gas–liquid stirred reactors.
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Introduction

Stirred tank reactors are among the most widely used re-

actor types in a large variety of industrial processes involv-

ing multiphase flows. Typical examples include industrial

hydrogenations or oxidations, as well as aerobic fermentation

processes in which gas bubbles are dispersed in turbulent

fluid flow induced by one or more impellers. In biotechno-

logical processes, the activity and the growth of microorgan-

isms (e.g., bacterial or fungal systems) or cells are sensitive

to a number of parameters, such as dissolved oxygen con-

tent, substrate concentration, and pH level. A major chal-

lenge in these processes is to provide adequate liquid mixing

and to generate a large interfacial contact area, while avoid-

ing shear damage of microorganisms and cells caused by

hydrodynamic effects.1,2

The flow structures in a single liquid-phase stirred reactor

are known to be highly complex associated with time-de-

pendent, three-dimensional phenomena covering a wide
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range of spatial and temporal scales.3 The complexity

increases drastically when a gas phase is introduced. Addi-

tional effects include the interaction between phases in terms

of mass, energy, and momentum exchange, the interaction

between the second phase and the impeller, and interaction

between bubble breakage and coalescence. As the reactor

performance is a complex function of the underlying phe-

nomena, a detailed knowledge regarding the hydrodynamics

and the evolution of the dispersed phase is essential for the

engineering of a high-performance reactor.

Traditionally, engineering of gas–liquid stirred reactors is

based on empirical correlations derived from experiments.

The information obtained from this approach is usually

described in global parametric form and applicable within a

narrow window of geometry configurations and operating con-

ditions. Recently, the use of computational fluid dynamics

(CFD) has gained some popularity among researchers and

practitioners for the engineering of stirred reactors. Significant

progress has been made over the last decades in the fields of

turbulence and multiphase-flow modeling, numerical methods,

and computer hardware. Consequently, time-dependent, three-

dimensional simulations of gas–liquid stirred reactors with a

sophisticated level of detail and accuracy are feasible today.

Various CFD modeling techniques for gas–liquid flows,

where the gas phase is dispersed in the liquid phase, have

been reported in the literature. These techniques can be

grossly categorized based on their treatment of the dispersed

phase into Euler–Euler (EE) and Euler–Lagrange (EL)

approaches.4,5 In the EE approach, both phases are treated as

interpenetrating continua. The interactions between phases

are modeled via the phase interaction terms that appear in the

conservation equations describing the dynamics of the system.

The EE approach assuming monodisperse spheres has been

used in the works of Deen et al.,6 Khopkar et al.,7 and Zhang

et al.8 for simulations of gas–liquid stirred reactors. A more

sophisticated EE approach, where the local bubble size distri-

bution (BSD) is computed by solving population balance

equations, has been reported by Venneker et al.,9 Laakkonen

et al.,10 and Montante et al.11,12 In the EL approach, each

individual bubble or a parcel of bubbles is represented by a

single point. The linear motion of the bubbles is governed by

Newton’s law of motion. Rotational momentum balances are

typically not considered. The EL approach requires closure

relations to account for the interphase forces, which can be

obtained from empirical relations or from simulations with

higher level of detail, for example, a front tracking approach13

or volume of fluid methods. Closures for gas–liquid systems,

which take into account the effect of high-gas-phase loadings

are still an area of ongoing research (e.g., see Ref. 14). The

EL approach is computationally expensive. However, the

advantages of EL approach are its high flexibility with respect

to incorporating microscopic and bubble-level phenomena,

such as bubble–bubble interactions, bubble–wall interactions,

breakup, and coalescence of bubbles. Simulations of gas–liq-

uid stirred reactors using the EL approach are relatively rare

in the literature. Some examples include the work of Wu

et al.15 and Arlov et al.1 for simulations of reactors with

monodisperse spheres and the work of Nemoda and Ziv-

kovic16 for the simulation of a reactor with bubble breakage.

The goal of this work is to assess the detailed modeling of

a gas–liquid stirred reactor by an EL approach. The simula-

tions are restricted to laboratory-scale reactors (with a vol-

ume in the order of 10 L) with dilute dispersion (i.e., a

global gas-phase of up to 2% volume fraction). The reason

for simulating these systems is that, in this work, we mainly

focus on the validation of the modeling technique presented

in the next section. Detailed validation requires highly

resolved experimental information concerning liquid flow

field and local BSDs, which are hard (if not impossible) to

obtain in dense systems. Dispersed-phase volume fraction

effects in the conservation equations of the continuous phase

and high-frequency collisions drastically increase the com-

plexity in denser systems, also from a computational point

of view. The ability to numerically deal with denser systems

is the subject of (our) current research. In engineering prac-

tice, the gas-phase fraction and the size of the reactor are

typically much larger. However, as the presented modeling

technique is based on elementary physical principles, which

also play a role at the full-scale, the understanding of the

underlying phenomena obtained in this work makes it worth-

while for researchers and practitioners. The main elements

of the modeling technique used in our study are:

• The continuous liquid-phase is modeled using a varia-

tion of the lattice-Boltzmann (LB) scheme by Somers.17

The LB scheme is used to solve the large-scale motions of the

turbulent flow using the filtered conservation equations. The

Smagorinsky subgrid-scale model is applied to model the

effects of the subfilter scales.18 It has been demonstrated that

the scheme can accurately predict turbulent hydrodynamics in

single phase system3 as well as in multiphase systems.19-21

• An adaptive force-field procedure,22 also known as an

immersed boundary method, is used for describing the action

of the reactor components (i.e., the impeller, tank wall, baf-

fles, and internals) on the liquid flow field.

• The motion of the individual bubbles is computed by

Lagrangian tracking taking into account the sum of forces

due to stress gradients, net gravity, drag, lift, and added

mass. The momentum transfer between phases, that is, the

two-way coupling, is achieved by the mapping function with

the virtual diameter concept introduced by Deen et al.24 The

impact of turbulence on the motion of the bubbles, that is,

the fluctuations of the subfilter or residual fluid velocity

along the bubble trajectory, is computed using the Langevin

equation model introduced by Sommerfeld et al.25

• Collisions of bubbles are governed by the so-called sto-

chastic interparticle collision.26 Based on the stochastic

model, coalescence of bubbles is determined by comparing

the film drainage time with the bubble contact time.27

Breakup of bubbles is accounted for using a theoretical

model derived from the theory of isotropic turbulence.28 It is

assumed that breakup is caused mainly by the interaction of

bubbles with turbulent eddies.

Although various elements of our approach have been

reported in literature, the present modeling technique, for the

first time, assesses the feasibility of using the LB scheme with

the Lagrangian particle tracking model with consideration of

bubble breakage and coalescence for simulations of gas–liquid

stirred reactors. The simulations provide a detailed insight into

gas–liquid stirred reactors with a high level of accuracy along

with reasonable computational requirement.

In the next section, the modeling technique for turbulent

bubbly flows in the EL framework will be briefly introduced.

AIChE Journal May 2012 Vol. 58, No. 5 Published on behalf of the AIChE DOI 10.1002/aic 1357



A detailed discussion of this approach can be found in our

previous work.21 Additional models for the simulation of

gas–liquid stirred reactors, for example, the treatment of re-

actor components, bubble breakup, and coalescence, will be

discussed in detail. In the subsequent section, the model vali-

dation, ranging from a bubble column to a gas–liquid stirred

reactor, will be presented and discussed in detail. The con-

clusion will be summarized in the final section.

Numerical Modeling Aspects

Liquid-phase hydrodynamics

In this work, the LB scheme is used to model the turbulent

liquid flow. The LB scheme is based on a simple form of the

Boltzmann kinetic equation, which can be used to recover the

macroscopic hydrodynamic behavior of fluids.29 The basic

idea is that fluid flow, which is governed by conservation

laws, can be simulated by a many-particles system obeying

the same laws. A set of (fictitious) particles residing on a lat-

tice moves to the neighbor sites and exchanges momentum

(i.e., collide) with particles coming from other directions. The

collision rules and the topology of the lattice are defined such

that the Navier–Stokes equations are recovered.30

The specific LB scheme used here is based on the work

by Somers17 (see Refs. 3 and 31) with a cubic and uniform

lattice. The scheme was chosen because of its robustness for

turbulence simulations. This is due to the explicit treatment

of the high-order terms, which results in enhanced stability

at low viscosities and, thus, allows simulations of high

Reynolds numbers. In the LB scheme, the arithmetic opera-

tions are local, that is, the data required for updating the

flow in a grid point are obtained from its next neighbors

and, specifically, the stress tensor is explicitly obtained from

the data stored in a single node. Therefore, parallelization

through domain decomposition requires only communication

of subdomain boundary values, resulting in efficient parallel

algorithms.

Gas–liquid flows in a bubble column or in a stirred reac-

tor, are normally turbulent, even at laboratory scale and with

gas volume fraction as low as 1%. Considering the liquid

motions induced by dispersed gas bubbles, the turbulent

stress can be divided into two components; one due to bub-

ble buoyancy leading to liquid velocities above the turbu-

lence onset and the other due to the so-called pseudo-turbu-

lence caused by the fluctuation of the bubbles, that is, the

zig-zagging motion of bubbles relative to the fluid, resulting

in turbulent-like flows due to vortex shedding and interaction

phenomena. Direct numerical simulation of these flows is

not feasible due to limitation in computational resources, as

the resolution of all length and time scales requires enor-

mous amounts of grid cells and time steps. To overcome this

limitation, only the evolution of the large-scale motions is

resolved by applying a filtering process to the conservation

equations of the liquid phase. The resolved flow can be

interpreted as a low-pass filtered representation of the real

flow. The impact of the residual motion that resides at scales

smaller than the filter width is modeled using the subgrid

scale (SGS) model by Smagorinsky.18 In this model, the

SGS motion is considered to be purely diffusive, and the

model only drains energy from the resolved motions without

feedback. A larger fraction of the eddies and more of the

energy residing in the flow are resolved with a finer grid

spacing, that is, a higher resolution. However, the choice of

grid spacing in the EL approach is also restricted by the size

of the bubbles, as will be discussed in detail in the next sec-

tion. Furthermore, Hu and Celik32 pointed out that the resid-

ual motion of the pseudo-turbulence, which posses a univer-

sal energy spectrum different from the classical �5/3 decay

in single phase turbulence, could (in principle) be captured

using a dedicated SGS model. Such a reliable and accurate

SGS model for multiphase flows is not available. Therefore,

the SGS model used in this work is adopted directly from

the single-phase SGS model. This is justified by our favor-

able results in relation to experimental data as will be shown

later in this work. The eddy viscosity Vt concept is used to

represent the impact of the SGS motion as:

mt ¼ CSDð Þ2
ffiffiffiffiffi

S2
p

; (1)

with the Smagorinsky constant CS, the filter width D (equal to

the cubic grid cell size h), and the resolved deformation rate
ffiffiffiffiffi

S2
p

. The value of CS is kept constant at 0.10 throughout this

work. It has been demonstrated that the variation of CS has

only marginal effect on the predicted flow field.21,33

As the simulations discussed here are restricted to dilute

dispersions, that is, global gas volume fractions of up to 2%,

it can be assumed that the void fraction term in the momen-

tum conservation equations for the liquid phase has a rela-

tively small effect on the flow. The filtered conservation

equations (with source terms representing forces exert by the

bubbles and the reactor components) for single phase flow

are approximately valid. The formulation and detailed dis-

cussion for the conservations equations used in this work

can be found in Refs. 3 and 31. This assumption has been

successfully used for simulations of multiphase flows within

the dilute dispersion limit by several researchers (e.g., see

Refs. 19, 32, and 21).

Impeller and tank wall treatment

Stirred tanks typically consist of a cylindrical vessel

equipped with one or more impellers, baffles, and, option-

ally, other internals. They can be divided, into static (i.e.,

tank wall, baffles, and internals) and moving components

(i.e., impellers and shaft). In this work, an adaptive force-

field technique, also known as an immersed boundary

method,22,34 is used to describe the action of the reactor

components on the liquid flow field. The method mimics

these components by a set of control points on their surface.

It computes forces on the flow such that the flow field has

prescribed velocities at the control points within the domain,

that is, equal to zero at static components and equal to the

surface velocity for the moving components. The deviation

from the prescribed velocities is estimated by a second-order

interpolation and imposed back on the lattice sites during the

collision step.3

In the vicinity of walls, the turbulence becomes anisotropic,

that is, fluctuations in the wall-normal direction are suppressed.

Consequently, the SGS Reynolds stresses should become zero.

These effects are accounted by using the Van Driest wall

damping function35 with the universal velocity profiles.36
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Bubble dynamics

The dispersed phase (i.e., the bubble phase) is tracked in a

Lagrangian manner. A point-volume (also known as point-

force) assumption is used. In this assumption, the bubble is

assumed to have a spherical shape, and the bubble surface

effect on the continuous fluid is neglected.5 Each point rep-

resenting a parcel of bubbles with identical properties (i.e.,

position, velocity, and diameter) is tracked simultaneously in

the time-dependent, three-dimensional flow field. It is noted

that the number of bubbles in a parcel is a real number <f g.
Its trajectory is computed based on Newton’s law of motion.

All relevant forces, such as net gravity force, forces due to

stress gradient, drag, net transverse lift, and added mass

force are considered. Thus, the following set of equations

will be solved for the motion of bubbles in a parcel:

dtxp ¼ up; (2)

qpVpdtup ¼ qp � ql
� �

Vpgþ qlVpDtu

� 1

8
CDqlpd

2
p up � u
�

�

�

� up � u
� �

� CLqlVp up � u
� �

�r� u� CAqlVp Dtup � Dtu
� �

ð3Þ

with vp being the centroid position of the parcel, up the velocity,
qp the bubble density, Vp the bubble volume with the diameter dp,
g the gravitational acceleration, q1 the liquid density, and u the

liquid velocity at Xp. The drag CD and lift CL coefficients depend

on the bubble Reynolds number Rep ¼ up � u
�

�

�

�dp
�

ml and the

Eötvös number Eo ¼ ql � qp
� �

gj jd2p
.

r. The added mass force

coefficientCA is assumed to be constant at 0.5. Expressions for the

forces acting on a bubble and its coefficients are summarized in the

Appendix. Note that because the buoyancy force has been already

included in the net gravity force, the forces due to stress gradient in

the fluid include only the dynamic pressure and the deviatoric

stress gradient. Hence, the forces due to the fluid stress gradient

can be reformulated in term of the fluid acceleration as shown in

Table A1.23,32 The liquid velocity u at the centroid of the parcel in
Eq. (3) consists of the resolved liquid velocity ~u and a (residual)

liquid fluctuating component u~. The latter component is used to

mimic the impact of turbulence on themotion of the bubble, that is,

the fluctuations of the subfilter (residual) liquid velocity along the

bubble trajectory.

The interpolation of the liquid properties on the Eulerian grid

nodes to the centroid of the parcel on the Lagrangian reference

frame (and vice versa) is achieved using a ‘‘cheap clipped fourth-

order polynomial’’ mapping technique proposed by Deen et al.24

(see Appendix for the formulation). In principal, the mapping

function 1 evaluates a property, such as the liquid velocity at the

parcel centroid, by the integration of the liquid velocity at the

Eulerian grid nodes that is located inside a predefined influence

diameter (set to 2dp in this work). Forces exerted by a parcel on

the Eulerian grid nodes are accounted for via the interphase force

terms in the conservation equations Fp!l, that is, the back cou-

pling. The force terms consist of the drag FD, lift FL, and added

mass forces FA as a function of the mapping function 1 and the

number of bubbles in the parcel np. At a grid node j with volume

Vcell,j, the forces exerted by a parcel ican be expressed as:

Fp;i!l;j ¼ � 1j np

Vcell;j
FD þ FL þ FAð Þ: (4)

As mentioned earlier, a larger fraction of the eddies (and

more of the energy residing in the flow) can be resolved

using a higher grid resolution. Thus, a more accurate predic-

tion of turbulent flow hydrodynamics requires finer grid spac-

ing. In the framework of the EL approach, it is, however, sug-

gested that the grid spacing ratio to the bubble diameter h/dp
should be greater than unity to maintain the validity of the

point-volume approach. Therefore, the h/dp value used here

should compromise between a sufficiently fine grid resolution

to capture the most energetic eddies and a sufficiently coarse

grid resolution to keep the point-volume assumption valid.

However, we relax this restriction by allowing the h/dp value
to be lower than unity but greater than 0.5. This allows us to

include large bubbles (with a diameter greater than the grid

spacing) that are present mostly at the sparger and close to the

impeller shaft. Note that the volume of parcels with large bub-

ble is lower than 10% of the total bubble volume (and the

number of large-bubble parcels is less than 1% of the total

number of bubbles) having only a minor effect on the resolved

flow field. The applicability of a h/dp value less than unity has

been demonstrated by Darmana et al.37 and is justified by

favorable results obtained in this work.

Collisions

Collisions between bubbles can be analyzed using direct colli-

sion models, for example, soft sphere38 and hard sphere collision

models,39 or statistics-based collision models, for example, the

stochastic interparticle collision model.26 In this stochastic

model, no direct collisions, where a large amount of information

from surrounding bubbles is required, are considered. Instead,

only a fictitious collision partner (i.e., parcel) is assumed and a

collision probability according to kinetic theory is established for

each parcel at each time step of the trajectory calculation. The

bubble size and velocity of the fictitious parcel are randomly gen-

erated based on the statistic information (with Gaussian distribu-

tion) regarding BSD and velocity collected at Eulerian grid

nodes. The fictitious parcel consists of bubbles with identical

properties and similar number as in the considering parcel.

Hence, the bubbles in the fictitious parcel can be considered as a

representative for the surrounding bubbles. The collision proba-

bility Pcoll is calculated based on the properties of the parcel (and

its collision partner) and the local fluid properties as:

Pcoll ¼
p

4
dp � dfict
� �

2 up � ufict
�

�

�

� npDt; (5)

where the subscript fict represents properties of the bubbles in

the fictitious parcel. The occurrence of a collision between a

parcel and a fictitious parcel is determined by a comparison

between the probability with a uniform random number in the

interval [0,1]. The collision can result in momentum exchange

(bouncing) or coalescence between the bubbles in the parcels.

In case of a bouncing collision, the impact point is statistically

determined on a collision cylinder where the fictitious parcel is

stationary. A detailed description of the stochastic interparticle

collision procedure can be found in the work of Sommerfeld.26

The procedure to determine coalescence of bubbles will be

described in the next section.

Collisions between a parcel and the surfaces (tank, baffles,

and impeller) are considered to be elastic and frictionless.

As the motion of the moving components (e.g., impeller

shaft, blades, and disc) is rotational, a collision with these

components adds momentum to the bubble resulting in a

change of the bubble tangential velocity19:
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up;h;out ¼ �up;h;in þ 2 rpX; (6)

where up,h,out and up,h,in represent the tangential velocity after

and before the collision, respectively. The local velocity at the

impact point rpX is the product of the angular velocity X ¼
2pN (with N being the impeller rotational speed) and the

distance from the center axis rp. At impact, the distance

between a parcel and a solid component is calculated based on

the effective radius, reff, of a parcel bubble as

reff ¼
3npVp

4p

� �1=3

; (7)

with np being the number of bubbles in the parcel and Vp being

the bubble volume.

Coalescence model

Following a collision between a parcel and a fictitious par-

cel described in the previous section, coalescence between

the bubbles in parcel and the bubbles in the fictitious parcel

is determined using the approach introduced by Prince and

Blanch.40 In this approach, coalescence will take place when

the bubble contact time sij is greater than the film drainage

time tij. Otherwise, a rebound occurs. It is assumed that, in

the frame of the considered Lagrangian collision model, the

contact time can be expressed by:

sij ¼
CCRij

un
; (8)

with the equivalent bubble radius Rij

Rij ¼ 2:0
2

dp
þ 2

dfict

� ��1

; (9)

where un is the relative approaching velocity in normal

direction, CC is the deformation distance as a fraction of the

effective bubble radius; its value of 0.25 gives the best

agreement with the experimental data27 and is used throughout

this work. Neglecting the effects due to surfactants and

Hamaker forces, the film drainage time can be expressed as:

tij ¼

ffiffiffiffiffiffiffiffiffi

R3
ijq

16 r

s

ln
h0

hf

� �

; (10)

with the initial film thickness h0 for air-water set to 0.1 mm, the

final film thickness before rupture hf set to 0.01 lm,40 and the

surface tension r. The properties of the new bubble after

coalescence are calculated from a mass and momentum balance.

The new bubble diameter after coalescence is calculated as

dp;new ¼ d3p;old þ d3fict

� 	1=3
: (11)

As the total volume of the parcel must be conserved, the num-

ber of bubbles in a parcel after coalescence is expressed as

np;new ¼ np;old
dp;old

dp;new

� �3

: (12)

Based on the collision cylinder where the fictitious parcel

is stationary, only the bubble normal velocity to the bubble

in the fictitious parcel is changed, while the other velocity

components remain unchanged. Thus, the normal velocity af-

ter coalescence up,n,new can be expressed as

up;n;new ¼ up;n;old
d3p;old

d3p;old þ d3fict

 !

: (13)

It is important to emphasize here that a coalescence of bub-

bles takes place between a (real) parcel and a fictitious parcel,

not between two real parcels. In the case of bouncing colli-

sions (the contact time less than the drainage time), the normal

velocity after collision is a function of the coefficient of resti-

tution a (set to 0.90 in this work) and can be described by:

up;n;new ¼ up;n;old
d3p � ad3fict

d3p þ d3fict

 !

: (14)

Breakup model

A breakup model proposed by Luo and Svendsen28 is used

in our work. The model was derived from the theories of iso-

tropic turbulence and contains no adjustable parameters. The

bubble interaction with turbulent eddies is assumed to be the

dominant breakup mechanism. It is further assumed that only

the eddies of length scale smaller than or equal to the bubble

diameter participate in the breakup mechanism. Larger eddies

simply transport the bubble without causing breakup. The

breakup rate of bubbles with volume Vp into volumes of VpfBV
and Vp (1 � fBV) when being in contact with turbulent eddies

in the size range of kmin to dp can be expressed as:

XB Vp : VpfBV
� �

1� ag
� �

np
¼ 0:923

e

d2p

 !1=3

Z

1

nmin

1þ nð Þ2

n11=3
exp � 2cfr

q e2=3 d
5=3
p n11=3

 !

dn; ð15Þ

where ag is the gas phase volume fraction, e is the energy

dissipation at the centroid of the parcel, and nmin ¼ kmin/dp.

The breakage volume fraction fBV is calculated from:

fBV ¼ 0:5þ 0:5 tan h 10
RN� 0:5ð Þ

p

� �

; (16)

where RN is an uniform random number with the interval [0,1].

The resulting volume fraction of the daughter bubbles has a U-

shaped distribution, that is, the breakup into equal size has the

lowest probability, while the breakup into infinitesimal volumes

has the highest probability. In this work, we limit the range of

breakage volume fraction in the interval [0.2,0.8]. Accordingly,

the increase coefficient of surface area cf is expressed as:

cf ¼ f
2=3
BV þ 1� fBvð Þ2=3�1: (17)

The minimum size of eddies in the inertial subrange of

isotropic turbulence kmin is assumed to be proportional to

the length of the Kolmogorov-scale eddies kms:

kmin ¼ 11:4 kms; (18)

with

kms ¼
m3

e

� �1=4

; (19)

where m is the liquid-phase kinematic viscosity.
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In this work, the breakup rate is considered to be a stochastic

value determined from a randomly generated breakage volume

fraction given in Eq. 16. Thus, the breakup of a parcel within a

certain interval is decided in the similar manner as for the colli-

sion of bubbles, that is, by comparison with a uniform random

number in the interval [0,1]. Furthermore, it is assumed that the

breakup only takes place within the parcel and will not result in

a new parcel. Instead, it will result in a parcel with a new bubble

diameter calculated according to the breakage volume fraction.

The number of bubbles in a parcel after breakup is calculated

using Eq. 12. Regardless of the success of the breakup, the par-

cel is assumed to interact with certain eddies in a certain inter-

val characterized by the particle–eddy interaction time te. The
next estimation of the breakup rate will be carried out after te s,
see Appendix for the formulations. This assumption is very im-

portant for a system where a high level of turbulence is present,

for example, in a stirred reactor. It prevents unphysical consecu-

tive breakups of bubbles and provides a time-step resolution-in-

dependent solution.

Results and Discussion

Bubble column with monodisperse bubbles

Dispersed gas–liquid flows in three-dimensional (non-

stirred) bubble columns have been studied experimentally by

several groups, including Deen et al.41 and Van den Hengel

et al.42 Coalescence of bubbles was inhibited by adding salt

solution resulting in a bubble column with (approximately)

uniform bubble size. As their data are used to validate our

model, we neglected breakup and coalescence of bubbles in

this part of the study. Fluid flow was induced mainly by

bubbles where the motion of bubbles relative to the liquid

resulted in turbulent-like flow. The bubble plume fluctuated

only weakly at the lower part of the column and was mean-

dering around the column at the upper part. This fluctuation

was caused by various mechanisms including, most impor-

tantly, bubble–bubble collisions and turbulence.

Modeling of these bubble columns was reported by Sung-

korn et al.21 Their predicted mean and fluctuating liquid ve-

locity components were in good agreement with the experi-

mental data of Ref. 41 cited above. Sensitivity to grid size

over bubble diameter ratio h/dp was also studied by perform-

ing simulations with a h/dp-value of 1.10, 1.25, and 1.50.

The study concluded that a finer grid (i.e., a lower h/dp
value) provides a better agreement with the experiment,

while the coarsest grid was not sufficient to correctly capture

the features of the flow field.

In the present work, we study the sensitivity of the predic-

tions when a h/dp-value lower than unity is used. It is worth to

emphasize that in the EL approach considered here, a point-

volume assumption is used and that the bubbles’ surface effect

on the continuous fluid flow is neglected. We relax the

assumption by further assuming that a h/dp-value less than

unity (but greater than 0.5) can be used and will not drastically

violate the point-volume assumption. This additional assump-

tion will be justified by the favorable results obtained here.

The bubble column considered has a square cross-section

with a width, depth and height of 0.15, 0.15, and 0.45 m,

respectively. Air bubbles are introduced at the bottom-center

plane with an area of 0.03 � 0.03 m2 and with a superficial

gas velocity of 4.6 mm/s. A bubble mean diameter of the

order of 4 mm was observed in the experiments.41 Bubbles

were assumed to have uniform size in this work. To verify

the validity of a model with a h/dp-value less than unity, a

simulation with a h/dp value of 0.75 was carried out and

compared with the simulation results reported by Sungkorn

et al.0 for a h/dp value greater than unity.

The domain was discretized by a uniform cubic grid of 50

� 50 � 150 lattices in width, depth, and height, respec-

tively. This resulted in a bubble size of 1.5 times the lattice

distance. A no-slip boundary condition was applied at the

walls, except for the top where a free-slip boundary condi-

tion was applied. Bubble parcels were injected at the bottom

of the column and left the simulation domain once they

touched the top surface. In this case, due to the low gas-

phase fraction, one parcel contained only one bubble. The

calculation started with a quiescent liquid and proceeded for

150 s with a time step for the liquid phase of 10 ls. A sub-

time step of 1 ls was used for the calculation of the bubble

motion. To obtain statistically meaningful data, the averaged

quantities were computed from 20 to 150 s.

A comparison between the simulations with various h/dp
values and measured data is shown in Figure 1. As can be

seen in Figure 1a, the averaged vertical velocity profile is

accurately reproduced in all cases except for a h/dp value of

1.50. Similarly, the fluctuating components of the resolved

flow field were correctly captured by all simulations except,

again, for a h/dp value of 1.50. This might be attributed to

an insufficient resolution when a grid too coarse is used. As

can be seen, the use of a h/dp value of 0.75 improves the

Figure 1. Comparison of the predicted and experimen-

tal long-term averaged liquid velocity and

fluctuating velocity components with various

grid size to bubble diameter ratios h/dp at a

height of 0.28 m and a depth of 0.075 m.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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predictions, especially at the region near the wall. This is

because, with a finer grid resolution, a larger fraction of the

eddies and, consequently, more of the energy residing in the

flow are resolved. These favorable results show that the use

of a h/dp value lower than unity in this case will not deterio-

rate the simulation, at least in the prediction of the flow

field. However, it is important to note that the refinement of

the grid also results in an increase of computational cost:

reducing the (uniform) grid spacing by a factor q increases

the grid size with a factor q3 and (due to explicit time step-

ping) the computational effort by q4.

Bubble column with inclusion of breakage and
coalescence

A pseudo-two-dimensional bubble column has been used

to study the effect of superficial gas velocity on the BSD by

Van den Hengel et al.42 The underlying phenomena are simi-

lar to the bubble column discussed earlier with the additional

complexity due to bubble coalescence. The dimensions of

the bubble column are 0.20, 0.03, and 1.40 m, in width,

depth, and height, respectively. Air bubbles were injected at

the mid-bottom from a nozzle with a diameter of 0.02 m

with a gas superficial velocity of 1.39 � 10�3, 2.78 � 10�3,

and 4.17 � 10�3 m/s. It was reported in their work that the

bubbles at the nozzle had a size distribution around 3 mm.

In our study, the fluid domain was discretized on a uni-

form cubic grid of 40 � 6 � 280 lattices in width, depth,

and height, respectively. The other simulation settings were

similar to the previous simulation case. Gaussian-shape

BSDs with a mean diameter of 2.5 and 3 mm (corresponding

to a bubble size of 0.5 and 0.6 times the lattice distance,

respectively) and a variance of 0.25 mm were generated at

the nozzle. Breakup and coalescence of bubbles were taken

into account. Because of the restriction of the h/dp value dis-

cussed earlier, coalescence will only take place with a bub-

ble smaller than 2.0 times the lattice spacing and, similarly,

breakup will only take place with a bubble larger than 0.1

times the lattice spacing. The long-term averaged results

were based on results between 20 and 150 s.

Figure 2 shows the measured and predicted long-term

averaged BSD at various heights. It can be observed from

the experimental data that the mean bubble diameter and the

BSD slightly shifted to the right side, that is, to bigger diam-

eters, caused by bubble coalescences. A similar behavior is

obtained in the simulations. Although the agreement is quite

good, there exist, however, some deviations in the BSD pro-

files. Similar deviations were also obtained in the simula-

tions of Van den Hengel et al.42 One reason for this observa-

tion may be the resolution of the measurement and/or the

lack of accurate BSD data at the nozzle (i.e., at the air inlet).

The latter explanation is also supported by the fact that in

the experiment a bimodal BSD is observed.

Figure 3 shows the number mean diameter at various

heights with different superficial gas velocities. The sensitiv-

ity of the BSD with respect to the sparger (initial) BSD was

studied by using initial BSDs with mean diameters of 2.5

and 3 mm. At low superficial gas velocities (i.e., 1.39 �
10�3 and 2.78 � 10�3 m/s), good agreements for the number

mean diameter d10 along the axial direction were obtained

with the initial BSD of 2.5 mm. However, the simulation with

the initial BSD of 3.0 mm provides a good agreement with the

experiment at a higher superficial gas velocity (i.e., 4.17 �
10�3 m/s). This behavior may be explained by the well-known

fact that the initial bubble size at the sparger increases with

increasing superficial velocity.10 Furthermore, also immediate

Figure 2. Comparison of the experimental (a) and the

predicted (b) bubble size distribution at vari-

ous heights with the superficial gas velocity

of 2.78 3 1023 m/s.

The simulation was performed with a BSD with a mean di-
ameter of 2.5 mm at the nozzle. [Color figure can be
viewed in the online issue, which is available at wileyonli-
nelibrary.com.]

Figure 3. Comparison of predicted and experimental

number-mean diameters at various heights

using different initial bubble diameters and

gas superficial velocities (all diagrams have

the same y-axis scale).

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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coalescence at the sparger occurs. This, again, highlights the

importance of knowing the initial BSD at the sparger for an

accurate prediction. Although the initial bubble size can be

roughly estimated using, for example, the model proposed by

Geary and Rice,43 detailed information concerning the sparger

is essential, yet rarely available in literature.

Gas–liquid stirred reactor

Detailed experimental investigations of a gas–liquid stirred

reactor were reported by Montante et al.11,12 and were used

for validation of our method. In their work, image analysis

was used to collect data concerning liquid flow field and the

BSD at the mid-plane between the baffles. The reactor had a

standard configuration consisting of a cylindrical, flat-bot-

tomed, baffled tank with diameter T ¼ 23.6 cm and the liq-

uid filled-level H ¼ T. The reactor was equipped with a

Rushton turbine with a diameter D ¼ T/3, at the center of

the reactor C ¼ T/2. The geometry of the reactor is depicted

in Figure 4. The working fluid was water with a viscosity

mof 1.0 � 10�6 m2/s and density q of 1.0 � 103 kg/m3. The

impeller rotational speed N was fixed at 450 rpm throughout

the study, corresponding to a blade tip speed of 1.85 m/s

and a Reynolds number, defined as Re ¼ ND2/v, of �
46,000. Air bubbles were injected into the system via a

sparger made of a tube of 3.3 mm diameter with a porous

membrane on top. The sparger had a distance of T/4 from

the bottom. The gas flow rate was varied from 0.02, 0.05, to

0.07 vvm. The reactor operated in the complete dispersion

regime.11

For the simulations, a cubic computational grid of 853 lat-

tice cells was defined. A no-slip boundary condition was

used at all faces except for the top surface, where a free-slip

boundary condition was defined to represent the free surface.

Sets of control points, representing the cylindrical wall, the

baffles, the impeller, the impeller shaft, and the sparger tube,

were generated inside the computational domain according

to the forcing algorithm introduced earlier. In the simula-

tions, a grid spacing h equal to 2.9 � 10�3 m was used. The

diameter of the impeller had a size of 27 times the grid

spacing. The distance between two control points at the

impeller surface was 0.7h. Similar strategy was used to rep-

resent the other parts. The total number of control points in

the domain was 33,000. The simulations started with the re-

actor at rest and proceeded with a time step for the liquid

phase of 20 ls and a subtime step of 4 ls for the calculation

of the bubble motion. Thus, the impeller completes a full

revolution in 6667 time steps. At any given moment, for

example, in Case 5, the simulation has � 1300 parcels, cor-

responds to 90,000 bubbles and global gas holdup of 0.4%

(also Montante et al.12 report gas holdups below 1%). After

30 impeller revolutions, the data of the liquid flow field and

the BSD were collected for the following 60 revolutions and

statistically analyzed. The wall-clock time for one impeller

revolution was � 1.5 h when 4 IntelVR XeonVR E5540 (at

2.53 GHz) processors were used. This averaging period was

shown to be sufficiently long for generating statistically

meaningful results. An overview of the simulation cases is

shown in Table 1. Note that the initial bubble diameter used

in the simulations was greater than the grid spacing, that is,

a h/dp value less than unity. For example, an initial diameter

of 4 mm results in a h/dp value of 0.74. As will be shown

later, the significant bubble breakup occurs in the impeller

region, resulting in much smaller bubbles. Hence, only 1%

of the bubbles or less in the reactor have a diameter greater

than the grid spacing.

First, the influence of the initial bubble diameter on the

simulation results was studied. Two simulations were carried

out: one with an initial bubble diameter of 4 mm (Case 1)

and another one with a Gaussian BSD distribution with a

mean diameter of 3.5 mm and variance of 0.5 mm (Case 2).

The gas flow rate was set to 0.02 vvm in both cases. Figure

5 shows the measured and predicted long-term averaged

local number-mean diameter d10 in the reactor. Note that the

predicted d10 shown here is a angle-averaged value. The

trend and magnitude of the predicted d10 in both cases

agrees fairly well with the measured data. In Case 1, the

simulations slightly over-predicted d10 in the impeller regime

and slightly under-predicted the diameter in the rest of the

reactor. In contrast, the predicted d10 in Case 2 agrees well

with the measured data in most parts, except in the impeller

regime where the d10 is over-predicted. This, again, high-

lights the importance of initial bubble size accuracy of the

simulation. To reduce the parameters that will influence the

prediction and for the simplicity of the study, a uniform ini-

tial bubble size of 4 mm was used for the rest of the study.

A comparison between the predicted (Case 1) and the

measured cumulative size distribution (CSD) of bubble at

the lower and upper part is shown in Figure 6. The predicted

CSD was calculated by dividing the diameter between 0.0

and 4.5 mm into 15 classes and counting the frequency of

bubbles in each class. As can be seen, the predicted CSD

distribution agrees very well with the measured data. Devia-

tion can be observed in the regime of small bubbles. This

could be due to many reasons, for example, in the break up

model, where the daughter size distribution is governed by

Table 1. Overview of the Stirred Tank Simulation Cases

Case N (rpm) Qg (vvm) Initial dp (mm)

1 450 0.02 4.0
2 450 0.02 Mean ¼ 3.5/Variance ¼ 0.5
3 450 0.0 -
4 450 0.05 4.0
5 450 0.07 4.0

Figure 4. Geometry of the stirred reactor with a Rush-

ton turbine and a tube sparger.
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the U-shape distribution [Eq. (16)] in which the probability

of very small and very large daughter sizes is the highest.

Thus, other daughter size distributions, such as an M-shape

distribution,44 may be used to improve the prediction. It is

also important to note that the smallest detectable bubble in

the experiment of Montante et al.12 was 0.3 mm, whereas in

the simulation, the smallest allowable bubble was � 0.25

mm and was included in the first cumulative class.

On the basis of good agreement between experiment and

simulation for the dispersed phase, we further examined the

quality of the prediction of the liquid flow field. Predicted

and experimental axial and radial long-term averaged liquid

velocity components along the radial direction at various

heights are shown in Figure 7. As can be seen, a quite good

agreement between the predicted and measured data is

achieved at all considered heights. The radial velocity pro-

files changes only slightly along the radial direction. A sig-

nificant change in magnitude can be seen at the height of the

impeller where a strong outflow exists (z/T ¼ 0.49) as the

configuration corresponds to a radially discharging impeller.

In contrast, the axial velocity profiles change in magnitude

and sign along the radial direction at all elevations. Also, a

very good agreement is achieved for the long-term averaged

velocity components along the axial direction at various ra-

dial positions, see Figure 8. A jet-like radial outflow has the

highest magnitude close to the impeller and decreases with

further distance from the impeller. The axial velocity compo-

nent changes its magnitude along the axial direction and ra-

dial position according to flow recirculation generated by the

Rushton turbine. Slight deviations can be noticed for the ra-

dial velocity component at the peak of the impeller jet.

In Figure 9, the long-term averaged root mean square

(RMS) radial and axial velocity components at various ele-

vations are shown. The simulation and the experiment have

the maximum magnitude of the RMS values at the height of

the impeller (z/T ¼ 0.49). Although the agreement between

experiments and simulations is not as good as for the aver-

aged velocities, the predicted RMS values have similar order

of magnitude as in the experiment. However, deviations can

be observed, especially near the impeller. Clearly, these

deviations were due to an insufficient grid resolution used in

this work. However, it is worth to repeat here that the grid

resolution is restricted by the size of bubbles present in the

system. That is, the h/dp value has to be a compromise

between a sufficiently fine grid resolution to capture the

most energetic eddies and a sufficiently coarse grid resolu-

tion to keep the point-volume assumption valid.

The predicted instantaneous and long-term averaged ve-

locity vector fields are shown in Figure 10. Several small

and large vortices induced by a jet-like outflow from the

Rushton impeller can be observed in the plot of the instanta-

neous flow field. These vortices interact with each other and

change their size, shape, and position randomly with time.

The long-term averaged velocity vector field reveals two pri-

mary liquid recirculation zones at the upper and lower part

of the reactor. Two small recirculations at the upper and

lower corners can be also noticed. Snapshots of the predicted

bubble dispersion pattern from the front and top view are

shown in Figure 11 and Figure 12, respectively. As can be

seen, the bubbles introduced at the sparger fluctuate within a

small range before they are drawn into the impeller regime.

Consequently, the bubbles collide with the impeller,

exchange their momentum and velocity direction, and are

drawn into the vortex behind the impeller blades. Most of

bubble breakup takes place in this region due to the presence

of high turbulence activity. The bubbles are then dispersed

following the jet-like outflow. Small bubbles tend to follow

the recirculations resulting in a long residence time, while

Figure 5. Local number mean diameter mm in the reac-

tor with N 5 450 rpm and Q 5 0.02 vvm.

Measured data are underlined following with the predicted
values from Cases 1 and 2, respectively.

Figure 6. Cumulative distribution of bubble equivalent di-

ameter in the upper half and lower half of the re-

actor with N5 450 rpm andQ5 0.02 vvm.

The prediction from the simulation Case 1 is shown. [Color
figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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large bubbles tend to rise near the wall or move into a

region with low turbulence activity, that is, near the impeller

shaft. These underlying phenomena and much more, such as

bubble trailing and rolling of bubble swarm, can be observed

in three-dimensional and anaglyphical animated results made

available in the journal’s website.

A contour plot of the long-term averaged resolved liquid-

phase turbulent kinetic energy (TKE) at the mid-plane

between baffles is shown in Figure 13. A region of high-tur-

bulent activity, that is, high TKE, is found to emanate from

the blades region and has a maximum of TKE at the midway

between the impeller and the tank wall. The TKE profile is

qualitatively similar to that for single phase flows (e.g., see

Ref. 3). It can be concluded that the TKE is only weakly

modified by the presence of bubbles due to the relatively

low gas flow rate investigated here.

A simulation of a single-phase stirred tank (Case 3) was

carried out to study the effect of bubbles on the liquid flow

field. The predicted single-phase long-term averaged velocity

vector field is shown on the left side of Figure 14. For the

investigated range of the gas flow rate, no significant

changes in liquid flow field are observed. More details can,

however, be deduced by subtracting the averaged vector field

obtained from the simulation with gassing (Case 1) from the

field without gassing (Case 3). The result is shown on the

right side of Figure 14. As can be seen, most of the differen-

ces take place in the outflow of the impeller region, where

the liquid motion is modified by the bubbles. Our observa-

tion agrees qualitatively well with the result obtained from

the experiment of Montante et al.11 However, it should be

noted that the magnitude of the difference is approximately

one order of magnitude lower than the averaged flow field.

In another set of simulations, the gas flow rate was increased

from 0.02 to 0.05 and 0.07 vvm in Cases 4 and 5, respectively,

to investigate the effect of gassing on the gas–liquid hydrody-

namics. The initial bubble diameter was assumed to 4 mm in all

cases. Figure 15 shows the predicted local number mean diame-

ter obtained from the simulations with various gas flow rates. At

all gas flow rates, the evolution of the bubble size follows a simi-

lar trend as discussed in the previous section. However, it can be

noticed that the increase of the gas flow rate results in a smaller

mean bubble diameter in most parts of the reactor. Significant

changes occurred when the gas flow rate was increased from

0.02 to 0.05 vvm. The difference between the flow rate of 0.05

and 0.07 vvm was minor. An explanation can be provided by the

help of the contour plot of the phase-averaged gas volume frac-

tion shown in Figure 16. (It should be noted that the plot of the

gas fraction was made by mapping the bubble’s volume based

on its position on the Lagrangian frame of reference to its nearest

Eulerian grid node). A significant increase in the concentration

and the dispersion area of the gas phase can be observed by rais-

ing the flow rate from 0.02 to 0.05 vvm. In the first case, the dis-

persion pattern, that is, the gas volume fraction contour, is di-

vided into three regimes: impeller outflow, upper, and lower

recirculation zones. This is because the bubbles are only dis-

persed from the impeller but the recirculations are not strong

enough to draw the bubbles back in the impeller regime. In con-

trast, the dispersion pattern for 0.05 vvm is completely con-

nected. Thus, the bubbles are recirculating into the impeller out-

flow region. Consequently, more breakup takes place, resulting

in smaller bubble diameters. An increase of the flow rate from

0.05 to 0.07 vvm does not qualitatively change the picture and

results mainly in an increase of the concentration of the gas

Figure 7. Experimental and predicted (Case 1) long-

term averaged axial and radial liquid velocity

components at three heights.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 8. Experimental and predicted (Case 1) long-

term averaged axial and radial liquid velocity

components at two radial distances.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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phase, especially in the regime near the impeller. The mean di-

ameter of bubble changes only significantly in the regimes near

the impeller shaft, where a higher rate of bubble coalescence

occurs. Note that a different trend of the mean diameter will be

obtained in experiments. This is because, as discussed in the pre-

vious section, the BSD at the sparger increases significantly with

the gas flow rate and, consequently, the BSD in the reactor.

Conclusions

A modeling technique for the simulations of gas–liquid

stirred tank reactors based to an EL approach has been pre-

sented. The turbulent flow field was established using the fil-

tered conservation equations. A variation of the LB scheme

proposed by Somers17 was used to discretize the equations.

The bubble parcel concept was used to represent a group of

bubbles with identical properties. A point-volume concept

was used to track the trajectory of the bubble, that is, the

parcel. A set of appropriate correlations for the interphase

closure was carefully chosen from the literature. The

immersed boundary condition method22 was used to describe

the action of the moving components and the tank walls.

The restriction regarding the grid size over bubble diame-

ter ratio, h/dp, was relaxed. It was demonstrated that the use

of a h/dp value less than unity (but greater than 0.5) can be

used in EL simulations. This approach can be envisioned as

a ‘‘distributed’’ bubble approach, where bubbles are allowed

to be slightly bigger than the grid size and represented with

a more spatially distributed forces. However, the h/dp value

used in a simulation should be a compromise between a

Figure 10. Predicted instantaneous (left) and long-term

averaged (right) liquid velocity vector field at

the mid-plane between baffles obtained

from Case 1.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 11. Snapshot of bubble dispersion pattern.

The reactor operates at N ¼ 450 rpm and Q ¼ 0.02 vvm.
Note that the impeller and the sparger geometry are only
an interpolated contour plot. The baffles and tank wall are
excluded for visualization purpose. [Color figure can be
viewed in the online issue, which is available at wiley
onlinelibrary.com.]

Figure 12. Snapshot of bubble dispersion pattern and

the liquid velocity vector field at cross-sec-

tion below the impeller.

The reactor operates at N ¼ 450 rpm and Q ¼ 0.02 vvm
(only bubbles below the impeller are shown). [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 9. Experimental and predicted (Case 1) long-

term averaged axial and radial fluctuating

components at three heights.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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sufficiently fine grid resolution to capture the most energetic

eddies and a sufficiently coarse grid to keep the point-vol-

ume assumption valid. It should be noted that this resolution

limitation will largely disappear when a simulation of an

industrial-scale reactor is considered. As an increase in the

reactor size will typically result in only slightly larger bub-

bles, finer grids (relative to the reactor size) will have h/dp
ratios greater than one.

Collisions and coalescence of bubbles were modeled based on

the stochastic interparticle collision model as used by Sommer-

feld et al.27 Using the coalescence model, a good agreement

between the predicted and measured BSD in a bubble column

has been obtained. Simulations with various initial bubble sizes

and gas flow rates showed that the accuracy of the prediction is

highly sensitive to the initial bubble size at the sparger. There-

fore, detailed information concerning bubble size (or air inlet/

sparger) is essential for an accurate prediction.

The breakup model of Luo and Svendsen28 was used. In

this work, breakup of bubble was treated as a stochastic

event. A daughter size was randomly selected from a U-

shape distribution. Accordingly, breakup of bubbles was

decided by comparing a breakup frequency with a uniform

random number. Additionally, in this work, we proposed

that this event should be bounded by an involved time scale,

which is a function of the flow field, that is, the particle–

eddy interaction time, to obtain time resolution-independent

solution and to avoid unphysical consecutive breakups.

Our modeling technique was then used to simulate gas–liquid

flow in a stirred tank reactor following the experiments of Mon-

tante et al.11,12 The simulations were able to reproduce the trends

and the magnitude of the local BSD from the experiment. Small

bubbles were overpredicted. This could be improved by using

alternative daughter bubble-size distributions. Also, despite a

coarse grid spacing used in this work, the simulations provided a

good agreement with measured data for the long-term averaged

velocity components. This is because the scale of large energy-

containing eddies in a stirred reactor is of similar size as the

impeller diameter. Therefore, the largest part of the energy in the

liquid flow field was resolved. However, due to the restriction of

the choice of the grid spacing, the predicted second-order statis-

tics (RMS of velocity components) agree only by order of magni-

tude with the measured data. To improve the prediction of the

second-order statistics, an alternative approach, such as very-

large-eddy simulations (VLES), may be used. The VLES

approach uses a spatial-filtering process with a turbulence model

(similar to that for unsteady Reynolds-averaged Navier–Stokes

approach) on a coarse grid to resolve a minor part of the turbu-

lence spectrum and to model the rest.45,46 It should be also

pointed out that, in a gas–liquid reactor with dense dispersion re-

gime (i.e., a global gas phase above 10% volume fraction), the

gas void fraction has a significant effect on the flow field and

should be included in the conservation equations. Additionally,

in the dense dispersion regime, large amount of bubbles tend to

accumulate and coalesce in the low-pressure region behind the

impeller blades resulting in ventilated cavity.47 To accurately

model a reactor within this regime, the phase-averaged conserva-

tion equations and a hybrid approach for the modeling of the dis-

persed phase, for example, the hybrid two-fluid/discrete element

method introduced by Sun et al.,47 may be used. We are working

on these improvements in our current research.

Figure 13. Contour plot of the predicted long-term aver-

aged turbulent kinetic energy TKE for Case 1.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 14. Vector plot of long-term averaged velocity

field for ungassed conditions (Case 3; left)

and the difference between the liquid veloc-

ity for gassed (Case 1) and ungassed condi-

tions (Case 3; right).

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 15. Local number-mean diameter (mm) in the re-

actor at the gas flow rate of (from top to bot-

tom) 0.02, 0.05, and 0.07 vvm, respectively.

The impeller rotational speed was fixed at 450 rpm. [Color
figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Bearing in mind the capabilities and limitations of the pre-

sented modeling technique, the effects of the bubble phase

and the gas flow on the gas–liquid were studied numerically.

It can be concluded that the presence of bubbles, in the

investigated range of operating conditions, slightly modifies

the flow at the impeller outflow region. Furthermore, it has

been found that the increase of the gas flow rates triggers a

change in the dispersion pattern and, consequently, the BSD.

Although the study presented here has been carried out for lab-

oratory scale reactors with dilute dispersions, the present model-

ing technique consists mainly of models based on elementary

physical principles, which are also valid for a larger scale. The

models contain only a few adjustable parameters: only some

rooms exists for adopting different closures and for using differ-

ent theoretical constants. It should be also stressed, that all ele-

ments of the present modeling technique provide high efficiency

for parallel computing, as has been demonstrated by Derksen and

Van den Akker3 and Sungkorn et al.21 The maximum benefit of

the present modeling technique can be achieved when industrial

large-scale simulations are realized.

Notation

C ¼ clearance between the impeller disc and the reactor bottom, m
cf ¼ increase coefficient of surface area calculated in Eq. (17)
CS ¼ Smagorinsky constant (set to 0.10)

d ¼ diameter, m
D ¼ impeller diameter, m
F ¼ force, N

fBV ¼ breakage volume fraction calculated in Eq. (16)
g ¼ gravitational acceleration (set to 9.82), m/s2

h ¼ grid cell size, m
H ¼ liquid-filled level, m
h0 ¼ initial film thickness to be used in Eq. (10), m
hf ¼ final film thickness before rupture to be used in Eq. (10), m
N ¼ impeller rotational speed, rev/s

r,R ¼ radius, m
S ¼ rate of deformation tensor to be used in Eq. (1), 1/s
T ¼ reactor diameter, m
t,s ¼ characteristic time, s
u ¼ velocity, m/s
V ¼ volume, m3

x ¼ position
a ¼ coefficient of restitution (set to 0.90)
D ¼ filter width to be used in Eq. (1), m
e ¼ energy dissipation rate, m2/s3

k ¼ eddies length scale, m
m ¼ kinematic viscosity, m2/s
q ¼ density, kg/m3

f ¼ mapping function calculated from Eq. A1
r ¼ surface tension, N/m
X ¼ rotational speed, rad/s

XB ¼ breakup rate calculated in Eq. (15), 1/s

Subscripts

eff ¼ effective
fict ¼ fictitious
l ¼ continuous liquid phase
n ¼ normal direction

new ¼ properties after collision, coalescence, or breakup
old ¼ properties before collision, coalescence, or breakup
p ¼ dispersed bubble phase
t ¼ turbulence involved properties
h ¼ tangential direction

Dimensionless numbers

Eo ¼ Eötvös number ¼ (q1�qp)|g|d
2
p/r

Rep ¼ particle Reynolds number ¼ |up �u|dp/v1
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Appendix

Mapping function

The so-called cheap clipped fourth-order polynomial map-

ping function is formulated as6:

fðx�xpÞ¼
15

16

ðx�xpÞ4
n5

�2
ðx�xpÞ2

n3
þ1

n

" #

with jx�xpj � n;

(A1)

with x the position of a neighboring grid node and n half of

the predefined influence diameter (set to 2dp in this work).

Calculation of the eddy–particle interaction time

The time interval in which a bubble interacts with a ran-

domly sampled velocity field, that is, the eddy–particle inter-

action time te is determined by the eddy lifetime teddy and

the transit time ttr as
49

te ¼ minðteddy; ttrÞ: (A2)

The eddy lifetime teddy is given by:

teddy ¼
leddy

ju0j ; (A3)

with u0 the liquid phase velocity fluctuation. The dissipation

length scale leddy is estimated by:

leddy ¼ 0:3
k1:5

e
; (A4)

with k being the turbulent kinetic energy.
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The transit time of a bubble is estimated based on the linear-

ized form of the equation of motion of a bubble in uniform flow:

ttr ¼ �spln 1� le

spju� upj

� �

; (A5)

with the particle relaxation time sp

sp ¼
qpd

2
p

18qv
: (A6)
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Table A1. Expressions for the Forces Acting on a Bubble

Force Closure

FG ¼ qp � ql
� �

Vpg -
FS ¼ qlVpDtu -
FD ¼ � 1

2
CDqlpr

2
p up � u
�

�

�

� up � u
� �

CD ¼ max min
24

Rep
1þ 0:15Re0:687p

� 	

;
48

Rep


 �

;
8

3

Eo

Eoþ 4


 �

FL ¼ �CLqlVp up � u
� �

�r� u CL ¼
min 0:288 tanh 0:121Rep

� �

; f Eodð Þ
� 


;
f Eodð Þ ;
�0:29 ;

8

<

:

Eod � 4

4\ Eod � 10

Eod > 10

Eod ¼
Eo

E2=3
; E ¼ 1

1þ 0:163Eo0:757

f Eodð Þ ¼ 0:00105Eo3d � 0:0159Eo2d � 0:0204Eod þ 0:474

FA ¼ �CAqlVp Dtup � Dtu
� �

CA ¼ 0:5
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