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Abstract: In the study of Euler-Maruyama scheme for Stochastic Differential Equations, researchers focus on the 

convergence rate under different conditions, using analytical methods and Stochastic Partial Differential Equation. One of them 

is to study the Lipschitz continuous, mainly from drift coefficient and diffusion coefficient. The other is the study of 

non-Lipschitz continuous, since most of the real life is not Lipschitz continuous. Therefore, most researchers are looking at 

non-Lipschitz continuous. In my study, without loss of generality, we are also a continuous study of non-Lipschitz and a faster 

convergence rate. In this paper, we show the convergence rate of Euler-Maruyama scheme for non-degenerate SDEs where the 

drift term b and the diffusion term σ are the uniformly bounded, b and σ satisfy correlated conditions of Dini-continuous, by 

the aid of the regularity of the solution to the associated Kolmogorov equation of SPDE and common methods in stochastic 

analysis, including Itô’s formula, Jensen’s inequality, Hölder inequality BDG’s inequality, Gronwall’s inequality. We obtain the 

same conclusions by weakening the conditions of previous research using the properties of Dini continuous and Taylor 

expansion. At the same time, we also reached the same conclusion under local boundedness and local Dini-continuous. 

Moreover, my research results have laid the groundwork for the follow-up research. 

Keywords: Non-Degenerate, Stochastic Differential Equation, Euler-Maruyama Scheme, Dini Continuous,  

Kolmogorov Equation 

 

1. Introduction 

Let fix � � 0 . Considering the following stochastic 

differential equations in ��: 

�� 	=	X	+	 
 ��s,	X�ds	�
	 	+	 
 ��s,	X�dW,�

	 	X	 ∈ ��  (1) 

where b: [0, T] ×�� → �� and σ: [0, T] × �� → ��⨂�� 

are two Borel measurable functions, ��� , � ∈ �0, ��� is an 

d-dimensional standard Brown motion defined on a complete 

filtered probability space (Ω, �, Ρ;	������	), and the initial 

value �	 is �	-measurable ��-valued random variable. 

The Euler-Maruyama scheme of (1) is 

��= Y	+ 
 ������, Yηδ(��ds 
�
	  + 
 ������, Yηδ(��dW�

	   

�		=	Y	                    (2) 

where  :" #
$ ∈ �0,1�, ���&�: " '�(  , & ∈ )'�(  , *'�( + 1,  -, 

for the sufficiently large integer . ∈ /. And the discrete 

scheme of (2) is analytically tractable on computer 

application of engineering, physical, finance, biology, etc. 

If the coefficient of SDEs is Lipschitz continuous, there are 

many previous research results. If σ is an identity matrix and 

the coefficient b is Lipschitz continuous in space and 0
1-Hölder continuous in time then for any p > 0, there exists 

23> 0 such that the Euler-Maruyama scheme is the strong 

rate of 
0
1(see for example [5]). Yan [14] proved the rate of 

convergence in 40-norm sense for a range of SDEs, where 

the drift coefficient is Lipschitz and the diffusion coefficient 

is Hölder continuous, by means of the Meyer Tanaka formula. 

Gyöngy and Rásonyi [4] extended Yan [13] to the 

convergence rate in 43 -norm, by the Yamada-Watanabe 

approximation. Our finding partly improves upon results in 

[7, 9, 10], as well as the as well as the well-known ones in [2, 

3]. Based on previous research [6, 7], Leobacher et al. 

proved the Euler-Maruyama approximation converges at the 
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rate of order 1/4−ε in the 41-norm for small ε � 0 in [8], 

when the drift coefficient is piecewise Lipschitz continuous 

and bounded and the diffusion coefficient is Lipschitz 

continuous, bounded and non-paraller. 

However, the coefficients b and σ are not Lipschitz 

continuous in practical applications. Zhang [15] has proved 

Euler-Maruyama approximation for SDEs to converge 

uniformly to the solution in 43-space with respect to the time 

and starting points under non-Lipschitz coefficients. If the 

drift coefficient is the Dini-Hölder continuous, Gyöngy and 

Rásonyi [4] implied the order of strong rate of convergence 

for one dimensional SDEs. Hoang-Long and Taguchi [11] 

studied the strong rates of the Euler–Maruyama 

approximation for one-dimensional stochastic differential 

equations whose drift coefficient may be neither continuous 

nor one-sided Lipschitz and whose diffusion coefficient is 

Hölder continuous. And the case of d-dimension is 

introduced in [10], using a Yamada-Watanabe approximation 

technique. In [14], the diffusion coefficient σ is an identity 

matrix, the drift coefficient b is bounded β-Hölder continuous 

with β	∈ (0, 1) in space and η-Hölder continuous in time 

η ∈ [1/2, 1], then for any p > 1, the strong rate of 

can be obtained. The strong rate of convergence of the Euler–

Maruyama approximation for stochastic differential 

equations was obtained by Hoang-Long and Taguchi [12] with 

possibly discontinuous drift and Hölder continuous diffusion 

coefficient. Bao, Huang and Yuan [1] discussed the strong 

convergence rate of Euler-Maruyama for non-degenerate 

SDEs with rough coefficients, where the drift term is 

Dini-continuous and unbounded, by the regularity of 

non-degenerate Kolmogrov equation.  

In this paper, we first study the convergence rate of the 

Euler-Maruyama scheme of (2), where the drift term b and 

the diffusion term σ are the uniformly bounded, b and σ 

satisfy correlated conditions of Dini-continuous (see 

Assumption 2.1), which is weaken the the conditions, simply 

the proof and obtains the same results in [1]. In addition, we 

also prove the convergence rate for the non-degenerate SDEs 

with unbounded coefficients, which method is mainly based 

on the regularity of the solution to Kolmogorov equation 

associated to the SDEs (1).  

This paper is structured as follows. In the next section, we 

introduce some notations and the main results. All proofs are 

deferred to Section 3.  

2. Main Results 

2.1. Notations 

In this section, we recall the foundational definition and 

notations involved in the paper.  

Let ℬ(ℝ�) be the Borel σ algebra on ℝ�. Set ∇:= D = 

* 9
9:; , ⋯ , 9

9:=,
∗
, ?1= @ 9A

9:B9CD-0EF,GEH and ∆ =∑ 9A
9:B

HFJ0 , where 

∗
 

is the transpose of a vector or matrix. Take || · || and || 	 · 	 ||MN stand for the usual operator norm and the Hilbert 

-Schmidt norm, respectively. 

Meanwhile, we introduce some space of function: 

||	O	||	#,P	 = sup�∈[	,#],:∈TU ||f(t, x)||, where an 

operator-valued map f is on [0, T]×ℝ�. VWXW�  denotes the collection of all non-singular d × 

d-matrices. 

2YZ(ℝ�,ℝ[), β	∈ (0, 1) denotes the set of all function from 

ℝ�  to ℝ[  which are bounded and β-Hölder continuous 

functions. Hence if f	∈ 2YZ(ℝ�,ℝ[), then 

sup:,C∈ℝ=,:\C
|](:)^](C)|

|:^C|_ < ∞.  

For a < b, we write 2YZ([a, b]) for C([a, b]; 2YZ(ℝ�,ℝ�)) 

and define the norm 	|| 	 · 	 ||cd_([e,Y])	  on 2YZ ([a, b]) by 

	||	O	||cd_([e,Y]): = sup:,C∈ℝ=,�∈[e,Y]|O(�, f)| +	sup:,C∈ℝ=,:\C
|](:)^](C)|

|:^C|_ . 

Throughout the paper, we denote the constant as C, the 

shorthand notation a⪯b stands for a≤ Cb. And C represents 

a positive constant although its value may change from one 

appearance to the next. 

2.2. Main Results 

In this paper, we study the convergence rate of Euler 

-Maruyama scheme, under the following non-Lipschitz 

condition. In this section, we state the related assumptions 

and main theorems of this paper. 

Let i	 be the family of Dini function, i. e., 

i	:=�j|j:ℝk → ℝk is increasing and 
 m()


0
	 n& < ∞�. 

A function f: ℝ� → ℝ� is called Dini-continuity if there 

exists φ ∈ i	 such that for any x, y ∈ ℝH, 

|f(x) − f(y)|≤ φ(|x − y|). 

It is well known that every Dini-continuous function is 

continuous and every Lipschitz continuous function is 

Dini-continuous. Moreover, if f is Hölder continuous, then f 

is Dini-continuous, but not vice versa. And seti :={j ∈	i	|j1is concave}, for instance, a function f is Hölder-Dini 

continuous of order α ∈ (0, 1). 

The non-Lipschitz assumptions is following: 

Assumption 2.1. 

(a) For every t	∈[0, T] and x ∈ ℝ�, σ(t, x) ∈ VWXWp , and ||�||#,P + ||�||#,P < +∞, 

where ||�||#,P:=	sup	E�E#||�(�, f)||MN. 

(b) For any t ∈ [0, T], β ∈ (0, 1) and x, y ∈ ℝ�, there 

exists φ ∈ i such that (regularity of b and σ w. r. t. spatial 

variables) 

|b(t, x) − b(t, y)|≤	 |f	 − 	q|Zφ(|x − y|), ||�(�, f) 	− 	�(�, q)||MN ≤ φ(|x − y|). 

(c) For any s, t ∈ [0, T] and x∈ ℝ�, there exists φ ∈ i 

such that (regularity of b and σ w. r. t. time variables)  

|b(s, x) − b(t, x)| + ||�(�, f) 	− 	�(�, q)||MN ≤ φ(|s − t|). 

The following main results are stated including the 

convergence rate of SDEs. 

Theorem 2.1. Suppose that Assumption 2.1 holds. For p ≥ 

1 and β	∈(0, 1), there exists the constant 2 > 	1	depending 

T, p, d, ||�||#,P, M, β, then 
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s	 @ sup	E�E#|�� − ��|3- ≤ 2 3/1.  

Remark 2.1. In [1], the diffusion term is the rough 

coefficient which refers to second order continuous 

differentiable. However, we check the results with the 

regularity of the solution to Kolmogorov equation associated 

to the SDE (1), by the properties of Dini continuous and 

Taylor expansion instead of second order continuous 

differentiable, which is a simple and clever way to simplify 

the proof and weaken the conditions in [1]. 

Remark 2.2. In the article [1], the convergence rate is 

verified from the perspective of norm, while we not only get 

similar results but also do better conclusions using the 

properties of dimension. At the same time, we can also do the 

degenerate result with Hamiltonian system. Because the 

method is similar, we will not elaborate here. 

It seems to be a little bit stringent that the coefficients are 

uniformly bounded, and the drift b is global Dini-continuous, 

in Theorem 2.1. Therefore, the above conditions can be 

weakened by the means of uniform boundedness instead of 

local boundedness and global Dini-continous instead of local 

Dini-continuous, respectively. 

Theorem 2.2. Assume that for any s, t ∈ [0, T], β ∈(0, 1) 

and for every x ∈ ℝ� and σ(t, x) ∈ VWXW� , there exists the 

constant	2#, b and σ are Borel measurable functions such 

|b (t, x)| + ||�(�, f)||MN ≤	 	2# (1 + x), x ∈ ℝ�, 

And if b and σ satisfy 

|b(t, x) − b(t, y)|≤	 |f	 − 	q|Zju(|x − y|), |x|⋁|y| ≤ k, 

||�(�, f) 	− 	�(�, q)||MN ≤	ju(|x − y|), |x|⋁|y| ≤ k, 

|b(s, x) − b(t, x)| + ||�(&, f) 	− 	�(�, f)||MN ≤ ju(|s − t|), 

|x|≤k, 

where ju ∈ i. Then for all p≥ 1 and E|�	|3 < ∞, it holds 

that 

lim�→	 s @ sup	E�E#|�� − ��|3- = 0.  

Remark 2.3. We verify this conclusion by a method similar 

to Theorem 1.2 in [1]. In [1], the diffusion term is the 

uniformly bounded and second order continuous 

differentiable. However, in this paper, σ is the uniformly 

bounded, which is weaken the conditions of Theorem 1.2 in 

and obtains the same conclusions. 

3. Proofs of Main Results 

We also need the following lemma for the proof. 

Lemma 3.1. Let the coefficients b, σ is the uniformly 

bounded. For p ≥ 1 and t	∈[0, T], there exists a positive 

constant 2 > 	0 depending on T, M, p, d, it holds that 

swjx�� − �yz(�){| ≤ 2 3/1. 
Proof. Owing to φ ∈ i, based on Taylor expansion and 

properties of Dini function, we have j(0) = 0, j}> 0 and j}}< 0, so that 

j(�) = j(0) + j′(0)� + m}}(��)
1! �1 ≤ j′(0)�: = ��,  

� ∈ (0, �), � ∈ ℝk 

Thus, for any t	∈ ℝ, 

φ(|t|)≤M|t|. 

For � ≥ 1, noticing that 

jx|�� − �yz(�)|{3 ≤ �3|�� − �yz(�)|3.  

Using Assumption 2.1 (a)-(b), we deduce that 

|�� − �yz(�)|3 ≼
�
 �(��(&), �yz())d&�
yz(�) �3 + �
 �(��(&), �yz())dW�

yz(�) �3  

≼  3 + |�� −�yz(�)|3.  

Hence there exists a positive constant 2 = 2(�,�, �, n) 
such that, for � ≥ 1, 

swjx|�� − �yz(�)|{3| ≤ �sw|�� − �yz(�)|3| ≤ 2 3/1. 
The following lemma is taken from Theorem 2.8 in [3], 

which provides the regularity of solution to Kolmogorov 

equation associated to the SDEs (1). 

Lemma 3.2. Let � > 0, for any ε ∈ (0,1), there exists � ∈ N such that 0 = �		< �0 < · · · < �� = T, for any ϕ 

∈ 	2([�G^0, �G]; 2YZ(ℝ�,ℝ�), β	∈ (0, 1), j = 1, · · · m, there is 

least one solution u to Backward Kolmogorov equation 

9�
9� + ∇� ∙ � + 0

1∆� ∙ �1 = −�, on w�G^0, �G| × ℝ�, �(�G, f) = 0 

of class 

�	 ∈ 2([�G^0, �G]; 2Y1,Z�
(ℝ�,ℝ�)∩ 20([�G^0, �G]; 2YZ�

(ℝ�,ℝ�). 

For some constant K depending on j and for all �} ∈(0, β), we have 

||	?1�||cd_�([�D�;,�D]) ≤	�||�||cd_([�D�;,�D]) 
and for some constant 2	, it holds that 
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||��||cd_���D�;,�D]) 	≤ 	2	(�G − �G^0)0/1	||	�||cd_([�D�;,�D]) 
At same time, we can obtain 

2	(�G − �G^0)0/1	||	�||cd_([	,#]) 	≤ �. 

Now we can give 

Proof of Theorem 2.1. Let � > 0, for any � ∈ (0,1), there is m ∈ N, such that 0 =	�	< �0< · · · < ��= T. For � =
and, � = 1,2,⋯ ,� using Lemma 3.2, we can get 

9�
9� + ∇� ∙ � + 0

1∆� ∙ �1 = −�, on w�G^0, �G| × ℝ�,�(�G , f) = 0                       (3) 

and u satisfies 

||��||cd_([#D�;,#D]) 	≤ 	2	(�G − �G^0)0/1	||	�||cd_([#D�;,#D]) ≤ 	�.                       (4) 

For t ∈ [�G^0, �G], by Itô’s formula and (3), we have 

�(�, ��) = �x�G^0, �G^0{ + � ��
�� (&, �)

�
#D�;

d& + � ��(&, �)d�
�
#D�;

+ 1
2� ��(&, �)d��, ��

�
#D�;

	 

= �x�G^0, �G^0{ − 
 �(&, �)d&�
#D�; + 
 ���(&, �), �(&, �)��

#D�; d�. 

Similarly, we have 

�(�, ��) = �(�G^0, �G^0) + 
 9�
9� (&, �)�

#D�; d& + 
 ��(&, �)d��
#D�; 	+ 0

1
 ��(&, �)d��, ���
#D�;   

= �(�G^0, �G^0) − 
 ��
#D�; (&, �)d& + 
 ���(&, �), �(��(&), �yz()) d��

#D�; + 
 ���(&, �), �(��(&), �yz()) − �(&, �) �
#D�; d&.  

Hence, we can get 


 �(&, �)d&�
#D�; = �(�G^0, �G^0) − �(�, ��) + 
 ���(&, �), �(&, �)��

#D�; d�            (5) 

and 


 ��
#D�; (&, �)d& = �(�G^0, �G^0) − �(�, ��) + 
 ���(&, �), �(��(&), �yz()) d��

#D�; + 
 ���(&, �), �(��(&), �yz()) −�
#D�;�(&, �)  d&.                                        (6) 

Combining with (5) and (6), we have 

�� − �� = �#D�; − �#D�; +� (�(&, �) − �(��(&), �yz())
�
#D�;

d& + � (�(&, �) − �(��(&), �yz()))d�
�
#D�;

	 

= �#D�; − �#D�; + @� *�G^0, �#D�;, − � *�G^0, �#D�;,- − x�(�, ��) − �(�, ��){ 

+
 w���(&, �), �(&, �)� − ���(&, �), �(��(&), �yz()) |d��
#D�; + 
 w���(&, �), �(&, �) − �(��(&), �yz()) |d&�

#D�;   

+
 (�(&, �) − �(��(&), �yz())�
#D�; d& + 
 (�(&, �) − �(��(&), �yz()))d��

#D�; . 

By (4) and the mean-value theorem, we have: 

|�� − ��| ≤ |�#D�; − �#D�;| + |�(�G^0, �#D�;) 	− �(�G^0, �#D�;)| + |�(�, ��) − �(�, ��)| 
+ �
 w���(&, �), �(&, �)� − ���(&, �), �(��(&), �yz()) |d��

#D�; � 	+ ||��||cd_[#D�;,#D] 
 ¡�(&, �) − �(��(&), �yz())¡d&�
#D�;   

+
 ¡�(&, �) − �(��(&), �yz()¡�
#D�; d& + �
 (�(&, �) − �(��(&), �yz()))d��

#D�; �  
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≤ �1 + �)|�#D�; − �#D�;| + �|�� − ��| + �
 w���(&, �), �(&, �)� − ���(&, �), �(��(&), �yz()) |d��
#D�; �  

+(1 + �) '
 ¡� − �yz()¡Zjx¡� − �yz()¡{d&�
#D�; + 
 j(|& − ��(&)|)d&�

#D�; ( + �
 (�(&, �) − �(��(&), �yz()))d��
#D�; �  

For all p ≥ 1, utilizing Jensen’s inequality, Hölder inequality and Lemma 3.1, we can obtain 

|�� − ��|3 ≤ 63^0(1 + �)3|�#D�; − �#D�;|3 + 63^0�3|�� − ��|3  

+63^0 �
 w���(&, �), �(&, �)� − ���(&, �), �(��(&), �yz()) |d��
#D�; �3  

+63^0(1 + �)3(� − �G^0)3^0�3 
 ¡� − �yz()¡3(Zk0)d&�
#D�;   

+63^0(1 + �)3(� − �G^0)3^0�3 
 |& − ��(&)|3d&�
#D�;   

+63^0 �
 (�(&, �) − �(��(&), �yz()))d��
#D�; �3.  

Because ε is arbitrary, there exists £(�, �): = 63^0�3< 1. Then we know 

|�� − ��|3 ≤ ¤¥�;(0k¦)¥
0^§(3,¦) |�#D�; − �#D�;|3 + ¤¥�;(0k¦)¥

0^§(3,¦) �
 w���(&, �), �(&, �)� 	− ���(&, �), �(��(&), �yz()) |d��
#D�; �3  

+ ¤¥�;(0k¦)¥(�^#D�;)¥�;¨¥
0^§(3,¦) 
 '¡� − �yz()¡3(Zk0) + |& − ��(&)|3( d&�

#D�; + ¤¥�;
0^§(3,¦) �
 (�(&, �) − �(��(&), �yz()))d��

#D�; �3. (7) 

Taking the supremum, expectation on both sides of the above inequality, and using BDG’s inequality, for � ∈ (�G^0, �G], we 

have 

s © sup#D�;E�E�
|�� − ��|3ª ≤ ¤¥�;(0k¦)¥

0^§(3,¦) s '|�#D�; − �#D�;|3( 

 

+ ¤¥�;c(3,H)#¥/A�;
0^§(3,¦) × 
 s © sup#D�;E�E

«��(�, ��)�(�, ��) − ��(�, ��)�(��(�), �yz(�))«HS

3 ª d&�
#D�; + ¤¥�;#¥�;¨¥(0k¦)¥

0^§(3,¦)   

× ©
 s © sup#D�;E�E
¡� − �yz()¡3(Zk0)ª d&�

#D�; + � 3ª 	+ ¤¥�;#¥/A�;c(3,H)
0^§(3,¦) × 
 s © sup#D�;E�E

«�(�, ��) − 	�(��(�), �yz(�))«¬3 ª d&�
#D�;   

= ∑ ®FF̄J0 , 

where 2(�, n) is the constant in BDG’s inequality. With the help of lemma 3.1 and the Assumption 2.1 (a), in ®1, we have 

s © sup#D�;E�E
«��(�, ��)�(�, ��) − ��(�, ��)�(��(�), �yz(�))«HS

3 ª  

= s © sup#D�;E�E
‖��(�, ��)�(�, ��) − ��(�, ��)�(�, ��) + ��(�, ��)�(�, ��) − ∇�(�, ��)�(�, ��)  

+∇�(�, ��)�(�, ��) − ∇�(�, ��)�(��(�), ��) + ∇�(�, ��)�(��(�), ��) − ∇�(�, ��)�(��(�), �yz(�))«¬3 ( 
≤ 43^023�3‖�‖#,P3 + 43^0�3s © sup#D�;E�E

j(|�� − ��|)3ª + 43^0�3s © sup#D�;E�E
j(|� − ��(�)|)3ª 

 

+4²^0ε²s © sup#D�;E�E
j(|�� − �yz(�)|)3ª 

 

≤ 43^023�3‖�‖#,P3 + 43^0�3�3s © sup#D�;E�E
|�� − ��|3ª + 43^0�3�3 3 + 43^0�323 3/1.  

In ®¯, from the properties of Dini-function, it may be chosen the constant 2	,20, such that 
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s © sup#D�;E�E
«���, ��) − �(��(�), �yz(�))«¬3 ª 

 

= s © sup#D�;E�E
‖�(�, ��) − �(��(�), ��) + �(��(�), ��) − �(��(�), ��)

	

+ �(��(�), ��) − �(��(�), �yz(�))	||¬3 |  

≤ 33^0s © sup#D�;E�E
j(|� − ��(�)|)3ª + 33^0s © sup#D�;E�E

j(|�� − ��|)3ª + 33^0s © sup#D�;E�E
j(|�� − �yz(�)|)3ª. 

≤ 33^0�3 3 + 33^0�3s © sup#D�;E�E
|�� − ��|3ª + 33^0�323 3/1. 

Thus, for δ ∈ (0,1) and p ≥ 1, there exists the constant 21, 2µ, 2¯, we know 

s © sup#D�;E�E
|�� − ��|3ª ≤ ¤¥�;(0k¦)¥

0^§(3,¦) s '|�#D�; − �#D�;|3( + ¤¥�;§(3,H)#¥/A�;(¦¥¨¥¯¥�;kµ¥�;¨¥)
0^§(3,¦)   

× 
 s © sup#D�;E�E
|�� − ��|3ª d&�

#D�;   

+63^0£(�, n)�3/1^0
1 − £(�, �) 	× w43^0�323 3/1 + 43^0�3�3 3 +	43^023�3�3 + 33^023 3/1 + 33^0�3 3| 

+ ¤¥�;#¥(0k¦)¥¨¥
0^§(3,H,¦) (2 3(Zk0)/1 + � 3)  

≤ 21	s '|�#D�; − �#D�;|3( + 2µ 
 s © sup#D�;E�E
|�� − ��|3ª d&�

#D�; +2¯ 3/1.  

Next, we prove by the Lemma 3.1 that for each � = 1,2⋯ ,�, 
s © sup#D�;E�E

|�� − ��|3ª ≤ ¶G 3/1, � ∈ w�G^0, �G|,                   (8) 

where ¶0= 2¯·c¸# and ¶G= (21¶G^0 + 2¯)·c¸#, for j = 2, · · ·, m. If j = 1, since �	 = 0, ∀t ∈ (0,�0], we have 

s ) sup	E�E�|�� − ��|3º ≤ 2µ 
 s ) sup	E�E|�� − ��|3º d&�
	 + 2¯ 3/1.  

Using Gronwall’s inequality, we can get 

s ) sup	E�E�|�� − ��|3º ≤ 2¯·c¸# 3/1, � ∈ (0, �0].  

We assume that (8) holds for j = 1, 2, · · ·, i − 1 with 2≤i≤m. Then ∀� ∈ (�F^0, �F], we realize 

s © sup#B�;E�E�
|�� − ��|3ª ≤ 21sw|�#B�; − �#B�;|3| + 2µ 
 s © sup#B�;E�E

|�� − ��|3ª d&�
#B�; + 2¯ 3/1 

 

≤ 2µ 
 s © sup#B�;E�E
|�� − ��|3ª d&�

#B�; + (21¶F^0 + 2¯) 3/1.  

By once more Gronwall’s inequality, it holds that 

s © sup#B�;E�E�
|�� − ��|3ª ≤ (21¶F^0 + 2¯)·cA# 3/1 = ¶F 3/1, � ∈ (�F^0, �F]. 

Hence ∀j = 1, · · · m, (8) is true. And we draw the conclusion that  

s ) sup	EE#|�� − ��|3º ≤ ∑ s © sup#D�;E�E#D
|�� − ��|3ª�GJ0 ≤ ∑ ¶G 3/1: = ��GJ0  3/1.  
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So the proof is finished. 

Proof of Theorem 2.2. Let χ ∈ 2YP(ℝ+) is the cut-off function, such that 0≤ χ ≤1, χ(r) = 1 for r ∈(0, 1), and χ(r) = 0, for 

r≥2. For any t∈ [0, T] and k≥1, let 

�(�, f) = �(�, f)¼ *|:|u , , �(u)(�, f) = �(�, ¼ *|:|u f,), f ∈ ℝW. 

Fixed k≥1, we have, 

��(u) = f + 
 �(u)(&, �(u))d& +�
	 
 �(u)(&, �(u))dW�

	 , � ∈ (0, �].  

The corresponding continuous-time Euler-Maruyama is 

��(u) = f + 
 �(u) *��(&), �yz()(u) , d&�
	 + 
 �(u) *��(&), �yz()(u) , dW, � ∈ (0, �]�

	 .  

Using the BDG, Hölder and Gronwall inequality, for all p≥1, for some 2#, we have (see the proof Theorem 1.2 in [1]) 

s ) sup	E�E#|��|3º + 	s ) sup	E�E#|��|3º + 	s ) sup	E�E#|��
(u)|3º + s ) sup	E�E#|��

(u)|3º ≤ 2#(1 + s|�	|3) < +∞. (9) 

Since 

s ) sup	E�E#|�� − ��|3º ≤ 33^0s ) sup	E�E#|�� − �½(u)|3º + 33^0s ) sup	E�E#|��
(u) − ��(u)|3º+33^0s ) sup	E�E#|��

(u) − ��(u)|3º=®0 + ®1 + ®µ, 

applying the Chebyshev inequality and (9), we can deduce 

®0 + ®µ ≼ s [
Tt≤≤0

sup |�� − �½(u)|3®�¾¿²ÀÁÂÁÃ|ÄÂ|�[� + s [ pk

rt
Tt

YY ||sup )(

0

−
≤≤

®�¾¿²ÀÁÂÁÃ|ÅÂ|�[� ]  

≼ ©s ) sup	E�E#|��|3º + s ) sup	E�E#|��
(u)|3ºª s) supÀÁÆÁÇ|ÈÆ|º

u + ©s ) sup	E�E#|��|3º + s ) sup	E�E#|��
(u)|3ºª s) supÀÁÆÁÇ|ÉÆ|º

u ≼ 0
u. 

For the terms ®1, by the Theorem 2.1, we have 

®1 ≼ �0 3/1. 
where the constant �0 > 1 depending on T, p, d, ‖�‖#,P, M, 

k, β. Consequently, we conclude that 

s ) sup	E�E#|�� − ��|3º ≼ 0
u + �0 3/1.  

For any ε > 0, taking Ê = 0
¦ and  → 0, implies that 

lim�→	 s ) sup	E�E#|�� − ��|3º = 0.  

Thus, the proof of Theorem 2.2 can be complete. 

4. Conclusion 

In this paper, we show the convergence rate of Euler 

-Maruyama scheme for non-degenerate SDEs with Dini 

continuous coefficients, by the aid of the regularity of the 

solution to the associated Kolmogorov equation. We obtain the 

same conclusions by weakening the conditions in [1] using the 

properties of Dini continuous and Taylor expansion. 
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