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For s ∈ C, the Euler zeta function and the Hurwitz-type Euler zeta function are defined by
ζE(s) = 2

∑∞
n=1((−1)

n/ns), and ζE(s, x) = 2
∑∞

n=0((−1)
n/(n + x)s). Thus, we note that the Euler

zeta functions are entire functions in whole complex s-plane, and these zeta functions have the
values of the Euler numbers or the Euler polynomials at negative integers. That is, ζE(−k) = E∗

k
,

and ζE(−k, x) = E∗
k
(x). We give some interesting identities between the Euler numbers and the zeta

functions. Finally, we will give the new values of the Euler zeta function at positive even integers.
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1. Introduction

Throughout this paper, Z, Q, C, Zp, Qp, and Cp will, respectively, denote the ring of rational

integers, the field of rational numbers, the field of complex numbers, the ring p-adic rational

integers, the field of p-adic rational numbers, and the completion of the algebraic closure of Qp.

Let vp be the normalized exponential valuation of Cp such that |p|p = p−vp(p) = p−1. If q ∈ Cp,

we normally assume that |q − 1|p < 1. We use the notation

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x

1 + q
. (1.1)

Hence, limq→1[x]q = 1, for any x with |x|p ≤ 1 in the present p-adic case.

Let p be a fixed odd prime. For d(= odd), a fixed positive integer with (p, d) = 1, let

X = Xd = lim
←

N

Z

dpNZ
, X1 = Zp, X∗ =

⋃

0<a<dp

(a,p)=1

(

a + dpZp

)

a + dpNZp =
{

x ∈ X | x ≡ a
(

mod dpn
)}

,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN .
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In [1], we note that

µ−q

(

a + dpNZp

)

= (1 + q)
(−1)aqa

1 + qdp
N
=

(−q)a
[

dpN
]

−q

(1.3)

is distribution on X for q ∈ Cp with |1 − q|p < 1. This distribution yields an integral as follows:

I−q(f) =

∫

Zp

f(x)dµ−q(x) = lim
N→∞

1
[

pN
]

−q

pN−1
∑

x=0

f(x)(−q)x, for f ∈ UD
(

Zp

)

, (1.4)

which has a sense as we see readily that the limit is convergent (see [1]). Let q = 1. Then, we

have the fermionic p-adic integral on Zp as follows:

I−1(f) =

∫

Zp

f(x)dµ−1(x) = lim
N→∞

pN−1
∑

x=0

f(x)(−1)x, (1.5)

(cf. [1–5]). For any positive integer N, we set

µq

(

a + lpNZp

)

=
qa

[

lpN
]

q

(1.6)

(cf. [1–3, 6–20]) and this can be extended to a distribution on X. This distribution yields p-adic

bosonic q-integral as follows (see [11, 20]):

Iq(f) =

∫

Zp

f(x)dµq(x) =

∫

X

f(x)dµq(x), (1.7)

where f ∈ UD(Zp) = the space of uniformly differentiable function on Zp with values in Cp,

(cf. [2, 11, 16–20]). In view of notation, I−1 can be written symbolically as I−1(f) = limq→−1Iq(f).

If we take f(x) = q−x[x]nq , then we can derive the q-extension of Bernoulli numbers and

polynomials from p-adic q-integrals on Zp as follows:

βn,q =

∫

Zp

q−x[x]nqdµq(x), βn,q(x) =

∫

Zp

q−y[y + x]qdµq(y) (1.8)

(cf. [11, 20]). Thus, we note that

β0,q =
q − 1

log q
, βm,q =

1

(q − 1)m

m
∑

i=0

(

m

i

)

i

[i]q
, (1.9)

(cf. [11, 14, 20]). In the complex plane, the ordinary Bernoulli numbers are a sequence of signed

rational numbers that can be defined by the identity

t

et − 1
=

∞
∑

n=0

Bn
tn

n!
, |t| < 2π (1.10)

(cf. [1–33]).
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These numbers arise in the series expansions of trigonometric functions, and are

extremely important in number theory and analysis. From the generating function of Bernoulli

numbers, we note that B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 =

5/66, B12 = −691/2730, B14 = 7/6, B16 = −3617/510, B18 = 43867/798, B20 = −174611/330, . . . ,

and B2k+1 = 0 for k ∈ N. It is well known that Riemann zeta function is defined by

ζ(s) =
∞
∑

n=1

1

ns
, for s ∈ C. (1.11)

We also note that the Riemann zeta function is closely related to Bernoulli numbers at positive

integer or negative integer in the complex plane. Riemann did develop the theory of analytic

continuation needed to rigorously define ζ(s) for all s ∈ C − {0}. From this zeta function, he

derived the following formula (cf. [1–33]):

ζ(−n) = −
Bn+1

n + 1
, n ∈ N = {1, 2, 3, . . .}. (1.12)

Thus, we note that ζ(−n) = 0 if n is an even integer and greater than 0. These are called the

trivial zeros of the zeta function. In 1859, starting with Euler’s factorization of the zeta function

ζ(s) =
∏

p:prime

1

1 − p −s
, (1.13)

he derived an explicit formula for the prime numbers in terms of zeros of the zeta function. He

also posed the Riemann hypothesis: if ζ(z) = 0, then either z is a trivial zero or z lies on the

critical line Re(z) = 1/2 (cf. [4, 5, 16–20, 27–33]). It is well known that

sin z

z
=

(

1 −
z2

π2

)(

1 −
z2

(2π)2

)(

1 −
z3

(3π)2

)

. . . . (1.14)

Thus,

1 − z cot z = 2
∞
∑

m=1

ζ(2m)

π2m
z2m (1.15)

(cf. [4, 5, 10, 16–20, 27–33]). From this, we can derive the following famous formula.

Lemma 1.1. For n ∈ N,

ζ(2n) =
∞
∑

k=1

1

k2n
=
(−1)n−1(2π)2n

2(2n)!
B2n, forn ∈ N. (1.16)

It is easy to see that

z cot z =
2iz

e2iz − 1
+ iz = 1 +

∞
∑

k=1

(−1)k22kB2k

(2k)!
z2k. (1.17)
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However, it is not known the values of ζ(2k + 1) for k ∈ N. In the case of k = 1, Apery proved

that ζ(3) is irrational number (see [34]). The constants E∗
k
in the Taylor series expansion

2

et + 1
=

∞
∑

n=0

E∗
n

tn

n!
, where |t| < π (1.18)

(cf. [3–5, 10, 27]) are known as the first-kind Euler numbers. From the generating function of

the first-kind Euler numbers, we note that

E∗
0 = 1, E∗

n = −
n
∑

l=0

(

n

l

)

E∗
l , forn ∈ N. (1.19)

The first few are 1, − 1/2, 0, 1/4, . . . , and E∗
2k

= 0 for k = 1, 2, . . . . The Euler polynomials are

also defined by

2

et + 1
ext =

∞
∑

n=0

E∗
n(x)

tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

E∗
kx

n−k

)

tn

n!
. (1.20)

For s ∈ C, the Euler zeta function and Hurwitz’s type Euler zeta function are defined by

ζE(s) = 2
∞
∑

n=1

(−1)n

ns
, ζE(s, x) = 2

∞
∑

n=0

(−1)n

(n + x)s
(1.21)

(cf. [2, 4, 5, 9, 10, 27]). Thus, we note that Euler zeta functions are entire functions in the

whole complex s-plane and these zeta functions have the values of the Euler numbers or Euler

polynomials at negative integers. That is,

ζE(−k) = E∗
k, ζE(−k, x) = E∗

k(x) (1.22)

(cf. [2, 4, 5, 9, 10, 27]).

In this paper, we give some interesting identities between Euler numbers and zeta

functions. Finally, we will give the values of the Euler zeta function at positive even integers.

2. Preliminaries/Euler numbers associated with p-adic fermionic integrals

Let f1(x) be the translation defined by f1(x) = f(x + 1). Then we have

I−1
(

f1
)

= −I−1(f) + 2f(0). (2.1)

If we take f(x) = e(x+y)t, then we can derive the first-kind Euler polynomials from the integral

equation of I−1(f) as follows:

∫

Zp

e(x+y)tdµ−1(y) = ext
2

et + 1
=

∞
∑

n=0

E∗
n(x)t

n

n!
. (2.2)

That is,
∫

Zp

yndµ−1(y) = E∗
n,

∫

Zp

(x + y)ndµ−1(y) = E∗
n(x). (2.3)
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For n ∈ N, we have the following integral equation:

∫

Zp

f(x + n)dµ−1(x) + (−1)n−1
∫

Zp

f(x)dµ−1(x) = 2
n−1
∑

l=0

(−1)n−1+lf(l). (2.4)

From this we note that

E∗
k(n) − E∗

k = 2
n−1
∑

l=0

(−1)l−1lk, ifn ≡ 0 (mod 2),

E∗
k(n) + E∗

k = 2
n−1
∑

l=0

(−1)llk, ifn ≡ 1 (mod 2).

(2.5)

Let f(x) = sinax (or f(x) = cosax). By using the fermionic p-adic q-integral on Zp, we

see that

0 =

∫

Zp

sinax dµ−1(x) +

∫

Zp

sinax dµ−1(x)

= (cosa + 1)

∫

Zp

sinax dµ−1(x) + sina

∫

Zp

cosax dµ−1(x),

(2.6)

see [12],

2 = (cosa + 1)

∫

Zp

cosax dµ−1(x) − sina

∫

Zp

sinax dµ−1(x). (2.7)

Thus, we obtain

∫

Zp

cosax dµ−1(x) = 1,

∫

Zp

sinax dµ−1(x) = −
sina

cosa + 1
, (2.8)

see [12]. From this we note that

tan
a

2
= −

∫

Zp

sinax dµ−1(x) =
∞
∑

n=0

(−1)n+1a2n+1

(2n + 1)!
E∗
2n+1. (2.9)

By the same motivation, we can also observe that

a

2
cot

a

2
=

∫

Zp

cosax dµ1(x) =
∞
∑

n=0

(−1)nB2n

(2n)!
a2n, (2.10)

see [12]. These formulae are also treated in Section 3.

Let f(x) = et(2x+1). Then we can derive the generating function of the second-kind Euler

numbers from fermionic p-adic integral equation as follows:

∫

Zp

et(2x+1)dµ−1(x) =
2

et + e−t
=

1

cosh t
=

∞
∑

n=0

En
tn

n!
. (2.11)
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Thus, we have

(E + 1)n + (E − 1)n = 2δ0,n, (2.12)

where we have used the symbolic notation En for En. The first few are E0 = 1, E1 = 0, E2 =

−1, E3 = 0, E4 = 5, . . ., E2k+1 = 0 for k ∈ N. In particular,

E2n = −
n−1
∑

k=0

(

2n

2k

)

E2k. (2.13)

Recently, Simsek, Ozden, Cangül, Cenkci, Kurt, and others have studied the various extensions

of the first kind Euler numbers by using fernionic p-adic invariant q-integral on Zp, see [2–

5, 16, 20, 27]. It seems to be also interesting to study the q-extensions of the second-kind Euler

numbers due to Simsek et al. (see [4, 5, 16]).

3. Some relationships between Euler numbers and zeta functions

In this section, we also consider Bernoulli and the second Euler numbers in the complex plane.

The second-kind Euler numbers Ek are defined by the following expansion:

sechx =
1

coshx
=

2ex

e2x + 1
=

∞
∑

k=0

Ek
xk

k!
, for |x| <

π

2
(3.1)

(cf. [10]). From (1.18) and (3.1), we can derive the following equation:

Ek =
k
∑

l=0

(

k

l

)

2lE∗
l , where

(

k

l

)

is binomial coefficient. (3.2)

By (3.2) and (1.18), we easily see that E0 = 1, E1 = 0, E2 = −1, E3 = 0, E4 = 5, E6 = 61, . . . , and

E2k+1 = 0 for k = 1, 2, 3, . . . . As Euler formula, it is well known that

eix = cosx + i sinx, where i = (−1)1/2. (3.3)

From (3.3), we note that cosx = (eix + e−ix)/2. Thus, we have

secx =
2

eix + e−ix
= sech(ix) =

∞
∑

n=0

inEn

n!
xn

=
∞
∑

n=0

(−1)nE2n

(2n)!
x2n + i

∞
∑

n=0

(−1)nE2n+1

(2n + 1)!
x2n+1 =

∞
∑

n=0

(−1)nE2n

(2n)!
x2n.

(3.4)

From (3.4), we derive

x secx =
∞
∑

n=0

(−1)nE2n

(2n)!
x2n+1, for |x| <

π

2
. (3.5)
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The Fourier series of an odd function on the interval (−p, p) is the sine series:

f(x) =
∞
∑

n=1

bn sin

(

nπx

p

)

, (3.6)

where

bn =
2

p

∫p

0

f(x) sin

(

nπx

p

)

dx. (3.7)

Let us consider f(x) = sinax on [−π,π]. From (3.6) and (3.7), we note that

sinax =
∞
∑

n=1

bn sinnx, (3.8)

where

bn =
2

π

∫π

0

sinax sinnx dx =
2

π

∫π

0

[

cos(n − a)x − cos(n + a)x

2

]

dx

=
1

π

[

sin(n − a)x

n − a
−
sin(n + a)x

n + a

]π

0

= (−1)n−1
2

π
sinaπ

(

n

n2 − a2

)

.

(3.9)

In (3.8), if we take x = π/2, then we have

sin
πa

2
=

∞
∑

n=1

b2n−1(−1)
n−1 =

2

π
sinaπ

∞
∑

n=1

(−1)n−1
2n − 1

(2n − 1)2 − a2

=
2

π
sinaπ

∞
∑

n=1

(2n − 1)(−1)n−1

(2n − 1)2
(

1 −
(

a/(2n − 1)
)2)

=
2

π
sinaπ

∞
∑

n=1

(−1)n−1

2n − 1

∞
∑

k=0

a2k

(2n − 1)2k

=
2

π
sinaπ

∞
∑

k=0

(

∞
∑

n=1

(−1)n−1

(2n − 1)2k+1

)

a2k

(3.10)

From (3.10), we note that

πa

2
sec

(

πa

2

)

=
∞
∑

k=0

(

2
∞
∑

n=1

(−1)n−1

(2n − 1)2k+1

)

a2k+1. (3.11)

In (3.5), it is easy to see that

πa

2
sec

(

πa

2

)

=
∞
∑

n=0

(−1)nE2n

(2n)!

(

π

2

)2n+1

a2n+1. (3.12)

By (3.11) and (3.12), we obtain the following.

Theorem 3.1. For n ∈ N,

∞
∑

k=1

(−1)k−1

(2k − 1)2n+1
=

∞
∑

k=0

(−1)k

(2k + 1)2n+1
= (−1)n

E2n

2(2n)!

(

π

2

)2n+1

. (3.13)
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It is easy to see that

∞
∑

n=1

(−1)n

(2n + 1)2k+1
= 2

∞
∑

n=1

1

(4n − 3)2k+1
+

∞
∑

n=1

1

(2n)2k+1
−

∞
∑

n=1

1

n2k+1
− 1

=
1

24k+1
ζ

(

2k + 1,
1

4

)

−
22k+1 − 1

22k+1
ζ(2k + 1) − 1.

(3.14)

By (3.13) and (3.14), we obtain the following.

Corollary 3.2. For n ∈ N,

ζ

(

2n + 1,
1

4

)

+ 22n
(

1 − 22n+1
)

ζ(2n + 1) = (−1)n
E2n

2(2n)!
π2n+122n. (3.15)

By simple calculation, we easily see that

i tanx =
eix − e−ix

eix + e−ix
= 1 −

2

e2ix − 1
+

4

e4ix − 1
. (3.16)

Thus, we have

x tanx = −xi +
2xi

e2xi − 1
−

4xi

e4xi − 1
=

∞
∑

n=1

(−1)nB2n4
n
(

1 − 4n
)

(2n)!
x2n. (3.17)

From (3.17), we can easily derive

tanx =
∞
∑

n=0

(−1)n+14n+1
(

1 − 4n+1
)

B2n+2

(2n + 2)!
x2n+1. (3.18)

By (3.3), we also see that

i tanx = 1 −
2

e2ix + 1
= i

∞
∑

n=0

E∗
2n+1

(2n + 1)!
22n+1(−1)n+1x2n+1. (3.19)

Thus, we have

tanx =
∞
∑

n=0

E∗
2n+1

(2n + 1)!
22n+1(−1)n+1x2n+1. (3.20)

By (3.18) and (3.20), we obtain the following.

Theorem 3.3. For n ∈ N,

ζ(2n) =
(−1)n−1(2π)2nE∗

2n−1

4(2n − 1)!
(

1 − 4n
) , (3.21)

where E∗
n are the first-kind Euler numbers.
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It is easy to see that

∞
∑

k=1

1

(2k + 1)2n
=

(

1 −
1

4n

)

ζ(2n) =
(−1)n(2π)2n

4n+1(2n − 1)!
E∗
2n−1. (3.22)

Therefore, we obtain the following corollary.

Corollary 3.4. For n ∈ N,

∞
∑

k=1

1

(2k + 1)2n
=

(−1)n(2π)2n

4n+1(2n − 1)!
E∗
2n−1. (3.23)

Now we try to give the new value of the Euler zeta function at positive integers. From

the definition of the Euler zeta function, we note that

ζE(s) = 2
∞
∑

n=1

(−1)n

ns
= −2

∞
∑

n=0

1

(2n + 1)s
+

1

2s−1
ζ(s), s ∈ C. (3.24)

By (3.24), Theorem 3.3, and Corollary 3.4, we obtain the following theorem.

Theorem 3.5. For n ∈ N,

ζE(2n) =
(−1)n−1π2n

(

2 − 4n
)

2(2n − 1)!
(

1 − 4n
) E∗

2n−1. (3.25)

Remark 3.6. We note that ζ(2) = π2/6, ζE(2) = −π2/6, ζ(4) = π4/90 and ζE(4) = −7π4/360 . . ..

For q ∈ C with |q| < 1, s ∈ C, q-ζ-function is defined by

ζq(s) =
∞
∑

n=1

qn

[n]sq
−

1

s − 1

(1 − q)s

log q
(3.26)

(cf. [10, 14]). Note that ζq(s) is analytic continuation in C with only one simple pole at s = 1,

and

ζq(1 − k) = −
βk,q

k
, where k is a positive integer (3.27)

(cf. [14]). By simple calculation, we easily see that

∞
∑

n=1

(−1)nqn

[n]2k+1q

∞
∑

j=0

θ2j+1[n]
2j+1
q

(2j + 1)!
+

1

log q

k−1
∑

j=0

(1 − q)2k−2j

(2k − 2j − 1)(2j + 1)!
−

1

log q

k−1
∑

j=0

(1 − q)2k−2j

(2k − 2j − 1)(2j + 1)!

=
k−1
∑

j=0

(−1)jθ2j+1

(2j + 1)!

(

−ζq(2k−2j)+ζq2(2k−2j)
2

[2]
2k−2j
q

)

−
q

1+q

θ2k+1

(2k+1)!
(−1)k+

∞
∑

j=k+1

θ2j+1(−1)j

(2j + 1)!

H2j−2k,q

(

−q−1
)

1 + q
,

(3.28)
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whereHn,q(−q) are Carlitz’s q-Euler numbers with limq→1Hn,q(−q) = E∗
n (cf. [6, 21, 22]). If q→1,

then we have

∞
∑

n=1

(−1)n

n2k+1
sin(nθ)=

k−1
∑

j=0

(−1)j

(2j + 1)!
θ2j+1

(

2

22k−2j
− 1

)

× (−1)k−j+1
(2π)2k−2j

2 · (2k − 2j)!
B2k−2j −

1

2

θ2k+1

(2k + 1)!
(−1)k.

(3.29)

For k ∈ N, and θ = π/2, it is easy to see that

∞
∑

n=1

(−1)n

(2n − 1)2k+1
=

k−1
∑

j=0

(−1)kπ2k+1
(

22k−2j − 2
)

B2k−2j

(2j + 1)!(2k − 2j)!22j+2
−

π2k+1(−1)k

(2k + 1)!22k+2
. (3.30)

From (3.30) and Theorem 3.1, we can also derive the following equation:

k−1
∑

j=0

(−1)k−1π2k+1
(

22k−2j − 2
)

B2k−2j

(2j + 1)!(2k − 2j)!22j+2
+

π2k+1(−1)k

(2k + 1)!22k+2
= (−1)k

E2k

2(2k)!

(

π

2

)2k+1

. (3.31)

Thus, we have

k−1
∑

j=0

(

22k−2j − 2
)

B2k−2j

(2j + 1)!(2k − 2j)!22j+2
=

1

(2k + 1)!22k+2
−

E2k

22k+2(2k)!
. (3.32)
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