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We consider a family of statistical measures based on the Euler-Poincaré characteristic of n-dimensional

space that are sensitive to the morphology of disordered structures. These measures embody information from

every order of the correlation function but can be calculated simply by summing over local contributions. We

compute the evolution of the measures with density for a range of disordered microstructural models; particle-

based models, amorphous microstructures, and cellular and foamlike structures. Analytic results for the

particle-based models are given and the computational algorithm verified. Computational results for the dif-

ferent microstructures exhibit a range of qualitative behavior. A length scale is derived based on two-point

autocorrelation functions to allow qualitative comparison between the different structures. We compute the

morphological parameters for the experimental microstructure of a sandstone sample and compare them to

three common stochastic model systems for porous media. None of the statistical models are able to accurately

reproduce the morphology of the sandstone.
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INTRODUCTION

The structure of a disordered material—an oil bearing

rock, a piece of paper, or a polymer composite—is a remark-

ably incoherent concept. Despite this, scientists and engi-
neers are asked to predict the properties of a disordered ma-
terial based on the ‘‘structure’’ of its constituent
components. A major shortcoming in the understanding of
processes involving complex materials has been an inability
to accurately characterize microstructure. The specification
of the structure requires topological as well as geometric
descriptors to characterize the connectivity and the shape of
the spatial configuration. In oil recovery from petroleum res-
ervoir rocks, an area of particular interest to the authors,
recovery depends crucially on the topology of the pore space
and on the mean curvature of the surfaces where immiscible
phases meet at a contact angle. To determine accurate flow
models and to devise intelligent recovery strategies, an accu-
rate characterization of reservoir rocks in terms of topology
and geometry is required.

To date, the toolkit used to quantify complex structures
has been primarily that of the statistical physicist. Complete
characterization of the effective morphology, however, re-
quires knowledge of an infinite set of n-point statistical cor-
relation functions. In practice only lower-order morphologi-
cal information is available; common methods @1# are based
on matching the first two moments ~volume fraction and
two-point correlation function! of the binary phase function
to a random model. It is widely recognized that although the
two-point correlation function of a reference and a recon-
structed system is in good agreement, this does not ensure
that the structures of the two systems will match well, and

attempts to reconstruct materials from experimentally mea-

sured two-point information have not been very successful

@2,3#. The same problem has been encountered at the atomic

scale in characterizing and comparing amorphous atomic

glasses, where two-point correlation functions are recognized

to give poor structural signatures. The function is nonunique
and does not capture many important features of the micro-
structure.

Other useful two-point characterizations of microstructure
include the chord-length distribution function @4,5# ~and the
related lineal-path function @6#! and the pore-size distribution
function @7#. However reconstructions of experimental data
sets based on these characterizations have been shown to
give a poor representation of the connectivity of the systems
@8#. Functions that may provide more complete information
about connectivity @9# are unfortunately too complex to in-
corporate into reconstruction schemes @8#. Incorporation of
three- and four-point information may lead to a better esti-
mation of structure, but their measurement is very complex
and it is not clear how to incorporate the information within
reconstruction algorithms.

There is a need for morphological measures which in-
clude higher-order correlations, but are fast and reliable for
characterizing the morphology of a structure. Statistical mea-
sures that are sensitive to the morphology of structures have
been extensively investigated in other fields such as image
analysis and pattern recognition @4,10,11#. Integral geometry
provides a suitable family of morphological descriptors, the
Minkowski functions ~MFs!. These measures embody infor-
mation from every order of the correlation functions, are
numerically robust even for small samples, are independent
of statistical assumptions on the distribution of phases, and
yield global as well as local morphological information. The
MFs are additive measures allowing one to calculate these
measures effectively by simply summing over local contri-
butions. The measures are based on the Euler-Poincaré char-
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acteristic of n-dimensional space. In a d-dimensional space
there are d11 such measures. In three dimensions the func-
tionals are related to the familiar measures of volume frac-
tion, surface area, integral mean curvature, and Euler char-
acteristic. These measures are efficiently calculated at the
local scale from digital images @12,13#. MFs have been used
previously to distinguish quantitatively between different
complex morphologies, to characterize turbulent and regular
Turing patterns from chemical reaction-diffusion systems
@14#, to show that the hole distribution in thin films are in-
consistent with the concept of spinodal decomposition, but
consistent with a nucleation scenario @15#, and to discrimi-
nate between different cosmological models of the early uni-
verse @16#. Measurements of the MFs for model random ma-
terials has to date been made on only a simple random filling
of a cubic network @17#.

In this paper we consider the evolution of the Minkowski
functionals for a range of complex morphologies. We loosely
consider three types of model microstructures: ~1! Particle-
based models, models based on Poisson distributed overlap-
ping and nonoverlapping spheroids that generate granular
packs, sintered spheroid packs, etc.; ~2! Models based on
level cuts of Gaussian random fields that describe the mor-
phology of amorphous alloys @18#, disordered microemulsion
phases @19,20#, and polymer composites @21–23#; and ~3!
models based on Voronoi tesselations of Poisson-distributed
points that result in closed-cell and open-cell foams @24# and
fibrous bundles. We derive analytic results for Poisson-
distributed particles and verify the computational algorithm.
The MFs for the range of microstructures are then presented
and we discuss the qualitative differences observed. We
compute the morphological parameters for the experimental
microstructure of a sandstone sample and compare to them
three different stochastic model systems. None of the statis-
tical models are able to accurately reproduce the morphology
of the sandstone.

The plan of the paper is as follows. In the next section we
review concepts in mathematical morphology and give the
theoretical predictions for the MFs of Poisson-distributed
cubes and spheres. We then describe the computational algo-
rithm, the generation of the model microstructures, and
verify the algorithm against theory. In the following section
we present numerical predictions of the MFs for a range of
microstructures.

I. MINKOWSKI FUNCTIONALS

In this study we consider the Minkowski functionals of
digitized representations of complex media at various vol-
ume fractions. We consider a two-component medium filling
a cubic volume V5Ld. A digitized set Q5ø iQ i of either
component can be described by a collection of voxels Q i or
compact ~closed and bounded! convex sets. In order to char-
acterize Q in a morphological way, let us first recall some
basic facts from combinatorial integral geometry @25,13#.
The convex ring R constitutes the stage for our model. R

denotes the class of all subsets A of the Euclidean space R
d,

which can be represented in terms of a finite union of
bounded closed convex sets. Clearly, digitized spatial con-

figurations Q belong also to the convex ring R.
The Euler characteristic x is introduced as an additive

functional over R, so that for A ,BPR,

x~AøB !5x~A !1x~B !2x~AùB ! ~1.1!

and

x~A !5H 1, convex AÞ0”

0, A50” .
~1.2!

We note that this functional x coincides with the Euler-
Poincaré characteristic in algebraic topology. The
Minkowski functionals over R are now defined through

Wn~A !5E x~AùEn!dm~En!. ~1.3!

Here, En is a n-dimensional plane in R
d, dm(En) denotes its

kinematical density normalized so that for a d-dimensional
ball Bd(r) with radius r ,Wn„Bd(r)…5vdrd2n;vd

5pd/2/G(11d/2) is the volume of the unit ball. From defi-
nition ~1.3! it is clear that the Minkowski functionals inherit
additivity from x. For lattice configurations Q, i.e., configu-
rations sampled as unions of voxels Q i it is convenient to
renormalize the Minkowski functionals by setting

Vn~Q!5

Wn~Q!

vn
~1.4!

so that Vn(Q i)51 for a single cube ~voxel! Q i . Note that
according to the definition given by Eq. ~1.3! the Minkowski
functionals Vn can be considered as Euler-Poincaré charac-
teristics x for lower-dimensional planar intersections of the
spatial configuration Q. The Minkowski functionals in three
dimensions are related to familiar geometric quantities, for
instance, the surface area 6V1 and integral mean curvature
3pV2 of the surface exposed by a coverage with volume V

5V0 and Euler characteristic X5V3 .
Two general properties that a functional V(Q) should

possess in order to be a morphological measure are motion
invariance and continuity, since the ‘‘shape’’ of a domain
does not depend on its location and orientation and should be
approximately given by an inscribed polygon. In many cases
it is important that a domain can be decomposed into parts
such as a digitized set Q5ø iQ i into a collection of voxels
Q i . Therefore, we require the additivity relation ~1.1! as a
third property of a morphological functional V(Q). Three-
dimensional space examples of such measures include vol-
ume and surface area of a domain Q. In two dimensions they
include the boundary length and area. A remarkable theorem
in integral geometry is the completeness of the Minkowski
functionals @25#. The theorem asserts that any additive, con-
tinuous, and motion invariant functional V(A) on subsets
A,R

d,APR, is a linear combination of the d11
Minkowski functionals

V~A !5 (
n50

d

cnVn~A !. ~1.5!
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with real coefficients cn independent of A. The d11
Minkowski functionals therefore are the complete set of
morphological measures. The continuity of the functionals
Vn allows the definition of integrals of the curvature function
to be evaluated for surfaces with singular edges, i.e., the
Minkowski functionals generalize curvatures as differential
geometric quantities to singular edges @12,13,16,26#. There-
fore, it is straightforward to apply the notion of morphologi-
cal measures even to patterns consisting of individual lattice
grains ~voxel-based images!. Since many physical phenom-
ena depend essentially on the geometry of spatial structures,
such morphological measures may be useful tools, in particu-
lar, in combination with the Boolean model well known in
stochastic geometry @13#. This model generates random
structures by overlapping grains such as spheres or cubes
each with arbitrary location and orientation.

The normalized mean values vn(r)5^Vn(Q)&/V of the
Minkowski functionals for Poisson-distributed lattice grains
of density r ~in units of a22, a is the lattice constant! are
@13#

v0~r !512e2rV0,

v1~r !5e2rV0~12e2rV1!,

v2
~8 !~r !5e2rV0~2112e2rV12e2r~2V11V2!!, ~1.6!

v3
~26!~r !5e2rV0~123e2rV113e2r~2V11V2!

2e2r~3V113V21V3!!.

where Vn(K) are the morphological measures of the indi-
vidual grains K. For Poisson-distributed cubes of sidelength
l, q̃512 p̃5e2r being the probability that a cube is not
placed at a lattice site, and V05l3, V15l2, V25l , and
V351 this becomes

v0~r !512 q̃l3
,

v1~r !5 q̃l3
~12 q̃l2

!,

~1.7!

v2
~8 !~r !5 q̃l3

~2112 q̃l2
2 q̃2l2

1l!,

v3
~26!~r !5 q̃l3

~123 q̃l2
13 q̃2l2

1l
2 q̃3l2

13l11!.

The numbers in brackets specify the different neighbor-
hoods of the cubes. In contrast to the measures v0 and v1 , v2

depends on the definition of the local neighborhood of a
grain. Since one must have topological closed sets, grains
may be connected only by a single point. For voxel-based
images this leads to some ambiguity in the measure. On a
square lattice, diagonally connected pixels have only one
point in common—in the absence of a preferred continuity of
either phase, the interface can be considered to be curved
equally toward either medium. In the presence of strongly
preferred continuity, the neighborhood will have eight neigh-
bors ~a pixel is connected to the nearest and the next-nearest
neighbors! for the phase of preferred continuity and four
neighbors ~only nearest neighbor connections! for the other

phase. This leads to a duality of these measures. Similarly on
a cubic lattice one may have 6 or 26 neighbors depending on
the absence or presence of preferred continuity. The continu-
ity of either phase can be varied continuously by defining the
probability a of a common edge to be continuous in one
phase and the probability b512a in the other phase @27#. If
neither phase has preferred continuity we set a5b51/2.

As shown by Seyfried and Mecke @28#, one can relate the
measures of v2(r) and v3(r) for different neighborhoods,

v2
~4 !~r !5v2

~8 !~r !1dv2 ,

~1.8!
v3

~6 !~r !5v3
~26!~r !23dv21dv3 ,

with the two correction terms for Poisson-distributed cubes
given by

dv252 q̃l3
12l2

2l~12 q̃l!2,

dv35 q̃l3
13l2

2l21@ q̃4l22~8 p̃2q̃22 !124q̃

112q̃3l~11 p̃ !26 q̃2l~114 p̃ !18 p̃ q̃l
224q̃l11#

24 q̃l3
13l2

23l11. ~1.9!

The derivation of theoretical results for the other particle-
based models is fully analogous. If spheres are used as
grains, the Minkowski measures of the single grain in the
continuum become

V05

4

3
pr3, V15pr2, V252r , V351. ~1.10!

leading to the global measures for Poisson-distributed or
identical overlapping spheres ~IOS! using Eq. ~1.6!.

II. COMPUTATIONAL ASPECTS

In this section we describe the algorithm implemented to
calculate the Minkowski functionals, the generation of the
model morphologies, the validation of the algorithms on
some of those model morphologies, and discretization ef-
fects.

A. Algorithm to calculate the MFs

The MFs are obtained directly from any image made up
of discrete voxels. For example, the volume fraction of a
phase is trivially obtained by dividing the number of voxels
of that phase by the total number of voxels. The other func-
tionals are obtained by considering the interface associated
with the vertices of each voxel or the Voronoi cell of the
lattice @27#. Each vertex of the lattice is shared by eight
neighboring cubes; there are therefore 28

5256 possible con-
figurations, which can be evaluated quickly using a masked
sum

config5(
i50

7

2 i
3phasei , phaseiP$0,1%, ~2.1!
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where the sum is taken over only one phase. For voxels of
equal side length, the local Minkowski measures are rota-
tionally invariant and the 256 configurations reduce to 22
~see Fig. 1!. The mapping is given in Table I and the local
contributions to the global Minkowski functionals are given
in Table II. The various patterns and their resultant MFs have
been derived elsewhere @27,28# for general a. The global
measures for each configuration are obtained then by a con-
figuration count over all vertices on any voxelated structure
normalized by the total number of vertices. On a 500 MHz
Alpha microprocessor we calculate all MFs on a 5003 image
in 40 secs using 2 MB of memory. The execution time scales
linearly with the volume of the image.

B. Generation of model media

The models we considered in this paper can be loosely
separated into three different classes. The first class, particle-
based models, includes Poisson-distributed cubes and
Poisson-distributed overlapping oblate and prolate spheroids.
Cubes of slidelength l5(1,2,4,8) are considered. For sphe-
roids we consider both fully oriented and isotropic packs. A
special case of this model is based on overlapping spheres
~IOS model!. For this model we consider radii of r

5(4,8,12,16). Two more systems of spheroidal packs are
evaluated, both with a half-axis range of 4<r<20 and an
average half axis of r̄512. In one case we consider ran-
domly oriented spheroids and in the second case spheroids

fully aligned along a specific axis. Examples for some of

these models are given in Fig. 2.

A class of materials that is not in general well described

by particulate models is that of amorphous composites. Re-

cently, model random materials have been described by level

cuts of a superposition of random plane waves—the leveled-

wave model @29,30#. Originally developed to describe the

morphologies associated with spinodal decomposition @18#,
and later to describe the structure of bicontinous microemul-

sions @19#, the leveled-wave model accounts for many fea-

tures observed in real disordered materials @29# including

polymer blends @21# and foams @31#.
In the original scheme due to Cahn @18# one associates an

interface between two distinct phases ~e.g., pore/matrix! with

a level set ~or contour! of a random standing wave y(r)
composed of N sinusoids with fixed wavelength l52p/k0

but random directions kn , phase constants Fn , and ampli-
tudes An ,

y~r !5

1

AN
(

n
An cos~k0kn•r1Fr!. ~2.2!

FIG. 1. Catalog of filling patterns of a unit cell giving rise to

distinct configurations. Some configurations with exchanged phases

are not shown; 22 isotropic configurations exist, the rest can be

generated by rotations. Isotropic configurations ~A!–~G! are gener-

ated by inverting the phases of configurations ~A!–~G! and ~N!. ~D8!

and ~G8! are shown as an illustration.

TABLE I. Mapping of the 256 vertex configurations to the 22

isotropic configurations following the order shown in Fig. 1. IC

defines the isotropic configuration number and N the multiplicity of

the configuration.

IC N Configuration number defined by Eq. ~2.1!

0 1 0

1 8 1, 2, 4, 16, 32, 64, 128

2 12 3, 5, 10, 12, 17, 34, 48, 68, 80, 136, 160, 192

3 12 6, 9, 18, 20, 33, 40, 65, 72, 96, 130, 132, 144

4 4 24, 36, 66, 129

5 24 7, 11, 13, 14, 19, 21, 35, 42, 49, 50, 69, 76,

81, 84, 112, 138, 140, 162, 168, 176, 196, 200, 208, 224

6 24 25, 26, 28, 37, 38, 44, 52, 56, 67, 70, 74, 82,

88, 98, 100, 131, 133, 137, 145, 152, 161, 164, 193, 194

7 8 22, 41, 73, 97, 104, 134, 146, 148

8 6 15, 51, 85, 170, 204, 240

9 8 23, 43, 77, 113, 142, 178, 212, 232

10 24 27, 29, 39, 46, 53, 58, 71, 78, 92, 114, 116,

139, 141, 163, 172, 177, 184, 197, 202, 209, 216, 226, 228

11 24 30, 45, 54, 57, 75, 86, 89, 99, 101, 106, 108, 120,

135, 147, 149, 154, 156, 166, 169, 180, 198, 201, 210, 225

12 6 60, 90, 102, 153, 165, 195

13 2 105, 150

14 8 107, 109, 121, 151, 158, 182, 214, 233

15 24 61, 62, 91, 94, 103, 110, 118, 122, 124, 155, 157, 167,

173, 181, 185, 188, 199, 203, 211, 217, 218, 227, 229, 230

16 24 31, 47, 55, 59, 79, 87, 93, 115, 117, 143, 171, 174,

179, 186, 205, 206, 213, 220, 234, 236, 241, 242, 244, 248

17 4 126, 189, 219, 231

18 12 111, 123, 125, 159, 183, 190, 215, 222, 235, 237, 246, 249

19 12 63, 95, 119, 175, 187, 207, 221, 238, 243, 245, 250, 252

20 8 127, 191, 223, 239, 247, 251, 253, 254

21 1 255
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As y(r) is positive as often as it is negative, a 50/50 ~iso-
metric! blend coincides with the zero set of y(r). If a distri-
bution of wavelengths is allowed, the function y(r) is just a
Gaussian random field ~GRF!. The resultant morphology is
characterized by an undulating interface of consistent curva-
ture and exhibits two similar phase structures.

Cahn’s approach was extended @19# to a description of the
interspace between a pair of interfaces associated with two
nearby level sets of the random field. The volume between a
pair of interfaces associated with two level sets of the same
wave, say the level cuts a<y(r)<b , is considered to be in
one phase, while the two regions contiguous to this @y(r)
,a;y(r).b# are defined as a second phase. The macro-
scopic volume fractions of the two phases are specified once
the position of the level cuts is assigned. Mathematical struc-
tures so defined exhibit a wide range of morphologies. The
symmetric two-level cut mode a52b exhibits a ribbon or
sheetlike structure and is characterized by a high degree of
interconnectivity ~even at low volume fractions!. One may
choose any number of b and a for a given phase fraction f.
Clearly, the freedom in choosing the position of the level
cuts ~for a chosen volume fraction! allows one to model an
even larger variety of microstructures @32#.

More general models can also be developed based on this

FIG. 2. The interface of models of Poisson-distributed particles.

Top: cubes of sidelength l58 and overlapping spheres of radius

r58. Bottom: overlapping spheroids with a half-axis range of r

54.20; randomly oriented ~left!, fully aligned ~right!. The volume

fraction of the particle phase is f50.25.

FIG. 3. The interface of Gaussian models of periodicity t510

for volume fractions of f50.25 and f50.75 from left to right.

Top, One-level cut. Middle, Two-level cut. Bottom, Intersection of

two two-level cuts.

TABLE II. Local contributions to the global Minkowski mea-

sures for the 22 isotropic configurations. L gives the configuration

in Fig. 1 that matches the configuration number IC.

IC N L 8V0 24V1 24V2
(4) 24V2

(8) 8V3
(6) 8V3

(26)

0 1 N8 0 0 0 0 0 0

1 8 A 1 3 3 3 1 1

2 12 B 2 4 2 2 0 0

3 12 C 2 6 6 2 2 22

4 4 D 2 6 6 6 2 26

5 24 E 3 5 1 1 21 21

6 24 F 3 7 5 1 1 23

7 8 G 3 9 9 23 3 21

8 6 I 4 4 0 0 0 0

9 8 M 4 6 0 0 22 22

10 24 H 4 6 0 0 22 22

11 24 L 4 8 4 24 0 0

12 6 J 4 8 4 24 0 0

13 2 K 4 12 12 212 4 4

14 8 G8 5 9 3 29 21 3

15 24 F8 5 7 21 25 23 1

16 24 E8 5 5 21 21 21 21

17 4 D8 6 6 26 26 26 2

18 12 C8 6 6 22 26 22 2

19 12 B8 6 4 22 22 0 0

20 8 A8 7 3 23 23 1 1

21 1 N 8 0 0 0 0 0
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approach. Intersection sets of any number of fields can be
generated @33,34#. In this paper we consider the intersection
of two two-level cut fields that are thought to accurately
describe the pore morphologies of sandstones @35#. Realiza-
tions of each of the Gaussian models are shown in Fig. 3.

The third class of morphologies, random cellular solids
@24#, are constructed using a Voronoi tesselation. In this
model we subdivide space randomly into convex polyhedra
by scattering Poisson points to a given density and construct
the bisecting plane between each pair of points. From the
tiles formed by the intersections of the bisecting planes be-
tween a given Poisson point and its neighbor, we construct
convex polyhedra. Within each polyhedra every point is
closer to the given Poisson point than to any other. The re-
sultant structure is similar to that of a closed-cell foam or
random honeycomb. By thickening the walls of the polyhe-
dra we probe a large range of phase fractions. To do this we
generate a Euclidean distance map ~EDM!—a mapping giv-
ing the Euclidean distance ~1, &, ), 2, ...! of each voxel
from its nearest surface voxel. By stepping through the dif-
ferent distances a range of phase fractions for the morphol-
ogy is generated.

To form a foamlike network of low coordination number
we considered the trisecting planes of the Poisson points. By
using the EDM we grow a network of connected cylinders.
At fractions below ca. 10% this may be a good model of
foams ~see, e.g., Figs. 2 and 4 in @36#! and of aerogels @34#.
Examples of the Voronoi structures are given in Fig. 4.

C. Validation of the algorithm

The algorithm for calculating the Minkowski measures
was validated against theoretical predictions for model sys-
tems of Poisson-distributed cubes of equal sidelength ~Fig. 2!

given by Eqs. ~1.7!–~1.9! as well as Poisson-distributed
spheres of identical radius. All computational data are based
on a minimum of 50 realizations on a 2003 lattice. We mea-
sure the MFs over the full range of the volume fraction f in
steps of Df50.02 for each model. The models are mapped
periodically, therefore, edge effects can be ignored.

As can be seen in Fig. 5 the numerical data matches the
theoretical @Eqs. ~1.7!–~1.9!# prediction for cubes of varying
sidelength. For cubes with l51 the result reduces to random
filled lattices as simulated by Jernot and Jouannot @17#.

To match the predictions for spheres, one must be careful
with the definition of the local measures of each spherical
grain. One must use the local Minkowski measures of the
digital sphere and not a continuum sphere of equivalent ra-
dius @using Eq. ~1.10! directly#. We define the digital sphere
of radius r by all voxels radiating from the central voxel that
are separated by a euclidean distance l ,r . The discretized
one-dimensional radius for continuum spheres is given by
r1d5rc20.5 because the spheres are centered at a vertex.
The properties of the discretized sphere are given in Table
III. Using these values for the local measures in Eqs. ~1.7!–

FIG. 4. The interface of Voronoi models with 100 seeds on a

2003 lattice. First row, facet models for volume fractions of f
50.26 ~left! and f50.74 ~right!. Second row, edge models for

volume fractions of f50.06 ~left! and f50.50 ~right!.

FIG. 5. Minkowski measures over fraction: comparison of the-

oretical predictions ~lines! with numerical simulations ~symbols! for

Poisson-distributed cubes at different sizes: ~a! l51, ~b! l52, ~c!

l54, and ~d! l58. The measures are scaled as v1→lv1 , v2

→l2
v2 , and v3→l3

v3 .

TABLE III. Comparison of the local Minkowski measures in

two and three dimensions for spherical grains in the continuum

against the discretized spheres used in the simulations. We use* to

denote the continuum values as compared to the discretized. V1 is

given by V152r1 .

r
*

V2
* V2 V3

* V3 r1 r2 r3

4 50.3 45 268.1 251 3.5 3.79 3.91

8 201 193 2145 2103 7.5 7.84 7.95

12 452 437 7238 7141 11.5 11.8 12.0

16 804 793 17157 17071 15.5 15.9 16.0
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~1.9! we obtain excellent agreement with theory ~see Fig. 6!.
The symmetry of the Euler characteristic for dimensions

d.1 was also checked. Interchanging phases correctly mir-
rors

v2
~4 !~f !→2v2

~8 !~12f !,

~2.3!
v3

~6 !~f !→v3
~26!~12f !

for all binary models.

D. Discretization effects

Here we discuss the effect of the choice of preferred con-
tinuity on the measure of the MFs. In particular, we consider
the effect on the Euler characteristic. In Table I of @27# and
Table IX of @28# the local contribution to the Euler charac-
teristic in three dimensions of the 22 possible local configu-
rations of the unit cell is described. The eight ~ambiguous!
configurations that are dependent on preferred continuity are

configurations C, D, F, G, C8, D8, F8, and G8 of Fig. 1. To
consider the discretization effects in the measure of the Euler
characteristic, we compare the contribution of these configu-
rations to both Poisson-distributed cubes at different l and to
the IOS model at different r ~see Fig. 7!. One observes that
for the Poisson cube model, the contributions are only con-
siderable for l52 and 4, while for larger l the effects are
minimal. This is mirrored in Fig. 5, where we observed the
convergence of the curves for 6 ~26! neighborhoods for large
l. The reason for the fast convergence of the different neigh-
borhoods is that, configurations giving rise to the ambiguous
configurations only occur for cubes that are exactly adjacent.
Any overlap of two adjacent cube surfaces will eliminate the

possibility of generating these configurations. Thus we find
that the contribution of these configurations scales approxi-
mately as the cube volume l23 over most of the fractional
range. For the IOS model the contributions do decrease, but
more slowly, as r21. The contribution of these configura-
tions to models exhibiting large local curvature is consider-
able even at higher resolutions. The choice of preferred con-
tinuity should be considered carefully for boolean models
with curved surfaces.

III. RESULTS

In this section we report and discuss the Minkowski func-
tionals of the different microstructures and qualitatively
compare between the models. We generate the model micro-
structures at roughly the same length scales.

The MFs are in general size dependent. For example, the
Euler characteristic per unit volume for a sphere pack of
radius r54 cannot be directly compared to results for a
sphere pack of radius r516. A dimensionless measure such

FIG. 6. Minkowski measures over fraction: comparison of the-

oretical predictions ~lines, highly connected neighborhoods! with

numerical simulations ~symbols, both neighborhoods! for Poisson-

distributed spheres of different radius: ~a! r54, ~b! r58, ~c! r

512, and ~d! r516. The measures are scaled as v1→rv1 , v2

→r2
v2 , and v3→r3

v3 .

FIG. 7. The configuration probabilities C5C(X) over fraction

of Poisson-distributed cubes and spheres for the ambiguous con-

figurations ~X! in Fig. 1. The letters correspond to the specific con-

figurations. Data for the cube model is given by open squares and

for the IOS by solid circles. The configurational probabilities de-

crease with increasing size. Here we show data for sphere radii, r

5(4,8,12,16), and for the cube sidelength, l5(1,2,4,8).

EULER-POINCARÉ CHARACTERISTICS OF CLASSES OF . . . PHYSICAL REVIEW E 63 031112

031112-7



as the Euler characteristic per particle would be of great use
in comparing results. In Fig. 6 we showed the MFs for the
IOS model at different radii. By scaling the measures v1

→rv1 , v2→r2
v2 , and v3→r3

v3 , we see approximate over-
lap of the curves, therefore, scaling of this particulate model
by particle size is appropriate.

However for general models the definition of a particle
size is problematic. For example, the one- and two-level cut
Gaussian models generated from the same field exhibit very
different correlation functions, the correlation function for
the two-level cut model decaying far more rapidly than in the
single-level cut case. This point is observed by visual inspec-
tion of Fig. 3. We therefore choose our model systems to
have similar correlation lengths j defined by the decay of the
envelope of the spatial two-point correlation function. In
some cases, for example the two-level cut Gaussian, the cor-
relation length at low volume fractions is very small, so di-
rect comparison is difficult. In Fig. 8 we plot the correlation
length j for the range of models considered in this paper for
different volume fractions. The choice of the periodicity T

for the Gaussian fields and the density of sites for the
Voronoi models were made to closely match the particle-
based models for r512 across the range of volume fraction
f. This allows us to form a basis for a semiquantitative com-
parison of the MFs across the range of models.

A. Comparison of MFs for different model morphologies

1. Particle-based models

First we discuss the MFs for particle-based models shown
in Figs. 5 and 6. Other than the discretization effects dis-
cussed above, there is little difference when comparing the
data for Poisson-distributed cubes and spheres. For cubes of
sidelength l51 the measures show a higher symmetry; Eq.
~1.8! is satisfied without interchanging phases.

We compare the sensitivity of the Minkowski measures to
deviations in form or alignment. To do this we consider
packs of overlapping spheroids. We generate randomly ori-
ented and fully aligned overlapping spheroids of uniformly
distributed half axes r54,...,20 and r̄512 and compare them
to the IOS model with r512. As Fig. 9 shows, the
Minkowski measures for these systems are quite similar. In
fact, the different continuity rules have a far stronger effect
than the differences in size or alignment. It may be nontrivial
to distinguish the measures for these different systems.

2. Gaussian models

The Gaussian one-level cut model results in symmetric
MFs around f50.5 ~see Fig. 10!. The integral mean curva-
ture is much less than for the particle-based models. For
small and large f, isolated elliptical inclusions are present

FIG. 8. Correlation length over fraction derived from the two-

point correlation functions in real space in units of the lattice con-

stant a; IOS, identical overlapping spheres; ROS, randomly oriented

spheroids; three different Gaussian and two Voronoi tesselation

models.

FIG. 9. Minkowski measures over fraction for Poisson-

distributed overlapping spheroids of half axes r54.20, with r̄

512, compared to fully aligned overlapping spheroids of the same

size distribution and IOS of r512. The measures are scaled as v1

→ r̄v1 , v2→ r̄2
v2 , and v3→ r̄3

v3 .

FIG. 10. Minkowski measures over fraction for Gaussian one-

level cut models of periodicity t520.
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and the Euler characteristic is positive. In the regime f
.0.20– 0.80, the interface becomes predominantly hyper-
bolic (v3,0) and both phases are continuous. The relative
smoothness ~small local curvature! of the interface when
compared to the sphere pack model leads to a low probabil-
ity for obtaining ambiguous configurations. Accordingly the
measures for the two different neighborhoods converge.

For the symmetric two-level cut Gaussians of small f the
surface to volume ratio is much larger than for the previous
systems. Particularly, at low volume fractions the morphol-
ogy exhibits a sheetlike phase and the surface to volume
ratio quickly reaches a maximum ~Fig. 11!. Further densifi-
cation is associated with a thickening of the sheets and the
surface to volume ratio drops. Also for small f, discretiza-
tion effects are important and the different neighborhoods
play an important role. The Euler characteristic is very large
and becomes negative for small f once the sheetlike phase
connects implying a strongly bicontinuous structure, as is
evident in Fig. 3.

The intersection set of the two two-level cut Gaussians
has a distinct signature ~Fig. 12! when compared to the one-
and two-level cut models. The strong Gaussian curvature
feature at small f may be useful as a signature of this struc-
ture when compared with the other models.

3. Voronoi models

For the Voronoi facet model, the connected polyhedra
phase always percolates, and the other phase is made up of
disconnected inclusions. Accordingly, the curvature never
changes sign—the holes remain convex for all f ~Fig. 13!.
Similarly, the Euler characteristic always remains positive,
while the surface area due to the construction of the fields
starts at a maximum and decreases with thickening facet
boundaries. Small ambiguities arise at the intersections of the
facets, again giving rise to a separation of the MFs based on
the choice of continuity.

For the Voronoi cylinder model, both the network of cyl-
inders and the background phase percolate over a wide range

FIG. 11. Minkowski measures over fraction for Gaussian two-

level cut models of periodicity t520.

FIG. 12. Minkowski measures over fraction for Gaussian inter-

section models of periodicity t520.

FIG. 13. Minkowski measures over fraction for Voronoi facet

models of 100 seeds on a 2003 lattice.

FIG. 14. Minkowski measures over fraction for Voronoi edge

models of 100 seeds on a 2003 lattice.
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of f. Here, the surface area first grows with increasing cyl-
inder radius and then decreases again after the cylinders be-
gin merging ~Fig. 14!. The curvature decreases with increas-
ing dilation and becomes negative once individual edges of

the Voronoi cells begin to generate isolated inclusions of the
background phase. The Euler characteristic is initially nega-
tive, implying that both phases percolate, and then increases
almost linearly, finally becoming positive.

IV. CALCULATION OF CHARACTERISTICS ON A

SANDSTONE SAMPLE

Direct measurement of a three-dimensional structure is
now available via micro x-ray computed microtomography
micro-CT @37–39#. These techniques provide the opportunity
to experimentally measure the complex morphology of a
range of materials in three dimensions at resolutions down to
5 mm. We have obtained a 51235123666 image of a cross-
bedded sandstone at 10 mm resolution via micro-CT imag-
ing. Analysis of the full image would give us a single value
for each of the MFs and would give us little data to compare
model predictions. However, this sample shows strong het-
erogeneity in the pore volume fraction. We show in Fig. 15 a
trace of 600 values of the porosity measured at a separation
of 10 mm. Due to this heterogeneity and by appropriately
choosing different window sizes on the image we are able to
generate morphological parameters for the sandstone for a
range of f. This allows us to quantitatively compare the
experimental microstructure for different proposed model
morphologies.

The original sample view was of a cylindrical plug with
5123512 voxels in the plane and 660 slices. Two cubic
blocks of 30033003300, 16 blocks of 15031503150, 54
blocks of 10031003100, and 250 blocks of 60360360
were obtained from the full sample volume. This provided a
spread of porosities across different sampling volumes ~see
Fig. 16!. Results for the morphological measures are summa-
rized in Fig. 17. With decreasing sampling volume the vari-
ability of the measures increases, but the values are consis-

tent with the data for the larger volumes, suggesting that for

the smaller blocks a meaningful average is obtained.

A number of statistical models have been proposed for

reconstructing porous media from statistical information

@1,2,33,35,40–42#. These methods, based on different under-

lying model microstructures, are generated in such a manner

that they match the observed two-point statistical properties

of the rock. We compare the morphological measures for the

sandstone to three standard stochastic models used to gener-

ate realizations of sedimentary rock microstructures from

two-point information @43#. The first is based on the boolean

sphere model @41#, the second on the one-level cut model

@1,2#, and the third on the intersection set model @35#. The
quantities used to characterize the microstructures of these
systems are the volume fraction, the surface to volume ratio

s/v , and p (2)(r) the two-point correlation function. Note that

f5p (2)(0) and s/v524dp (2)(0)/dr .
The correlation function for the phase external to the

spheres of radius r0 in the IOS model is p (2)(r)5p „n(r)… for

r,2r0 and p (2)(r)5f2 for r.2r0 , where n(r)51

13r/4r02r3/16r0
3, and s/v523f ln f/r0 . To generate

matching GRF models we employ the field-field correlation
function @44,33#

FIG. 15. Variation in the porosity distribution along a cross-

bedded sandstone sample.

FIG. 16. The pore structure for sections of the x-ray-CT data of

the cross-bedded sandstone for different window sizes. ~a!, ~b!

1503, ~c!, ~d! 1003, ~e!, ~f! 603. The spread in f is evident across

the samples.
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characterized by a correlation length j, domain scale d, and a
cutoff scale rc . The three length scale parameters are ob-
tained by a best fit procedure to minimize the nonlinear least
squares error @33#,

Ep ~2 !
5

(
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M
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~2 !~r i!2pexp

~2 !~r i!#
2

(
i51

M

@pfit
~2 !~r i!2pexp

2 #2

, ~4.2!

and a downhill simplex method is used to find the best pa-
rameter set @45#. We generate the stochastic models that best
match the two 30033003300 samples and compare the nor-
malized two-point correlation functions S(r)5@p2(r)
2p2#/(p2p2) of these models in Fig. 18.

Values of r0 for the IOS model, and d, j, and rc are
summarized in Table IV along with the error estimate

E(p (2)). The average fit is worst for the sphere model, and
more than a factor of 2 better for the Gaussian one-level cut
and intersection set. The sphere model, however, has only
one free parameter as compared to three for the Gaussian
models.

We then calculate the Minkowski functionals of the three
stochastic models and compare them with the sandstone data
~Fig. 19!. The measures are compared to the values resulting
from the sampling window at 1003. The values for the
samples were binned in steps of porosity Df50.02.

FIG. 17. Minkowski measures for a cross-bedded sandstone.

Shown are the data points for the different blocks of sizes 603,

1003, 1503, and 3003. In this case the measures are plotted over

porosity, not over fractions of a constituting grain density. From top

to bottom: ~a! v1 , ~b!, v2
(8) , and ~c! v3

(26) .

FIG. 18. Normalized two-point correlation functions S(r) of the

two 3003 sandstone samples and the averaged best fits for the model

structures.

TABLE IV. Parameters of the models for the cross-bedded

sandstone in microns. The original sandstone data set image has

resolution at 10 mm per pixel. For the IOS model, the equivalent

sphere radius is in the rc column.

Model rc ~mm! j ~mm! d ~mm! Ep (2)

Spheres 94.2 231023

One-level cut 20.2 22.4 1080 931026

Intersection 54.3 80.5 410 431024
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None of the models satisfactorily match the experimental
data. The surface area v1 is matched best across all f by the
intersection model. Integral curvature v2 is best matched by
the IOS models that honor the granularity of the sedimentary
rock. The topology v3 is described well by both the IOS and
the one-cut models. The intersection model is particularly
poor for this model over the full range of f. The model that
best captures the characteristics of the sandstone is the IOS
model. Even though the other models do reasonably well at
the fraction where the two-point correlation functions were
matched, they fail to describe the structure across a range of
phase fractions. Different transport and mechanical processes
will depend more strongly on the agreement with specific

morphological measures. For example, single phase flow and
conductivity will be most strongly affected by surface-to-

volume ~related to average constriction size! and the topol-
ogy. A model that accurately describes these measures may
still yield good agreement with experiment. However, mul-
tiphase flow properties depend crucially on the curvature of
the surfaces where immiscible phases meet. For these pro-
cesses a model that also accurately matches v2 will be re-
quired. In this case the IOS model is the best of the three
candidates as a reconstructed data set. Recently, a model for
describing sandstone morphology has been developed based
on a full process-based sedimentation, compaction, and di-
agenesis model @46#. This model honors both the shape of
the original grains and the geological formation processes
and therefore may provide a more accurate description of
pore space morphology of sedimentary rock.

V. CONCLUSIONS

Integral geometry provides alternative methods and tools
for measuring spatial structure. A family of measures, the
Minkowski functionals ~MFs!, in particular, seem to be
promising measures for describing the morphology of com-
plex materials. The MFs characterize not only the connectiv-
ity but also the shape and content of spatial figures. These
measures embody information from every order of the cor-
relation function but can be calculated simply by summing
over local contributions of a configuration. In three dimen-
sions the functionals are related to the familiar measures of
volume fraction, surface area, integral mean curvature, and
Euler characteristic. The morphological measures are useful
order parameters for describing spatial patterns quantita-
tively and providing for a comparison between experiment
and theory.

They may also play a role in the statistical reconstruction
of complex three-dimensional morphologies. To date, meth-
ods used to reconstruct morphologies have been primarily
based on averaged statistical pointwise information to second
order. In previous simulated annealing procedures the energy
function has been defined by the ‘‘distance’’ from the refer-
ence two-point correlation function @47# and the chord dis-
tribution function @6#. After interchanging voxels on a digi-
tized representation, one must perform a nontrivial

calculation of two-point information on the new structure to
decide if the move is accepted or rejected. Integral geometry
provides an alternative method to measure spatial structure,
and use of the measures may lead to fast simulated annealing
procedures for reconstructing random media. In contrast to
the methods based on two-point information, the interchange
of voxels leads to local changes in the MFs, and trial states
are more easily evaluated.
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FIG. 19. Comparison of the MFs for the sandstone data to the

three stochastic models based on a window size of 1003.
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