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We propose a new class of models for the mean motion of ideal incompressible fluids in three di
sions, including stratification and rotation. In these models, the amplitude of the rapid fluctuation
troduces a length scale,a, below which wave activity is filtered by both linear and nonlinear dispersio
This filtering enhances the stability and regularity of the new fluid models without compromising ei
their large scale behavior, or their conservation laws. These models also describe geodesic mot
the volume-preserving diffeomorphism group for a metric containing theH1 norm of the fluid velocity.
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Linear dispersion is well known to have profound e
fects on wave mean flow interaction in fluids [1]. I
one dimension, for example, linear dispersion may b
ance nonlinear steepening to produce coherent (spat
localized) structures such as solitary waves and, in s
cial circumstances, solitons. (Solitons are solitary wav
that scatter among themselves elastically—up to a ph
shift.) There is a soliton-bearing equation due to Cama
and Holm (CH) [2] that containsboth linear and nonlinear
dispersion, namely,

ut 1 2kux 1 3uux 2 a2uxxt  2a2uxuxx 1 a2uuxxx ,

(1)

where u: R 3 R ! R is the fluid velocity in thex
direction and subscripts denote partial derivatives. T
constantsk and a have units of speed and length
respectively. The linear dispersion relation for CH in (
is v  2kkys1 1 a2k2d. The k fi 0 solutions of CH
are solitons which behave similarly to those for Kortweg
de Vries (ut 1 2kux 1 3uux 1 a2c0uxxx  0, with c0
a speed). However, fork  0, the linear dispersion
in CH vanishesand its remaining nonlinear dynamic
allows the superposition ofN solitons, as usx, td PN

i1 pistd exps2jx 2 qistdjyad. These solutions posses
N peaks at whichux reflects in sign. TheN-soliton
solutions of CH are called peakons, and their dynam
has been well studied [2–11].

Remarkably, CH describes geodesic motion on
diffeomorphism group of the real lineR for the metric
given by the H1

a norm of the fluid velocity,kuk2
a R

R dx su2 1 a2u2
xd, with parametera [12]. The proof

of this property in the casek  0 is obtained easily,
by noticing that CH is a one-dimensional Euler-Poinca
(EP) equation [13–15],
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yt 1 uyx 1 2yux  0 ,

wherey ;
dl
du

and
dlCH

du
 u 2 a2uxx , (2)

for the Lagrangianl given by the metriclCH 
1
2kuk2

a .
(EP equations are the Lagrangian analog of Lie-Poiss
Hamiltonian equations [14].) This geodesic proper
readily generalizes ton dimensions and thus produce
an n-dimensional CH equation via the EP theory. W
shall examine this later, but first we emphasize a k
feature of the nonlinear dispersion in the EP equation
for l  lCH, namely, its Helmholtz smoothing. That is
the transport velocityu  s1 2 a2≠2

xd21y is Helmholtz
smoothed relative to the momentumy for CH. This
smoothing endows CH withmuch more regularitythan
the Riemann equationut 1 3uux  0, which is the EP
equation fora  0 corresponding to theL2 norm juj2 R

R dx u2. The mechanism of this Helmholtz smoothin
can be understood by taking the Fourier transform
Eq. (2) to find withup  ypys1 1 a2p2d

dyk

dt
1 i

X
jn1pjjkj

n 1 2p
1 1 a2p2

ypyn  0 . (3)

At low wave numbers, whenjn 1 2pj ø s1 1 a2p2d,
nonlinear steepening produces a forward cascade in w
number. However, at higher wave numbers, whenjn 1

2pj , s1 1 a2p2d, this cascade is quickly stifled by
Helmholtz smoothing. Thus, the introduction of th
length scalea and the associated Helmholtz smoothin
in its nonlinear dispersion changes the shock behavior
the Riemann equation fora  0 into the peakon behavior
of the CH equation. And the Lagrangian of the on
dimensional EP equation (2) changes from theL2 norm
© 1998 The American Physical Society 4173
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of the fluid velocity (the kinetic energy) fora  0 to the
H1

a norm.
Geophysical Applications.—The Euler-Boussinesq

(EB) equations for a rotating stratified incompressib
ideal fluid are [16]

du
dt

2 u 3 curlR 1 gbẑ 1
1

r0
=p  0 ,

= ? u  0,
db
dt

 0 , (4)

wheredydt  ≠y≠t 1 = is the material derivative,b is
buoyancy,p is pressure,g and r0 are constants, and
curlR  2V 1 Osbd, b ø 1, is the Coriolis parameter
with constant angular frequencyV. These equations ar
EP equations [15], namely,

d
dt

1
D

dl
du

1
1
D

dl
duj =uj 1

1
D

dl
db

=b 2 =
dl
dD

 0 ,

(5)

which are stationarity conditions for the EB Lagrangia
lEBsu, b, Dd given by

lEB 
Z

d3x r0D

µ
1
2

juj2 1 u ? Rsxd 2 gbz

∂
2 psD 2 1d , (6)

for certain constrained variations and for velocity ta
gential to the boundary. The buoyancyb and the vol-
ume elementD satisfy advection dynamics,dbydt  0,
dDydt  2D= ? u and incompressibility (= ? u  0)
holds when the constraintD  1 is applied. The Euler
equations—namely, (4) without rotation and buoyancy
are geodesic on the volume-preserving diffeomorphis
with the L2 normalization,

R
dnxjuj2 [17]. There is a

Kaluza-Klein construction in which the EB equations a
also geodesic [18].

Deriving a models.—We consider the mean dispe
sive effects of internal gravity waves on the solutions
the EB equations [1]. For this, we consider an indivi
ual fluid parcel trajectory. In the presence of a wa
that induces a displacement fieldaj , this fluid trajec-
tory is given byxj  x 1 aj sx, td. Here, the constan
length a scales the amplitude of the displacement (or
amplitude-to-wavelength ratioayL ø 1 in a nondimen-
sional formulation) and the vectorj has meanj  0.
The corresponding fluid velocity isuj  usx 1 aj d 
usxd 1 aj ? =u 1 Osa2d. To obtain the mean dis
persive effects due to internal wave displacements,
average the LagrangianlEB over the phase of the rapid
fluctuationsfollowing the fluid parcelsto find

lEB 
Z

d3x

Ω
r0D

µ
1
2

jujj2 1 uj ? Rjsxd 2 gbjzj

∂
2 psD 2 1d

æ
1 Osa2ed , (7)

in which we neglect corrections due to fluctuations
the volume elementD of order Osa2ed, where e ø 1
is the ratio of time scales between fluctuations and m
4174
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quantities. (See [1,19] for discussions of such high
order corrections.) We approximate the mean kine
energy in a Taylor expansion as follows:

1
2

jujsx, tdj2 
1
2

jusx 1 aj , tdj2


1
2

jusx, td 1 aj ? =uj2 1 Osa4d


1
2

juj2 1
a2

2
jj ? =uj2 1 Osa4d

ø
1
2

juj2 1
a2

2
j=uj2. (8)

In the last step, we drop terms of orderOsa4d and
assume isotropy of the rapid fluctuations, so thatjijj ø
dij. (This assumption may require modification nea
boundaries.) There is a corresponding expansion
the rotational terms. On the other hand, since t
buoyancy isconstant following a fluid parcel, we find
bjsxd sz 1 aj ? ẑd  bsxdz. Thus, up to terms of order
Osa2e, a4d we have

lEB 
Z

dnx

Ω
r0D

µ
1
2

juj2 1
a2

2
j=uj2 1 u ? Rsxd

1 a2 trs=u ? =RT d 2 gbz

∂
2 psD 2 1d

æ
. (9)

Here, trs=u ? =RT d  v ? V 1 Osbd, where v 
curlu. We shall omit thea2v ? V term in what follows,
as well as the orderOsa2bd term. This omission neglects
the interaction of waves with rotation and simplifies th
remaining presentation, without any significant loss
generality. The EBa equations corresponding tolEB as
calculated from EP (5) are

dv
dt

1 yj=uj 2 u 3 curlR 1 gbẑ 1 =p  0 ,

= ? u  0  = ? v , (10)

wherev  u 2 a2Du, p 
p
r0

2
1
2

juj2 2
a2

2
j=uj2,

with u ? n̂  0 and n̂ 3 sn̂ ? =ud  0 on the boundary,
and advection dynamics forb andD. The linear disper-
sion relation is

v2 
N2jẑ 3 kj2 1 sk ? 2Vd2

jkj2s1 1 a2jkj2d
,

with N  2
g
r0

drszd
dz

, (11)

where N is the buoyancy frequency. Requiring th
motion equation in (10) to preserve incompressibilit
implies a Poisson equation for the pressurep with a
Neumann boundary condition, obtained by taking th
normal component of the motion equation evaluate
at the boundary. Of course, the EBa equation (10)
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reduces to the EB equation (4) when we seta  0. Not
unexpectedly, the EBa equation is also geodesic, for
metric that involves theH1

a norm [20].
Properties of a models.—The EBa equation (10)

conserves an energyEa involving theH1
a norm,kuk2

a ,

Ea 
Z

d3x

Ω
r0

µ
1
2

juj2 1
a2

2
j=uj2 1 gbz

¥æ


r0

2
kuk2

a 1 r0g
Z

d3x bz . (12)

This is the sum of the Lagrangian mean kinetic and p
tential energies. Sinceb is advected, the potential energ
integral is bounded (for a finite domain). Consequent
conservation ofEa givesH1

a control onu, or L2 control
on =u. The curl of the EBa motion equation yields the
vorticity equation

≠q
≠t

 q ? =u 2 u ? =q 2 g=b 3 ẑ ,

whereq  curlsv 1 Rd . (13)

Thus, the Helmholtz-smoothed quantity u 
s1 2 a2Dd21v is the transport velocity for the gen
eralized vorticity q and the “vortex stretching” term
q ? =u involves =u, whose L2 norm is controlled by
the conservation of energy in Eq. (12). Boundedne
of this norm will be useful in future analytical studie
of the EBa equation. For example, the filtering by th
a term allows nonlinear Liapunov stability condition
to be formulated for equilibrium solutions of the EBa

model. In fact, Abarbanelet al. [21] introduced the
notion of “conditional” Liapunov stability for the EB
model, using wave number conditions that now turn o
to be satisfied for the EBa model. Equation (13) implies
the potential vorticityqEBa  q ? =b is conserved along
fluid trajectories, i.e.,≠qEBay≠t 1 u ? =qEBa  0. This
also follows from the Kelvin-Noether circulation theore
for the EBa model, d

dt

H
gsv 1 Rd ? dx  2

H
g gz db,

where the loopg moves with the transport velocity
u. Hence EBa conserves

R
d3x FsqEBa, bd for any

function F. These are the Casimirs for the Lie-Poiss
Hamiltonian formulation of the EBa model.

When the further approximation is made that the EBa

fluid is in hydrostatic balance, i.e., that≠py≠z 1 r0gb 
0, then we find a new primitive-equation-a model (PEa).
We expect this PEa model to be useful for numerically
simulating large-scale weather patterns and global wi
driven ocean circulation over long times, because its lin
and nonlinear dispersion filters out rapid gravity wa
fluctuations while taking their mean effects into account
coarse scalesL, whereayL ø 1. We address the three
dimensional mechanism of this nonlinear dispersion ne

n-dimensional CH.—Ignoring buoyancy and rotation
terms in lEB in Eq. (9) removes the linear dispersio
and gives the Lagrangian for the followingn-dimensional
incompressible generalization of the CH equation (1),
o-

y,

ss

ut

n

d-
ar
e
at

t.

≠v
≠t

1 u ? =v 1 yj=uj 1 =p  0 ,

= ? u  0  = ? v ,

wherev  u 2 a2Du ,

p 
p
r0

2
1
2

juj2 2
a2

2
j=uj2. (14)

Equations of the type (14) but with additional dissipativ
terms were considered previously in the theory of seco
grade fluids [22] and were treated recently in the math
matical literature [23,24]. Second grade fluid models a
derived from continuum mechanical principles of obje
tivity and material frame indifference, after which thermo
dynamic principles such as the Clausius-Duhem relat
and stability of stationary equilibrium states are impos
that restrict the allowed values of the parameters in the
models. In contrast, the CH equation (14) is derived he
by applying asymptotic expansions, Lagrangian mea
and an assumption of isotropy of fluctuations in Ham
ton’s principle for an ideal incompressible fluid. Thi
derivation provides the interpretation ofa as the typical
amplitude of the rapid fluctuations over whose phase
Lagrangian mean is taken in Hamilton’s principle.

The n-dimensional CH equation (14) is geodesic o
the volume-preserving diffeomorphisms with theH1

a

norm. Its conservation laws include energy1
2

R
d3xu ? v

and helicity 1
2

R
d3x v ? curlv. Its steady vortical flows

include the analogs of the Beltrami flows curlv  lu.
In the periodic case, we definevk as thekth Fourier
mode of the specific momentumv ; s1 2 a2Ddu, so that
vk ; s1 1 a2jkj2duk. Then Eq. (14) becomes

P'

√
d
dt

vk 2 i
X

p1nk

vp

1 1 a2jpj2
3 sn 3 vnd

!
 0 ,

(15)

where P' is the Leray projection onto Fourier mode
transverse tok (this ensures incompressibility). Hence
the nonlinear coupling among the modes is suppressed
the denominator when1 1 a2jpj2 ¿ jnj.

An essential idea of then-dimensional CH equation (14)
is that its specific momentumv is transported by a veloc-
ity u which is smoothed, or filtered, by inverting the ellip
tic Helmholtz operators1 2 a2Dd. The effect on length
scales smaller thana is that steep gradients of the spe
cific momentumv tend not to steepen much further, an
thin vortex tubes tend not to get much thinner as they a
transported. And, as numerical simulations verify [25], th
effect on length scales larger thana is negligible. This
is also borne out for vortex interaction in two dimension
[26]. Hence, then-dimensional CH equation and the othe
a models preserve the assumptions under which they
derived. One may also formulate then-dimensional CH
equation on a general Riemannian manifold. The form
lation of CH as a geodesic spray equation on a Riemann
manifold is useful in studying certain analytical propertie
4175
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of its solutions [27]. Finally, the formulation of compres
ible a models is straightforward; see [15].
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