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1. Introduction. Despite the simple dynamical structure of
scalar ordinary differential equations., the corresponding difference
equations. (Euler’s scheme) sometimes exhibit a very complicated dy-
namical behavior. Such phenomena have recently been understood
somewhat systematically from the viewpoint of "chaos" theory, which
is in course of powerful development since the work of Li-Yorke [1].
In this short note we shall make clear the importance of the role which
asymptotically stable equilibrium points play in the process of chaotic
phenomena. In other words., it will be shown that a best-settled equi-
librium point in the original differential equation is actually apt to
turn into a source of chaos in the corresponding difference equation.

Our research here was inspired by R. M. May’s example of du
dt

=u(-hu).
2, Notation and theorem, Let us consider scalar differential

equations of the orm
( 1 ) du f(u),

dt
where f(u) is continuous in R. We assume that (1) has at least two
equilibrium points one o which is asymptotically stable. As is easily
seen, this assumption reduces (after a linear transformation of the
unknown i necessary) to the conditions
( * ) f(O) f() 0 for some > O,
( * ) f(u)>O (O<u<u),
( * ) f(u)<O
Here the constant K is possibly + c. Euler’s difference scheme for
(1) takes the form
( 2 ) Xn+=X+lt’f(x),
and henceforth we will adopt the notation Ft(x)=x+zltf(x). Our
theorem can now be stated as follows"

Theorem, i) Let (*) hold. Then there exists a positive constant
c such that for any At c the difference equation (2) is chaotic in the
sense of Li-Yorke.

ii) Suppose in addition that K= + oo then there exists another
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constant c, Occ, such that for any O<=t<=c the map Ft has an
inariant finite interval [0, at] (i.e., Ft maps [0, at] into itself) with

at. Moreover, when c t c, the above-mentioned chaotic
phenomenon occurs in this invariant interval.

Remark. It is not difficult to see that i f(x) is analytic and (1)
has no asymptotically stable equilibrium point, then (2) can never be
chaotic or any nonnegative value of t.

3. Proof of the theorem. For each ArgO, let us set
M(At)=max Ft(x)

R(3t)=sup {xu. zmin Ft(z)O}

To be brief, r(At) is he first osiive ero of N(z), and R(At) is he
firs oin where N(z) changes sign. As At varies., M(At) ranges
over he interval [, + ), while R(At) and r(At) range over (g, + ].

Lemma 1. i) M(s) is monotone increesing and continuous in s;
ii) M(0)= and lim M(s)= +.
Lemma 2. i) R(s) is monotone decreasing and left continuous

in s (i. e., R(s) R(s-- 0))
ii) R(0)=+ and lim R(s)=.

Lemma . r(s)=R(s+O). (Hence r(s-O)=R(s) when sO.)
From this lemma it follows that r(s) is right continuous and that

(r(s)R(s)+. The strict inequality r(s)(R(s) holds on their
discontinuity points. Note that r(0)=R(0)= + so that R(s) is con-
tinuous at s=0 (in a certain generalized sense; namely, lim R(s)

+ R(0)).
Lemma 4. Suppose r(3t) M(3t). Then there exists a point

x* e [0, ] satisfying
( 3 ) O(Ft(x*)(x*(Ft(x*)(Ft(x*),
where F denotes the n-th iteration of the map F.

These lemmas are not difficult to verify, and now we are ready for
the proof of the theorem. Put

c=sup {s0]M(s)-R(s)0}.
Clearly c is a finite positive number (its positivity follows from the
continuity of M(s)--R(s) at s=0) and, by the left continuity of M(s)
--R(s), we have
(4.a) R(s)M(s) (Osc),
(4.b) R(s)<M(s) (s> c).
Combining (4.b) and Lemma 3, we get
( 5 ) r(s)M(s) (s c).
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So, given any /t>= C2, there exists a point x* e [0, ] satisfying the con-
dition (3), which assures (2) to be chaotic in the sense of Li-Yorke (see
[1, the last Remark]). Since this condition is a stable property under
a small perturbation of Ft, we can find a constant c, 0cc2, such
that (2) is chaotic for any tc. Thus the first statement of the
theorem is established.

Suppose now that K-- + c, and let 0 =< /t <= c2. Then it immediately
ollows from (4.a) that, given any a with M(lt)<=aR(zlt), the inter-
val [0, a] is invariant uner Ft. And it is also clear that, when c
c2, the restriction of Ft to [0, a] nonetheless possesses a point x*
satisfying (3). So the second statement of the theorem follows.
Hence the completion of the proof.
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