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ABSTRACT

We design an Eulerian Gaussian beam summation method

for solving Helmholtz equations in the high-frequency re-

gime. The traditional Gaussian beam summation method is

based on Lagrangian ray tracing and local ray-centered coor-

dinates. We propose a new Eulerian formulation of Gaussian

beam theory which adopts global Cartesian coordinates, lev-

el sets, and Liouville equations, yielding uniformly distribut-

ed Eulerian traveltimes and amplitudes in phase space simul-

taneously for multiple sources. The time harmonic wavefield

can be constructed by summing up Gaussian beams with in-

gredients provided by the new Eulerian formulation. The

conventional Gaussian beam summation method can be de-

rived from the proposed method. There are three advantages

of the new method: �1� We have uniform resolution of ray dis-

tribution. �2� We can obtain wavefields excited at different

sources by varying only source locations in the summation

formula. �3� We can obtain wavefields excited at different fre-

quencies by varying only frequencies in the summation for-

mula. Numerical experiments indicate that the Gaussian

beam summation method yields accurate asymptotic wave-

fields even at caustics. The new method may be used for seis-

mic modeling and migration.

INTRODUCTION

The method of Gaussian beam summation is powerful for seismic

wave modeling and migration in the high frequency regime; see

Cerveny et al. �1982�, Norris et al. �1987�, White et al. �1987�, Hill

�1990�, Alkhalifah �1995�, Hill �2001�, Gray �2005�, and references

therein. In contrast to the geometrical ray theory in which the ray am-

plitude is unbounded at caustics, a Gaussian beam constructed

around a central ray always has guaranteed regular behavior at caus-

tics, and interference of multiple arrivals is achieved by summing up

a bundle of Gaussian beams. We propose a purely Eulerian Gaussian

beam summation method that combines the Gaussian beam ansatz

introduced in Ralston �1983� with the paraxial Liouville formulation

developed recently in Qian and Leung �2004, 2006� and Leung et al.

�2004�. The resulting Eulerian method is easy to implement and

computationally efficient.

Gaussian beams are approximate asymptotically valid solutions

to hyperbolic partial differential equations which are concentrated

near a single ray through the domain. The existence of such solutions

has been known to the applied mathematician since the 1960s, and

these solutions have been used to obtain results on propagation of

singularities in hyperbolic PDEs �Hormander, 1971; Ralston, 1983�.

On the other hand, the Gaussian beam migration operator can be

viewed as the adjoint of the Gaussian beam modeling operator.As an

alternative to Kirchhoff depth migration, Gaussian beam migration

can take into account multiarrivals systematically, yielding accurate

and efficient imaging methods in complex media �Hill, 1990, 2001;

Hale, 1992�; this methodology has undergone extensive develop-

ment in recent years �Albertin et al., 2004; Gray, 2005; Han and Wu,

2005; Zacek, 2005; Protasov and Tcheverda, 2006�.

Traditional Gaussian beams are constructed by using local ray co-

ordinates. As a result, one has to compute the normal distance from

every observation point to the central ray of every Gaussian beam

�Cerveny et al., 1982; George et al., 1987�, which is computationally

cumbersome and expensive. To overcome this difficulty, George et

al. �1987� and Hill �1990� propose using local geographic coordi-

nates in the vicinity of an observation point, which only partially

solves the problem.

To implement Gaussian beam summation in a global Cartesian

coordinate, we adopt the ansatz proposed in Ralston �1983� and Ta-

nushev et al. �2007� to construct Gaussian beams along central rays

without resorting to local ray-centered coordinates. Mathematically,

this ansatz constructs an approximate traveltime function with an

imaginary part as a Taylor expansion around a central ray by using

traveltime derivatives on the central ray; to some extent, the approx-
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imate traveltime function in the traditional Gaussian beam summa-

tion can be obtained from the new approximate traveltime function

by using a local ray-centered coordinate transformation. To have an

Eulerian formulation capturing multiple arrivals and caustics, we

adopt Liouville equations in a paraxial setting �Qian and Leung,

2004, 2006; Leung et al., 2004� to parameterize multiple sources and

receivers; see these papers and the references therein for recent

progress in Eulerian geometrical optics.

We begin with an outline of the Lagrangian Gaussian beam sum-

mation method. Then we give details of the Eulerian Gaussian beam

summation method based on level sets. We briefly describe numeri-

cal procedures for implementing the Eulerian Gaussian beam sum-

mation method. Numerical experiments demonstrate the effective-

ness of the new method. See the list of symbols used.

MATHEMATICAL FRAMEWORK

We shall consider a time-harmonic wave problem in n dimensions

with one distinguished direction, the z-direction. We set up Cartesian

coordinates z,x1, . . . ,xn̄, where n̄ = n − 1. In the first instance, we

consider the physical domain to be Rn, but this will be truncated and

discretized later to allow numerical computations.

Because of the special rôle of z, we shall consider the domain

more naturally as R�Rn̄ and use the notation x̃ = �z,x�
= �z,x1, . . . ,xn̄�. In our equations, we shall consider vectors to be col-

umn vectors, but in the text, we shall usually write vectors in trans-

posed form as rows. Thus, we will, for instance, write x̃ = �z,x�
= �z,x1, . . . ,xn̄� but regard both x̃ and x as columns in matrix calcula-

tions unless explicitly transposed.

Eikonal equations

We consider the Helmholtz wave equation for the scalar wavefield

U�z,x,y,��,

�2U�z,x,�� +
�2

v
2�z,x�

U�z,x,��

= − ��z − zs���x1 − xs,1� . . . ��xn̄ − xs,n̄� . �1�

in the physical domain Rn, where n̄ = 1 or 2 for practical applica-

tions, � is frequency, v�z,x� the wave speed at point �z,x�, and �0,xs�
the coordinates of a source point. Here and in what follows, we have

written the argument z first because of its distinguished role.

We use the standard geometric optics large-� ansatz for U, given

by

U = �A�x̃� + O� 1

�
��exp�i�� �x̃�� . �2�

Substituting equation 2 into equation 1 and equating the terms of or-

ders �−2 and �−1 zero away from the source, we obtain the eikonal

and transport equations for traveltime � and amplitude A:

��̃��2 =
1

v
2

,

�̃� · �̃A +
1

2
A�̃

2� = 0, �3�

with corresponding initial conditions. Here, we have written �̃ for

��/�z,�/�x1, . . . ,�/�xn̄� reserving � for the n̄-dimensional gradient

operator ��/�x1, . . . ,�/�xn̄�.
In seismic applications, we assume that z is vertically down, and

we shall assume that the traveltime field satisfies

��

�z
� 0, �4�

i.e., rays are subhorizontal. In this case, we may rewrite the eikonal

equation 3 as an evolution equation in depth �Gray and May, 1994;

Qian and Symes, 2002; Symes and Qian, 2003�,

��

�z
− 	 1

v
2

− ��� �2 = 0,

� �0,x1, . . . ,xn̄� = � 0�x1, . . . ,xn̄�, Im � 0 � 0, �5�


 ��

�z



z = 0

= p0,0��x1, . . . ,xn̄�� ,

� � � �z = 0 = p0��x1, . . . ,xn̄�� , �6�

where � 0�x�, and p0�x,y� are given complex-valued smooth func-

tions satisfying the compatibility conditions,

�� 0 = p0�x,y� , �7�

p0,0�x,y� − 	 1

v
2�0,x,y�

− p0
2�x,y� = 0. �8�

At a point source, �0,xs�, we specify initial conditions,

� s = � 0�xs� = � �0,xs� = 0, �9�

p̃s = p̃�xs,�s� =
t̃s

v�0,xs�
=

�̃s

�sv�0,xs�
. �10�

where

p̃s = �ps,0,ps�, t̃s = �ts,0,ts� =
�̃s

�
,

t̃s
2 = 1, �s =

ts

ts,0

,

�̃s = �1,�s�, �s = 	1 + �s
2. �11�

Here, t̃s is a unit vector with ts,0 �0, t0 is the cosine of the angle that p̃

makes with the z-direction, and � = 1/t0. Notice that we have writ-

ten t̃s
2 = 1 instead of �t̃� = 1 because we want to keep our expressions

analytic: for complex t̃, �t̃� might signify 	t̃†t̃ where t̃† is the Hermit-

ian transpose. Please refer to the list of symbols for these and other

symbols.

To apply Gaussian beam theory �Ralston, 1983; Tanushev et al.,

2007�, we let the axis, or central ray, of a beam be given by x = X�z�,
the corresponding value of p = P�z�, the traveltime by � = T�z�, and

we introduce the Hamiltonian

H�z,X,P� = − P0 = − 	 1

v
2�z,X�x��

− P�z�2, �12�

where P0�z� = � z�z,X�z��, and P�z� = �� �z,X�z��.
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We shall need the ray tracing system,

Ẋ = HP =
P

	 1

v
2

− P2

=
t

t0

= �, �X�z=0 = xs;

Ṗ = − HX =
− vX

v
3	 1

v
2

− P2

=
− �vX

v
2

,

�P�z=0 = �s ��sv�0,x� ;

Ṫ =
1

v
2	 1

v
2

− P2

=
�

v

, �T�z=0 = � 0�xs�; �13�

here the dot �·� denotes the total derivative with respect to z. We also

have used HP, for instance, to denote the matrix of partial derivatives

�H/�Pi, i = 1, . . . , n̄, and P2 to stand for P1
2 + . . . + Pn̄

2, etc. The tra-

jectories X�z� are the rays, and the full trajectories �X�z�,P�z�� are

characteristic strips which for brevity we shall refer to as xp-rays,

i.e., trajectories in the 2n̄-dimensional space of �x,p� which is essen-

tially phase space. Later, when we have eliminated p in favor of �,

we shall refer to the corresponding trajectories as x	-rays.

To emphasize the dependence on the initial conditions, we will

write X = X�z� = X�z;xs,�s�, P = P�z� = P�z;xs,�s�, and T = T�z�
= T�z;xs,�s�.

For later convenience, we define the n̄� n̄ projection matrices Q�

and Q�:

Q� = I −
�	T

�
2

, Q� =
�	T

�
2

. �14�

These are real, symmetric, and satisfy Q�
2 = Q�, Q�

2 = Q�, and

Q�Q� = 0. For our purposes, we note that the eigenvalues of the ma-

trix uQ� + vQ� are u repeated n̄ − 1 times and the simple eigenvalue

v, with respective eigenspaces perpendicular and parallel to � and

detuQ� + vQ�� = un̄−1
v, because Q� projects onto an n̄ − 1 dimen-

sional eigenspace, whereas Q� projects onto a 1D eigenspace.

Each xs, �s defines an axisymmetric Gaussian beam through xs in

the direction t̃ = �1,��/�, waist centered at xs and width determined

by the positive parameter 
. Associated with each such beam is a

field of xp-rays, parameterized by an n̄-vector � = ��1, . . . ,�n̄�, and

containing the central xp-ray, which has initial conditions

�X�0�,P�0�� = �xs,ts/v�0,xs��, but with neighboring members of the

field having slightly different initial conditions X�0;xs,�s,�� = xs

+ �Q� + �Q���, P�0;xs,ts,�� = ts/v�0,xs� + i
�Q� + �−1Q���. For

each xs, �s we shall be concerned with the variations of X�z;xs,�s,��
and P�z;xs,�s,�� along the ray with respect to � at � = 0, and

we define B�z;xs,�s� = ��P�z;xs,�s,��/����=0 and C�z;xs,�s,��
= ��X�z;xs,�s�/����=0.

The dynamic ray tracing �DRT� system for these variations is ob-

tained by differentiating equation 13 with respect to �:

Ḃ�z� = − HXPB − HXXC, B�0� = i
�Q� +
1

�
Q�� ,

Ċ�z� = HPPB + HPXC, C�0� = Q� + �Q� , �15�

where ��0 and � = 	1 + �2 = 1/cos �, � being the angle that the

ray direction t̃ makes with the z direction. The initial values B�0�,

C�0� ensure that the beam has circular symmetry about its axial di-

rection t̃. In the DRT system equations 15, the second derivatives of

H are

HPP =
v��1 − v

2P2�I + v
2PPT�

�1 − v
2P2�3/2

,

HXX =
�1 − v

2P2��vvXX − 3vXvX
T� + vXvX

T

v
3�1 − v

2P2�3/2
,

HPX = HXP
T =

PvX
T

�1 − v
2P2�3/2

. �16�

We notice for future reference that �BC−1�z=0 is i
 times the positive

definite real symmetric matrix Q� + Q�/�2.

In the neighborhood of the source, the beam has width on the order

of 1/	�
 and is confined to a circular cylindrical region with axis in

the direction of t̃. This cylinder cuts the n̄-plane z = 0 in an ellipsoi-

dal region similar to the ellipsoid xT�Q� + Q�/�2�x = 1 with major

and minor semi-axes proportional to � parallel and 1 perpendicular

to �. It follows that this same cylindrical region cuts a right cross sec-

tion, i.e., the section by the plane t̃T�x̃ − x̃s� = 0 through the source,

in an n̄-sphere. We take all the beams to have axial symmetry and to

be identical except for the directions t̃s of their axes. Each beam has a

family of rays associated with it, and we shall parameterize this fam-

ily of rays by the coordinates � on the right cross section through the

source.

The symplectic structure �HPP, and − HXX are symmetric, and

− HXP = − �HPX�T� of equations 15 implies, as we have just pointed

out, that ImB�z�C�z�−1� remains symmetric and positive definite if,

as implied by the DRT system equations 15, it is symmetric and posi-

tive definite initially.

Because � x = p, � xx = �p/�x = ��p/�����x/���−1 = BC−1, thus

we have the following Taylor series approximation in the neighbor-

hood of x = X,

� �z,x;xs,�s� = T�z;xs,�s� +
1

v�
NT�z��x − X�z��

+
1

2
�x − X�z��TB�z�C−1�z��x − X�z�� , �17�

where X, P, B and C also depend on �z,xs,�s� but not on �, and we

have expressed P in terms of N: P = N/�v��.
Let us express the direction of the central ray of a beam in terms of

�, and eliminate p in favor of � as follows in vp̃ = t̃ = �t0,t�
= �1,��/�, where t = vp = �/�. Then the ray tracing system 13 be-

comes

Ẋ = N , Ṅ =
�2

v

�vzN − vX� , Ṫ =
�

v

, �18�

with initial conditions

X�0;xs,�s� = xs, N�0;xs,�s� = �s, T�0;xs,�s� = 0. �19�

In the ray tracing system of equations 18 and the initial conditions

equation 19, X and N�Rn̄ and the dependent variables are regarded

as functions of �z,xs,�s�. We repeat the DRT system, equations 15:
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Ḃ�z� = − HXPB − HXXC, �B�z��z = 0 = i
�Q� +
1

�
Q�� ,

Ċ�z� = HPPB + HpXC, �C�z��z = 0 = �Q� + �Q�� , �20�

where

HPP = v��I + NNT� = v��Q� + �2Q�� ,

HXP =
�2

vXNT

v

,

HXX =
��vvXX − 3vXvX

T� + �3
vXvX

T

v
3

, �21�

and

v = v�z,X�z��, � = 	1 + N2, Q� =
NNT

N2
, �22�

Q� = I − Q� .

Finally, the amplitude along the axial ray is

A�z;xs,�s� = 	v�z,X�z��t0�0;xs,�s�detC�0;xs,�s��

v�0,xs�t0�z;xs,�s�detC�z;xs,�s��
, �23�

which is finite and nonzero everywhere �seeAppendix A�.

We recognize ts,0 detC�0�� as the differential area of the right

cross section of the beam at the source, which has been arranged to

be the same for all beams. Thus, we may write

A�z;xs,�s� = 	 const.v�z,X�z��
v�0,xs�t0�z;xs,�s�detC�z;xs,�s��

. �24�

The previous derivation is based on the paraxial assumption, the

so-called subhorizontal condition; see the inequality equation 4.

When the paraxial assumption does not apply, we may construct the

Gaussian beam summation directly by using the approach presented

in Ralston �1983� and Tanushev et al. �2007�.

Lagrangian Gaussian beam superposition

The wavefield resulting from one Gaussian beam parameterized

with initial takeoff direction t̃s is

��z,x;xs,�s� = �0	 v�z,X�z��
v�0,xs�t0�z;xs,�s�detC�z;xs,�s��

�exp�i�� �z,x;xs,�s�� , �25�

where ��z,x;xs,�s� is given by the Taylor series approximation

�equation 17� with P�z� = N/��v�, and the radiation factor from

equation B-18 is

�0 =
i

4
� �

2vs

�n−2

, �26�

and from equation B-20 we have

��z,x;xs,�s� =
− i

4
� �

2vs

�n−2	��z�v�z,X�z��
v�0,xs�detC�

� exp�i��� �z,x;xs,�s��� . �27�

To compute the wavefield generated by a point source at xs, we in-

tegrate over beams with central rays emanating from the source in all

the possible directions with t0 positive. However, because of the rap-

id decay of amplitude in each beam away from the axis, only beams

with axes passing close to �z,x� contribute. From equations 17 and

27 we have

U�z,x;xs� =
i

4
� �

2vs

�n−2

��
−�

�

¯ �
−�

�

	 ��z,xs,�s�v�z,X�z��

v�0,xs�detC�z,xs,�s��

�
d	s,1 . . . d	s,n̄

�s
n

� exp�i��T�z;xs,�s��

+
1

v�
NT�z,xs,�s��x − X�z,xs,�s��

+
1

2
�x − X�z,xs,�s��

TB�z,xs,�s�C
−1�z,xs,�s�

��x − X�z,xs,�s��� . �28�

Here, d�s,1 . . .d�s,n̄/�s
n is the solid angle element of integration on

the n̄-hemisphere �1,�s�/�s and �s = 	1 + �s
2 = 1/cos �s, �s being

the angle the tangent to the ray t̃ makes with the z-axis at �0,xs�.
What does equation 28 mean? From uniqueness for system equa-

tions 18, given xs and ts with ts,0 �0, there is just one x	-ray emanat-

ing from the source xs with takeoff direction t̃s = �̃s/�s. It pierces z

= constant in the point �z,X�z;xs,�s�,N�z;xs,�s��. As �s varies over

Rn̄, �X�z;xs,�s�,N�z;xs,�s�� traces out an n̄-dimensional surface

through

��z;xs� = �X�z;xs,�s�,N�z;xs,�s��:�s � Rn̄� �29�

in R2n̄, and ��0;xs� = �xs,�s�:�s �Rn̄� is a vertical n̄-plane in R2n̄.

We note that ��z;xs� can be considered as a surface parameterized by

�s, whereas the z-variable indicates the evolution of ��0;xs� under

the ray tracing equations 18. Consequently, the summation formula

�equation 28� states that at depth z the integration is carried out with

respect to the parameter �s over the n̄-surface ��z;xs�.
To carry out the above summation process, we need to choose a

numerical quadrature formula, solve the ray tracing equations and

the dynamical ray tracing system with takeoff directions at the

quadrature sampling points, construct a Gaussian beam along each

ray, and sum up the Gaussian beams to obtain the wavefield at each

observation point. Because the above process is based on the La-

grangian ray tracing, it inherits some shortcomings from the ap-

proach, such as shadow zones and a nonuniform distribution of rays.

Therefore, we look for an Eulerian approach to Gaussian beam

superposition.
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EULERIAN GAUSSIAN BEAM METHOD

Paraxial Liouville equations

We summarize the level set based Eulerian method for computing

multivalued traveltimes; see Qian and Leung �2004, 2006� and Le-

ung et al. �2004� for details.

Let the vector fields u and w be defined from the ray tracing equa-

tions 18 as

u�z,x,�� = �, w =
�2

v

�vz� − vX� . �30�

Then the total derivative of any scalar or matrix function ��z,x,�� of

z,x,� along any x	-ray trajectory is given by

D�

Dz
= �z + uT�x + wT��. �31�

Let us assume that this rate of change is zero:

D�

Dz
= �z + uT�x + wT�� = 0. �32�

Then the value of � at any point �z,x,�� is the same as its value at the

initial point �0,xs,�s� on the x	-ray through �z,x,��. We may set

��0,x,�� = f�x,�� to be any function of �x,��. Then ��z,x,��
= f�xs,�s�, where �0,xs,�s� is the initial point on the unique x	-ray

through �z,x,��. In particular, we shall later take f�x,�� = x and

f�x,�� = �.

On the other hand, suppose that the total z derivative along a tra-

jectory is not zero, but for instance �/v�z,x� and the initial value is 0,

then the solution T�z,x,�� of

DT

Dz
= Tz + uTTx + wTT� =

�

v�z,x�
�33�

is equal to the traveltime ��z,x,�� to �z,x,�� from the initial point �a

source point� on the ray through �z,x,�� because its initial value 0

and total derivative along the ray are the same as for �.

We may find the initial point on the ray by solving

DX�0�

Dz
= Xz

�0� + uTXx
�0� + wTX�

�0� = 0 , �34�

for X�0� with initial value

X�0��0,x,�� = x . �35�

We may also find the direction parameter �s on the ray by solving

DN�0�

Dz
= Nz

�0� + uTNx
�0� + wTN�

�0� = 0 , �36�

for N�0� with initial value

N�0��0,x,�� = �. �37�

Given z�0, x and xs, and having T�z,x,�� and X�0��z,x,��, we

may find the values �* of � for which X�0��z,x,�*� = xs, and there

may be several. For each of these �*, we have the traveltime

T�z,x,�*� from point �0,xs� to point �z,x� with z�0. We have solved

for multiple sources simultaneously and also dealt with the possibili-

ty of multiple arrivals at �z,x� from �0,xs�. There will, of course, be

computational restrictions relating to whether or not rays remain in

the computational domain for all intermediate values of z.

Similarly, we may use equations of the form given by equation 33

to solve the dynamic ray tracing equations. Thus, we have the fol-

lowing equations for B�z,x,�� and C�z,x,��,

Bz + uTBx + wTB� = − HxpB − HxxC ,

B�0,x,�� = i
�Q� +
1

�
Q�� ,

Cz + uTCx + wTC� = HppB + HxpC ,

C�0,x,�� = �Q� + �Q�� , �38�

where 
�0, and

Hpp = v��Q� + �Q��, Hxp =
�2

vx�
T

v

,

Hxx =
��vvxx − 3vxvx

T� + �3
vxvx

T

v
3

. �39�

Let us now express equation 28 in terms of the quantities consid-

ered in this section; namely,

U�z,x0;xs� =
i

4
� �

2vs

�n−2

��
��z,xs�

	 ��z,x,��v�z,x�

v�0,xs�detC�z,x,���

�
dN1

�0� . . . dNn̄
�0�

���0��n
exp�i��T�z;x,��

+
1

v�
�

T�x0 − x� +
1

2
�x0 − x�T

�B�z,x,��C−1�z,x,���x0 − x��� , �40�

where

� = 	1 + �
2 and ��0� = 	1 + �N�0��2, �41�

and the domain ��z,xs� of integration is the n̄-dimensional surface

corresponding to � of equation 29, or

��z,xs� = �x,��:X�0��z,x,�� = xs� . �42�

At this point, we leave the calculation for general dimension n and

specialize to n = 2. Then ñ = 1 and Q�, B and C reduce to scalars

whereas Q� does not exist.

SPECIALIZATION TO 2D

In two dimensions x, X become single horizontal components x, X

t0 ⇒ cos � = 1/� ,

t ⇒ t1 = sin � ,

� ⇒ 	 =
t1

t0

= tan � . �43�
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The ray equations 18 and their initial conditions equations 19 be-

come

Ẋ = tan �, Ṅ =
�2

v

�vzN − vX�, Ṫ =
1

v cos �
, �44�

X�0;xs,�s� = xs, N�0;xs,	s� = 	s, T�0;xs,	s� = 0. �45�

Because N = tan � and �2 = sec2 �, we can easily eliminate N in fa-

vor of �; writing

Ẋ = tan �, �̇ =
1

v

�vz tan � − vX�, Ṫ =
1

v cos �
, �46�

X�0;xs,�s� = xs, ��0;xs,�s� = �s, T�0;xs,�s� = 0, �47�

we may define

u = tan �, w =
1

v

�vz tan � − vX� . �48�

Then equations 34–37 lead to

DX�0�

Dz
� Xz

�0� + uTXx
�0� + wTX�

�0� = 0, X�0��0,x,�� = x ,

�49�

D��0�

Dz
� �z

�0� + uT�x
�0� + wT��

�0� = 0, ��0��0,x,�� = � ,

�50�

and equation 33 leads to

DT �0�

Dz
� T z

�0� + uTT x
�0� + wTT �

�0� =
�

v�z,x�
,

T �0��0,x,�� = 0. �51�

Before writing the dynamic ray tracing equations, note that when

n = 2 Q� disappears and Q� = 1. Thus equations 39 become

Hpp =
v

cos3 �
, Hxp =

vx tan �

v cos2 �
, Hxx

=
cos2 ��vvxx − 3vxvx

T� + vxvx
T

v
3 cos3 �

. �52�

Equations 38 become

Bz + uBx + wB� = − HxpB − HxxC ,

B�0,x,�� = i
 cos � ,

Cz + uCx + wC� = HppB + HxpC ,

C�0,x,�� =
1

cos �
, �53�

with u, w, Hxp, Hxx, Hpp given in equations 50 and 52. Equation 40

now becomes

U�z,x0;xs� =
i

4
�

�x,�����z,xs�
	 v�z,x�

v�0,xs�C�z,x,��cos �
d��0�

� exp�i��T�z;x,�� +
sin �

v

�x0 − x�

+
1

2
B�z,x,��C−1�z,x,���x0 − x�2�� , �54�

where the domain of integration is the curve ��z,xs� in the 2D

x�-space:

��z,xs� = �x,��:X�0��z,x,�� = xs� . �55�

Because we may compute ��0��z,x,�� from equations 50, we may

regard equation 54 as a Stieltjes integral. To compute it numerically,

we would assume that discrete points �xl,�l�, l = 1, . . . ,L are known

on ��z,xs� and that they are sorted by increasing �l
�0� = ��0��z,xl,�l�.

Then the integral may be approximated by

U�z,x0;xs� =
i

8	
v�0,xs�

����2
�0� − �1

�0��	 v�z,x1�
C�z,x1,�1�cos �1�

� exp�i��T�z;x1,�1� +
sin �1

v

�x0 − x1�

+
1

2
B�z,x1,�1�C−1�z,x1,�1��x0 − x1�2��

+ �
l = 2

L−1

��l+1
�0� − �l−1

�0� �	 v�z,xl�
C�z,xl,�l�cos �l�

� exp�i��T�z;xl,�l� +
sin �l

v

�x0 − xl�

+
1

2
B�z,xl,�l�C

−1�z,xl,�l��x0 − xl�
2��

+ ��L
�0� − �L−1

�0� �	 v�z,xL�
C�z,xL,�L�cos �L�

� exp�i��T�z;xL,�L� +
sin �L

v

�x0 − xL�

+
1

2
B�z,xL,�L�C−1�z,xL,�L��x0 − xL�2���

�56�

or some more sophisticated integration scheme. As we shall see, for

a given x0 only a few terms in the sum will contribute owing to the

smallness of the integrand when x differs significantly from x0, i.e.,

the smallness of the field of a Gaussian beam away from its axis. On

the other hand, for lower frequencies, the width of the beams will

SM66 Leung et al.



limit how near x0 may be taken to the boundary of the computational

domain.

Even though the Lagrangian formulation 28 and the Eulerian for-

mulation 40 look quite different, they are theoretically equivalent to

each other, because we are integrating over the same curve as repre-

sented by ��z;xs� and ��z;xs�. They are parameterized by the same

2D parameter, the takeoff direction.

In terms of numerical implementation, in the Lagrangian formula-

tion ��0;xs� is uniformly sampled because of the uniform sampling

of the takeoff angle, whereas ��z;xs� is not uniformly sampled,

yielding nonuniform sampling of traveltimes, as shown in Figure 1.

In the Eulerian formulation ��z;xs� is uniformly sampled, yielding

uniform sampling of traveltimes, as illustrated in Figure 2, implying

that the resulting sampling of takeoff directions must be nonuni-

formly distributed in the interval �− �max,�max�.
The advantages of the previous Eulerian formulation are multi-

fold. The first advantage is that we have uniform resolution of ray

distribution; therefore, the Gaussian beam summation will have uni-

form resolution as well. The second advantage is that we can obtain

wavefields excited at different sources by varying only xs in the sum-

mation formula 40 because all the necessary ingredients are comput-

ed already in the previous Eulerian formulation. The third advantage

is that we can obtain wavefields excited at different frequencies as

well by varying only � in the summation formula 40.

NUMERICAL PROCEDURES

Discretization

We give the beam summation algorithm for constructing wave-

fields.

Wavefield construction using Eulerian Gaussian Beams:

1. Discretize the computational domain using

xi = xmin + �i − 1��x, �x =
xmax − xmin

I − 1
,

i = 1,2, ¯ ,I

� j = �min + �j − 1���, �� =
�max − �min

J − 1
,

j = 1,2, ¯ ,J

zk = zs + �k − 1��z, �z =
z f − zs

K − 1
,

k = 1,2, ¯ ,K , �57�

and initialize all functions at k = 1, where

�i,j,k = xi

Ti,j,k = 0

Bi,j,k = i
 cos � j

Ci,j,k =
1

cos � j

�i,j,k = � j . �58�

2. Solve the Liouville equations according to equations 49–51

and 53. For each i = 1, ¯ ,I, j = 1, ¯ ,J and k = 2, ¯ ,K, de-

termine

��xi,� j,zk�, T�xi,� j,zk�, B�xi,� j,zk� ,

C�xi,� j,zk�, ��xi,� j,zk� . �59�

3. For each level z = zk, k = 2, ¯ ,K, and for each physical loca-

tion x = xi, determine all �m
* such that ��xi,�m

* ,zk� = xs with m

= 1, ¯ ,m�i�. Compute the weight ���xi,�m
* ,k� for m

= 1, ¯ ,m�i�.
4. Integrate along the level set � = xs to sum up all individual

Gaussian Beams to construct the wavefield.

In the above algorithm, Steps 1 and 2 can be interpreted as prepro-

cessing steps, which are the most time consuming. Step 3 and 4 are

postprocessing steps to construct the wavefield emanating from a

particular point source. When we want to compute the wavefield

with the same velocity model from a different point source, we only

need to repeat the postprocessing step by changing the value of xs in

the algorithm.
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Figure 2. Sinusoidal Model. The evolution of level sets for the
source location xs = 0. �a� z = 0; �b� z = 2.0: arrival angles and arriv-
al locations are uniformly sampled in the x − � space, implying that
the corresponding takeoff angles are not uniformly sampled. �c� The
traveltimes are uniformly sampled as indicated by the solid line, us-
ing the level set method �Qian and Leung, 2004 and 2006�. The cir-
cles are the computed solution when using the ray tracing method.
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Figure 1. Sinusoidal Model, v�z,x� = 1 + 0.2 sin�0.5z�sin�3�x
− 0.55��. The curve ��z,xs� = ��2,0� by tracing 800 rays with take-
off angles uniformly sampled from –4/5 to 4/5. �a�Arrival angles
and arrival locations are not uniformly sampled; �b� the resulting
traveltimes are not uniformly sampled either.
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Semi-Lagrangian methods

We solve Liouville equations 49 and 51 by a semi-Lagrangian

method �Leung et al., 2004�, which can be generalized to the 3D case

easily; see Figure 3. Compared to finite-difference methods, semi-

Lagrangian methods are preferred because of their ability to deal

with high dimensional Liouville equations in terms of computation-

al memory and complexity �Leung et al., 2004�. We apply the meth-

od of characteristics to the equations for the level set function, the

takeoff angle, and the traveltime function, which yields

D�

Dz
= 0,

D�

Dz
= 0,

DT

Dz
=

1

v cos �
, �60�

where D/Dz is the material derivative defined by

D

Dz
=

�

�z
+ u

�

�x
+ w

�

��
. �61�

At each grid point �xi,� j,zk� for i = 1, ¯ ,I, j = 1, ¯ ,J and k

= 2, ¯ ,K in phase space, one traces backward from z = zk to z = zs

= z1 along the characteristic by integrating dx/dz = u and d�/dz

= w to obtain �x�zs�,��zs��. For the level set equation and the takeoff

angle equation, one assigns ��xi,� j,zk� = ��x�zs�,��zs�,zs� = x�zs�
and ��xi,� j,zk� = ��x�zs�,��zs�,zs� = ��zs�. For the traveltime equa-

tion, we use the reciprocal principle and integrate the source term

�v cos ��z��−1 along the characteristics to obtain T�xi,� j,zk�.
As for B and C, applying the method of characteristics, we have

DB

Dz
= − HxpB − HxxC

DC

Dz
= HppB + HxpC , �62�

with the initial conditions imposed on the level z = zs. In this case,

we do not have the reciprocal principle as for the traveltime equation

anymore; we need to use the forward ray tracing to solve these quan-

tities along the same characteristic provided by the backward ray

tracing. This means that one first computes the ray trajectory by inte-

grating dx/dz = u and d�/dz = w backward in z, and then integrates

equation 62 forward in z along the same characteristic.

Numerically, we adopt the second-order Stormer/Verlet scheme

�Hairer et al., 2002�, which preserves the symplectic structure of the

Hamiltonian; certainly, one may use higher order schemes at the cost

of more sophisticated implementation �Hairer et al., 2002�.

Wavefield construction for multiple point sources

Consider a given source location �xs,zs�. On each level zk, for all xi,

we determine all �* such that ��xi,�*,zk� = xs. Each of these points

�xi,�*� corresponds to one central ray which passes through the point

�zk,xi� in the physical space at the arrival angle �*; correspondingly,

we can determine the traveltime T, the takeoff angle �, B, and C for

this ray by interpolating the available T, �, B, and C at �zk,xi,�*�. This

information defines one particular Gaussian beam centered at �zk,xi�.
Next, at given zk we collect all arrival rays and sort them in the as-

cending order of the take-off angle. The contribution from all Gauss-

ian beams to a physical location �zk,xi� can then be computed by inte-

grating equation 54 �see Figure 4�.

Computing the weight for each
individual Gaussian beam

1� For a given z = zk and for all i = 1, ¯ ,I

a� Given ��xi,� j,zk� for all j = 1, ¯ ,J, determine all �m
*

such that ��xi,�m
* ,zk� = xs for m = 1, ¯ ,m�i�.

b� Interpolate and obtain ��xi,�m
* ,zk� for m = 1, ¯ ,m�i�.

2� For all i = 1, ¯ ,I and m = 1, ¯ ,m�i�

a� Among all points �xi±1,�n
1

* ,zk� and �xi,�n
2

* ,zk� for n1

= 1, ¯ ,m�i ± 1� and n2 = 1, ¯ ,m�i� and n2�m, deter-

mine two points which have values � closest to

��xi,�m
* ,zk�.

b� Set ���xi,�m
* ,zk� equal to the mean of these two

differences.

Equation 54 has two different interpretations, which yield two dif-

ferent algorithms for summing up all Gaussian Beams.

1� For each observation point �xi,zk�, one first searches in a neigh-

borhood centered at this observation point for all Gaussian

beams and sums the contribution from each of these beams ac-

cording to their corresponding weights using equation 54, as

shown in Figure 5a;

2� For each point �xi,zk�, one first determines all Gaussian beams

which pass through it. For each of these beams, one computes

its contribution to the neighboring observation points, as shown

in Figure 5b.

Numerically, the second interpretation yields a more efficient

summation algorithm than the first interpretation. Therefore, we

only give the algorithm based on the second interpretation.

Wavefield construction algorithm

1� Initialize Re�U�i,k = Im�U�i,k = 0

2� For i = 1, ¯ ,I

a) b)

x = xs xmax

maxθ

minθ

θ

θ

xmin

x

z

z

zs x = xs xmax

maxθ

minθ

θ

θ

xmin

x

z

zs

* z*

Figure 3. Lagrangian versus Semi-Lagrangian Method. �a� Lagrang-
ian methods trace rays to an observation point starting from the
source; �b� Semi-Lagrangian methods trace rays, starting from an
observation point, back to the source.
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Figure 4. �a� Lagrangian versus �b� Eulerian Gaussian beam summa-
tion.
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3� For k = 1, ¯ ,K

a� Given ��xi,� j,zk� for all j = 1, ¯ ,J, determine all �*

such that ��xi,�*,zk� = xs.

b� For each �* and for i� = 1, ¯ ,I

i. Compute

Re�U�i�,k = Re�U�i�,k

+
1

4
���xi,�

*,zk�

��A�xi,�
*,zk��exp�−

�

2

�Im�B�xi,�
*,zk�

C�xi,�
*,zk�

��xi�
− xi�

2�
�cos���T�xi,�

*,zk�

+
sin �*

v�xi,zk�
�xi�

− xi�

+
1

2
Re�B�xi,�

*,zk�
C�xi,�

*,zk�
��xi�

− xi�
2�

+


2
−

1

2
Arg�C�xi,�

*,zk���
Im�U�i�,k = Im�U�i�,k +

1

4
���xi,�

*,zk�

��A�xi,�
*,zk��exp�−

�

2

�Im�B�xi,�
*,zk�

C�xi,�
*,zk�

��xi�
− xi�

2�
�sin���T�xi,�

*,zk�

+
sin �*

v�xi,zk�
�xi�

− xi�

+
1

2
Re�B�xi,�

*,zk�
C�xi,�

*,zk�
��xi�

− xi�
2�

+


2
−

1

2
Arg�C�xi,�

*,zk���
c� End for

4� End for

5� End for

In the algorithm, i� = 1, ¯ ,I in Step 3b can be replaced by a local

neighborhood i� = i − 
i, ¯ ,i + 
i whenever 
i is chosen to be large

enough.

NUMERICAL EXPERIMENTS

In the following numerical examples, we use 257 = 28 + 1 grid

points in each x-, �-, and z-direction. The computational domain is

�x,�,z�� �− 1,1�� �− �max,�max�� �0,2�. We take �max = 9/20

for the constant velocity model and �max = 8/20 for the wave-

guide model. A grayscale plot of the waveguide model is shown in

Figure 6.

We choose the initial beam width to be Im�B�0�� = 
 cos �s

= cos �s, and we are not going to optimize the beam width in the

summation process. Although narrow beams combined with an ap-

propriate window function will yield a more efficient summation al-

gorithm, generally it is not an easy task to specify an a priori beam

width which will be narrow throughout the computation.

Because our Gaussian beam formulation is based on global Carte-

sian coordinates, and the asymptotic solution does not depend on the

initial beam width, in this work we make the above choice of the ini-

tial beam width and sum up all possible contributions from each

beam at each observation point. On the other hand, our examples

demonstrate that one may not be able to get accurate solutions if one

chooses a summation window to be too narrow at the source because

the narrow beam will become wider along the ray in general.

a) b)

xi –1 xi +1

x

xi

(x,  , z*) = xsφθ θ

xi –1 xi +1

x

xi

(x,  , z*) = xsφθ θ

Figure 5. Eulerian Gaussian beam summation. Each circle on the
level set � = xs denotes a particular central ray passing through a

physical location �xi,zk�, which represents one particular Gaussian
beam. Dashed lines denote the directions of the contribution. �a�
Each observation point receives contributions from all the possible

beams in its neighborhood; �b� each point �xi,zk� owns several
beams, and every neighboring observation point receives contribu-
tion from each of these beams.
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Figure 6. The grayscale plots of the velocity field of the waveguide
model.
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Constant model

We take v�z,x��1. The asymptotic ray theory �ART� solution of

the wavefield is the asymptotic expansion of the Hankel function,

which is the exact solution of the Helmholtz equation with a point

source �see Appendix B�. We will use this exact solution to calibrate

the numerical solution based on Eulerian Gaussian beams.

Next, we construct the time harmonic wave fields with different

frequencies by using Eulerian Gaussian beams. Figures 7–10 show

the results when no window function is used in the summation pro-

cess, meaning that in the wavefield construction algorithm we set the

local neighborhood to be infinity.

In the low frequency regime, for example, when � = 2, the

wavefield shown in Figure 7 and the phase shown in Figures 9 and 10

do not agree very well with the exact solution, which is expected be-

cause we are approximating the wave equation in the high frequency

regime. In the high frequency regime, as we can see from Figure 7,

our Gaussian beam solution matches theART solution very well. Be-

cause the asymptotes of the Hankel function for �→� and 	x2 + z2

→� coincide, Figure 7 also illustrates that for fixed �, the Gaussian

beam solution becomes more accurate as 	x2 + z2→�.

On the other hand, finite-difference modeling for directly solving

Helmholtz equations usually requires 10 to 12 mesh points per

wavelength to resolve wave propagation well, and the optimal num-

ber of mesh points per wavelength is 3 to 5. When � = 64, the
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Figure 7. Constant Model, source at xs = zs = 0 km. Cross sections

of Re�U� along x = 0 km for �a� � = 2, �b� � = 4, �c� � = 8,
�d� � = 16, �e� � = 32, and �f� � = 64. The solid lines are the
asymptotic ray theory solution; the dashed curves are the computed
solution using the proposed Gaussian beam approach.
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Figure 8. Constant Model, source at xs = zs = 0 km. The real part of
the wavefield for �a� � = 2, �b� � = 4, �c� � = 8, �d� � = 16,
�e� � = 32, and �f� � = 64.
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Figure 9. Constant Model, source at xs = zs = 0 km. Cross section of
the phase along x = 0 km with �a� � = 2, �b� � = 4, �c� � = 8,
�d� � = 16, �e� � = 32, and �f� � = 64. The solid lines are the
asymptotic ray theory solution; the circles are the computed solution
using the proposed Gaussian beam approach.

SM70 Leung et al.



wavelength � = 2/� = 1 � 32; thus, the number of waves from z

= 0 to z = 2 is roughly 64. Because we have 256 mesh points along

the z direction, there are roughly 4 mesh points per wavelength,

which is almost optimal �see Figure 7f�.

Figure 11 shows that the Gaussian beam solution might not be ac-

curate if one chooses the summation window of the beam that is too

narrow; here, the half width of the window is 3�x.

Waveguide model

The velocity function is

v�z,x� = 3 − 2.5 exp�− 0.5x2� . �63�

Ray tracing indicates that with appropriate source locations this

model yields cusp-type caustics; traditional ray theory predicts infi-

nite amplitude at caustics, whereas Gaussian beam theory predicts

finite amplitude there. Therefore, we use this model to test the validi-

ty of Gaussian beam theory.

Figures 12 and 13 show the time harmonic wavefields excited at

different sources with respect to different frequencies. As we can

see, the wavefields become more concentrated as the frequency in-

creases. At the same time, at caustics the wavefield stays finite, as it

should. Figure 14 indicates that inside the cusp the wavefield be-

comes stronger.
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Figure 10. Constant Model, source at xs = zs = 0 km. Cross section
of the phase along z = 2 km with �a� � = 2, �b� � = 4, �c� �
= 8, �d� � = 16, �e� � = 32, and �f� � = 64. The solid lines
are the asymptotic ray theory solution; the circles are the computed
solution using the proposed Gaussian beam approach.
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Figure 11. Constant Model, source at xs = zs = 0 km and 
i = 3�x.

Cross sections of Re�U� along x = 0 km for �a� � = 2, �b� � = 4,
�c� � = 8, �d� � = 16, �e� � = 32, and �f� � = 64. The solid
lines are the asymptotic ray theory solution; the dashed curves are
the computed solution using the proposed Gaussian beam approach.
One can compare with Figure 7 to conclude that the accuracy in the
solution depends on the summation window width of the Gaussian
beam.
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Figure 12. Waveguide Model, source at xs = zs = 0 km. The real part
of the wavefield using �a� � = 4, �b� � = 8, �c� � = 16, and �d�
� = 32.
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CONCLUSIONS

The traditional Gaussian beam summation method is based on La-

grangian ray tracing and local ray-centered coordinates. We propose

a new Eulerian formulation of Gaussian beam theory which adopts

global Cartesian coordinates, level sets, and Liouville equations,

yielding uniformly distributed Eulerian traveltimes and amplitudes

in phase space simultaneously for multiple sources. The time har-

monic wavefield can be constructed by summing up Gaussian beams

with ingredients provided by the new Eulerian formulation. Numeri-

cal experiments indicate that the Gaussian beam summation method

yields accurate asymptotic wavefields even at caustics.

The conventional Gaussian beam summation method can be de-

rived from the proposed method. The new method offers three ad-

vantages: uniform resolution of ray distribution, so that the Gaussian

beam summation will have uniform resolution as well; the ability to

obtain wavefields excited at different sources by varying only source

locations in the summation formula; and the ability to obtain wave-

fields excited at different frequencies by varying only frequencies in

the summation formula.

In future work, we will systematically compare our new method

to the traditional Gaussian beam summation method and develop

Gaussian beam migration methods based on this new formulation.

LIST OF SYMBOLS

n � the dimension of the full

space of x̃

n̄ = n − 1 � the dimension of the

horizontal coordinates x

x̃ = �z,x1, . . . ,xn̄� = �z,x� � full position vector

z � special �depth� coordinate

r = 	z2 + x2 � radial coordinate


�0 � parameter related to beam

width

a = 1 + i
v0r � recurring combination

introduced for brevity

x = �x1, . . . ,xn̄� � other �horizontal� coordinates

X�z,xs,�s� � value of x along the x	-ray

through �0,xs,�s�
X�0��z,x,�� � initial value of x at z = 0 for

the x	-ray through �z,x,��
p = �p1, . . . ,pn̄� = �� � horizontal slowness

P�z,xs,�s� � value of p along the x	-ray

through �0,xs,�s�
p̃ = �p0,p1, . . . ,pn̄� = �p0,p� = �̃� � full slowness vector

t̃ = �t0,t1, . . . ,tn̄� = p̃/�p̃� = vp � unit tangent to the ray, also

ray direction

t = �t1, . . . ,tn̄� � horizontal components of t̃

t0 = cos � = 	1 − t1
2 − . . .− tn̄

2 = 	1 − t2 � � is angle between slowness

and z-direction

� = t/t0 = p/p0 � horizontal direction

parameters

N�z,xs,�s� � value of � along the x	-ray

through �0,xs,�s�
N�0��z,x,�� � initial value for z = 0 of � for

the x	-ray through �z,x,��
� = ��1, . . . ,�n̄� � right cross-sectional

parameters of a beam

�̃ = �1,�� = �	0,	1, . . . ,	n̄� � full direction parameter vector

� = 	1 + �2 = 1/cos � � reciprocal direction cosine

� = ��x
1
, . . . ,�x

n̄
� � horizontal gradient

�̃ = ��x
0
,�x

1
, . . . ,�x

n̄
� � full gradient

� � travel time

T�z,xs,�s� � value of � along the x	-ray

through �0,xs,�s�
T�z,x,�� � value of � for the x	-ray

through �z,x,��
� � frequency

i�� � phase

C�z,xs,�s� = �x/�� � variation of ray position

along the x	-ray through

�0,xs,�s�
C�z,x,�� = �x/�� � variation of ray position

along the x	-ray through

�z,x,��
B�z,xs,�s� = �p/�� � variation of ray slowness

along the x	-ray through

�0,xs,�s�
B�z,x,�� = �p/�� � variation of ray slowness

along the x	-ray through

�z,x,��
M = BC−1 = �p/�x = � xx � second horizontal derivatives

of traveltime
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Figure 13. Waveguide Model, source at xs = 0.5 km and zs = 0 km.
The real part of the wavefield using �a� � = 4, �b� � = 8, �c� �
= 16, and �d� � = 32.
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Figure 14. Waveguide Model, � = 8. The real part of the wavefield
overlaid with rays. �a� Source at xs = 0 km and zs = 0 km. �b�
Source at xs = 0.5 km and zs = 0 km.
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Q� =
��T

�2 , � projection onto the vector �

in Rn̄

Q� = I − Q� � projection onto the plane

orthogonal to � in Rn̄
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APPENDIX A

THE SECOND DERIVATIVE OF

TRAVELTIME AND AMPLITUDE

The second derivative of traveltime

Lemma Under the above assumptions, detC�z;xs,ts���0 for any

z, and Im�BC−1� is real, symmetric, positive definite for all z.

Proof We use the same technique as in Tanushev et al. �2007� to

prove this lemma. Let �B1�z�,C1�z�� and �B2�z�,C2�z�� be two solu-

tions of the DRT system with different initial conditions along the

same ray trajectory defined by the ray tracing system. Then the fol-

lowing Wronskian function

W�z� = C1�z�TB2�z� − B1�z�TC2�z� �A-1�

is constant along the ray; this is established by differentiating W�z�
in z. In what follows, we use the superscript�T� to denote the transpose

of a matrix, an overbar �—� to denote the complex conjugate, and �†�

to denote the conjugate transpose.

Now suppose that C�z�v = 0 for some z and some nonzero vector

v. Then applying the Wronskian identity to the two solutions,

�B�z�,C�z�� and �B�z�,C�z��, we have

0 = v
†�C�z�†B�z� − B�z�†C�z��v = v

†�C�0�†B�0�

− B�0�†C�0��v = 2i
v
†Nsv � 0, �A-2�

because 
 is positive and Ns = I + ��T is real, symmetric, and posi-

tive definite. Thus, we have a contradiction. Therefore, C�z� is nons-

ingular, and we may form M�z� = B�z�C�z�−1. Now let us verify that

M�z� = B�z�C�z�−1 is symmetric. But C�0� = Q� + �Q� and B�0�
= i
�Q� + �1/��Q�� are both symmetric and commute with each

other, so by applying the Wronskian identity to �B,C� and itself, we

get

0 = C�0�TB�0� − B�0�TC�0� = C�z�TB�z� − B�z�TC�z�

= C�z�T�M�z� − M�z�T�C�z� . �A-3�

Hence, because C�z� is nonsingular, M�z� is �complex� symmetric.

Next notice that C�0�†B�0� = i
I, so that

2i
C�z�−†IC�z�−1 = C�z�−†�C�0�†B�0� − B�0�†C�0��C�z�−1,

=C�z�−†�C�z�†B�z� − B�z�†C�z��C�z�−1,

=�M�z� − M�z�†� = 2i ImM�z�� . �A-4�

Therefore, comparing the first and last members of this string of

equalities, we see that ImM�z�� = ImBC−1� is positive definite be-

cause 
C�z�−†NsC�z�−1 is, the eigenvalues of the real symmetric ma-

trix ImM�0�� being 1 and 1/�1 + �2�.

Transport of amplitude

We have the following transport equation for amplitude A

= A�z,x;xs,�s�, which represents energy flux conservation along

tubes of rays:

�̃ · �A2
�̃� � = 0. �A-5�

It can be rewritten as

�

�z
�log A�� z +

�

�x1

�log A�� x1
+ . . . +

�

�xn̄

�log A�� n̄

+
1

2
�� zz + � x1x1

+ . . . + � xn̄xn̄
� = 0, �A-6�

which also is almost immediate from equation A-10. Thus, along a

paraxial ray, i.e., one for which � z �0, we have

�

�z
�log A� + �

T
� log A +

1

2� z

�� zz + �
2� � = 0,

d

dz
�log A� +

1

2� z

�� zz + �
2� � = 0. �A-7�

To obtain the expression for � zz + �2� along a ray, we integrate the

left side of equation A-7 over the volume contained by the ray tube

between z� = 0 and z� = z. Applying the divergence theorem, we

have

�
0

z

�
S�z��

�� zz + �
2� �dSdz� = �

S�z��
�̃� · �ndS�0

z

= �
S�z��

�� zdS�0
z

= �
S�z��

cos �

v

�dS�0
z , �A-8�

where � is the angle between the ray and the z-axis.

Thus, letting S be an infinitesimal element of area cut out by the

tube of rays on the plane z = constant, we have

�
S�z��

�� zz + �
2� �dS =

d

dz
�

S�z��

cos �

v

�dS�0
z ,

� zz + �
2� =

1

S

d

dz
�St0

v

� , �A-9�

where t0 = cos �. Substituting equation A-9 into the transport equa-

tion A-7, along a ray we have

d

dz
�log A2� +

v

St0

d

dz
�St0

v

� = 0,

A2St0

v

= Constant �A-10�

But detC� = S, and so we have
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A�z;xs,ts� = 	v�z,X�z;xs,ts��ts,0 detC�0;xs,ts��
v�0,xs�t0�z;xs,ts�detC�z;xs,ts��

, �A-11�

which is nonzero everywhere. Here, we have normalized A�0� to 1.

Recall that ts,0 detC�0;xs,ts�� is the differential area of a right cross

section of the tube of rays at the source. We shall assume it is inde-

pendent of xs and of �s.

APPENDIX B

THE FACTOR �0

We have the ray tracing system for the constant velocity case, i.e.,

v�z,x� = v0,

dX

dz
�z� = Ẋ�z� = Hp =

p

	 1

v0
2 − p2

=
t

t0

= �, �X�z = 0 = xs;

dp

dz
�z� = ṗ�z� =

ṫ�z�
v0

= 0; �B-1�

dT

dz
�z� = Ṫ�z� =

1

vt0

=
�

v

, �T�z = 0 = � 0�xs�; �B-2�

The dynamic ray tracing system is given by

dB

dz
= 0 ,

dC

dz
= v0���Q� + �2Q���B , �B-3�

with the initial conditions

�B�z = 0 = i
�Q� +
1

�
Q�� �C�z = 0 = Q� + �Q� . �B-4�

Solving these two systems, we have

x�z� = xs + z�, t = ts, � �z� =
z�

v0

=
r

v0

B�z� = i
�Q� +
1

�
Q�� , C�z� = a�Q� + �Q�� , �B-5�

where we have written

r = z�, and a = 1 + i
v0r . �B-6�

We note that

B�z�C�z�−1 =
i


a
�Q� +

1

�2
Q�� . �B-7�

For x near the point xs + z� on the central ray parameterized by xs, ts,

we have

T�z,x;xs,ts� =
z�

v0

+
1

v0�
�

T�x − xs − z�� +
i


2a
�x − xs

− z��T�Q� +
1

�2
Q���x − xs − z�� . �B-8�

From equation 25 the wavefield resulting from the beam through

�xs,ts� is

��z,x;xs,ts� =
�0

	t0�z�detC�z��
exp�i�T�z,x;xs,ts�� , �B-9�

where the velocities have canceled because v = v0 = constant and

	t0 detC� = an̄/2. �B-10�

Integrating all the beams for t̃ = �t0,t� on the hemisphere t0 �0

using 	1, . . . ,	n̄ as variables of integration, we have

��z,x;xs� = �
−�

�

. . . �
−�

�

��z,x;xs,��
d	1 . . . d	n̄

�n
. �B-11�

Here,

d	1 . . . d	n̄

�n
�B-12�

is the differential element of solid angle. The integrand is seen from

equation B-9 to have the form

��z,x;xs,�� � g�z,x;xs,��exp�i�T�z,x;xs,��� , �B-13�

where

g�z,x;xs,�� =
�0

an̄/2�n
. �B-14�

To apply the multidimensional saddle point method, we need the

following quantities evaluated at the stationary point � = x/z:

g0 = �g�z,x;xs,����=�x−xs�/z
=

�0

an̄/2�n
,

T0 = �T�z,x;xs,����=�x−xs�/z
=

r

v0

,

T0,� = �T��z,x;xs,����=�x−xs�/z
= 0 ,

T0,�� = �T���z,x;xs,����=�x−xs�/z
= −

r

v0a�2
Q�

−
r

v0�4a
Q� ,

so that detT0,��� = � − r

v0a
�n̄ 1

�2n
, �B-15�

as we see from equation B-8 on differentiating with respect to

	1, . . . ,	n̄ holding z,x,xs fixed. Thus, the stationary point is � = �x
− xs�/z, and by the stationary phase method, we have asymptotically

for large �

��x,z� � �2

�
�n̄/2 g0

	detT0,���
exp�i�T0�exp�−

in̄

4
�

= �0�2v0

�r
�n−1/2

exp�i��r

v0

−
�n − 1�

4
�� .

�B-16�

We require that ��x,z� match with the large argument asymptot-

ics of the Green’s function �seeAppendix C�

SM74 Leung et al.



i

4
� �

2v0r
�n/2 − 1

Hn/2−1
�1� ��r

v0

�
�

i

4
� �

2v0

�n − 3/2� 1

r
�n − 1/2

exp�i��r

v0

−
�n − 1�

4
�� .

�B-17�

Hence, we get

�0 =
i

4
� �

2v0

�n − 2

. �B-18�

Thus, we have

�0 = �
i

4
for n = 2,

i�

82
v0

for n = 3 � . �B-19�

Thus, from equations 25 and B-18 we have �:

��z,x;xs,�s�

�
i

4
� �

2v�0,xs�
�n − 2	 v�z,x�

v�0,xs�t0�z�detC�z��

�exp�i�T�z,x;xs,ts�� . �B-20�

APPENDIX C

THE CONSTANT �0 AND THE CONSTANT

VELOCITY GREEN’S FUNCTION

It is easily confirmed that

Gn�r� =
i

4
� �

2v0r
�n/2 − 1

Hn/2−1
�1� ��r

v0

� �C-1�

satisfies the Helmholtz equation,

�̃
2Gn +

�2

v0
2

Gn = 0, �C-2�

except possibly at the origin. We shall verify that

�̃
2Gn +

�2

v0
2

Gn = − 	�x̃� , �C-3�

where 	̃�x̃� is the n-dimensional Dirac delta function

	̃�x̃� = ��z���x1� . . . ��xn̄� . �C-4�

We first consider the integral of �̃2Gn + �2/v0
2Gn over the interior

Vr of a small sphere Sr of radius r and centered at the origin. By ap-

plying the divergence theorem to the first term, we obtain

�
Vr

�̃
2Gn +

�2

v0
2

GndV = �
Sr

dGn

dr
dA + �

Vr

�2

v0
2 GndV , �C-5�

where Vr, Sr, dV, and dA are respectively the n-dimensional volume

interior to the sphere Sr, its n̄-dimensional surface, the differential

volume element in Vr, and the differential area element on Sr. We

shall let r tend to zero, but first we need to study the asymptotic form

of GN�r� as r→0. We find from Abramowitz and Stegun �1965�, for-

mulas 9.1.8 and 9.1.9, that

H0
�1���r

v0

� �
2i


log�r� ,

Hn/2 − 1
�1� ��r

v0

� � −
i


��n

2
− 1��2v0

�r
�n/2 − 1

�C-6�

Thus,

G2�r� � −
1

2
log�r�, Gn�r� �

��n

2
− 1�

4

1

n/2 − 1rn − 2
,

�C-7�

with derivative

dGn

dr
� −

�n

2
− 1�!

2

1

n/2 − 1rn − 1
�C-8�

as r→0 and is true also for n = 2. But the surface area of Sr is

2n/2rn − 1/�n/2 − 1�! and so as r→0 the first integral on the right of

equation C-5 tends to –1, and the second integral tends to zero. This

verifies equation C-3.

Let us now examine the large argument asymptotic approxima-

tion to Gn�r�. Using Abramowitz and Stegun �1965� formula 9.2.3

Hn/2 − 1
�1� ��r

v0

� �	 2v0

�r
exp�i��r

v0

−
�n − 1�

4
�� , �C-9�

we find that as r→�

Gn�r� � −
1

4
� �

2v0

�n − 3/2� 1

r
�n − 1/2

�exp�i��r

v0

−
�n + 1�

4
�� . �C-10�

APPENDIX D

THE STORMER/VERLET SCHEME

Consider the following Hamiltonian system

dp

dt
= −�qH�p,q� ,

dq

dt
= �pH�p,q� , �D-1�

where H�p,q� is a smooth function defined on an open set �
Rd�d,

with the initial conditions p�t = 0� = p0 and q�t = 0� = q0. To

achieve a higher order of accuracy, we consider the following

Stormer/Verlet scheme �Hairer et al., 2002�:

qn + 1/2 = qn +
�t

2
�pH�pn,qn + 1/2� �D-2�
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pn + 1 = pn −
�t

2
��qH�pn,qn + 1/2� + �pH�pn + 1,qn + 1/2��

�D-3�

qn + 1 = qn + 1/2 +
�t

2
�pH�pn + 1,qn + 1/2� . �D-4�

Here, equation D-4 is explicit, but equation D-2 and D-3 are im-

plicit in both pn + 1 and qn + 1/2. Numerically, we solve them using

Newton’s method with a forward Euler step as the initial guess

�p̃n + 1, q̃n + 1/2�, i.e.,

p̃n + 1 = pn − �t�qH�pn,qn� , q̃n + 1/2 = qn +
�t

2
�pH�pn,qn� .

�D-5�

This numerical method is second-order accurate, very simple to im-

plement, and also preserves the symplectic structure.
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