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Eulerian Method for Multiphase
Interactions of Soft Solid
Bodies in Fluids
We introduce an Eulerian approach for problems involving one or more soft solids
immersed in a fluid, which permits mechanical interactions between all phases. The refer-
ence map variable is exploited to simulate finite-deformation constitutive relations in the
solid(s) on the same fixed grid as the fluid phase, which greatly simplifies the coupling
between phases. Our coupling procedure, a key contribution in the current work, is
shown to be computationally faster and more stable than an earlier approach and admits
the ability to simulate both fluid–solid and solid–solid interaction between submerged
bodies. The interface treatment is demonstrated with multiple examples involving a
weakly compressible Navier–Stokes fluid interacting with a neo-Hookean solid, and we
verify the method’s convergence. The solid contact method, which exploits distance-
measures already existing on the grid, is demonstrated with two examples. A new, gen-
eral routine for cross-interface extrapolation is introduced and used as part of the new
interfacial treatment. [DOI: 10.1115/1.4029765]

1 Introduction

The challenges of simulating fluid–structure interaction (FSI)
have been approached from many directions. One set of chal-
lenges stem from domain discretization: fluid problems on their
own are amenable to solution on an Eulerian computational
domain [1–5] and solid deformation is natural to compute within a
Lagrangian framework [6–9]. To couple solid and fluid phases in
one setting, several approaches have been proposed to mitigate
this separation in methodology. One approach is to treat the solid
with a standard Lagrangian finite-element framework and to apply
an Arbitrary-Lagrange Eulerian method in the fluid [10–12],
which remeshes the fluid domain in order to remedy issues of
excessive mesh deformation. Other approaches include the family
of immersed methods [10,11,13], which keep an ambient station-
ary Eulerian grid throughout, on which fluid flow is solved, as
well as a moving collection of interacting material points repre-
senting the solid structure. Here, discretized delta functions are
used to pass information between the grid and the nodes.

Some advantages of a fully Eulerian method—fluid and solid
both computed on an Eulerian grid—can be directly seen. Since
all phases are solved by sweeping through a single fixed mesh,
there are computation time advantages. Topological changes are
easy to manage on a fixed grid using level sets to track interfaces
[4,14]. Furthermore, multiscale and multiphysics coupling can
also have advantages when done on an Eulerian grid. One specific
example, which will be discussed in more detail later, is the case
of multiple solids making contact immersed in a fluid. Finding
contact between two solid phases on an Eulerian grid can be
achieved using gridwise distance functions or simply identifying
grid points which become occupied by multiple solid phases
during a trial step.

To achieve these goals, one must pose an Eulerian scheme ca-
pable of solving finite-deformation solid problems. The recently
proposed reference map technique (RMT) is such an Eulerian
framework, based on tracking the reference map field [15,16].
Other approaches for solid deformation on a fixed Eulerian grid
include hypoelastic implementations [17,18], which may succeed
for small elastic strains but lack a thermodynamically consistent
form as needed for large deformations, and methods that directly
evolve the deformation gradient tensor field as the primitive kine-
matic grid variable [19,20,21]. In a previous paper [16], the RMT
demonstrated the capability of accurately solving hyperelastic
solid deformation problems on a fixed mesh—including shock
propagation problems and problems with varied boundary and ini-
tial conditions—up to second-order accuracy in space and time. It
also provided the first demonstrations of using the method to solve
fully coupled problems of FSI. There, the FSI method hinged on a
sharp-interface representation, extending on that of the Ghost
Fluid Method for fluid–fluid interaction [22]. Sharp methods make
a distinct separation between each phase down to the subgrid
level. In the current work, our efforts exploit a blurred interface, a
simpler and computationally faster implementation, involving
fewer numerical extrapolations. A blurred interface method uses a
thin transition zone where one phase converts into the other. As
the grid size decreases, the corresponding transition zone
decreases, and results approach that of a sharp interface method.
Here, we show that the blurred interface approach has advantages
over the sharp, most important of which is the ability to represent
key mechanical behaviors such as submerged solid–solid contact.

To satisfy subgrid jump conditions, sharp interface methods
require a large number of gridwise extrapolations of kinematic
and stress fields across the interface. These produce the “ghost
values” for each phase, which represent an extension of each field
into the region occupied by the other phase(s). The validity of a
sharp interface method is limited by the quality of continued and
progressive extrapolation. When used in the FSI method of the
previous work [16], accrued extrapolation error can have a desta-
bilizing effect—shots of pressure along the interface may errone-
ously appear when the interface crosses through grid cell
boundaries, in response to the sampling of extrapolated values
when new points enter the solid domain. Adding significant solid
dissipation or surface tension can penalize these artifacts, but this
can alter the physicality of the simulation. We have found that
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errors of this type often produce routine-ending numerical insta-
bilities, posing a serious implementational issue. By contrast, in
fluid–fluid interaction methods, this effect is less important due to
the natural viscous damping within all phases.

By switching the interfacial treatment to a blurred method, we
present a compromise wherein we move away from the subgrid
interfacial representation of a sharp technique in order to achieve
a faster, simpler, and more stable method. Existing fluid–fluid
blurred techniques [23,24] do not require any extrapolation. In the
case of a fluid–solid problem as shown herein, using only one
extrapolation—that of the reference map (described in more detail
in Sec. 2.1)—we are able to simulate FSI with a hyperelastic solid
body on a single fixed grid using a single velocity field for the
whole computational domain. In addition, jump conditions do not
need to be explicitly applied but are implicitly met inside the tran-
sition zone. Moreover, as discussed in Sec. 7, the fact that the
method uses one universal velocity field valid for all phases per-
mits a straightforward approach for simulating multibody contact
of solids submerged in a fluid, a new capability for multiphase
RMT simulation.

This paper proceeds as follows. We first review the fundamen-
tal relations of each phase. The RMT methodology is then
described, and we present the selected stencils for our finite differ-
ences. Next, we define the transition zone and how the fields are
appropriately mixed within its band of influence. We then discuss
a number of FSI test results and the convergence of the method.
An important ingredient in our scheme is a new spatial extrapola-
tion procedure that enforces certain physical and smoothness
requirements in the field extrapolation. This is presented and
shown to remedy deleterious extrapolation artifacts near the inter-
face that can occur otherwise. We then describe how the routine
can be appended with a solid–solid contact subroutine by taking
advantage of the signed distance-measures inherent within the
existing level set fields used in distinguishing the interfaces. Two
examples are provided of submerged solid–solid contact.

2 Theory

2.1 Eulerian-Frame Solid and Fluid Formulations. We
first provide a brief review of the Eulerian formulation for solid
simulation on which the RMT is based; details can be found in
Ref. [16]. The motion function v is defined as the time-dependent
map from points X in the reference configuration to their current
position x in the deformed configuration; i.e., x ¼ vðX; tÞ. We
define the spatial velocity field, v¼ v(x, t), the material density,
q¼ q(x, t), and Cauchy stress, r ¼ rðx; tÞ. In Eulerian-frame, the
conservation of mass and momentum in strong form (when defor-
mations remain smooth) are

qt ¼ �v � rq� qr � v (1)

and

vt ¼ �ðv � rÞvþ
r � rþ qg

q
(2)

respectively, where g is the acceleration due to gravity, r is the
gradient operator in the deformed space and r� is the spatial
divergence operator. The motion function permits us to define the
deformation gradient as

FðX; tÞ ¼
@vðX; tÞ

@X
(3)

We define the reference map nðx; tÞ, an Eulerian field, as the
inverse motion, so that

X ¼ nðx; tÞ ¼ v�1ðx; tÞ (4)

Because the reference map indicates the original location of a par-
ticle, the reference map for a tracer particle never changes, giving
us an advective evolution law

nt þ v � rn ¼ 0 (5)

In the case where the initial configuration is undeformed (i.e., no
prestrain), the initial condition for the reference map is

nðx; t ¼ 0Þ ¼ x ¼ X (6)

Using the chain rule, it can then be shown that the deformation
gradient F is

Fðnðx; tÞ; tÞ ¼ ðrnðx; tÞÞ�1
(7)

and as such we can express the density in terms of the reference
map and the original density, q0, by

q ¼
q0

detF
¼ q0 detrn (8)

Consider a solid body. Because the deformation gradient tensor
is describable in terms of the reference map, we are thus capable
of modeling the constitutive response of large-deformation, ther-
modynamically compatible solid laws in Eulerian frame. For
example, given the reference map field corresponding to the de-
formation of an isotropic hyperelastic material with strain-energy
density per reference volume wR, the stress is given by

r ¼ 2ðdetFÞ�1@ŵRðBÞ

@B
B

�

�

�

�

�

F¼ðrnÞ�1 ;B�ðrnÞ�1ðrnÞ�T

(9)

where B is the left Cauchy–Green tensor and the ^ indicates a con-
stitutive function. The specific model applied in this work will be
a compressible neo-Hookean elastic solid model, where the strain-
energy density per reference volume is

wR ¼
G

2
ðJ�

2
3trB� 3Þ þ

j

2
ðJ � 1Þ2 (10)

and the Cauchy stress is

r ¼ GJ�5=3B0 þ jðJ � 1Þ1 (11)

where J ¼ detF and a prime indicates the deviatoric part of a ten-
sor. Equations (2), (5), and (7)–(9) are a closed Eulerian system
for computing solid deformations. As described in Ref. [16], this
system of equations can be recast in conservative form and imple-
mented numerically in a discrete conservation scheme should non-
smooth solutions be expected.

Considering a fluid, the same equations of mass and momentum
balance are valid but the constitutive law for the stress is different
and no reference map is needed. In this work, we choose a weakly
compressible viscous flow relation for fluid stress

r ¼ g
rvþ ðrvÞT

2
� k

q

q0
� 1

� �

1 (12)

where g is the viscosity and k is the compressibility modulus.
In the continuum limit, Eqs. (1) and (8) give identical results.

For later purposes of accurate discretization, it is preferable to
implement Eq. (1) when computing fluid density, since Eq. (8)
would require keeping a reference map field in a fluid, which
would quickly lose accuracy due to the levels of distortion and
mixing in the fluid. However, Eq. (8) is preferable in a solid as it
ensures consistency between the deformation and the density.
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Since we will soon consider coupled fluid–solid problems, it is
helpful to distinguish between stresses and densities obtained
from the different formulae. The solid stress and density have an
“s” superscript, so that

rs ¼ GJ�5=3B0 þ jðJ � 1Þ1; qs ¼ qs0 detrn (13)

and the fluid stress and density have an “f” superscript, so that

rf ¼ g
rvþ ðrvÞT

2
� k

qf

q
f
0

� 1

 !

1;

q
f
t ¼ �v � rqf � qfr � v (14)

2.2 The Computational Domain. The computations are car-
ried out on a two-dimensional m� n grid of square cells with side
length h, using plane strain conditions. The interface between the
fluid and solid phases is described using the level set method
[4,25], whereby an auxiliary Eulerian function /ðx; tÞ is intro-
duced such that the interface is given by the zero contour, / ¼ 0.
At the start of each simulation step, the level set function is initial-
ized to be the signed distance to the interface, using the conven-
tion that / < 0 inside the solid region and / > 0 in the fluid
region. While there are a number of different numerical
approaches for the level set method, we make use of the specific
implementation described by Rycroft and Gibou [18]. The imple-
mentation contains a procedure for reinitializing the level set
function so that it is a signed distance function to the zero contour,
using a combination of the modified Newton–Rapshon iteration of
Chopp [26] to update values of / adjacent to the interface, and a
second-order fast marching method [4] to update values further
away.

Because we develop a blurred interface technique, we introduce
a transition zone corresponding to the region where j/j < wT,
where wT is a constant (Fig. 1). As described in detail later, the
material response in the transition zone is modeled as a mixture of
fluid and solid phases. The region 0 < / < wT is more fluid than
solid, and the region wT < / < 0 is more solid than fluid. For a
positive constant wE such that wE>wT, we define the extended
solid domain to be the region / < wE, which corresponds to a
region with any fraction of solid response together with a thin
band of points adjacent to the transition zone. For computational
efficiency, our level set method implementation only stores and
updates the values of / in a narrow band of grid points within a
distance 6wE of the interface.

Figure 1 shows the discretization of the simulation fields. Based
on considerations of the finite-difference stencils presented later, a

staggered field arrangement is used. Some fields are held at cell
corners, which are indexed using i, j for i¼ 0,…, m and j¼ 0,…,
n. Some fields are held at cell centers, which are indexed using
[i, j] for i¼ 0,…, m� 1 and j¼ 0,…, n� 1. The level set function
/, velocity field v, fluid density qf, and combined density q are
stored globally at cell corners in both the fluid and solid domains.
The fluid stress is stored at globally at cell centers. In addition, in
the extended solid domain, the reference map field n is stored at
cell corners, and the solid stress rs and density qs are stored at cell
centers.

3 Outline of the Method

We now describe the progression of the blurred interface
method. Starting at a time step n, the algorithm builds the kine-
matic fields for the next step nþ 1. The stress fields are calculated
at every time step as a midstep calculation. The algorithm below
summarizes the major steps of the routine. Details are provided
thereafter.

Algorithm 1 Outline of the blurred interface method for FSI.

Given: vn; nn, qfn, and /n

Compute: vnþ1; nnþ1;qf ðnþ1Þ, and /nþ1

(1) Compute the reference map gradient (Eq. (15)) and use it to calculate
the solid stress rsn in the extended solid domain (Sec. 3.1).

(2) Compute the velocity gradient and use it with qfn to compute the fluid
stress rfn in the entire domain (Eq. (12)).

(3) Apply mixing rule to fluid/solid stress and fluid/solid density
(Sec. 3.2) to obtain the actual stress field rn and density qn in
the entire domain.

(4) Calculate the update to reference map (Eq. (20)) in the region /n < 0.
(5) Move the level set field to /nþ1 (Sec. 6).
(6) Calculate the fluid density update (Eq. (22)) on the entire domain.
(7) Calculate the update to the velocity field (Eq. (21)).
(8) Apply the previously computed updates to obtain nnþ1; vnþ1,

and qf(nþ1).
(9) Set boundary conditions and kinematic constraints.
(10) Extrapolate reference map into the portion of the extended solid

domain where / > 0 to obtain nnþ1 in that region (Sec. 6).

3.1 Finite-Difference Stencils. We employ a tight stencil to
calculate the divergence of stress and the (constitutive input) gra-
dients of n and v as in Fig. 2, with more details on our stencil
selection to be discussed later. The discretized gradient of the ref-
erence map is given by

Fig. 1 (Left) Overview of the simulation in which fluid and solid phases are simulated on a
fixed Eulerian grid. The phases are determined by using a level set field /ðx; tÞ, such that
/< 0 in the solid, /> 0 in the fluid, and / ¼ 0 at the interface. In the numerical method, the
constitutive response between fluid and solid is blurred across a small transition zone,
j/j<wT. (Right) Arrangement of the simulation fields on each grid cell. The level set function
/, fluid density qf, fluid stress rf, combined density q, and velocity v are stored globally on
all grid cells. In addition, the reference map field n, solid stress rs, and qs are stored in the
solid and slightly beyond (see text). As shown in the figure, some fields are stored at cell
corners (blue) indexed by i, j, and some are stored at cell centers (red) indexed by [i, j].
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@n

@x

�

�

�

�

n

½i;j�

¼
nniþ1;j � nni;j

h
;

@n

@y

�

�

�

�

n

½i;j�

¼
nni;jþ1 � nni;j

h
(15)

The discretization of rv is identical to Eq. (15). The discretiza-
tion of divergence of stress, r � r, uses the following stencils for
the stress derivatives:

@r

@x

�

�

�

�

n

i;j

¼
rn½i;j� � rn½i�1;j�

h
;

@r

@y

�

�

�

�

n

i;j

¼
rn½i;j� � rn½i;j�1�

h
(16)

In the extended solid domain, rs and qs are computed directly
from the above calculated reference map gradient as applied to
Eq. (13). For example,

Bn
½i;j� ¼ ðrnn½i;j�Þ

�1ðrnn½i;j�Þ
�T

(17)

and Jn½i;j� ¼ ðdetrnn½i;j�Þ
�1

would be applied to create rsn½i;j� and qsn½i;j�.

When put together, the divergence of the solid stress at i, j is cal-
culated from nearby values of n at i, j, at i� 1, j, at iþ 1, j, at i,
j� 1, at i, jþ 1, at i� 1, jþ 1, and at iþ 1, j� 1.

In computing fluid stress, the nonviscous fluid pressure is calcu-
lated as2

p
fn

½i;j� ¼ k
q
fn
i;j

q
f
0

� 1

 !

(18)

The fluid stress tensor is then given by

r
fn

½i;j� ¼ g
rvn½i;j� þ ðrvÞnT½i;j�

2
� p

fn

½i;j�1 (19)

where the discretization of rv uses the same stencil as in
Eq. (15).

Now we discuss the stencil for the fields that are updated each
step. The reference map is updated using Eq. (5), which is discre-
tized to

nnþ1
i;j ¼ nni;j � Dt ðv � rÞn½ �ni;j (20)

where the advection term ðv � rÞn is calculated using a second-
order, upwinded essentially nonoscillatory (ENO) discretization
[18,27] for stability. The update to velocity is given by

vnþ1
i;j ¼ vni;j þ Dt � ðv � rÞv½ �ni;jþ

1

qi;j
ðr � rnÞi;j þ f i;j þ qi;jg
� �

 !

(21)

where the divergence of stress is discretized as in Eq. (16) and the
advection term uses the ENO discretization. Unless otherwise
stated, we choose the gravity g to be zero in the results that fol-
low. The above equation permits an additional body force fi,j
which we call upon in Sec. 7. A global damping term ga(r

2v)i,j
with artificial viscosity ga is also permitted as part of fi,j, but we
ensure ga is small in comparison to g so as to minimally affect the
physics. A standard second-order, five-point stencil is used in
computing this Laplacian. The fluid density is updated using

q
f ðnþ1Þ
i;j ¼q

fn
i;jþDt � ðv �rÞqf

� �n

i;j
�q

fn
i;jðr�vÞni;j

� �

;

¼q
fn
i;jþDt � ðv �rÞqf

� �n

i;j
�q

fn
i;j

vniþ1;j�vni;j
h

þ
vni;jþ1�vni;j

h

� �� �

(22)

where the advection term uses the ENO discretization, and the dis-
cretization of the fluid divergence is chosen in a similar manner to
Eq. (15).

3.2 Mixing Quantities in the Transition Zone. We con-
struct a transition field centered about the interface, which deter-
mines the fraction of solidlike behavior (i.e., density and stress) a
point experiences, with the rest being attributed to fluid. This field
defines how one phase cross-fades into the other through the mix-
ing rules defined below. We base our transition field on the
smoothed Heaviside function

HsðxÞ ¼

0 if x � �wT;
1

2
1þ

x

wT

þ
1

p
sin

px

wT

� �

if jxj < wT;

1 if x � wT

8

>

<

>

:

(23)

where wT is the transition zone width that was introduced previ-
ously. The choice of this function is not unique, although the
above has the benefit of smoothly transitioning from exactly zero
to exactly one over a finite interval, and it has been used in other
blurred-interface methods [28,29]. We use the level set function
as the input to the Hs, since it measures the distance from the
interface. We define cell-cornered and cell-centered transition
fields as

X½i;j� ¼ Hsð/½i;j�Þ; Xi;j ¼ Hsð/i;jÞ (24)

Fig. 2 Stencils for (a) the reference map gradient at [i, j] per Eq. (15) and (b) the divergence of
stress at i, j per Eq. (21). The cell-cornered grid is shown as blue circles and the cell-centered
grid is shown as red circles. The indexes of grid points that are used in the stencils are shown
in black, while those that are not used are shown in gray.

2This definition is such that, under Eq. (16), the stencil for divergence of pfn1 at i,
j is given by one-sided differences at i, j.

041011-4 / Vol. 82, APRIL 2015 Transactions of the ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/a

p
p
lie

d
m

e
c
h
a
n
ic

s
/a

rtic
le

-p
d
f/8

2
/4

/0
4
1
0
1
1
/6

0
8
1
4
9
1
/ja

m
_
0
8
2
_
0
4
_
0
4
1
0
1
1
.p

d
f b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



respectively, where /½i;j� is calculated by averaging the four values
on the grid cell corners.

We now have a straightforward way of defining the mixture of
quantities everywhere in our computational domain. For instance,
the stress components become a mixture of the stress obtained
from the solid constitutive law and that of the fluid constitutive
law weighted, respectively, by X and 1�X, so that

r½i;j� ¼ X½i;j�r
s
½i;j� þ ð1� X½i;j�Þr

f

½i;j� (25)

The global density field is defined similarly as

qi;j ¼ Xi;jq
f
i;j þ ð1� X½i;j�Þ

qs½i;j� þ qs½iþ1;j� þ qs½i;jþ1� þ qs½iþ1;jþ1�

4

(26)

where the above uses the average of four values to interpolate qs

onto the cell-cornered grid.
The above mixing procedure models the no slip condition

between fluid and solid. Other interfacial conditions are possible
within this framework, though we have yet to perform extensive
tests on them. For example, perfect slip may be achievable by
applying a shear traction elimination step after the above mixing
is applied, which modifies the stress in the transition zone by
smoothly decreasing the shear traction resolved onto the level set
contours such that shear traction vanishes at / ¼ 0.

3.3 Reference Map Extrapolation. In order to define n and
consequently rs in the portion of the extended solid domain where
/ > 0, great care must be taken. This zone represents a region
whose behavior is more fluid than solid, and, thus, is liable to
undergo extensive shearing and nonlinear deformation. This is
problematic because large nonlinear deformations reduce the accu-
racy of computation of rn necessary to calculate rs, and, more-
over, the solid stress can become unboundedly large as deformation
builds up in this zone, which negates the purpose of the gradual
switch-over to a fluid-dominated stress response in Eq. (25). For
these reasons, we avoid advecting the reference map per Eq. (20) in
this region and instead obtain values for it through extrapolation
from the nearby grid points where / < 0. This constitutes the only
field extrapolation in our current method, and it is recalculated ev-
ery time step. Note that in the velocity update step, only those val-
ues of stress within the transition zone (i.e., very close to the / ¼ 0
contour) influence the outcome, which supports our usage of near-
field extrapolation as an appropriate remedy. Our algorithm for con-
sistent extrapolation is left for a detailed discussion in Sec. 6.

4 Results

The above comprises a general fluid–solid interaction routine
for simulating solids with finite-strain constitutive relations
coupled to a fluid phase that obeys the compressible Navier–
Stokes equations. We now verify the method and its accuracy
using several test geometries, many of which (those of Sec. 4.1)
under the previous sharp-interface approach [16] exhibited inter-
facial errors of the type previously described, even with the inclu-
sion of surface tension and significant solid viscosity. Our current
blurred-interface routine has also reduced the number of extrapo-
lation steps significantly—20 scalar fields are extrapolated per
time step in the sharp-interface approach, but now only the two
components of n are now extrapolated. Unlike the sharp approach,
we do not require a specific routine to ensure interfacial jump con-
ditions as they are implicitly satisfied in the transition zone. These
comments are not to suggest that the numerical interfacial errors
of the sharp approach are irreparable in that framework; it is pos-
sible they could be alleviated in part through integration of our
improved extrapolation algorithm of Sec. 6 among other adjust-
ments, but we reserve this topic for future work.

Throughout this paper, we make use of dimensionless simula-
tion units. In all tests shown, unless otherwise stated, the follow-
ing input material parameters are used. The initial fluid density is

qf0 ¼ 1:0, the viscosity is g¼ 0.12, and the compressibility is

k¼ 60.0. The solid uses G¼ 10 and j¼ 50. The artificial viscosity
is ga¼ 0.012. These parameters match our previous work [16],
though it should be noted the previous work also included a signif-
icant separately added solid viscosity. The predominant Courant–
Friedrichs–Lewy (CFL) criterion is due to the fluid viscosity, which
is proportional to h2qf/2g. The other criteria that need to be consid-

ered are the one due to compressibility of the solid 	h
ffiffiffiffiffiffiffiffiffiffi

qs=j
p

, the

one due to compressibility of the fluid 	h
ffiffiffiffiffiffiffiffiffiffi

qf=k
p

, and the convec-

tive CFL 	h=max jvj. For all of our results, we use a time step of
Dt¼ 0.05h2qf/g, which satisfies the dominant CFL condition for the
fluid viscosity and also satisfies the additional CFL conditions for
all of the grids and parameters that are used. Throughout, we use a
transition zone width of wT¼ 3h and we use wE¼ 6h. The simula-
tions are written in Cþþ and use the OpenMP library to multi-
thread many of the operations that scan over the entire grid of
points.

For all of the simulations presented here, domain boundary con-
ditions are applied by fixing the values of v and qf on the edge of
the cell-cornered grid, where i¼ 0, j¼ 0, i¼m, or j¼ n. We con-
sider two types of boundary conditions: Dirichlet conditions
where the boundary field values are fixed, and free boundary con-
ditions where the boundary field values are linearly extrapolated
from the two adjacent layers of interior points. For example, to
implement a free boundary condition on an arbitrary field fi,j at the
top boundary, we set fi,n¼ 2fi,n� 1� fi,n� 2 for i¼ 0, 1,…, m. Note
that a free condition on the fluid velocity component tangent to a
boundary gives the perfect slip condition.

4.1 Incoming Fluid Deforms Anchored Rubber Rod. The
first example we consider involves a bulky, highly deformable
neo-Hookean rod. The rod is initially vertical and anchored at its
top end. It is placed in a horizontal fluid flow, which causes it to
deform significantly. The domain covers �2� x� 2 and
�2� y� 2 using a square grid of size 240� 240. The bar initially
covers the rectangle �1.4< x< 0.6 and jyj < 1:1 and has semi-
circular end caps. The anchored region is a circle with center
(x, y)¼ (�1, 1.1) and radius ra. During the simulation, the refer-
ence map in the anchored region is enforced to be constant and
the velocity is enforced to be zero. We have simulated two differ-
ent anchor sizes ra¼ 0.25 (Fig. 3) and ra¼ 0.15 (Fig. 4). The fluid
inflow and outflow is controlled by applying a constant horizontal
velocity of (u, v)¼ (0.24, 0) on the left and right sides of the do-
main window. Perfect slip boundary conditions are used on the
top and bottom sides, where v¼ 0, and u and qf are free. In each
simulation, the fluid flow deforms the rod inducing large local
stretches in the solid, with stretch ratios exceeding two in parts of
the bar. In the case of the smaller anchor, the bar is less able to
resist the incoming fluid flow and swivels out of the way to a
greater extent as expected. The simulations each reach a steady
state by t
 20 where the rod remains in a static, bent configura-
tion with steady fluid flow surrounding it. On an Apple MacBook
Pro (Mid 2014) system with a quad-core 2.8 GHz Intel i7 proces-
sor, the simulation using ra¼ 0.25 takes 997 s using 216,090 time
steps using a single thread. If two, three, or four threads are used,
the simulation takes 773 s, 705 s, and 635 s, respectively. Because
this simulation only uses a small grid, the speedup from multi-
threading is only modest, since the overhead from creating threads
is comparable the computational work done each time step. How-
ever, for some of the larger simulation grids considered later,
multithreading becomes significantly more advantageous.

We also used this configuration with ra¼ 0.25 to test the speed
of the simulation method against the previous sharp interface
method [16]. For a benchmark test simulating over the interval
0� t� 2.5 with 3,200 time steps using a single thread, the sharp
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interface method took 94.01 s, while the new method took 53.97 s,
corresponding to a speedup factor of 1.74. These two simulations
were not perfectly comparable, since the memory organization and
boundary implementation are slightly different. However, the

results demonstrate that the present method is significantly faster,
due to the simplification of the finite-difference stencils, a reduction
in the number of simulation fields required, and fewer boundary
extrapolations.

Fig. 3 Four snapshots of the in-plane pressure p � ðrxx þ ryy Þ=2 (colors) and fluid
velocity (arrows) for the simulation of an anchored flexible rod deformed to large strain
by incoming fluid flow. The solid white line shows the boundary of the rod, given by the
zero contour of the level set function /ðx; tÞ. The thin dashed white lines are the con-
tours of the reference map nðx; tÞ. The cyan circle with radius of 0.25 centered at (21,1.1)
shows the anchored region where the reference map is fixed and the velocity is zero.

Fig. 4 Four snapshots of the in-plane pressure field (colors) and fluid velocity (arrows) for the simulation of an anchored flexible rod,
using a smaller anchored region than in Fig. 3. The color gradient is the same as in Fig. 3. The solid white line shows the boundary of the
rod, given by the zero contour of the level set function /ðx; tÞ. The thin dashedwhite lines are the contours of the referencemap nðx; tÞ. The
cyan circlewith radius of 0.15 centered at (21,1.1) shows the anchored regionwhere the referencemap is fixed and the velocity is zero.

041011-6 / Vol. 82, APRIL 2015 Transactions of the ASME
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4.2 Fluid Deforms and Spins a Four-Blade Rotor. The sec-
ond test case we consider involves a rotor of neo-Hookean material
anchored around a frictionless pivot at its center. It is deformed and
ultimately set into steady rotation by incoming fluid. Each blade of
the rotor comprised a rectangle of length 1.1 with a semi-circular
end cap. The join between each pair of blades is smoothed with a
quarter-circle with radius of 0.4. The fluid boundary condition con-
sists of a prescribed fluid inflow of (u, v)¼ (0.2, 0) on the bottom
half of the left edge of the computational domain and an outflow of
(u, v)¼ (0, 0.2) in the top right half edge of the domain; at all other
boundaries, perfect slip boundary conditions are used. The rotor
and fluid have the same material parameters as Sec. 4. This partic-
ular geometry, when implemented under the previous sharp-
interface method, displayed many erroneous pressure shots about

the interface, as the particular shape involved has much curvature
variation. As can be seen from Fig. 5, this artifact is nonexistent
in the current scheme. By t¼ 14, the rotor motion and fluid flow
approach a steady repeating cycle, with each cycle corresponding
to one quarter-turn of the rotor. By the final snapshot in Fig. 5 at
t¼ 250, the rotor has undergone approximately 5:5 complete rota-
tions without any interfacial perturbations. Figure 6 confirms that
the rotor enters a steady repeating cycle, by showing the rotation
angle hp and angular velocity xp of the pivot as a function of
time. Figure 6(c) shows a plot of hp against xp, where after an ini-
tial transient period as the rotor begins to turn, a steady relation-
ship between xp and hp develops, with the angular velocity being
slightly higher during periods when a blade of the rotor is directly
in front of the region of fluid inflow.

Fig. 5 Six snapshots of the in-plane pressure field (colors) and fluid velocity (arrows) for the
simulation of a flexible rotor. The color gradient is the same as in Fig. 3. The green rectangle
on the left edge of the domain shows the region where fluid is added, and the cyan rectangle
on the upper edge of the domain shows where fluid is removed. The solid white line shows
the boundary of the solid, given by the zero contour of the level set function. The thin dashed
white lines are the contours of the reference map n. The cyan circle with radius of 0.3 centered
on the origin shows the pivot, and the small circular dot shows how the pivot has rotated. By
t5 250, the rotor has undergone roughly 5:5 complete rotations.

Fig. 6 Plot of (a) rotation angle hp and (b) angular velocity xp of the pivot as a function of
time t for the flexible rotor simulation shown in Fig. 5. (c) Plot of the relationship between hp
and xp.
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5 Convergence

We measure the convergence of our simulation method by com-
paring solutions of the flexible rotor simulation of Sec. 4.2 as the
grid size is reduced, against the solution in a highly refined case.
This reference solution plays the role that an exact solution would
normally play in such an analysis, but which we do not have given
the complexity of the FSI problems that we wish to verify. We
have carried out simulations on multiple n� n grids, for n¼ 1800,
900, 600, 450, 360, 300, 225, and 200. All simulations use wT¼ 3h,
so that the width of transition zone via Eq. (24) is fixed in terms of
the number of grid spacings. We choose the rotor simulation as a
test case and simulate to t¼ 0.4, which is long enough for there to
be some interaction between the fluid and the solid. At that time,
we then compare the fields of each simulation against the corre-
sponding solution of the 1800� 1800 grid, using the discrete L2

norm. For an arbitrary cell-cornered field f, this is defined as

jjf numerical � f exactjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

42

X

n

i¼0

X

n

j¼0

TiTjjf numerical
i;j � f exacti;j j2h2

v

u

u

t

(27)

where Tk ¼ 1=2 if k¼ 0 or k¼ n and Tk¼ 1 otherwise, so that the

sum calculates the trapezoidal rule. By interpreting the j � j2 opera-
tor appropriately, Eq. (27) can be applied to scalars, vectors, or
tensors. Since the resolution of each smaller grid is an exact multi-
ple of the reference grid, each grid point (i, j) on a smaller grid
exactly coincides with a grid point ði0; j0Þ on the 1800� 1800 grid,
and hence we take f exacti;j ¼ fi0;j0 . For an arbitrary cell-centered field

f, the same definition is used but replacing i, j with [i, j]. In this
case, the smaller grid points may not coincide with the
1800� 1800 grid points, in which case we calculate fexact using
bilinear interpolation. Figure 7 displays the convergence proper-
ties of four key fields. The velocity convergence plot in Fig. 7(a)
compares the velocity fields in the entire domain to that of the

reference solution. For the convergence plots of n in Fig. 7(b), the
sum in Eq. (27) is only evaluated at grid points where / < 0 in
both the smaller grid and the reference grid. The figure indicates
that all fields are converging with at least a linear rate, as we
expect for the chosen stencils.

Figures 7(c) and 7(d) show the convergence of the in-plane
pressure p and the in-plane effective shear stress q ¼ jr1 � r3j=2
where r1 and r3 are, respectively, the maximum and minimum
principal stresses. The norms are split into contributions from
solid and fluid phases, determined by the sign of / on the coarse
grid. In both phases, the stress converges at a similar rate to the
velocity and reference map. For the pressure, the fluid phase has
the larger errors, due to the high value of k. However, for the
effective shear stress, the solid phase has larger errors, suggesting
that errors in solid shear stress are more significant than errors in
fluid viscous stress.

It is interesting to zoom into a region containing the interface
and compare simulations with a coarse grid to a more refined one.
Figure 8 shows a comparison of the pressure fields at t¼ 4 in the
upper right concave part of the rotor with the 200� 200 grid and
the 600� 600 grid. As the grid size decreases, and likewise the
transition zone width, the interfacial behavior approaches that of a
sharp interface; to wit, the pressure field develops a rapid variation
across the interface that approaches a discontinuity. Analytically,
the stress component representing tension in the direction tangent
to the interface need not be continuous across the interface, which
is why the pressure field should adopt this feature in the sharp limit.

6 Improved Extrapolation Procedure

With basic demonstrations in hand, we now return to discuss
the details of our reference map extrapolation step. Physically
consistent extrapolation of n is key to a proper interface represen-
tation, as we shall show. This section highlights two new subrou-
tines we have developed for this purpose.

The extrapolation algorithm we use is based on that of Aslam
[30], which takes advantage of the regularized level set / already

Fig. 7 Log–log plots of the L2 error for the flexible rotor simulation at t5 0.4 as a function of
grid spacing h for (a) velocity v, (b) the reference map n, (c) p as calculated from the mixed
Cauchy stress r, and (d) the effective shear stress q. The circles show the calculated error for
simulations of n3n resolution where n5900, 600, 450, 360, 300, 225, 200 and are compared
against a reference simulation with n5 1800. The dashed lines show linear fits only using
data where h<0.0125.
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stored on the grid. This routine has the benefit of providing lin-
ear extrapolation outside an arbitrary-shaped domain, by extrap-
olating fields in the outward-normal direction to the interface—
the outward normal is obtained easily via n̂ ¼ r/. An immedi-
ate requirement of such a routine is that the gridwise field
being extrapolated be smooth near the edge of its known do-
main. Numerical oscillation error in the known domain, hence,
invalidates the extrapolation procedure. This motivates our use
of one-sided difference stencils in Sec. 3.1, which do not sup-
port odd–even oscillation error. Future work will explore
higher-order, nonoscillatory stencils to achieve this same aim
akin to the usage of staggered grids in computational fluid
dynamics.

While its speed and geometric generality are benefits of the
Aslam method, we and others [18] have noticed that the hyper-
bolic nature of the extrapolation routine can cause extrapolated

fields to develop striations—loss of smoothness in the direction
parallel to the interface—even when the known domain data are
smooth. If uncorrected, striations in the extrapolated values of n
cause oscillations in the corresponding rs, which induce an artifi-
cial wrinkling motion that becomes apparent in the / ¼ 0 level
set (see Fig. 9). This phenomenon destabilizes the routine if the
wrinkle curvature grows to a level that competes with the grid
spacing.

Another important consideration is to ensure agreement
between n and the level set field / with regard to where the inter-
face lies. We remind that the reference map indicates where mate-
rial at a current point originated from. If we define w by
wðx; tÞ ¼ /ðnðx; tÞ; t ¼ 0Þ then a consistency constraint is

wðx; tÞ ¼ 0 , /ðx; tÞ ¼ 0 (28)

Fig. 8 Comparison of the in-plane pressure field in two simulations of the flexible
rotor using different grid resolutions. In the left panel, each square that is visible
corresponds to a grid cell of width h, colored according to the pressure stored at
the cell-centered grid point within the cell. The solid white line shows the boundary
of the rod, given by the zero contour of the level set function. The thin dashed
white lines are the contours of the reference map n. Part of the pivot, shown in
cyan, it just visible in the bottom left corner.

Fig. 9 Three snapshots of the solid stress component rs11 in the solid and the extrapolated region,
for the anchored rod simulation shown in Fig. 4 but where the extrapolation procedure and level
set motion routine of previous work [16] are used instead. The solid white line shows the boundary
of the rod, given by the zero contour of the level set function /ðx; tÞ. The thin dashed white lines
are the contours of the reference map nðx; tÞ. The cyan circle with radius of 0.15 centered at
(21,1.1) shows the anchored region where the reference map is fixed and the velocity is zero.
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We note that satisfaction of the above constraint is equivalent to
ensuring that all material points initially within the solid remain
within the solid.

Because the values of n and / are obtained from different
numerical routines, discretization error can cause the above
constraint to be violated over time. Recall that n is generated on
points with / > 0 solely through linear extrapolation from the
adjacent / < 0 domain, and hence the values of w near the zero
contour of / are not more than first-order accurate. The compari-
son between them in Fig. 10 is indicative that a drift between w
and / grows after the onset of the previously described wrinkling
artifact. This in turn causes persistence of the wrinkled shape,
because some material that began on the solid side of the / ¼ 0
interface is falsely assigned as fluid, which permits the wrinkles to
sustain themselves over time without the elastic response correct-
ing their shape. This calls for a routine to ensure the physical
requirement that the zero contours of / and w satisfy Eq. (28),
i.e., remain “pinned,” to ensure that solid stays solid and fluid
stays fluid. One could argue at this moment that / is a redundant
field, in that w could operate just as well on its own at discerning
phases. However, we recall that / also gives a measure of dis-
tance, as its gradient always has magnitude 1. This feature is
exploited in the Aslam extrapolation scheme and is needed for the
solid–solid contact algorithm of Sec. 6.

We now describe two midstep subroutines, which are applied
after an initial Aslam extrapolation of n and successfully resolve
the interfacial wrinkling, phase exchange error, and instabilities
relating to these two phenomena. The need to appropriately pin
the reference map extrapolation field and the level set field was
pointed out previously [16] but a general and accurate pinning
technique was not employed in that work. Artificial surface ten-
sion, projection of the extrapolated reference map field, and solid
damping were used to reduce the appearance of these problems in
that work.

The first step in our procedure is to remove artificial striations
in the extrapolated values, see Algorithm 2. It is a general algo-
rithm that can be applied to reduce fluctuations in an arbitrary
extrapolated field f. In the FSI routine, it is applied separately to
nx and ny. The fields on the solid side of the interface are never
affected; only the extrapolated values within the fluid domain are
adjusted. The algorithm consecutively applies a diffusion stencil
to improve the extrapolated values. The edge of the solid domain
is sampled by the diffusion stencil and hence the resulting extrap-
olation is both smooth within the fluid domain and continuously
extends data from the solid domain.

Algorithm 2 Extrapolation smoothing subroutine.

Given: A field fi,j defined where /i;j < 0, and an extrapolation of f into the
region wE > /i;j � 0
Compute: A smoother extrapolation of f where /i;j � 0
(1) Define a starting field f 0i;j ¼ fi;j at all points in the region where /i;j > 0

and all four orthogonally adjacent neighbors are part of the
extrapolated region.

(2) For k¼ 0, 1,…, 5 calculate f kþ1
i;j ¼ 0:05ðf ki;j�1 þ f ki�1;j þ f kiþ1;j þ f ki;jþ1

�4f kiþ1;jÞ.
(3) Return f 5i;j as the smoothed extrapolation.

Upon completion of Algorithm 2, the second midstep routine
starts by updating the level set values /ðx; tÞ in the narrow band
to be equal to wðx; tÞ. This ensures that the zero contour of the
level set is consistent with the reference map, but the new values
of /ðx; tÞ may not satisfy the signed distance function property,
jr/j ¼ 1. We therefore make use of the reinitialization routine
described in Ref. [18], to rebuild the narrow-banded level set
function and recover this property. Figure 11 displays the solid
stress from the reference map and its extrapolation in the same
test geometry but using our new two-part extrapolation-pinning
routine. The formerly observed striated solid stress, interfacial
wrinkles, and drift between fields have been eliminated.

7 Simulation of Contact Between Two Solids
Immersed in a Fluid

We now consider a second solid phase and seek to simulate a
fully coupled fluid–solid–solid interaction, solids interacting
through contact while submerged in a fluid. We describe the pro-
cedure for two solid phases, but the procedure could be general-
ized to more solids. We use superscripts (1) and (2) to denote

each solid phase. There are now two level sets, /
ð1Þ
i;j and /

ð2Þ
i;j , to

describe each solid’s boundary and measure distance to it. Each
level set has a corresponding transition field, X(1) and X

(2), using

the same wT for both. We maintain two reference map fields, n
ð1Þ
i;j

and n
ð2Þ
i;j , and corresponding solid stresses, r

sð1Þ
½i;j� and r

sð2Þ
½i;j� , within

the extended domain of each associated solid. The velocity field,
as before, is a single unique field for the whole computational do-
main, independent of phase. The main procedure, Algorithm 1,
requires very little change to represent interacting submerged sol-
ids. All steps corresponding to the solid are now simultaneously

Fig. 10 Zoomed-in plots of the last two panels of Fig. 9, displaying drift between the
interface as described by the level set /ðx; tÞ and as described by the reference map,
via wðx; tÞ ¼ /ðnðx; tÞ; 0Þ. The thin dashed white lines are the contours of the reference
map nðx; tÞ. The cyan circle with radius of 0.15 centered at (21,1.1) shows the anch-
ored region where the reference map is fixed and the velocity is zero.
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performed on both sets of solid fields. The major changes we must
prescribe are to adjust the mixing rule in step 8 to correctly cross-
fade between the two solids and fluid and to add an extra routine
to correctly set contact conditions. The latter consideration ulti-
mately arises as an adjustment in Step 6.

7.1 Mixing Formulation. The transition function of solid
phase (i) indicates at any location the fraction of the material
behavior attributable to that phase. Therefore, in the presence of
two solid phases and fluid, we arrive at the below three-way
mixing protocol

r½i;j� ¼ X
ð1Þ
½i;j�r

sð1Þ
½i;j� þ X

ð2Þ
½i;j�r

sð2Þ
½i;j� þ 1� X

ð1Þ
½i;j� � X

ð2Þ
½i;j�

� �

r
f

½i;j� (29)

On each cell-centered grid point, the quantity of each solid fol-
lows the previous behavior, and the remainder is filled with fluid.
The coefficient of the third term remains non-negative so long as
the solid phases do not penetrate. The same approach is applied in
defining the density.

7.2 Setting Contact Conditions. The contact algorithm
focuses on the case of frictionless contact, but it is sufficiently
general that other contact conditions could be implemented. In the
blurred interface routine, we define contact between two objects
whenever there is an overlap between the transition zone of one
object and the interface of the other. We define penetration to
occur if the zero contours of each level set pass through one
another. Hence, a nonpenetrating contact routine permits the zero
level sets of the two bodies to be separated by less than half the
transition zone width—the “start” of blurred contact—and rapidly
penalizes any closer approach of the two solids. When the solids
are farther apart than half the transition zone width, the routine
should have no effect. As the grid size shrinks, this description
approaches the standard definition of nonpenetrating contact
between sharp interfaces.

The key idea is to exploit the quantity defined as the difference
between the two solid level set functions

/12 ¼
/ð1Þ � /ð2Þ

2
(30)

Note that /12 ¼ 0 implies a point in space equidistant between the
two solid boundaries, and we refer to the set of all such points as
the midsurface between the two bodies. At a point on the bound-
ary of phase 1, the value of 2j/12j indicates the distance to the
nearest point on the boundary of phase 2 and vice versa. This is
true regardless of the geometry of the two solids. This property

lets us use /12 to construct a short-range separation force that cap-
tures our desired contact condition. We define a compactly sup-
ported influence function as

dsðxÞ ¼
1þ cos

px

wT
2wT

ifjxj < wT;

0 ifjxj � wT

8

>

<

>

:

(31)

so that ds(x) is the derivative of Hs(x) as defined in Eq. (23). The
above is used to define a mutually repulsive force field centered
on the midsurface, which acts only on solid points that intersect
its influence. Mathematically, this is achieved by defining the
separation function

ci;j ¼ krepdsð/12i;jÞ (32)

from which the body force field is defined as

f i;j ¼
ci;jn̂12i;j if /

ð1Þ
i;j < 0 or /

ð2Þ
i;j < 0;

0 otherwise

8

<

:

(33)

which is used within Eq. (21), where n̂12i;j ¼ 6r/12i;j=jr/12i;jj is
the vector normal to the contours of /12, pointing away from the
midsurface. The prefactor krep must be chosen large enough to
successfully repel a crossing of the interface-centers, but must be
small enough that the stable time-increment of such an explicit
contact routine also decreases with krep. In the following exam-
ples, we choose krep ¼ 1=20.

7.3 Computational Results. We first consider two sub-
merged, colliding neo-Hookean disks with radius of 0.7 that are
initially centered at (x, y)¼ (61.1, 0), using a 256� 256 simula-
tion grid and simulating over the interval 0� t� 25. Each disk
has a circular anchoring region with radius of 0.25 at its center.
The left disk’s anchoring region is permanently fixed, while the
right disk’s anchoring region has a time-varying horizontal
position

xdðtÞ ¼ 1:1� 0:5 1� cos
2pt

25

� �

(34)

and horizontal velocity

vdðtÞ ¼ �
p

25
sin

2pt

25
(35)

Fig. 11 Three snapshots of the solid stress component rs11 in the solid and the extrapolated
region, for the anchored rod simulation of Fig. 4 that uses the new extrapolation procedure. The
color gradient is the same as in Fig. 9. The solid white line shows the boundary of the rod, given
by the zero contour of the level set function /ðx; tÞ. The thin dashed white lines are the contours
of the reference map nðx; tÞ. The cyan circle with radius of 0.15 centered at (21,1.1) shows the
anchored region where the reference map is fixed and the velocity is zero.
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Figure 13 shows six snapshots of pressure during the simulation.
By t¼ 9, the pressure starts to build up between the two disks as
they come into contact. By the time the moving disk reaches its
leftmost position at t¼ 12.5 when xd(t)¼ 0.1, the pressure has
increased further. At t¼ 18, the moving disk has separated from
the anchored disk, and a small region of negative pressure is cre-
ated between the two disks as fluid. At t¼ 25, the moving disk
comes to rest at its original position, and returns to its original
undeformed circular shape.

Figure 12 displays the ci,j function at three time points and
shows how the solids do not feel the interaction until the moment
when the narrow ds function enters into the solids. Within the

simulation, the function is only defined in the region where the
two narrow bands of the level set overlap. The repulsion force
succeeds in separating the two interface-centers but maintains
contact in the sense defined above. Some small asymmetry is visi-
ble, which is expected due to the asymmetry in the stencils
described in Fig. 2; this effect diminishes with grid spacing. As is
evident in Fig. 13 using this technique, we are now capable of get-
ting very large deformations in the solids through contact, without
any problem of penetration or sticking of one solid onto the other.

The second example that we consider is a disk bouncing on an
anchored rubber bar, all while submerged in fluid. The disk has ra-
dius of 0.4 and is initially centered at (x, y)¼ (1, 0). The bar

Fig. 12 Three snapshots showing a zoomed-in region of the separation function ci,j in the
simulation of two submerged, colliding disks. The function is only defined in the region
where the narrow bands for the two level sets overlap and is plotted as zero outside this
region. The solid white lines show the boundaries of the two disks, given by the zero con-
tours of the level set functions. The thin dashed white lines are the contours of the reference
map nðx; tÞ defined within the two disks. In each snapshot, the left cyan circle with radius of
0.25 is anchored, and the right cyan circle with radius of 0.25 is moving.

Fig. 13 Six snapshots of the in-plane pressure field (colors) and fluid velocity (arrows) for a
simulation where a moving disk comes into contact with an anchored disk. The lengths of the
arrows are proportional to

ffiffiffiffiffi

jvj
p

. The colors for the in-plane pressure use the same key as in
Fig. 3. The solid white lines show the boundaries of the two disks, given by the zero contours
of the level set functions. The thin dashed white lines are the contours of nðx; tÞ defined within
the two disks. In each snapshot, the left cyan circle with radius of 0.25 is anchored, and the
right cyan circle with radius of 0.25 is moving.
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comprises the rectangle �1< x< 1, �0.9< y<�0.1 along with
semi-circular end caps and is anchored in a circle with radius of
0.2 at (x, y)¼ (�1, �0.5). For this example, the density of the
disk is 20, the disk’s initial downward velocity is �1, the density
of the rod is 6, the gravity is 0.03, and the fluid viscosity is
g¼ 0.04. All other parameters are unchanged from the previous
results. A grid of 600� 600 is used and the system is simulated
over the range of 0� t� 25.

Figure 14 shows nine snapshots of the in-plane pressure field
during this simulation. The disk first reaches the rod at approxi-
mately t¼ 1.5, and a large region of positive pressure is visible
between the two. By t¼ 2.5, the force exterted by the heavy disk
deforms the bar into a U-shape, with a large tension visible on the
bottom side of the bar. By t¼ 4.5, the right end of the bar has
moved downward, and this motion pushes the disk upward so that
it undergoes a bounce. By t¼ 7, the disk is fully separated from
the bar. The disk then sinks and comes into contact with the bar at
t¼ 15, before slowly sliding down the bar.

This approach allows us to model frictionless nonsticking con-
tact that avoids cross penetration of the solid phases. We could
imagine adherence conditions, friction, or other contact laws
through new definitions of a possibly evolutionary influence func-
tion centered at the midsurface. Other Eulerian contact approaches
also exist; we can, for example, measure the amount of overlap a
step would cause and then apply a correction based on the

intersecting volume [31] and a minimization problem finding the
optimal velocity field which solves the equilibrium condition
while minimizing overlap.

8 Conclusion

This work has described a blurred-interface finite-difference
method for FSI on a single Eulerian grid. The method is notable
for its simplicity and speed. Our explicit algorithm invokes a com-
putation of fluid and solid stress, which are then mixed in accord-
ance with a transition function, as are the fluid and solid density.
The solid stress and density are computed in Eulerian-frame with
the aid of the reference map field, which is stored and updated
throughout. An important pair of subroutines is also presented, to
improve the representation of the reference map and level set
fields near the interface. Our method is shown to converge and as
grid-size decreases we recover results that properly display the
signatures of a sharp interface. The framework we create extends
to the case of solid–solid contact as well and we have given two
examples of submerged contact for the case of nonpenetrating,
frictionless, nonsticking behavior. Here, the key idea is to take
advantage of the distance-function property of the level set fields
about each solid to produce a short-range separation force that
acts only within the solid interfacial regions when they are close
enough to each other. We note that while our method has the key

Fig. 14 Nine snapshots of the in-plane pressure field (colors) and fluid velocity (arrows) for
the simulation of ball fired into an anchored flexible rod. The length of the arrows are propor-
tional to

ffiffiffiffiffi

jvj
p

, where a nonlinear scaling is used to the large variations in the size of the veloc-
ity. The colors for the pressure use the same key as in Fig. 8. The solid white lines shows the
boundary of the rod and the circle, given by the zero contour of the level set functions. The
thin dashed white lines are the contours of nðx; tÞ defined within each of the two objects. The
cyan circle with radius of 0.2 centered at (21,20.5) shows the anchored region of the rod
where the reference map is fixed and the velocity is zero.
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feature of enabling simulation of largely deforming soft solids,
there is nothing preventing this approach in the case of stiff solids;
one can choose the elastic constants at will, as long as the stable
time step is selected correspondingly.

There are a number of important directions to consider from
this point. From a numerics standpoint, we can go to higher con-
vergence rates by moving to a higher-order set of finite-difference
stencils, though we emphasize the importance of removing oscil-
latory numerical errors, as we discussed in Sec. 6, which can arise
in higher-order stencils. It is also important to port our scheme
into 3D, which should require very little algorithmic adjustment.
We can also implement incompressibility constraints by adapting
the projection method [32]. It would be worthwhile to parallelize
the scheme beyond multithreading to take advantage of a
distributed-memory architecture. While we have focused on Car-
tesian grids for ease, this is not a necessity, and it would be useful
to consider general meshes that enable local refinement.

There are also several next steps to be taken from the applica-
tions standpoint. Because our solid formulation is rooted in finite-
deformation mechanics, any thermodynamically consistent consti-
tutive law should be within the range of simulation. For example,
one could model solid behaviors that depend on evolving internal
variables by expressing the evolution laws of said variables in
Eulerian-frame and storing/updating those variables on the grid
(and using our various extrapolation routines to maintain accuracy
near solid boundaries). We are also actively pursuing submodeling
capabilities within our approach, which model the domain using
two different grids of different refinement levels, and enable us to
refine a local zone without the need to decrease the time step in
the coarse grid zone. This would enable local refinement near a
rough fluid–solid interface and could be applied to multiscale
problems such as nuclear fuel-rod fretting, which involve interac-
tions between cooling fluid and roughened solid parts. To extend
the solid contact routine to the case of many submerged solid
phases could have considerable usage in modeling dense suspen-
sions of soft particles. To be able to model contact-induced finite
deformations of particles is crucial when the compliance of par-
ticles is too high to admit simple contact-force laws. Biological
applications, particular at the cellular level, could offer another
arena in which this approach could be of use, as the solid compo-
nents are highly deformable and fluid permeates the system. The
Eulerian form could be advantageous in the implementation of
growth models [33], or simultaneous species diffusion, which is
also amenable to Eulerian-frame.
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