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EULERIAN MODELS AND ALGORITHMS FOR UNBALANCED OPTIMAL

TRANSPORT

Damiano Lombardi1 and Emmanuel Maitre2

Abstract. Benamou and Brenier formulation of Monge transportation problem [J.-D. Benamou and
Y. Brenier, Numer. Math. 84 (2000) 375–393.] has proven to be of great interest in image processing
to compute warpings and distances between pair of images [S. Agenent, S. Haker and A. Tannenbaum,
SIAM J. Math. Anal. 35 (2003) 61–97]. One requirement for the algorithm to work is to interpolate
densities of same mass. In most applications to image interpolation, this is a serious limitation. Existing
approaches [J.-D. Benamou, ESAIM: M2AN 37 (2003) 851–868; B. Piccoli and F. Rossi, Arch. Rational

Mech. Anal. 211 (2014) 335–358; B. Piccoli and F. Rossi, Preprint arXiv:1304.7014 (2014)]. to over-
come this caveat are reviewed, and discussed. Due to the mix between transport and L

2 interpolation,
these models can produce instantaneous motion at finite range. In this paper we propose new methods,
parameter-free, for interpolating unbalanced densities. One of our motivations is the application to
interpolation of growing tumor images.
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1. Introduction

1.1. Context in image processing

Optimal transportation finds many applications, ranging from optimal design, to the description of
geostrophic flows (see for instance [23]). One possible application is the interpolation and the registration
of medical images. Many advanced registration techniques have been developed, based on the setting up of dif-
feomorphic maps, like the Large Deformation Diffeomorphic Metric Mapping (LDDMM), see for instance [21],
or methods based on diffeomorphic demons, see [22]. The method based on optimal transportation provides
an interpolation that minimizes the kinetic energy of the map. This is not always realistic, depending upon
the application, but one clear advantage of optimal transportation is that the solution exists and it is unique,
and since pioneering works of Benamou and Brenier [4] it can be formulated as the optimization of a convex
functional.

By structure, optimal transportation requires initial and final densities to be balanced, that is, of equal mass.

Keywords and phrases. Optimal transport, image interpolation, numerical optimization.

1 Equipe REO, INRIA Rocquencourt, France. damiano.lombardi@inria.fr
2 Laboratoire Jean Kuntzmann, Grenoble University and CNRS, France. emmanuel.maitre@imag.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2015

http://dx.doi.org/10.1051/m2an/2015025
http://www.esaim-m2an.org
http://arxiv.org/abs/1304.7014
http://www.edpsciences.org


1718 D. LOMBARDI AND E. MAITRE

In realistic applications, this is seldom the case, either because images are projections of a 3D reality, or they
picture a growing object (e.g. tumor), or simply because of noise. Benamou [3] proposed a way to tackle this
latter problem. His approach was to find a compromise between an L2 projection and an optimal transport.
He considered the optimal transportation between the initial density and a final density of same mass, which
was computed by minimizing its L2 distance with the real final density. This produces a transport between the
larger (in the L2 meaning) part of the densities. Note that a weight is present in the method (see below) in
front of this L2 distance, and it is acknowledged in [3] that this parameter choice could be problematic in some
cases.

At a late stage of redaction of this article, we got aware of the work of Piccoli and Rossi [18,19], who studied
theoretically optimal transportation with source terms, generalizing Benamou’s approach. In particular, they
obtained an interpolated distance between the L2 and Wasserstein metrics, and exhibit interesting properties of
this new distance. Another approach to unbalanced optimal transport was proposed by Figalli and Gigli in [10]
(see also [1]). Their approach is to consider the boundary as a source/sink of mass.

Our main concern is to provide a notion of generalized optimal transport interpolation between mea-
sures/densities of different mass that could apply to the study of tumors growth. Therefore we do not want to
involve the picture boundary as in [10], as far as mass is concerned. Rather, we will consider in our test cases
isolated tumors (for real pictures) or isolated gaussians (for synthetic ones), between which growth occurs, but
not by mass coming from the boundary. Likewise, we would like to avoid the “infinite speed” of L2 interpolation
that is inherent to the approach of [3,18,19]. In these two approaches, indeed, due to the fact that the resulting
generalized interpolation mixes Wasserstein and L2 metrics, some mass at positive distance of the initial tumor
support could instantaneously appear on the interpolating path, which is undesirable for a tumor growth model.

In the following, we introduce several models that transport unbalanced densities. Our aim is to address
the optimal transportation problem between two densities (images) which represent an object which has
grown between two instants. These models are based on a modification of the projection method hidden in
Benamou−Brenier algorithm, where a source term is added.

In the following sections, we first recall some basic facts about optimal transportation, in the balanced case.
Then, we recall the modification for unbalanced densities proposed by Benamou and Piccoli−Rossi. We prove
(Prop. 2.1) that Piccoli−Rossi’s distance is not properly speaking a generalization of Wasserstein distance since
it does not recover genuine optimal transport in case of balanced densities. Next, we present our approach
and discuss the general form of a source term, and give some explicit solution in simple (but relevant for
applications) cases to illustrate their behavior (Props. 3.1, 3.2, 3.3). Next we present a simple modification
of Benamou−Brenier algorithm (in 4.2) to handle a source term which does not depend on the optimization
variables ρ, m. We then consider several source terms models: the first is built on the idea of reproducing an
exponential growth, while the second uses a diffusion process to drive the motion of one density to the other.
For both models we prove existence and uniqueness of minimizers. At last, several numerical tests are provided.
First we show on synthetic test cases that our algorithm performs well. Then we apply it to real images of lung
tumor growth, for which we find good agreement between our interpolated growth rate using the exponential
model and experimental one.

1.2. Quick introduction to optimal transportation

Let Ω be an open bounded domain and let us consider the Monge problem of pushing one measure µ to
another measure ν, through a transportation map which minimizes some cost. The standard setting assume
that the measures µ and ν are absolutely continuous with respect to the Lebesgue measure, of densities ρ0 and
ρ1, nonnegative on Ω, and of equal mass:

∫

Ω

ρ0(x)dx =

∫

Ω

ρ1(x)dx = 1.
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In application to image processing, these densities will correspond to gray levels, and in general this condition
would not be satisfied. A map T : Ω → Ω is a transfer map from ρ0 to ρ1 if for every subset A ⊂ Ω,

∫

A

ρ1(x)dx =

∫

{T (x)∈A}

ρ0(x)dx. (1.1)

If T is a C1 mapping, then by a change of variables this is equivalent to

det(∇T (x))ρ1(T (x)) = ρ0(x),

which is under-determined. Let Γ (ρ0, ρ1) be the set of mappings T transfering ρ0 on ρ1. The Lp Kantorovich-
Wassertein distance between ρ0 and ρ1 is then defined by

dp(ρ0, ρ1)
p = inf

T∈Γ (ρ0,ρ1)

∫

|T (x) − x|pρ0(x)dx.

The Lp Monge−Kantorovitch problem (MKP) corresponds to find a mapping T such that this infimum is
achieved.

In the case p = 2, the problem admits an unique solution (see e.g. Villani [20] p. 66), which is the gradient
of a convex fonctional from Ω to R:

T (x) = ∇Ψ(x).

The convex function Ψ is solution of Monge−Ampère equation:

det(D2Ψ)ρ1(∇Ψ(x)) = ρ0(x).

This equation being highly nonlinear, numerical methods to solve the MKP problem based on discretization
of the Monge−Ampère equation have already been investigated [7–9, 15]. In application to image morphing
problem, it is relevant to seek a time-dependent family of mappings T (·, t) transfering continuously ρ0 to ρ1.
In [4] the authors introduced a fluid mechanics formulation of MKP, by adding a new dimension to the original
problem (the time). The idea is to consider an arbitrary time interval [0, 1] and all functions ρ(x, t) ≥ 0 and
vector fields v(x, t) ∈ R

n solution of the continuity conditions with prescribed initial and final densities:

∂tρ + div(ρv) = 0, ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x), (1.2)

and homogeneous Dirichlet conditions on ∂Ω. Then we have:

Theorem 1.1 (Benamou−Brenier). In the case p = 2 the KW distance between ρ0 and ρ1 is such that:

d2(ρ0, ρ1)
2 = inf

∫

Ω

∫ 1

0

ρ(x, t)|v(x, t)|2dxdt

the infimum being taken on ρ, v verifying (1.2) in suitable functional spaces, see [20].

Numerically, a first step is to make the problem convex by the change of variables (ρ, m) = (ρ, ρv). Then the
second step amounts to solve a saddle-point problem based on an augmented Lagrangian method. In the last
few years, others applications of optimal transportation methods to image analysis have been proposed. For
instance, instead of solving the saddle-point problem directly, Angenent et al. derived a novel gradient flow for
the computation of the optimal transport map [2]. Unfortunately, all these methods require that the initial and
final densities have the same mass. This can be seen directly on the mass conservation constraint (1.2) upon
integration in time and space, using periodic or Dirichlet boundary conditions on v on ∂Ω.

The remaining of this paper is organized as follows: in the next section, after having recalled some existing
solution to this problem of unbalanced densities, we consider a new optimal transport dealing with the different
mass of densities. Several source terms are considered and compared, and numerical tests are performed.
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2. Some existing models of unbanlanced mass transportation

First extensions of Kantorovitch norms to unbalanced measures was well described in [12]: Kantorovich and
Rubinstein [14], followed by a slight different definition of Hanin [13] proposed generalized distances. However
these true generalizations were mixing displacement distances and total variation, while we were looking for a
pure displacement behavior.

The starting point of this article is the Benamou−Brenier fluid mechanics formulation of the L2-MKP [4].
Consider Ω = (0, 1)2 with Dirichlet boundary conditions and a time interval [0, 1], we set Qm = Ω × (0, 1). In
order to minimize the energy under the constraint (1.2), we first introduce the new variables ρ and m = ρv
(into which the constraint expresses linearly) and we consider the (now convex) problem:

inf
(ρ,m)∈C(ρ0,ρ1)

∫

Ω

∫ 1

0

|m|2

2ρ
dxdt

where

C(ρ0, ρ1) = {(ρ, v), ∂tρ + div m = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 on Ω, m · n = 0 on ∂Ω × (0, 1)} . (2.1)

Note that upon space integration of the conservation equation in (2.1), we still get

∫

Ω

ρ0(x)dx =

∫

Ω

ρ1(x)dx. (2.2)

In order to deal with unbalanced densities, Benamou proposed to somehow mix the L2 and Wasserstein
distances. Given a parameter γ > 0, one minimizes

dW (ρ0, ρ̃1)
2 + γ‖ρ̃1 − ρ1‖

2
L2

among all densities ρ̃1 of same mass as ρ0. While tests performed by Benamou showed that this algorithm allows
to correctly compute interpolation between two densities with underlying noise, we observe that it is easy to
find examples where, for γ large enough, ρ̃1 could be negative. This is the case for instance if ρ0 is a gaussian of
weight 1, while ρ1 is the sum of two gaussians functions of weights 1 and 2 (we insist that this kind of examples
was not under the scope of the method developed in [3]). Then taking large γ would lead to lower significantly
ρ1 so that its smaller part could become negative. This is highly undesirable in the context we are considering.

A very related model of optimal transport with source term has been recently introduced by Piccoli and
Rossi in two papers [18,19]. In the first work, they provide a link between a transport equation with source term
and a generalized Wasserstein distance, whereas the second paper introduces and studies the Benamou−Brenier
formula in the case of unbalanced mass densities. More precisely, they proved that the generalized Wasserstein
distance defined by

W a,b
2 (ρ0, ρ1)

2 = inf
ρ̃0,ρ̃1∈L1

+(Ω),‖ρ̃0‖1=‖ρ̃1‖1

a2(‖ρ̃0 − ρ0‖1 + ‖ρ̃1 − ρ1‖1)
2 + b2W2(ρ̃0, ρ̃1)

2

coincides with the generalized Benamou−Brenier formula, ie one has also:

W a,b
2 (ρ0, ρ1)

2 = inf
(ρ,v,S)∈C(ρ0,ρ1)

a2

∫ 1

0

‖S(·, t)‖2
1dt + b2

∫ 1

0

∫

Ω

ρv2dxdt

where C(ρ0, ρ1) = {(ρ, v, S), ∂tρ + div(ρv) = S, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1} . Assumptions on the data are essen-
tially identical to the no source term, see e.g. [20]. They also prove that support localization result for S:

⋃

t∈[0,1]

supp S(·, t) ⊂
⋃

t∈[0,1]

supp ρ(·, t).
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We remark that this results does not imply finite speed of propagation, that is, as this generalized distance is
an interpolation between L1 and W2, it is easy to construct examples of initial and final densities for which
the interpolation ρ(·, t) has for t > 0 arbitrarily small a support at a fixed distance from the support of ρ0.
Moreover, for balanced initial and final condition, the proposed interpolation does not in general recover the
genuine Wasserstein distance, as illustrated in the following example in space dimension 1.

Proposition 2.1. Let Ω = (0, 1), and α ∈ (0, 1
2 ) such that 4a2α2 < b2(1 − α). Consider the following initial

and final balanced densities: ρ0(x) = 1 on (0, α) for 0 < α < 1
2 , and 0 elsewhere, and ρ1(x) = ρ0(1 − x). Then

W a,b
2 (ρ0, ρ1) < b2d2(ρ0, ρ1)

and the optimal path for W a,b
2 differs from the Wasserstein interpolation.

Proof. Indeed the pure Wasserstein distance is 1−α. Consider now the pointwise interpolation given by v = 0,
ρ(x, t) = (1 − t)ρ0(x) + tρ1(x). This corresponds to S(x, t) = ρ1(x) − ρ0(x). Thus

a2

∫ 1

0

‖S(·, t)‖2
1dt + b2

∫ 1

0

∫

Ω

ρv2dxdt = 4a2α2.

Therefore for a, b such that 4a2α2 < b2(1 − α), the Piccoli−Rossi generalized distance does not give the
Wasserstein interpolation for mass balanced densities. �

This caveat could somehow bring unphysical results when applied to real images, and one aim of this paper
is to provide a generalized distance which recovers the genuine one for balanced densities.

At last, let us mention the user’s guide to optimal transportation by Ambrosio−Gigli [1], where the authors
present a mass-varying optimal transport initially considered by Figalli and Gigli [10]. Their aim is the following:
knowing that the genuine Wasserstein metrics allows to define a solution to the heat equation as the flow of some
energy with respect to that metric, the constant mass assumption leads to a Neumann boundary condition for
this PDE. A natural question is to wonder how to modify the distance so that the resulting flow is a solution to
an heat equation with Dirichlet boundary conditions. This is performed by restricting the transport condition
on the interior of the domain, while leaving its boundary without condition. Existence of such a transport plan
is proved, as well as properties of the resulting distance. This approach is not a remedy for our application to
tumor growth, as far as they are isolated spots on a scanner picture. Indeed in that case, it would be quite
unlikely that the growth occurs from a source coming from the boundary.

3. Models of unbalanced mass transport

3.1. General considerations

In this section a generic formulation of unbalanced mass transport is presented and some basic properties are
investigated. In what follows, the Eulerian formulation of the optimal mass transport is adopted, that reads:

inf
(ρ,m)∈C

{
∫ 1

0

∫

Ω

|m|2

2ρ
dxdt

}

, (3.1)

C = {(ρ, m) | ∂tρ + ∇ · m = 0, ρ(x, 0) = ρ0, ρ(x, 1) = ρ1} . (3.2)

One of the basic properties of the optimal transport solution is the invariance with respect to time reflection,
i.e. ρ(x, 1 − t),m(x, 1 − t) are solution of the problem when ρ1 is transported in ρ0. This may be shown by
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simply considering the following transformation:

x′ = x, (3.3)

t′ = 1 − t, (3.4)

ρ′ = ρ, (3.5)

m′ = −m, (3.6)

λ′ = −λ. (3.7)

The objective functional to be minimized is rewritten by perfoming this change of coordinates:

L′ =

∫ 1

0

∫

Ω

|m′|2

2ρ′
+ λ′(∂t′ρ

′ + ∇x′ · m′) dx′dt, (3.8)

that is formally equivalent to the original one. The change of coordinate leaves the functional (and the associated
Euler−Lagrange equations) unchanged, so that the solution of the optimal transport will be invariant with
respect to this transformation.

Let us consider a generic source term, i.e. the constraint will be no longer homogeneous; instead it can be
written as:

∂tρ + div m = S(x, t; ρ, m; ρ0, ρ1), (3.9)

where S accounts for the mass variation and it may be a function of x, t as well as the variables (ρ,m) and all
their derivatives in space and time, the initial and final density (for instance, for normalization purposes).

Among all the possible source terms, it is meaningful to look for those preserving the symmetry property in
time that characterizes the classical optimal transport problem. This is done by asking:

S(x, t, ρ, m; ρ0, ρ1) = −S (x, 1 − t, ρ,−m; ρ1, ρ0) . (3.10)

Indeed, it may be checked that this condition is sufficient to leave the functional unchanged, so that the same
argument shown for the balanced case may be adopted. Observe that on the right hand side the initial density
is ρ1 and the final one ρ0.

As well, a natural condition on S would be to vanish when ρ0 and ρ1 have the same mass, so that we recover
classical optimal transportation:

{
∫

Ω

ρ0dx =

∫

Ω

ρ1dx

}

⇒ {S(x, t, ρ, m; ρ0, ρ1) = 0} . (3.11)

The Euler−Lagrange equations for the objective functional to be minimized read:

m

ρ
−∇λ − λ

δS

δm
= 0, (3.12)

∂tλ +
|m|2

2ρ2
+ λ

δS

δρ
= 0. (3.13)

The algorithm presented in this work approximates the solution of equation (3.12)−(3.13) for different source
models, of increasing complexity. The affine case amounts to consider a non homogeneous mass conservation,
with a constant prescribed source term. While this case is of limited interest for application to real images, we
will show that the Benamou−Brenier algorithm easily adapts to that situation. Moreover, for less trivial and
time dependent source terms, we will use this algorithm, with an explicit scheme (i.e. by taking the source term
at the previous time step).

The first non constant source term we will consider is an exponential model, which is is interesting for
modeling the corresponding behavior of tumor growth. We will show explicit solutions for simple cases where
the initial and final densities are linked either by a translation/scaling or a affine transformation/scaling.
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The second source term considered will somehow use a dual Sobolev norm to estimate the distance between
the density pair, by solving a stationary Laplace’s equation, and use the corresponding flux to drive the mass
growth. For that model we will be able to show existence of solution by rephrasing the model as a Monge’s
problem on a manifold and using results of McCann [16].

At last, we will consider a normal growth model where the source term is proportional to the modulus of ∇ρ.
While we will not be able to theoretically prove existence on that model, it will turn to be the best choice for
the modeling of tumor growth in some situations.

3.2. Remarks on the qualitative behavior of the solutions

In this section some qualitative remarks on solutions are proposed. First, as constant speed transport is a
particular solution to genuine optimal transport [4], we found it interesting to investigate whether the solution
of an unbalanced optimal transport may be merely a translation at constant speed and a rescaling. This is
answered by the following proposition.

Proposition 3.1. Let ρ(x, t) = ρ0(x− at)µ(t), where a is a constant vector field (so that ∂ta = 0 and ∇a = 0)
and µ(t) a smooth scaling factor. If (ρ, m) with m = ρa verifies (3.9) and the Euler−Lagrange equations (3.12)
and (3.13), then a = 0 or µ is constant in time.

Proof. In order for the mass conservation equation to be satisfied it is necessary that:

S = ρ∂t log µ(t). (3.14)

From (3.12) we get m
ρ

= ∇λ which plugged in (3.13) gives:

∂tλ +
|∇λ|2

2
+ λ∂t log µ = 0. (3.15)

As m = ρa we have a = ∇λ; hence, by taking the gradient of equation ((3.15)), which is an Hamilton−Jacobi
equation, the following condition is found:

a∂t log µ = 0, (3.16)

that implies that a = 0 or µ = const. �

This means that a pure translation is a solution of a genuine optimal transport problem, a pure scaling is a
solution of a differential equation, but a combination of the two can not be solution of an optimal transportation
with some source term S. The next paragraph will provide an analytical solution where the translation vector
is time varying.

3.2.1. Translation and scaling for an exponential model of growth

Let us look for a particular analytic solution in the case of an exponential source unbalanced optimal transport.

Proposition 3.2. Consider the problem of finding an optimal plan between the densities:

ρ(x, 0) = ρ0, ρ(x, 1) = ρ0(x − a)ec, (3.17)

where ρ0 is a positive smooth function, a is a constant vector field and c ∈ R. When an exponential model source
given by S = cρ is considered, then

ρ(x, t) = ρ0

(

x −
1 − e−ct

1 − e−c
a

)

ect, m = ρa, (3.18)

is verifying the mass conservation (3.9) and the Euler−Lagrange equations (3.12) and (3.13).
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Proof. For this source term, (3.9) and (3.12)−(3.13) are:

∂tρ + ∇ · m = cρ, (3.19)
m

ρ
−∇λ = 0 (3.20)

∂tλ +
|∇λ|2

2
= −cλ. (3.21)

By setting m = ρv, we get v = ∇λ. By taking the gradient of the equation for the Lagrangian multiplier, this
velocity should verifiy:

∂tv + v∇v = −cv. (3.22)

Introducing the flow of v, that is (ξ, t) → X(ξ, t) solutions of:

∂tX = v(X(ξ, t), t), X(ξ, 0) = ξ, (3.23)

we get by plugging v(X(ξ, t), t) in (3.22) that

v(X(ξ, t), t) = v0(ξ)e
−ct

for some initial velocity v0. Therefore there exists a constant in time d(ξ) such that

X(ξ, t) = −
1

c
v0(ξ)e

−ct + d(ξ).

We already have X(ξ, 0) = ξ, and a natural condition is to look for a solution such that X(ξ, 1) = ξ + a. Then
we find that

v0(ξ) =
ac

1 − e−c
and X(ξ, t) = ξ +

1 − e−ct

1 − e−c
a. (3.24)

Let us observe that v obtained from X by (3.23) is constant in space. The continuity equation may thus be
re-written as:

∂tρ + v · ∇ρ = cρ, (3.25)

and by introducing σ = ρect, this equation reduces to an homogeneous transport equation. The general solution
is therefore written as:

ρ(x, t) = ρ0

(

x −
1 − e−ct

1 − e−c
a

)

ect. (3.26)

�

Let us remark that in the limit of a vanishing c, that corresponds to a classical optimal transport, a pure
translation is recovered:

lim
c→0

ρ(x, t) = ρ0(x − at). (3.27)

3.2.2. Affine mapping: unbalanced homothety

In that section we consider an initial density function ρ0 and a final density function obtained from ρ1 by an
affine mapping and a dilatation.

Proposition 3.3. Let us consider the following density pair, for a smooth and positive function ρ0:

ρ(x, 0) = ρ0(x), ρ(x, 1) = µρ0(Mx), M ∈ R
d×d, µ ∈ R

+, (3.28)

where M is an invertible matrix whose entries do not depend upon space and time coordinates, and d is the
space dimension. When an exponential source term is considered, namely S = cρ with c = log(µ/ det(M)), then

ρ(x, t) = ectρ0(Bx) det(B) (3.29)



EULERIAN MODELS AND ALGORITHMS FOR UNBALANCED OPTIMAL TRANSPORT 1725

is solution to the mass conservation (3.9) and the Euler−Lagrange equations (3.12) and (3.13), with

B(t) :=

(

I +
1 − e−ct

1 − e−c
A

)−1

and A = M−1 − I. (3.30)

Proof. For the particular case of an exponential model we have:

∂tρ + ∇ · (ρv) = cρ, (3.31)

∂tλ +
|∇λ|2

2
= −cλ. (3.32)

After integration on the space domain of the mass conservation equation, the following relation is obtained:

Dt

∫

Ω

ρ dΩ = c

∫

Ω

ρ dΩ, (3.33)

Integrating in time between t = 0 and t = 1, this provides:
∫

Ω

µρ0(Mx) dx = ec

∫

Ω

ρ0 dx. (3.34)

By performing a change of coordinate in the integral on the left hand side, and by using the fact that the matrix
M is given and constant in space, the exponent c may be expressed as function of the determinant of the matrix
and the scaling factor µ:

c = ln

(

µ

det(M)

)

· (3.35)

As in the former proposition, the characteristic lines of v = m
ρ

verify X(ξ, t) = − 1
c
v0(ξ)e

−ct + d(ξ) which with

X(ξ, 0) = ξ gives X(ξ, t) = ξ + 1
c
v0(ξ)(1 − e−ct). To reach the final density we look for a solution such that

X(ξ, 1) = M−1ξ, which gives

v0(ξ) = c
M−1ξ − ξ

1 − e−c
, X(ξ, t) = ξ + (M−1ξ − ξ)

1 − e−ct

1 − e−c
=

(

I +
1 − e−ct

1 − e−c
A

)

ξ (3.36)

where we set (I + A)−1 = M . Therefore the backward characteristics are given by

Y (x, t) = B(t)x where B(t) :=

(

I +
1 − e−ct

1 − e−c
A

)−1

·

Standard result on conservation laws state that

∂t[ρ(X(ξ, t), t) det∇X(ξ, t)] = (∂tρ + div(ρv))(X(ξ, t), t)

which turn equation (3.31) to a first order ODE which is trivially integrated. Using Y (ξ, t) = X−1(ξ, t) we
obtain

ρ(x, t) = ectρ0(Y ) det(∇xY ), (3.37)

that, after substitution of the expression of Y becomes:

ρ(x, t) = ectρ0(B(t)x) det(B(t)). (3.38)

Remark that as B(0) = I and B(1) = M , the constraints on the initial and final densities are recovered. �

In the following sections some particular examples of source terms are detailed, that lead to different solutions
for the unbalanced optimal transport. Their properties will be investigated by means of numerical experiments.
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4. Variables independent source: affine constraint

4.1. Formulation

We consider the case where we do not impose (2.2) anymore. This is particularily relevant in the case where
we are interpolating between two images of a growing tumor, for instance. A natural idea is to add a source
term in the mass conservation constraint. As this mass growth is supposed to hold on the boundary of domains
of homogeneous densities which represents structures in the image, a first guess would be to consider a mass
conservation constraint where the source term S does not depend on ρ and m. Then the constraint on mass
conservation is modified like:

∂tρ + div(m) = α (4.1)

where α : Ω × (0, 1) → R is a given function verifying

∫ 1

0

∫

Ω

αdx =

∫

Ω

ρ1(x) − ρ0(x)dx.

The simplest form could be to consider is a constant α, which gives:

α =
1

|Ω|

∫

Ω

ρ1(x) − ρ0(x)dx (4.2)

but while it verifies (3.10) and (3.11) we will see that this is not the best choice for applications (due to the
fact that it is not localized), and therefore we keep a possibly time and space dependant α in the following. The
associated Lagrangian is given by

L(φ, ρ, m) =

∫ 1

0

∫

Ω

|m|2

2ρ
− ρ∂tφ − m · ∇φ − αφdxdt −

∫

Ω

φ(0, x)ρ0(x) − φ(1, x)ρ1(x)dx. (4.3)

Given two densities ρ0 et ρ1, the minimization problem is equivalent to the saddle-point problem:

inf
(ρ,m)∈Cα(ρ0,ρ1)

sup
φ

L(φ, ρ, m),

where

Cα(ρ0, ρ1) = {(ρ, v), ∂tρ + div m = α, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 on Ω, m · n = 0 on ∂Ω × (0, 1)} . (4.4)

Arguing as in [4] we introduce dual variables (a, b) ∈ R × R
d such that

|m|2

2ρ
= sup

(a,b)∈K

a(t, x)ρ(t, x) + b(t, x) · m(t, x),

with

K =

{

(a, b) : R × R
2 → R × R

2, a +
1

2
|b|2 ≤ 0 on R × R

2

}

.

For sake of clarity, we set µ = (ρ, m) and q = (a, b), and introduce the support function of K, F such that

F (q) = 0 for q ∈ K and F (q) = +∞ otherwise. Therefore we have |m|2

2ρ
= supq∈K µ · q = supq −F (q) + µ · q. At

last we set

G(φ) =

∫

Ω

φ(0, x)ρ0(x) − φ(1, x)ρ1(x)dx.

Still following [4], we show that our saddle point problem can be written as

sup
µ

inf
φ,q

F (q) + G(φ) + 〈µ,∇t,xφ − q〉 + 〈α, φ〉 , (4.5)
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where the brackets stand for the L2(Qm) scalar product, the variables µ, q are taken in L2(Qm)d+1, and φ in
H1(Qm). We now aim at finding a saddle-point of this problem which corresponds to a standard form of [11]
in order to apply augmented Lagrangian techniques. The formal optimal condition for this problem are:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂tφ + |m|2

2ρ2 = 0 in [0, 1]× Ω

∂tρ + div m = α in [0, 1]× Ω
m
ρ

= ∇φ in [0, 1]× Ω

ρ(0, .) = ρ0 in Ω
ρ(1, .) = ρ1 in Ω.

Observing that the variable m can be eliminated, the optimality conditions can be rewritten in term of ρ, φ
and c as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tφ + |∇φ|2

2 = 0 in [0, 1]× Ω
∂tρ + div(m) = α in [0, 1]× Ω
ρ(0, .) = ρ0 in Ω
ρ(1, .) = ρ1 in Ω.

(4.6)

Therefore the optimal mass transfer still follows straight lines. We then define the augmented Lagrangian by
introducing r > 0:

Lr(φ, q, µ) = F (q) + G(φ) + 〈µ,∇t,xφ − q〉 + 〈α, φ〉 +
r

2
〈∇t,xφ − q,∇t,xφ − q〉 . (4.7)

4.2. Algorithm

We consider the following iterative algorithm to compute this saddle point numerically. This algorithm builds
from (φn−1, qn−1, µn, cn−1) the next iterate, and is very close to the original Benamou−Brenier algorithm. We
just describe the differences in the three steps.

Step A. φn = argminLr( . , qn−1, µn) This still amounts to solve a Poisson’s equation, but now with an extra
contribution coming from α. Namely, taking the differential with respect to φ gives

G(φ) + 〈µn,∇x,tφ〉 + 〈α, φ〉 + r
〈

∇x,tφ
n − qn−1,∇x,tφ

〉

= 0, ∀φ

which, for Dirichlet boundary conditions gives, following [3]:

−r∆x,tφ
n = divx,t(µ

n − rqn−1) − α (x, t) ∈ Ω×]0, 1[

with non homogeneous Neumann boundary conditions in space and time:

r∂tφ
n(x, 0) = ρ0(x) − ρn(0, x) + ran−1(x, 0) r∂tφ

n(x, 1) = ρ1(x) − ρn(1, x) + ran−1(1, x) (4.8)

r∂nφn(x, t) = rbn−1(x) · n − mn · n on ∂Ω × (0, 1) (4.9)

Step B. qn = arg minLr(φ
n, . , µn) is identical to [3], i.e. a pointwise projection on a paraboloid.

Step C. µn+1 = arg maxLr(φ
n, qn, . ) is identical to [3].

5. Source proportional to a scalar field

In this section another source model is investigated of the form:

S(x, t; ρ, m; ρ0, ρ1) = −ρ∂tΓ − m · ∇Γ = −ρDtΓ, (5.1)

where Γ (x, t) is a given scalar field and Dt is the total (Lagrangian) derivative. Two different cases will be inves-
tigated: an exponential type of growth and a heat flux guided growth. The first will correspond to Γ (x, t) = ct
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for c ∈ R which will be determined from initial and final densities (Sect. 5.1). The second will correspond to a
time-independent Γ which will be built on an heat flux model (Sect. 5.2). This seemingly strange expression of
source term is however natural: first it is a quite general linear form in (ρ, m) (thus preserving convexity) and
in the two mentioned cases (i.e. Γ constant in time or space) we are able to prove existence and uniqueness of
solution to the corresponding optimization problem.

Remark 5.1. Mass sources could also be use to model obstacles. This could be useful in image interpolation
with constraints: for instance when some part of the image is fixed. A mass source of expression S = −ρDtΓ ,
with Γ = Γ (x, t) may act as an obstacle. If the obstacle is fixed in space, then Γ is time independent, thus
S = −m ·∇Γ . This may be deduced by performing a change of variable in the objective functional. In particular,
let us consider the Lagrangian:

L =

∫ 1

0

∫

Ω

|m|2

2ρ
+ φ

(

∂tρ + ∇ · m + ρ
DΓ

Dt

)

dx dt. (5.2)

A density variable σ defined as:

ρ := σe−Γ , (5.3)

is introduced, that inserted into the Lagrangian transform the problem into:

L =

∫ 1

0

∫

Ω

1

2
σe−Γ |v|2 + λ (∂tσ + ∇ · (σv)) dx dt, (5.4)

where λ is the Lagrange multiplier associated to the constraint on σ. Let us remark that in this case the constraint
is the usual one and the kinetic energy is modified by an isotropic metric term involving the exponential of the
scalar field. The Euler−Lagrange equation for this system reads:

∂tλ + v · ∇λ =
1

2
e−Γv2, (5.5)

v = eΓ∇λ, (5.6)

that, after substitution reduces to:

∂tλ +
1

2
eΓ |∇λ|2 = 0. (5.7)

In conclusion, every source term of the form ρDtΓ acts in a dual manner. It may be considered as a source term
or a metric factor.

5.1. Exponential model of growth

5.1.1. Introduction

For this first model, let us consider a source of the form:

S = −cρ (5.8)

where c ∈ R is a constant. This corresponds to Γ (x, t) = ct in (5.1). Integrating ∂tρ + div m = −cρ in space
gives, using the homogeneous boundary conditions on m,

d

dt

∫

Ω

ρdx = −c

∫

Ω

ρdx. (5.9)
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The expression for c may be computed a priori, depending only on the initial and the final mass only. Indeed
upon integration of the first order ODE (5.9) we get:

c = log

(

∫

Ω
ρ0 dx

∫

Ω
ρ1 dx

)

· (5.10)

Note that the source term (5.8) with c given by (5.10) verifies (3.10) and (3.11).

Remark 5.2. Another way to derive an expression for c is to integrate both members of (5.9), and this leads
to a growth rate which is still constant in space and time, but depends nonlinearly on ρ:

c[ρ] =

∫

Ω
ρ0 − ρ1 dx

∫ 1

0

∫

Ω
ρ dx

· (5.11)

Therefore, the first c can be computed a priori while the second would have to be reevaluated at each iteration.

One could wonder whether the linear growth model and the nonlinear one would give the same optimal path,
if it exists. We have equivalence of these two models of growth:

Proposition 5.3. Let ρ0, ρ1 ∈ L1(Ω) be nonnegative, with positive integrals on Ω, and define the sets

C1 =

{

(ρ, m) ∈ L1((0, 1) × Ω) × L1(0, 1; W 1,1(Ω)), ∂tρ + div m = −cρ, c = log

(

∫

Ω
ρ0 dx

∫

Ω
ρ1 dx

)

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n = 0 on ∂Ω × (0, 1)} (5.12)

and

C2 =

{

(ρ, m) ∈ L1((0, 1) × Ω) × L1(0, 1; W 1,1(Ω)), ∂tρ + div m = −c[ρ]ρ, c[ρ] =

∫

Ω
ρ0 − ρ1 dx

∫ 1

0

∫

Ω
ρ dx

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n = 0 on ∂Ω × (0, 1)} (5.13)

Assume C1 �= ∅. Then C1 = C2.

Proof. Let (ρ, m) ∈ C1. From the positiveness of the integrals of initial and final densities, integrating (5.9)
from 0 to t and from t to 1 for t ∈ (0, 1) gives (assuming c ≤ 0 without loss of generality):

0 <

∫

Ω

ρ0dx ≤

∫

Ω

ρ(x, t)dx ≤

∫

Ω

ρ1dx on (0, 1).

Therefore we can compute c[ρ] as above and find c[ρ] = c, thus (ρ, m) ∈ C2, which is nonempty. Now take
(ρ, m) ∈ C2, c[ρ] is a constant and integrating the ODE (5.9) give c[ρ] = c, thus (ρ, m) ∈ C1. �

5.1.2. Existence and uniqueness of the solution

In this section the existence and uniqueness of the solution for the exponential source are investigated. The
proof of the proposition is based on the following: first, the objective functional defining the transport problem
is transformed. It is shown that the transport is equivalent, in the new variables, to an homogeneous transport
with a time dependent metric. Then, the geodesics of the transport are studied, allowing to show that the
distance between the densities is proportional to the classical Wasserstein distance. In particular, as done for
the classical Benamou−Brenier transport, it is shown than the objective functional in Eulerian form, which is
larger or equal to the transport cost (by Jensen’s inequality) coincides with the transport cost for the geodesic
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velocity field. The result relies on the following proposition:

Proposition 5.4. Let Ω ⊆ R
d be a convex subset, and the geodesic curve γ(t) : [0, 1] → Ω with respect to the

metric tensor gij := e−ctδij , c ∈ R, given by:

γ(t) = argmin
γ̃

∫ 1

0

e−ct| ˙̃γ|2 dt. (5.14)

Then γ(t) = a(c, t)γ(1) + b(c, t)γ(0) for a, b two real functions of (c, t), and the geodesic distance squared
d2(γ(0), γ(1)) ∝ |γ(1) − γ(0)|2.

Proof. The proof is based on a direct computation. The equation minimizing the cost in equation (5.14) reads:

d

dt

(

e−ct d

dt
γ

)

= 0, (5.15)

whose integration between γ(0) and γ(1) provides:

γ(t) =
ec

ec − 1
γ(0) −

1

ec − 1
γ(1) +

ect

ec − 1
(γ(1) − γ(0)), (5.16)

which proves the first part of the proposition. Remark that the geodesics are straight line parametrized at non-
constant speed. The time derivative of γ is computed and inserted into the expression of the distance, providing:

d(γ(0), γ(1))2 =
c

ec − 1
|γ(1) − γ(0)|2, (5.17)

that concludes the proof. �

The result of this proposition will be used to proof the existence and uniqueness result in the following:

Proposition 5.5. Let ρ0, ρ1 be two given density distributions. The solution of the optimal transport problem
with exponential mass source defined by equation (5.8) exists and it is unique.

Proof. The objective functional defining the problem is:

L =

∫ 1

0

∫

Ω

1

2
ρv2 + λ(∂tρ + ∇ · (ρv) + cρ) dx dt. (5.18)

The following change of variable is performed, σ := ρect, leading to the equivalent problem:

L =

∫ 1

0

∫

Ω

1

2
σe−ctv2 + φ(∂tσ + ∇ · (σv)) dx dt, (5.19)

which is an homogeneous transport, with a kinetic energy depending upon a time variable isotropic metric. For
the Jensen’s inequality, it holds:

∫ 1

0

∫

Ω0

1

2
σ0(ξ)e

−ctv2 dξ dt ≥

∫

Ω0

1

2
σ0(ξ)d

2(ξ, X(ξ)) dξ, (5.20)

where d2(ξ, X) is the geodesic distance squared between ξ ∈ Ω0 and x = X(ξ) ∈ Ω1, the initial and final
configurations. Let us prove that the equality holds for a velocity field v = Ẋ which is related to the solution
of the optimal transportation problem between σ0 and σ1. To do so, the result of Proposition 5.4 is used. The
minimizer of the geodesic distance under the mass constraint satisfies:

X = arg min
X̃∈C

∫

Ω0

1

2
σ0(ξ)d

2(ξ, X(ξ)) dξ = arg min
X̃∈C

c

ec − 1

∫

Ω0

1

2
σ0(ξ)|X − ξ|2 dξ, (5.21)

C = {X |σ0(ξ) = σ1(X(ξ) det(∇ξX))} . (5.22)
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The solution is a classical optimal transport between σ0 and σ1. There exists a unique minimizer and X(ξ, 1) =

ξ +∇ξΦ, where ξ2

2 +Φ(ξ) is a convex function. This solution is parametrized at non-constant speed for the time
mapping X(ξ, t) to be geodesic:

X(ξ, t) = ξ +
e−ct − 1

ec − 1
∇ξΦ ⇒ v = Ẋ =

cect

ec − 1
∇ξΦ. (5.23)

The expression of the velocity is introduced into equation (5.20) and the following holds:

min
Ẋ

∫ 1

0

∫

Ω0

1

2
e−ctσ0Ẋ

2 dξ dt = min
X

∫

Ω0

1

2
σ0d

2(ξ, X) dξ =
1

2

c

ec − 1
W 2(σ0, σ1), (5.24)

where Ẋ is chosen as in equation (5.23). Thus, the problem of minimizing the objective functional in equa-
tion (5.18) admits a unique solution. �

Remark 5.6. If ρ0 = ρ1e
c, the change of variable provides σ0 = σ1 ⇒ v = 0. This corresponds to a trivial

solution, in which there is no transport, but ρ0, ρ1 are obtained by a pointwise interpolation.

5.2. Heat flux guided model

The counterpart of the exponential model of growth consists in taking S = −m · ∇Γ (x), where Γ may be
either a given field depending upon some known information associated to the problem, or a quantity to be
determined as function of the problem data (i.e. ρ0, ρ1) in order to set up a parametric free model. A perspective
on the modeling of constraints has been presented at the beginning of this section.

A preliminary constraint on Γ is derived.

Proposition 5.7. Let Γ ∈ H1(Ω). It can be an admissible source potential if 〈∆ρ, eΓ 〉 = 0, where 〈, 〉 denotes
the standard L2 scalar product and ∆ρ = ρ1 − ρ0.

Proof. Let us introduce σ(x, t) := ρ(x, t)eΓ (x). Hence:

∂tρ + ∇ · ρv + m · ∇Γ = 0 ⇒ ∂tσ + ∇ · (σv) = 0, (5.25)

so that σ satisfies an homogeneous constraint. This implies:

∫

Ω

σ(x, 0) dx =

∫

Ω

σ(x, 1) dx ⇒

∫

Ω

(ρ1 − ρ0)e
Γ dx = 0, (5.26)

the exponential of the source Γ have to be orthogonal to the density difference with respect to the L2 scalar
product �

Among all the possible admissible sources Γ , a heat-like solution is adopted.

The source Γ is the solution of:

(Γ ∗, µ∗) = arg inf
Γ

sup
µ

∫

Ω

1

2
|∇Γ |2 −

|δM |

δM
∆ρΓ dx − µ

∫

Ω

∆ρeΓ dx, (5.27)

where the scalar µ is the lagrange multiplier enforcing the orthogonality constraint. Homogeneous Dirichlet
boundary conditions are used for Γ .
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The equations minimizing the functional read:

−∇2Γ =

(

|δM |

δM
+ µeΓ

)

∆ρ, in Ω, (5.28)

Γ = 0, on ∂Ω, (5.29)
∫

Ω

∆ρeΓ dx = 0. (5.30)

Proposition 5.8. Let Γ be the solution of equation (5.30). Then, Γ satisfies the constraint expressed in the
Proposition 5.7 and the solution of the optimal transport respects the time-reversal symmetry.

Proof. The constraint expressed in Proposition 5.7 is directly imposed in the third equation of the system
equation (5.30). When δM = 0, that is when the initial and final densities have the same mass, Γ = 0,
identically, and a classical optimal transport is recovered. To verify that the time-reversal symmetry of optimal
transport is satisfied, the following transformation is applied to the solution of the system:

∆ρ′ = −∆ρ (5.31)

µ′ = −µ′. (5.32)

From the first transformation, the sign of δM changes and the following is obtained:

−∇2Γ ′ =

(

−
|δM |

δM
− µeΓ ′

)

(−∆ρ), in Ω, (5.33)

Γ ′ = 0, on ∂Ω, (5.34)

so that Γ ′ = Γ and the time reversal symmetry is preserved. �

The boundary integral of the normal derivative of Γ is related to the absolute value of the mass difference
between the densities. Indeed, the integral over the whole domain of the solution leads to:

−

∫

∂Ω

∂nΓ dS = |δM |. (5.35)

Note that the source Γ encodes the distance between the supports of the densities (it is related to the H−1

distance between them) and the mass difference.
The problem of finding Γ solution of equation (5.30) is solved by an Uzawa augmented Lagrangian method,

the starting value adopted for the lagrangian multiplier µ being µ = 0.

5.2.1. Existence and uniqueness of the solution

The existence and uniqueness of the solution of the optimal transport with a heat-flux mass source are
investigated. The strategy of the proof is similar to that used for the exponential source. First, a change
of variable is performed in such a way that the problem is transformed into an homogeneous transport with a
metric. Then, a study of the regularity of the metric allows to apply directly a result of existence and uniqueness
(see [16] for the theorem).

Proposition 5.9. Let Γ be a strong solution of equation (5.30). Then, the solution of:

(ρ, v, λ) = inf
ρ,v

sup
λ

∫ 1

0

∫

Ω

1

2
ρv2 + λ(∂tρ + ∇ · (ρv) + ρv · ∇Γ ) dx dt, (5.36)

exists and it is unique.
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Proof. As seen in equation (5.25) it is possible to rewrite this model through a change of variables in such a
way that the constraint, in the new variables, is the classical homogeneous one. The objective functional, in the
new variables, may be written as:

L =

∫ 1

0

∫

Ω

1

2
σe−Γ v2 + φ(∂tσ + ∇ · (σv)) dx dt, (5.37)

which is an homogeneous transport with a scalar metric factor e−Γ . Let us remark that in the case of balanced
densities Γ = 0 and the classical optimal transportation problem in Benamou−Brenier formulation is recovered.
The problem can be formulated as an optimal mass transport on a manifold. Indeed, let x = X(ξ, t)|X(ξ, 0) = ξ
and v(X(ξ, t), t) = ∂tX(ξ, t). Then the objective functional can be rewritten as:

L =

∫ 1

0

∫

Ω0

1

2
σ(X)e−Γ (X)Ẋ2 + ψ(ξ)(σ0(ξ) − σ(X) det(∇ξX)) det(∇ξX) dξ dt. (5.38)

By applying the mass conservation equation in Lagrangian form, the time integral of the kinetic energy trans-
forms into:

K =

∫ 1

0

∫

Ω0

1

2
σ0(ξ)e

−Γ (X)Ẋ2 dξ dt. (5.39)

The problem is thus equivalent to the minimization of K under the homogeneous mass constraint between σ0

and σ1. This case may be considered as an optimal transportation on a Riemannian manifold, whose metric
tensor is gij = e−Γ (X)δij . Let us restrict to the strong solutions of equation (5.30), so that Γ ∈ C2(Ω). This
is a sufficient condition for the manifold to be C3 smooth, i.e. for the metric tensor to be twice continuously
differentiable. Thus, by applying the results of [16], the solution of this problem exists and it is unique. Moreover,
in the minimum, the kinetic energy integral satisfies:

∫ 1

0

∫

Ω0

1

2
σ0(ξ)e

−Γ (X)Ẋ2 dξ dt =

∫

Ω0

1

2
σ0(ξ)d

2(ξ, X) dξ, (5.40)

where d is the geodesic distance on the manifold and X is such that σ0(ξ) is mapped into σ1(X(ξ)) by the
exponential map on the manifold (see [16] for more details). �

6. Source proportional to the modulus of the density gradient: Nonlinear

constraint

Another formulation for the source term would be to introduce some nonlinear growth term in α, which leads
to a normal growth. We propose the following form:

α = β|∇ρ|, where β =

∫

Ω
ρ1 − ρ0dx

∫ 1

0

∫

Ω
|∇ρ|dx

· (6.1)

This choice is justified as follows: it merely says that mass variation is more localized on regions where ρ is
varying. This seems natural to see a growing set as gaining mass on the boundary. The β term ensures that the
gain of mass is compatible with the difference of mass between initial and final densities. The corresponding set
of constraints

Cα(ρ0, ρ1) =

{

(ρ, v), ∂tρ + div m =

∫

Ω
ρ1 − ρ0dx

∫ 1

0

∫

Ω
|∇ρ|dx

|∇ρ|,

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 on Ω, m · n = 0 on ∂Ω × (0, 1)} . (6.2)
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ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 1. Plot of the isolevels of the density ρ(t) along the optimal path between two densities
of different mass.

seems not easy to deal with numerically. However, in the context of our augmented Lagrangian approach, we
can use a quasi-static formulation which, at each iteration, amounts to use for α its expression in terms of
ρn. This means that our algorithm reduces to the original Benamou−Brenier’s algorithm where we just change
Step 1 to the

Nonlinear Step 1 φn = argmin Lr( . , qn−1, µn) which amounts to solve the Poisson’s equation,

−r∆x,tφ
n = divx,t(µ

n − rqn−1) −

∫

Ω
ρ1 − ρ0dx

∫ 1

0

∫

Ω
|∇ρn|dx

|∇ρn| (x, t) ∈ Ω×]0, 1[

with the same non homogeneous Neumann boundary conditions in space and time.

7. Numerical tests

In this section, we will provide some numerical study of the exponential and heat-flux guided source models.
On synthetic examples (gaussians of different masses in several configurations) and more realistic ones, we show
that they behave quite well. We do not compare them with Benamou or Piccoli−Rossi’s approaches. Indeed,
Benamou’s extension, as mentioned in Section 2 was not developed to deal with big difference of mass between
densities, but rather with noisy data. The other approach is not a real generalization of the genuine optimal
transport, and by the way, to the best of our knowledge it was not implemented.

Mass variations can manifest in different ways, we investigate first the case where two images have same
maxima but still different mass. For instance consider the case where:

ρ0(x, y) = e
−300

(

(x−0.3N)2

N2 + (y−0.7N)2

2N2

)

, ρ1(x, y) = e
−200

(

(x−0.7N)2

2N2 + (y−0.3N)2

N2

)

where N ×N is image size, we took N = 64 in the our tests. Note that the iso-contours are ellipses, of different
orientations. We plot in Figure 1 some pictures on the optimal path obtained with the exponential source term,
and on Figure 2a the mass variation during the corresponding interpolation. on Figure 2b we depicted the
residual decrease (in log scale) versus iterations, for the genuine no-source algorithm, the exponential and heat
flux algorithms that we introduced. Note that the exponential algorithm performs very well, with a decreasing
residual, on contrary with the no-source algorithm (that is beyond the domain of its validity, by the way).
Another test consists in keeping the same support but consider different magnitudes. This is the case for the
following initial and final densities, whose iso-contours are circles.

ρ0(x, y) = 1.5e
−300

(

(x−0.3N)2

N2 +
(x−0.7N)2

N2

)

, ρ1(x, y) = e
−300

(

(x−0.7N)2

N2 +
(x−0.3N)2

N2

)

.
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Figure 2. (a) Plot of the mass variation from initial to final density during the optimal path
for the exponential source term. (b) Plot of the residual variation during iterations, for the
no-source, exponential source, and heat flux source algorithms. Note that the vertical axis is
log-scaled.

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 3. Plot of a side view of the density ρ(t) along the optimal path between two densities
of different mass.

As this is a symmetrical case, we depicted a side view on Figure 3 to show the maximum decreasing, and in
Figure 4a the mass variation as well, still using our exponential source term. In Figure 4b we plotted the residual
decrease, and note that the exponential and heat flux source terms gave nearly the same decrease in that case.

Note that in both cases, the optimal path is symmetric, that is, interpolating from ρ0 to ρ1 or from ρ1 to ρ0

gives the interpolating densities which are equal upon the transformation of t to 1 − t.

Next, we will consider the more intricate case where a mass splitting occurs. This could be relevant in tumor
or more generally in cell growth. Our toy example corresponds to an initial gaussian function defined by

ρ0(x, y) = e
−200

(

(x−0.5N)2

N2 + (x−0.2N)2

N2

)

which is supposed to be transported onto

ρ1(x, y) = 4e
−200

(

(x−0.25N)2

N2 + (x−0.8N)2

N2

)

+ e
−200

(

(x−0.75N)2

N2 + (x−0.8N)2

N2

)

.

As is clearly seen from Figure 5, the genuine Benamou−Brenier’s algorithm attempts to create an optimal
pas by adding mass at the very end of the path, while our algorithm produces a smooth mass variation which
is more what we could expect form the interpolation of these two unbalanced densities.
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Figure 4. (a) Plot of the mass variation from initial to final density during the optimal path
of the exponential source term. (b) Plot of the residual variation during iterations, for the
no-source, exponential source, and heat flux source algorithms. Note that the vertical axis is
log-scaled.

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 5. Plot of the isolevels of the density ρ(t) along the optimal path between two densities
of different mass. Top rows: original Benamou−Brenier’s Algorithm, with top and side views;
Bottom rows: our algorithm with exponential source term.
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ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 6. Plot of a growing tumor simulation from an initial and final stage. Top: B/W images;
Bottom: corresponding density plots.

7.1. Non-rigid registration for a growing lung metastasis

In this section some numerical tests on the non-rigid registration in biomedical imagery is proposed. Regis-
tration is adopted to refer to the same geometric configuration, especially when highly deformable organs are
considered. The optimal transport is an objective way to provide a geometric transformation to this end. How-
ever, when tissue is evolving, as in tumor growth, the mass (measured considering the grey scale intensity) is not
constant and a simple renormalization may provide unphysical mappings. A more accurate transformation could
be obtained by considering continuous models of tumor growth. These models are often parametric and need
a calibration, which may result in a costly process from a computational stand point. The proposed approach
is a good tradeoff, allowing to get an interpolation between the images that is close to the real dynamics, for
a computational cost that is lower if compared to that of inverse problems. Moreover, once the initial velocity
potential has been obtained, an extrapolation can be done on a short time scale, that provides an approximated
prognosis. Moreover in contrast with other models, existence and uniqueness of minimizers is proved. At last
we point out that the proposed images are X-rays images, that is, the density of one pixel is directly related
to absorption by X-rays, which in turn is higher in tumor cells. In that respect, images densities carry some
biological informations and it make sense to use it to model biological phenomena.

The numerical experiments described hereafter concerns the non-rigid registration of portions of lung tissue
with metastatic nodules. Several cases are considered, corresponding to different behaviors of the tumor growth.

The first case considered is a sequence of 5 CT scan, shown in Figure 6. They are a 2D slice of a 3D CT
scan, represented in grey scale. The original images were segmented by using a threshold method, after having
eliminated the bronchia and bronchiola structures: let the density be 0 ≤ ρ ≤ 1. If ρ ≤ 0.5 → ρ = 0, so that the
image used for the computation has a density with a compact support (on the image, the black color corresponds
to ρ = 0).

Remark 7.1. The Benamou−Brenier’s algorithm (and its alternatives proximal implementations), and there-
fore our algorithm, works for initial and final densities that may have compact supports (i.e. be identically zero
on some part of the domain). Therefore we do not add any small quantity to raise densities in all the test cases
proposed.
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Figure 7. Mass curve as function of time for different source models (color continuous line),
compared to the data (black circles). (Color online).

a) ρ(0.25) b) ρ(0.25)

Figure 8. Comparison between the interpolation at time t = 0.5, (a), obtained by solving
optimal transport between images (1 − 5) and the original image in grey scale (b).

The three model of source that we proposed were tested by taking the first and the last image of the sequence
as initial and final densities respectively. In Figure 7 the mass curve are compared to the real data: black
circles are the masses of the segmented images, the black line is the mass of the interpolation obtained by an
exponential source, the blue and the red one are the mass curves for the normal growth and the heat flux guided
model. The real time scale for this evolution is 45 months: for the present work the time has been renormalized
to [0, 1]; the same choice has been performed for all the testcases. The growth, in this case, is rather complex.
Let us remark that the data are affected by noise and large errors may occur in the evaluation of the mass of the
images after segmentation (even 30−40% of uncertainty). The three model proposed behaved differently and,
despite the lack of biological modeling, the exponential and the normal sources are able to render the overall
mass evolution with an error that is high but not larger than the measurement error, in some cases. The same
considerations hold true for all the subsequent cases. In Figure 8−10 the comparison between the interpolation
and the real data is shown,when the exponential model of growth is used. The images appears more regular in
terms of shape with respect to the original one, but the accordance is good. In Figure 9 the interpolated image
is featured by a larger mass than the datum, and the error is at its maximum (as it can be checked by looking
at Fig. 7).
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a) ρ(0.50) b) ρ(0.50)

Figure 9. Comparison between the interpolation at time t = 0.625, a), obtained by solving
optimal transport between images (1 − 5) and the original image in grey scale (b).

a) ρ(0.75) b) ρ(0.75)

Figure 10. Comparison between the interpolation at time t = 0.875, (a), obtained by solving
optimal transport between images (1 − 5) and the original image in grey scale (b).

7.1.1. Fast super-exponential growth

The second case we considered is a fast growth. A tissue portion is considered, in which a lung metastasis is
growing. In Figure 11a the sequence of three realistic images is shown. We tested three different model of sources,
namely the exponential growth, the non-linear normal model and the heat-guided flux model. In particular, the
optimal transport between the first and the last image was computed. In Figure 11 the mass curve as function
of time is shown for the three model sources compared to the data. There is a considerable increase of the
tumor mass (about 6000%), that makes this case particularly challenging. For this case, the exponential source
model was the more accurate one from a quantitative point of view (compare the three curves with the datum
available at t = 0.5).

7.1.2. Logistic-type growth

The last case we considered is a tumor which initially grows in a rapid way and then undergoes a plateau
type of evolution.
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Figure 11. Mass curve as function of time for different source models (color continuous line),
compared to the data (black circles). (Color online).

The same analysis done for the previous cases is performed. In Figure 12 the mass curve is shown for the
different source models. The three models behave quite similarly in this case, and the more accurate one, that
is, the one which is closer, in terms of mass, to the intermediate datum, is the normal growth one (blue curve
in Fig. 12). None of the models is able to render a plateau-type of solution. A perspective might concern the
setting up of a logistic model source to deal with this kind of growth. After having investigated the mass
properties, the interpolation of the image is checked. In Figure 13 the comparison between the interpolated
and the original image is shown. The tumor dimension as well as the main features of the tissue configuration
are qualitatively well represented. The models proposed provide quite a good interpolation of tissues evolution,
albeit their simplicity and the fact that they disregard the biology that governs the phenomena involved.

7.2. Morphogenesis of kidneys

In this subsection a biological tree growth is considered. Several realistic images of the branching process
occurring in the kidneys morphogenesis are available. As for the tumor growth case, there is no aim in inves-
tigating or understanding the biological and biophysical phenomena involved, but a realistic interpolation is
sought. In Figure 14 a sequence of five realistic images is shown. The main limitation and error source is related
to the fact that they are 2D projections of a 3D evolution and they are potentially affected by noise. The density
distribution was generated by considering the grey scale associated to the images: a significant amount of mass
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ρ(0) = ρ0 ρ(0.5) ρ(1.0) = ρ1
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Figure 12. Mass curve as function of time for different source models (color continuous line),
compared to the data (black circles).

a) ρ(0.8) b) ρ(0.8)

Figure 13. Comparison between the interpolation at time t = 0.8, (a), obtained by solving
optimal transport between images (1 − 3) and the original image in grey scale (b).
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ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 14. Images of kidneys morphogenesis.
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Figure 15. Plot of the mass variation for the different interpolations. Red line is the mass
curve when the interpolation between the first and the third images is considered, the blue and
the black line are the mass curve for the interpolations between the first and the fourth and
fifth images respectively.

is produced (more than 50% of mass increase between the first and the last image of the sequence) and the geo-
metrical configuration is non-trivial, in particular there is the creation of novel branches. We performed several
numerical experiments and tested all the source model proposed. Hereafter, only the tests performed with the
non-linear normal growth model are described, that gave the best performances in terms of interpolation.

The numerical experiments performed are the following. The mappings between the first image and the
last three ones were computed and the interpolated images generated was compared to the original images. In
Figure 15 the mass curve for three different mappings is considered. The red line represents the mass curve
when the interpolation between images (1 − 3) is constructed. The blue and the black line are the mass curve
for the mappings (1 − 4) and (1 − 5) respectively. From a quantitative standpoint only the mapping (1 − 3)
provides a good, realistic result. As said, the error is mainly due to the 2D nature of the images.

The interpolation between the images (1 − 5) is analyzed. The interpolated images (obtained by transport
with the optimal mapping) are compared to the images of the sequence at corresponding time.

The qualitative agreement between the interpolated images and the original one is quite good (see
Figs. 16−18). All the main geometrical features of the kidney tree are well reconstructed, even if only the
first and the last image of the sequence are used to build the mapping.
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a) ρ(0.25) b) ρ(0.25)

Figure 16. Comparison between the interpolation at time t = 0.25, (a), obtained by solving
optimal transport between images (1 − 5) and the original image in grey scale (b).

a) ρ(0.50) b) ρ(0.50)

Figure 17. Comparison between the interpolation at time t = 0.5, (a), obtained by solving
optimal transport between images (1 − 5) and the original image in grey scale (b).

a) ρ(0.75) b) ρ(0.75)

Figure 18. Comparison between the interpolation at time t = 0.75, (a), obtained by solving
optimal transport between images (1 − 5) and the original image in grey scale (b).
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8. Conclusion

In this paper we proposed a model of optimal transport between two unbalanced densities, which coincides
with the usual transport in the balanced case. The model relies on the addition of a source term in the mass
conservation equation. Three kinds of source terms are proposed and studied for application to tumor growth.
For two of them, we propose an existence result for the optimal transport problem, and give numerical evidence
of its convergence and ability to deal with mass growth in various tests cases where the usual transport fails.
The key properties of our model are: a finite speed of motion of mass, and a the recovering of usual optimal
transport for balanced densities, which was not the case of existing models for unbalanced densities [3, 18, 19].
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