
Eulertigs: minimum plain text representation of1

k-mer sets without repetitions in linear time2

Sebastian Schmidt1 #3

University of Helsinki, Finland4

Jarno N. Alanko #5

University of Helsinki, Finland6

Abstract7

A fundamental operation in computational genomics is to reduce the input sequences to their8

constituent k-mers. For maximum performance of downstream applications it is important to store9

the k-mers in small space, while keeping the representation easy and efficient to use (i.e. without10

k-mer repetitions and in plain text). Recently, heuristics were presented to compute a near-minimum11

such representation. We present an algorithm to compute a minimum representation in optimal12

(linear) time and use it to evaluate the existing heuristics. For that, we present a formalisation13

of arc-centric bidirected de Bruijn graphs and carefully prove that it accurately models the k-mer14

spectrum of the input. Our algorithm first constructs the de Bruijn graph in linear time in the15

length of the input strings (for a fixed-size alphabet). Then it uses a Eulerian-cycle-based algorithm16

to compute the minimum representation, in time linear in the size of the output.17

2012 ACM Subject Classification Applied computing → Computational biology; Theory of com-18

putation → Data compression; Theory of computation → Graph algorithms analysis; Theory of19

computation → Data structures design and analysis20

Keywords and phrases Spectrum preserving string sets, Eulerian cycle, Suffix tree, Bidirected21

arc-centric de Bruijn graph, k-mer based methods22

Digital Object Identifier 10.4230/LIPIcs.WABI.2022.223

Related Version This paper is also available on biorxiv https://www.biorxiv.org/content/10.24

1101/2022.05.17.49239925

Funding Sebastian Schmidt: Funded by the European Research Council (ERC) under the European26

Union’s Horizon 2020 research and innovation programme (grant agreement No. 851093, SAFEBIO)27

Jarno N. Alanko: Funded by NIH NIAID grant No. R01HG011392 and Academy of Finland grant28

339070.29

1 corresponding author

© Sebastian Schmidt and Jarno N. Alanko;
licensed under Creative Commons License CC-BY 4.0

22nd International Workshop on Algorithms in Bioinformatics (WABI 2022).
Editors: Christina Boucher and Sven Rahmann; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

mailto:sebastian.schmidt@helsinki.fi
https://orcid.org/0000-0003-4878-2809
mailto:jarno.alanko@helsinki.fi
https://orcid.org/0000-0002-8003-9225
https://doi.org/10.4230/LIPIcs.WABI.2022.2
https://www.biorxiv.org/content/10.1101/2022.05.17.492399
https://www.biorxiv.org/content/10.1101/2022.05.17.492399
https://www.biorxiv.org/content/10.1101/2022.05.17.492399
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:2 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

1 Introduction30

Motivation31

A k-mer is a DNA string of length k that is considered equal to itself and its reverse32

complement. A common pattern in bioinformatics is to reduce a set of input strings to their33

constituent k-mers. Such representations are at the core of many bioinformatics pipelines –34

see e.g. Schmidt et al. [23] or Brinda et al. [6] for an overview of applications. The wide-spread35

use of k-mer sets has prompted the question of what is the smallest plain text representation36

for a set of k-mers. Here, a plain text representation means a set of strings that have the37

same set of k-mers as the input strings, i.e. the spectrum is preserved. Such representations38

are also called spectrum preserving string sets (SPSS) [22], or simplitigs [6]. This has the39

following advantages over encoded representations:40

When storing k-mer sets to disk, plain text may remove the need of decompression before41

usage, as some tools that usually take unitigs as input can take any other plain text42

representation without modification (e.g. Bifrost [13]).43

Within an application, an encoded representation would require decoding whenever a44

k-mer is accessed, which may slow down the application a lot compared to when each45

k-mer is in RAM in plain text.46

Further, in applications, it might be useful if the representation contains each k-mer exactly47

once. This is because some applications, like e.g. SSHash [21], are able to take any set of48

k-mers as input, but cannot easily deal with duplicate k-mers in the input.49

Related work50

There are two heuristic approaches to the construction of a small SPSS without repeti-51

tions, namely prophasm [6] and UST [22]. While neither of these computes a minimum52

representation, Rahman et al. [22] also present a lower bound to the minimum size of any53

representation without repetition, and they show that they are within 3% of this lower bound54

in practice. They also present a counter-example showing that their lower bound is not tight.55

Small SPSSs without repetitions are used e.g. in SSHash [21] and are also computed by56

state-of-the-art de Bruijn graph compactors like Cuttlefish 2 [15].57

When k-mer repetitions are allowed in an SPSS, there is a known polynomially computable58

minimum representation, namely matchtigs [23]. While matchtigs are expensive to compute,59

the authors also present a more efficient greedy heuristic that is able to compute a near-60

minimum representation on a modern server with no significant penalty in runtime (when61

compared to computing just unitigs), but a significant increase in RAM usage.62

In [6, 23] the authors also showed that decreasing the size of an SPSS results in signi-63

ficantly better performance in downstream applications, i.e. when further compressing the64

representation with general purpose compressors, or when performing k-mer-based queries.65

The authors of both [6] and [22] consider whether computing a minimum representation66

without repetitions may be NP-hard, as it is equivalent to computing a minimum path cover67

in a de Bruijn graph, which is NP-hard in general graphs by reduction from Hamiltonian cycle.68

However, computing a Hamiltonian cycle in a de Bruijn graph is actually polynomial [14].69

The authors of [14] argue that de Bruijn graphs are a subclass of adjoint graphs, in which70

solving the Hamiltonian cycle problem is equivalent to solving the Eulerian cycle problem71

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:3

in the original of the adjoint graph, which can be computed in linear time2. However, the72

argument is only made for normal directed (and not bidirected) graphs, and thus is not73

applicable to our setup, where a k-mer is also considered equal to its reverse complement.74

Our contributions75

Our first technical contribution is to carefully define the notion of a bidirected de Bruijn76

graph such that the spectrum of the input is accurately modelled in the allowed walks of the77

graph. Our definition also takes into account k-mers that are their own reverse complement.78

This technicality is often neglected in the literature, and sidestepped by requiring that the79

value of k is odd, in which case this special case does not occur. We give a suffix-tree-80

based deterministic linear-time algorithm to construct such a graph, filling a theory gap81

in the literature, as existing approaches [8, 15, 13, 1] depend on the value of k and/or82

are probabilistic due to the of use hashing, minimizers or Bloom filters, or do not use the83

reverse-complement-aware definition of k-mers [7].84

Given the bidirected de Bruijn graph, we present an algorithm that computes a minimum85

plain text representation of k-mer sets without repetitions, which runs in output sensitive86

linear time. Steps 1 to 3 run in linear time in the number of nodes and arcs in the graph. In87

short, it works as follows:88

1. Add breaking arcs into this graph to make it Eulerian.89

2. Compute a Eulerian cycle in the resulting graph.90

3. Break that cycle at the breaking arcs.91

4. Output the strings spelled by the resulting walks.92

The algorithm is essentially an adaption of the matchtigs algorithm [23], removing the93

possibility of joining walks by repeating k-mers. We give detailed descriptions for all these94

steps and prove their correctess in our bidirected de Bruijn graph model. Together with our95

linear-time de Bruijn graph construction algorithm, we obtain the main result of our paper:96

▶ Theorem 1. Let k be a positive integer and let I be a set of strings of length at least k97

over some alphabet Σ. Then we can compute a set of strings I ′ of length at least k with98

minimum cumulative length and CSk(I) = CSk(I ′) in O(||I|| log |Σ|) time.99

where CSk(I) = CSk(I ′) means that I ′ is an SPSS of I, and ||I|| is the cumulative length of100

I (see Section 2 for accurate definitions). This gives a positive answer to the open question101

if a minimum SPSS without repetitions can be computed in polynomial time. Additionally,102

we give an easily computable tight lower bound on the size of a minimum SPSS without103

repetitions.104

For our experiments, we have implemented steps 1 to 4 in Rust, taking the de Bruijn105

graph as given. The implementation is available on github: https://github.com/algbio/106

matchtigs. Our experimental evaluation shows that our algorithm does not result in107

significant practical improvements, but for the first time allows to benchmark the quality the108

heuristics prophasm and UST against an optimal solution. It turns out that both produce109

close-to-optimal results, but with a different distribution of computational resources.110

2 The original of an adjoint graph can be computed by splitting each node v into two nodes v′ and v′′

such that v′ keeps the incoming arcs, and v′′ the outgoing arcs as in [5, Figure 4]. Then, the graph is
a collection of complete bipartite graphs [5]. These graphs can be contracted into single nodes, and
then we add an arc between the contracted representations of each v′ and v′′. This can be computed in
linear time and is the original graph, since all nodes have become arcs again, and the arcs have the
correct predecessors and successors.

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://github.com/algbio/matchtigs
https://github.com/algbio/matchtigs
https://github.com/algbio/matchtigs
https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:4 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

Our work also shows that using arc-centric de Bruijn graphs can aid the intuition for111

certain problems, as in this case, the node-centric variant hides the relationship between112

Eulerian cycles and minimum SPSS without repetition.113

Organisation of the paper114

In Section 2 we give preliminary definitions of well-known concepts. In Section 3 we define115

de Bruijn graphs and prove the soundness of the definitions. In Section 4 we show how116

to construct de Bruijn graphs by our definitions in linear time. In Section 5 we show how117

to construct a minimum SPSS without repetitions in linear time if the de Bruijn graph is118

given. In Section 6 we compare our algorithm and Eulertigs against strings computed with119

prophasm and UST on practical data sets.120

2 Preliminaries121

In this section we give the prerequisite knowledge required for this paper.122

2.1 Bidirected graphs123

In this section we define our notion of the bidirected graphs and the incidence model.124

A multiset is defined as a set M , and an implicit function #M : M → Z+ mapping125

elements to their multiplicities. The cardinality is defined as |M | :=
∑

s∈M #M (s).126

An alphabet Σ is an ordered set, and an Σ-word is a string of characters of that set. String127

concatenation is written as ab for two strings a and b. The set Σk is the set of all Σ-words128

of length k and the set Σ∗ is the set of all Σ-words, including the empty word ϵ. Given129

a positive integer k, the k-suffix sufk(w) (k-prefix prek(w)) of a word w is the substring130

of its last (first) k characters. A k-mer is a word of length k. A complement function131

over Σ is a function comp : Σ → Σ mapping characters to characters that is self-inverse132

(i.e. comp(comp(x)) = x). A reverse complement function for alphabet Σ is a function133

rc : Σ∗ → Σ∗ defined as rc((w1, . . . , wℓ)) := (comp(wℓ), . . . , comp(w1)), for some arbitrary134

complement function comp. On sets, rc is defined to compute the reverse complement of135

each element in the set. Note that rc is self-inverse. A canonical k-mer is a k-mer that is136

lexicographically smaller than or equal to its reverse complement.137

Given an integer k and an alphabet Σ, the k-spectrum of a set of strings I ⊆
⋃

k′≥k Σk′
138

is a set of strings Sk(I) := {w ∈ Σk | ∃i ∈ I : w is substring of i or rc(i)}. The canonical139

k-spectrum of I is CSk(I) := {w ∈ Sk(I) | w is canonical}. For simplicity, the spectrum and140

canonical spectrum are defined for a single string w as if it were a set {w}. A spectrum141

preserving string set of a set of strings I is a set of strings I ′ such that CSk(I) = CSk(I ′).142

The cumulative length of I is ||I|| :=
∑

w∈I |w|.143

Our definition of a bidirected graph is mostly standard like in e.g. [17], however we allow144

self-complemental nodes that occur in bidirected de Bruijn graphs. A bidirected graph is a145

tuple G = (V, E, c) with a set of normal and self-complemental nodes v ∈ V , a set of arcs146

e ∈ E, and a function c : V → {1, 0} marking self-complemental nodes with 1, and normal147

nodes with 0. An incidence is a pair vd, where d ∈ {⊕,⊖,⊙} is called its sign (e.g. v⊕). The148

negation of a sign is defined as ¬⊕ := ⊖, ¬⊖ := ⊕ and ¬⊙ := ⊙. For self-complemental nodes149

v ∈ V , only incidences v⊙ are allowed, and for normal nodes only incidences v⊕ and v⊖ are150

allowed. An arc (v1d1, v′
1d′

1, η) ∈ E is a tuple of incidences and a unique identifier η, where η151

can be of any type. The reversal of an arc is denoted by (v1d1, v′
1d′

1, η)−1 := (v′
1d′

1, v1d1, η).152

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:5

If not required, we may drop the identifier (i.e. just write (v1⊖, v′
1⊙) ∈ E). If a node v ∈ V153

is present with a ⊕ (⊖) sign in an arc, then the arc is outgoing (incoming) from (to) v.154

ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(a) Build the de Bruijn graph of the input strings.

ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(b) Eulerise the example graph.
ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(c) Compute a Eulerian cycle.

ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(d) Break the cycle at the arcs inserted in step (b).

Figure 1 Overview of our algorithm executed on the input strings {GAAT G, AT CT GCT} with
k = 3. After step (d), the resulting spelled SPSS is {AT C, AGAAT GCT G}.

Note that, other than in standard directed graphs, in bidirected graphs arcs can be155

outgoing or incoming on both ends, and the order of the incidences in the arc does not affect156

if it is outgoing or incoming to a node. Further, our notation differs from that of standard157

bidirected graphs in that arcs have a direction. This is required because we will work with158

arc-centric de Bruijn graphs (see Section 3), which have labels on the arcs and not the nodes.159

Using the sign of the incidence pairs, it is possible to decide if a node is traversed forwards160

or backwards, but not if the arc is traversed forwards or backwards. But to decide which161

label (forwards or reverse complement) to use when computing the string spelled by an arc,162

the direction is relevant. See Figure 1 (a) for an example of a bigraph, which has labels that163

make it a de Bruijn graph as well.164

A walk in a bigraph is a sequence of arcs W := ((v1d1, v′
1d′

1, η1), (v2d2, v′
2d′

2, η2), . . . ,165

(vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) where for every i it holds that (vidi, v′

id
′
i, ηi) ∈ E or (v′

id
′
i, vidi, ηi) ∈ E (we166

can arbitrarily walk over arcs forwards and reverse), and for every i < ℓ it holds that v′
i = vi+1167

and d′
i = ¬di+1. The length of a walk is ℓ = |W |. If v1 = v′

ℓ and d1 = ¬d′
ℓ, then W is a cycle.168

A bigraph is connected, if for each pair of nodes v1, v2 ∈ V there is a walk from v1 to v2.169

For a node v ∈ V , the multiset of incidences is defined as I(v) := {vd | d ∈ {⊕,⊖,⊙}},170

with multiplicities #I(v)(vd) :=
∑

e∈E #e(vd) (treating the arcs as multisets such that self-171

loops count as two separate incidences). For a node v ∈ V that is not self-complemental, the172

outdegree is defined as δ+(v) := #I(v)(v⊕), and the indegree is defined as δ−(v) := #I(v)(v⊖).173

For a self-complemental node v ∈ V , the degree is defined as δ(v) := #I(v)(v⊙).174

We define the imbalance of a node v ∈ V that is not self-complemental as the difference175

of its outdegree and indegree imbalance(v) := δ+(v)− δ−(v). For a self-complemental node176

v ∈ V the imbalance is defined as imbalance(v) := 1 if δ(v) is odd, and imbalance(v) := 0177

otherwise. A node v ∈ V is called unbalanced, if imbalance(v) ̸= 0, and balanced otherwise.178

A labelled graph is a bidirected graph G = (V, E, c) where the identifiers of arcs are strings179

over some alphabet Σ (e.g. (v1⊕, v2⊖, ACCTG) ∈ E).180

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:6 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

2.2 Suffix arrays and suffix trees181

Section 4 requires knowledge of suffix arrays and suffix trees. We assume the reader is familiar182

with these data structures, and briefly give the relevant definitions and properties below. We183

point the reader to Gusfield [12] and Mäkinen [18] for an in-depth treatment of the topics.184

A suffix array SAT for a string T is an array of length |T | such that SAT [i] is the starting185

position of the lexicographically i-th suffix of T . The suffix array interval of a string x is the186

maximal interval [i..j] such that all the suffixes pointed by SAT [i], . . . , SAT [j] have x as a187

prefix, or the empty interval if x is not a substring of T .188

A suffix tree of a string T is a compacted version of the trie of all suffixes of T , such that189

non-branching paths are merged into single arcs, with arcs pointing away from the root. The190

compactification concatenates the labels of the arcs on the compacted path. The nodes that191

were compacted away and are now in the middle of an arc are called implicit nodes, and the192

rest of the nodes are explicit. A locus (plural loci) is a node that is either explicit or implicit.193

A locus v is represented by a pair (u, d), where u is the explicit suffix tree node at the end of194

the arc containing v (u is equal to v if v is explicit), and d is the depth of locus v in the trie195

of loci. The suffix array interval of a node is the interval of leaves in the subtree of the node.196

The suffix array interval of an implicit locus (u, d) is the same as the suffix array interval of197

u.198

The suffix tree can be constructed in linear time in |T | using e.g. Ukkonen’s algorithm [24].199

The tree comes with a function child that takes an explicit node and a character, and returns200

the child at the end of the arc from that node whose label starts with the given character (if201

such node exists). This can be implemented in O(log |Σ|) time by binary searching over child202

pointers sorted by labels. The child function can also be easily implemented for implicit203

loci. Ukkonen’s algorithm also produces suffix links for the explicit nodes, which map from204

the suffix tree node of a string cx to the suffix tree node of string x. It is possible to emulate205

suffix links on the implicit loci using constant-time weighted level-ancestor queries [4] by206

mapping (u, d) 7→ (fd−1(SL(u)), d− 1), where SL(u) is the destination of a suffix link from207

u, and fd−1(SL(u)) is the furthest suffix tree ancestor from SL(u) at depth at least d− 1 in208

the trie of loci. The inverse pointers of suffix links are called Weiner links, and they can also209

be simulated on the implicit loci by mapping (u, d) 7→ (WL(u, c), d + 1), where WL(u, c) is210

the destination of a Weiner link from u with character c.211

3 De Bruijn graphs212

The de Bruijn graph of order k of a set of input strings I is defined as a labelled graph213

constructed by Algorithm 1. See Figure 1 (a) for an example. A de Bruijn graph computed214

by this algorithm has the following property (see Appendix B for some of the proofs of this215

section).216

▶ Lemma 2 (Sound labels). Let k be a positive integer and let I be a set of strings of length217

at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. For all218

pairs of arcs e1 := (v1d1, v′
1d′

1, η1), e2 := (v2d2, v′
2d′

2, η2) ∈ E it holds that:219

(a) (v′
1 = v2 and d′

1 = ¬d2) if and only if sufk−1(η1) = prek−1(η2),220

(b) (v′
1 = v′

2 and d′
1 = ¬d′

2) if and only if sufk−1(η1) = prek−1(rc(η2)),221

(c) (v1 = v2 and d1 = ¬d2) if and only if sufk−1(rc(η1)) = prek−1(η2), and222

(d) (v1 = v′
2 and d1 = ¬d′

2) if and only if sufk−1(rc(η1)) = prek−1(rc(η2)).223

For a walk W := (e1 = (v1d1, v′
1d′

1, η1), . . . , eℓ = (vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) in a de Bruijn graph, its224

sequence of k-mers is K := (κ1, . . . , κℓ), where for each i we define κi as ηi if ei ∈ E, and225

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:7

Algorithm 1 DeBruijnGraph
Input: An integer k and a set of strings I where each string has length at least k.
Output: A de Bruijn graph G = (V, E, c) of order k.

1 V ← CSk−1(I) /* the nodes are the canonical (k − 1)-mers */
2 foreach v ∈ V do
3 if rc(v) = v then c(v)← 1 else c(v)← 0
4 foreach η ∈ CSk(I) do
5 w ← prek−1(η) /* compute v */
6 v ← canonical w

7 w′ ← sufk−1(η) /* compute v′ */
8 v′ ← canonical w′

9 if c(v) = 1 then d← ⊙ /* compute the direction of v */
10 else if v = w then d← ⊕
11 else d← ⊖
12 if c(v′) = 1 then d′ ← ⊙ /* compute the direction of v′ */
13 else if v′ ̸= w′ then d′ ← ⊕ /* note that ̸= differs from = above */
14 else d′ ← ⊖
15 e← (vd, v′d′, η) /* insert the arc into the graph */
16 E ← E ∪ {e}

as rc(ηi) if e−1
1 ∈ E. The string spell(W) is the string spelled by W , which is defined as its226

collapsed sequence of kmers, i.e. its sequence of k-mers gets concatenated while overlapping227

consecutive k-mers by k − 1. This is computed by Algorithm 2. We prove the following228

lemmas to show that our definition of the spell(·) function is sound for our purposes, i.e.229

correctly spells the string belonging to a walk in a de Bruijn graph.230

▶ Lemma 3 (Sound sequence of k-mers). Let k be a positive integer and let I be a set of231

strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed232

from I. Let W := (e1 = (v1d1, v′
1d′

1, η1), . . . , eℓ = (vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) be a walk in G, and233

K := (κ1, . . . , κℓ) its sequence of k-mers. Then for each consecutive pair of kmers κi, κi+1 it234

holds that sufk−1(κi) = prek−1(κi+1).235

We define the sequence of k-mers K = (κ1, . . . , κℓ) of a string w = (a1, . . . , aℓ+k−1) by236

κi := (ai, . . . , ai+k−1) for each i.237

Algorithm 2 Spell
Input: A de Bruijn graph G = (V, E, c) of order k and a walk

W = (e1 := (v1d1, v′
1d′

1, η1), . . . , eℓ := (vℓdℓ, v′
ℓd′

ℓ, ηℓ)).
Output: The string s spelled by W , i.e. spell(W).

1 if W is empty then
2 s← ϵ

3 else /* compute the sequence of kmers from W */
4 foreach i ∈ (1, . . . , ℓ) do /* iterate the sequence in order */
5 if ei ∈ E then κi ← ηi

6 else κi ← rc(ηi) /* e−1
i ∈ E */

7 s← k − 1 prefix of κ1

8 foreach i ∈ (1, . . . , ℓ) do /* iterate the sequence in order */
9 append the last character from κi to s

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:8 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

▶ Lemma 4 (Sound spell). Let k be a positive integer and let I be a set of strings of length238

at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. Let W be239

a walk in G, KW its sequence of k-mers and K ′
W the sequence of k-mers of spell(W). Then240

KW = K ′
W .241

▶ Lemma 5 (Complete representation). Let k be a positive integer and let I be a set of242

strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed243

from I. Let w be a string with CSk(w) ⊆ CSk(I). Then there exists a walk W in G with244

spell(W) = w.245

Proof. Let Kw = (κ1, . . . , κℓ) be the sequence of k-mers of w. We construct W = (e1 =246

(v1d1, v′
1d′

1, η1), . . . , eℓ = (vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) as follows: for each i, let ηi be the canonical of κi247

and fi ∈ E be the arc whose identifier is ηi. We set ei = fi if κi is canonical, and ei = f−1
i248

otherwise.249

For W to fulfil the definition of a walk we need that v′
i = vi+1 and d′

i = ¬d′
i+1 for all i.250

Using Lemma 2, we get:251

If ei, ei+1 ∈ E, then sufk−1(ηi) = sufk−1(κi) = prek−1(κi+1) = prek−1(ηi+1). Therefore,252

by Lemma 2 (a), it holds that v′
i = vi+1 and d′

i = ¬d′
i+1.253

If ei, e−1
i+1 ∈ E, then sufk−1(ηi) = sufk−1(κi) = prek−1(κi+1) = prek−1(rc(ηi+1)). There-254

fore, by Lemma 2 (b), it holds that v′
i = vi+1 and d′

i = ¬d′
i+1.255

If e−1
i , ei+1 ∈ E, then sufk−1(rc(ηi)) = sufk−1(κi) = prek−1(κi+1) = prek−1(ηi+1).256

Therefore, by Lemma 2 (c), it holds that v′
i = vi+1 and d′

i = ¬d′
i+1.257

If e−1
i , e−1

i+1 ∈ E, then sufk−1(rc(ηi)) = sufk−1(κi) = prek−1(κi+1) = prek−1(rc(ηi+1)).258

Therefore, by Lemma 2 (d), it holds that v′
i = vi+1 and d′

i = ¬d′
i+1.259

To complete the proof we need to show that spell(W) = w. By definition, the sequence260

of k-mers KW of W is equivalent to Kw. And since W is a walk, by Lemma 4 we get that261

the sequence of k-mers of spell(W) is equivalent to KW , and therefore spell(W) = w. ◀262

A walk cover W of a bigraph G is a set of walks such that for each arc e ∈ E it holds that e263

is part of some walk W ∈ W, or e−1 is part of some walk W ∈ W.264

▶ Theorem 6 (Dualism between SPSS and walk cover). Let k be a positive integer and let265

I and I ′ be sets of strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of266

order k constructed from I. Then it holds that CSk(I) = CSk(I ′), if and only if there is a267

walk cover W in G that spells the strings in I ′.268

Proof. If CSk(I ′) ⊆ CSk(I), then for each string w′ ∈ I ′ it holds that CSk(w′) ⊆ CSk(I).269

Therefore, by Lemma 5, there exists a walk w in G with spell(w) = w′. Then, the set of all270

such walksW spells I ′. Further, because CSk(I) ⊆ CSk(I ′), the identifier η of each arc e ∈ E271

is in CSk(I ′), and therefore in the sequence of kmers Kw′ of some string w′ ∈ I ′ (possibly as272

a reverse complement). By Lemma 4 it holds that Kw′ = Kw, where Kw is the sequence of273

k-mers of walk w. By the definition of the sequence of k-mers of a walk, this implies that w274

visits e (possible in reverse direction). Since this holds for each e ∈ E, it holds that W is a275

walk cover of G.276

Assume that there is a walk coverW in G that spells the strings in I ′, and let w ∈ W be a277

walk, Kw its sequence of k-mers, w′ := spell(w) and Kw′ the sequence of k-mers of w′. Then,278

by Lemma 4, Kw = Kw′ , which, by the definition of the sequence of k-mers of a walk implies279

that CSk(I) ⊆ CSk(I ′). And since W is a walk cover of G, we get CSk(I) = CSk(I ′). ◀280

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:9

▶ Corollary 7. By setting I = I ′ in Theorem 6 we can confirm that our definition of a281

de Bruijn graph is sound in that there is a set of walks that spells the strings used for its282

construction.283

A compacted de Bruijn graph is constructed from a de Bruijn graph by contracting all nodes284

v ∈ V that are either self-complemental and have exactly two arcs that have exactly one285

incidence to v each, or that are not self-complemental and have exactly one incoming and286

one outgoing arc. For simplicity, we use uncompacted de Bruijn graphs in our theoretical287

sections, however all results equally apply to compacted de Bruijn graphs.288

4 Linear-time construction of compacted bidirected de Bruijn graphs289

In this section, we fill a gap in the literature by describing on a high level an algorithm to290

construct the bidirectional de Bruijn graph of a set of input strings in time linear in the total291

length of the input strings, independent of the value of k.292

4.1 Algorithm293

Let I = {w1, . . . wm} be the set of input strings. Consider the following concatenation:294

T = $w1$w2$. . . wm rc(w1)$ rc(w2)$. . . $ rc(wm)$,

where $ is a special character outside of the alphabet Σ of the input strings. We require an295

index on T that can answer the following queries: extendRight, extendLeft, contractRight296

and contractLeft in constant time. The extension operations take as input a character297

c ∈ Σ and the interval of a string x in the suffix array of T , and return the suffix array298

intervals of xc in the case of extendRight and cx in the case of extendLeft. The contraction299

operations are the inverse operations of these, mapping the suffix array intervals of xc to300

x in the case of contractRight and cx to x in the case of contractLeft. For efficiency,301

we also require operations enumerateRight and enumerateLeft, which take a string x and302

give all characters such that extendRight and extendLeft respectively return a non-empty303

interval, in time that is linear in the number of such characters. Implementations for all the304

six subroutines are given in Section 4.2.305

Using these operations, we can simulate the regular non-bidirected de Bruijn graph of306

T . Each k-mer of the input strings for a fixed k corresponds to a disjoint interval in the307

suffix array of T . The nodes are represented by their suffix array intervals. The outgoing308

arcs from a (k − 1)-mer x are those characters c where extendRight(x, c) returns a non-309

empty interval. We can enumerate all the characters c with this property in constant time310

using enumerateRight(x). The incoming arcs can be enumerated symmetrically with the311

enumerateLeft(x). Finally, we can find the destination or origin of an arc labelled with x312

by running a contractLeft or contractRight operation respectively on x.313

To construct the bidirected de Bruijn graph, we merge together nodes that are the reverse314

complement of each other. To find which nodes are complemental, we scan the input strings315

I while maintaining the suffix array interval of the current k-mer using extendRight and316

contractLeft operations, while at the same time maintaining the suffix array interval of317

the reverse complement using extendLeft and contractRight operations. Whenever we318

merge two nodes, we combine the incoming and outgoing arcs, assigning the incidences of the319

arcs according to the incidence rules in our definition. We are able to tell in constant time320

which k-mer of a pair of complemental k-mers is canonical by comparing the suffix array321

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:10 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

intervals of the k-mers: the k-mer whose suffix array interval has a smaller starting point is322

the canonical k-mer. If the starting points are the same, the k-mer is self-complemental.323

Using the enumerateRight and enumerateLeft functions, we can check if a node would324

be contracted in a compacted de Bruijn graph. By extending k-mers over such nodes, we325

can in linear time also output only the arcs and nodes of a compacted de Bruijn graph. For326

storing the labels, we use one pointer into the input strings to store a single k-mer, as well327

as a flag that is set whenever the label is not canonical. If a label has multiple k-mers, then328

we store the remaining k-mers as explicit strings, however without their overlap with the329

“pointer-k-mer”. This way, we can store each label in O(ℓ) space, where ℓ is the number of330

k-mers in the label. We additionally store the first and last character of each label, as an331

easy way to make the spell function run in output sensitive linear time.332

4.2 Implementation of the subroutines333

All required the subroutines extendRight, extendLeft, contractRight, contractLeft,334

enumerateRight and enumerateLeft can be implemented with the suffix tree of T by335

simulating the trie of the suffix tree loci as described in Section 2.2. The suffix array intervals336

of explicit nodes can be stored with the nodes, so that we can operate on loci (u, d) and337

retrieve the suffix array intervals on demand. The operation extendRight follows an arc338

from a locus to a child, and the operation contractRight is implemented by going to the339

parent of the current locus. The operation contractLeft follows a suffix link from the340

current locus, and extendLeft follows a Weiner link. The operations enumerateRight and341

enumerateLeft are implemented by storing the children and the Weiner links from explicit342

suffix tree nodes as neighbor lists. The total number of these links is linear in |T | [18].343

With this implementation, the slowest operations are extendRight and extendLeft, taking344

O(log |Σ|) time to binary search the neighbor lists. We therefore obtain the following result:345

▶ Theorem 8. The compacted arc-centric bidirected de Bruijn graph of order k of a set of346

input strings I from the alphabet Σ can be constructed in time O(||I|| log |Σ|).347

We note that the same operations can also be implemented on top of the bidirectional BWT348

index of Belazzougui and Cunial [2], using the data structures of Belazzougui et al. [3] for349

the enumeration operations. This gives an index that supports all the required subroutines350

in constant time. The drawback of the bidirectional BWT index is that only randomized351

construction algorithms are known, but the expected time is still linear in |T |. We leave as352

an open problem the construction of the compacted arc-centric bidirected de Bruijn graph in353

deterministic linear time independent of the alphabet size.354

5 Linear-time minimum SPSS without repetitions355

Let I be a set of strings. To compute an SPSS without repetitions we first build a compacted356

de Bruijn graph G from I. Because of Theorem 6, finding an SPSS is equivalent to finding357

a walk cover in G. Further, with Lemma 4, we get that an SPSS without repetitions is358

equivalent to a walk cover that visits each arc exactly once (either once forwards, or once359

reverse, but not both forwards and reverse). We call such a walk cover a unique walk cover.360

For minimality, observe that the cumulative length of an SPSS S relates to its equivalent361

set of walks W as follows:362

||S|| =
∑

W ∈W
(k − 1 + |W |) (1)363

364

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:11

This is because in Algorithm 2, in Line 7, k − 1 characters are appended to the result, and365

then in the loop in Line 8, one additional character per arc in W is appended. We cannot366

alter the sum
∑

W ∈W |W |, since we need to cover all arcs in G. However we can alter the367

number of strings, and decreasing or increasing this number by one will decrease or increase368

the cumulative length of S by k − 1. Therefore, finding a minimum SPSS of I without369

repetitions equals finding a unique walk cover of G that has a minimum number of walks.370

Note that computing a minimum SPSS in a bigraph that is not connected is equivalent to371

separately computing an SPSS in each maximal connected subgraph. Therefore we restrict372

to connected bigraphs from here on.373

5.1 A lower bound for an SPSS without repetitions374

Using the imbalance of the nodes of a bigraph, we can derive a lower bound for the number375

of walks in a walk cover.376

▶ Lemma 9. Let v ∈ V be an unbalanced node in a bigraph G = (V, E, c). Then in a unique377

walk cover W of G, either at least | imbalance(v)| walks start in v, or at least | imbalance(v)|378

walks end in v.379

Proof. If v is self-complemental, then its imbalance is 1, so by definition v has an odd number380

of incident arcs. Each walk that does not start or end in v needs to enter and leave v via381

two distinct arcs whenever it visits v. But since the number of incident arcs is odd, there is382

at least one arc that cannot be covered this way, implying that a walk needs to start or end383

in this arc.384

If v is not self-complemental and has a positive imbalance, then it has imbalance(v) more385

outgoing arcs then incoming arcs. Since walks need to leave v with the opposite sign than386

they entered v, at least imbalance(v) arcs cannot be covered by walks that do not start or387

end in v. If v has negative imbalance, the situation is symmetric. ◀388

▶ Definition 10 (Imbalance of a bigraph). The imbalance imbalance(G) of a bigraph G =389

(V, E, c) is the sum of the absolute imbalance of all nodes
∑

v∈V | imbalance(v)|.390

▶ Theorem 11 (Lower bound). Let G be a bigraph. A walk cover W of G has a minimum391

string count of imbalance(G)/2.392

Proof. Let v ∈ V be an unbalanced node. Then, by Lemma 9 at least | imbalance(v)| walks393

start in v or at least | imbalance(v)| walks end in v. Since each walk has exactly one start394

node and one end node, W has a minimum string count of imbalance(G)/2. ◀395

5.2 Eulerising a bigraph396

A directed graph is called Eulerian, if all nodes have indegree equal to outdegree, i.e. are397

balanced [10]. If the graph is strongly connected3, then this is equivalent to the graph398

admitting a Eulerian cycle, i.e. a cycle that visits each arc exactly once. The same notion399

can be used with bidirected graphs, using our definition of imbalance.400

▶ Definition 12 (Eulerian bigraph). A bigraph is Eulerian, if all nodes have imbalance zero.401

A connected bigraph can be transformed into a Eulerian bigraph by adding arcs using402

Algorithm 3. See Figure 1 (b) for an example.403

3 Strongly connected means that there is a directed path from each node v1 to each node v2.

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:12 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

Algorithm 3 Eulerise
Input: Bigraph G = (V, E, c).
Output: Eulerised bigraph G′ = (V, E′, c).

1 G′ ← G /* G and G′ share V and c */
2 L← empty list /* collect missing incidences to balance G′ */
3 foreach v ∈ V do
4 i← imbalance(v)
5 if c(v) = 1 then
6 if i ̸= 0 then append v⊙ to L

7 else
8 if i > 0 then append i copies of v⊖ to L

9 if i < 0 then append i copies of v⊕ to L

10 while |L| > 0 do /* insert missing incidences as arcs */
11 vd← remove the first incidence from L

12 v′d′ ← remove the first incidence from L

13 insert 1 arc (vd, v′d′, |L|) into E′ /* use distinct identifiers */

▶ Lemma 13. The imbalance of a bigraph is even.404

Proof. Adding or removing an arc changes the imbalance of two nodes by 1, or of one node405

by two. In both cases, the imbalance of the graph can only change by −2, 0, or 2. Since the406

imbalance of a graph without arcs is 0, this implies that there can be no graph with odd407

imbalance. ◀408

▶ Lemma 14. Given a connected bigraph G = (V, E, c), Algorithm 3 outputs a Eulerian409

bigraph G′ = (V, E′, c).410

Proof. Algorithm 3 is well-defined, since by Lemma 13, it holds that L has even length411

in each iteration of the loop in Line 10, so the removal operation in Line 12 always has412

something to remove.413

The output of Algorithm 3 is a valid bigraph, since for self-complemental nodes v ∈ V ,414

only incidences v⊙ are added to G′, and for not self-complemental nodes v ∈ V , only415

incidences v⊕ and v⊖ are added to G′.416

Further, the output is a Eulerian bigraph, because for all v ∈ V , it holds that imbalance(v)417

is 0, by the following argument:418

If c(v) = 1 and v has imbalance zero in G, then its imbalance stays the same in G′. If419

it has imbalance 1, then one incident arc is inserted, making its degree even and its420

imbalance therefore zero.421

If c(v) = 0 and v has positive imbalance i in G, then i incoming arcs are added to v422

(counting incoming self-loops twice), and no outgoing arcs are added. Therefore, it has423

imbalance zero in G′. By symmetry, if v has negative imbalance in G, it has imbalance424

zero in G′. ◀425

▶ Lemma 15. Given a bigraph G = (V, E, c), Algorithm 3 terminates after O(|V | + |E|)426

steps.427

Proof. For the list data structure we choose a doubly linked list, and for the graph an428

adjacency list (and array with an entry for each node containing a doubly linked list for the429

arcs).430

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:13

The loop in Line 3 runs |V | times and each iteration runs in O(| imbalance(v)|) for a node431

v, because a doubly linked list supports appending in constant time. The sum of absolute432

imbalances of all nodes cannot exceed 2|E|, because each arc adds at most 1 to the absolute433

imbalance of at most two nodes, or adds at most 2 to the absolute imbalance of at most one434

node. Therefore, the length of list L after completing the loop is at most 2|E|, and the loop435

runs in O(|V |+ |E|) time.436

The loop in Line 10 runs at most |L| ≤ 2|E| times and performs only constant-time437

operations, since L is a doubly linked list and we can insert arcs into an adjacency list in438

constant time. Therefore, this loop also runs in O(|V |+ |E|) time. ◀439

With Lemmas 14 and 15 we get the following.440

▶ Theorem 16. Algorithm 3 is correct and runs in O(|V |+ |E|) time.441

5.3 Computing a Eulerian cycle in a bigraph442

Algorithm 4 EulerianCycle
Input: Connected Eulerian bigraph G = (V, E, c).
Output: Eulerian cycle W .

1 while |E| > 0 do
2 if |W | = 0 then
3 (vd, v′d′, η)← remove some arc from E

4 W ′ ← ((vd, v′d′, η)) /* doubly linked list */

5 else /* search a used arc that connects to an unused arc */
6 (vd, v′d′, η)← dereference first_unfinished

7 while E has no arc with incidence v′¬d′ do
8 advance first_unfinished to the next arc in W

9 (vd, v′d′, η)← dereference first_unfinished

// extend W ′ without repeating arcs until it closes a cycle
10 while E contains an arc e = (vede, v′

ed′
e, ηe) with incidence v′¬d′ do

11 remove e from E

12 if vede = v′¬d′ then (vd, v′d′, η)← (vede, v′
ed′

e, ηe)
13 else (vd, v′d′, η)← (v′

ed′
e, vede, ηe) /* v′

ed′
e = v′¬d′ */

14 append (vd, v′d′, η) to W ′

15 if |W | = 0 then
16 W ←W ′

17 first_unfinished← pointer to the first arc in W

18 else
19 insert W ′ after first_unfinished in W

20 W ′ ← () /* empty doubly linked list */

After Eulerising the bigraph, we can compute a Eulerian cycle using Algorithm 4. We443

do this similarly to Hierholzer’s classic algorithm for Eulerian cycles [10]. First we find an444

arbitrary cycle. Then, as long as there are unused arcs left, we search along the current cycle445

for unused arcs, and find additional cycles through such unused arcs. We integrate each of446

those additional cycles into the main cycle. See Figure 1 (c) for an example of a Eulerian447

cycle.448

▶ Lemma 17. Given a connected Eulerian bigraph G = (V, E, c), Algorithm 4 terminates449

and outputs a Eulerian cycle W .450

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:14 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

Proof. For W = (e1 = (v1d1, v′
1d′

1, η1), . . . , eℓ = (vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) to be a Eulerian cycle, it451

must be a cycle that contains each arc exactly once.452

The sequence W ′ constructed by the loop in Line 10 is a walk by construction, and since453

G is Eulerian it is a cycle after the loop terminates. After finding the initial cycle in the first454

iteration of the outer loop, each additional cycle is started from a node on the initial cycle,455

and is a cycle again. Therefore it can be inserted into the original cycle without breaking its456

cycle property.457

Since each arc is deleted when being added to W ′, there is no duplicate arc in W . And if458

the algorithm terminates, then |E| = 0 (Line 1), so W contains all arcs.459

For termination, consider that if W is not complete after the first iteration of the outer460

loop, then the loop in Line 7 searches for an unused arc using the first_unfinished pointer.461

Since the prefix of W up to including first_unfinished is never modified (Line 19), and462

first_unfinished is only advanced when its pointee cannot reach any arc anymore, it holds463

that no arc in W can reach an arc in E when first_unfinished gets advanced over the end464

of W . Since G was initially Eulerian and only Eulerian cycles have been removed from G,465

this implies that all nodes visited by W are still balanced and therefore have no incident466

arcs anymore. And since G was originally connected, W has visited all nodes, i.e. |E| = 0.467

Therefore, first_unfinished cannot be advanced over the end of W , because the outer loop468

terminates before that.469

To complete the proof of termination, consider that in each iteration of the outer loop, at470

least one arc gets removed from E. In the first iteration, this happens at least in Line 3, and471

in all following iterations, this happens in Line 11. ◀472

▶ Lemma 18. Given a connected Eulerian bigraph G = (V, E, c), Algorithm 4 terminates473

after O(|V |+ |E|) steps.474

Proof. We use a doubly linked list for W and W ′, and an adjacency list for G. Then all475

lines can be executed in constant time.476

The loop in Line 10 removes one arc from E each iteration, so it runs at most |E| times in477

total (over all iterations of the outer loop). The loop in Line 7 advances first_unfinished478

each iteration. Since the algorithm is correct by Lemma 17, |W | ≤ |E| and first_unfinished479

never runs over the end of first_unfinished, so the loop runs at most |E| times in total480

(over all iterations of the outer loop).481

The condition for the loop in Line 10 is true at least once in each iteration of the outer482

loop, since the preceding branch sets up (vd, v′d′, η) such that it has a successor (in the first483

iteration because of Eulerianess). So in each iteration of the outer loop, at least one arc gets484

removed, so the outer loop runs at most |E| times in total.485

As a result, all loops individually run at most |E| times, therefore Algorithm 4 terminates486

after O(|V |+ |E|) steps. ◀487

With Lemmas 17 and 18 we get the following.488

▶ Theorem 19. Algorithm 4 is correct and runs in O(|V |+ |E|) time.489

5.4 Computing a minimum SPSS without repetitions490

We convert the Eulerian cycle into a walk cover of the original bigraph by breaking it at all491

arcs inserted by Algorithm 3, and removing those arcs (see Figure 1 (d) for an example).492

This results in a walk cover with either one walk, if Algorithm 3 inserted zero or one493

arcs, or imbalance(G)/2 arcs, if Algorithm 3 inserted more arcs. By Theorem 11, this is a494

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:15

minimum number of walks, and therefore the SPSS spelled by these walks is minimum as495

well. Constructing the de Bruijn graph takes O(||I|| log Σ) time, and it has O(||I||) k-mers,496

so it holds that |V | ∈ O(||I||) and |E| ∈ O(||I||). Further, spelling the walk cover takes497

time linear to the cumulative length of the spelled strings. Since we compute a minimum498

representation, it holds that the output is not larger than the total length of the input strings.499

Therefore we get:500

▶ Theorem 1. Let k be a positive integer and let I be a set of strings of length at least k501

over some alphabet Σ. Then we can compute a set of strings I ′ of length at least k with502

minimum cumulative length and CSk(I) = CSk(I ′) in O(||I|| log |Σ|) time.503

6 Experiments504

genome algorithm CL ratio SC ratio time [s] memory [GiB]

C. elegans (reads)
unitigs 1.789 2.831 1888 5.97
UST 1.035 1.080 2738 (1.45) 15.2 (2.54)
Eulertigs 1 1 3735 (1.98) 25.0 (4.19)

B. mori (reads)
unitigs 1.912 3.136 7737 9.36
UST 1.050 1.118 10937 (1.41) 52.4 (5.60)
Eulertigs 1 1 13793 (1.78) 79.4 (8.48)

H. sapiens (reads)
unitigs 1.418 2.143 56966 13.0
UST 1.016 1.044 57736 (1.01) 16.4 (1.26)
Eulertigs 1 1 58861 (1.03) 29.2 (2.25)

C. elegans
unitigs 1.060 3.154 54.7 1.22
UST 1.002 1.089 58.0 (1.06) 1.22 (1.00)
Eulertigs 1 1 65.9 (1.21) 1.22 (1.00)

B. mori
unitigs 1.262 3.310 224 3.32
UST 1.018 1.156 258 (1.16) 3.32 (1.00)
Eulertigs 1 1 315 (1.41) 3.32 (1.00)

H. sapiens
unitigs 1.195 3.532 3166 10.0
UST 1.015 1.192 3369 (1.06) 10.0 (1.00)
Eulertigs 1 1 3717 (1.17) 10.0 (1.00)

Table 1 Experiments on references and read sets of single genomes with k = 51 and a min
abundance of 10 for human and 1 for the others. The CL and SC ratios are compared to the
CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory
required to compute the tigs from the respective data set. BCALM2 directly computes unitigs,
while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm can only be run for k ≤ 32, which does not make sense for large genomes. The number in
parentheses behind time and memory indicates the slowdown/increase over computing just unitigs
with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread.
The lengths of the genomes are 100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H.
sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H.
sapiens.

We ran our experiments on a server running Linux with two 64-core AMD EPYC 7H12505

processors with 2 logical cores per physical core, 1.96TiB RAM and an SSD. Our data sets506

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:16 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

pangenome tigs CL ratio SC ratio time [s] memory [MiB]

1102x N. gonorrhoeae

unitigs 1.615 3.052 24.2 4328
UST 1.022 1.074 26.1 (1.08) 4328 (1.00)
prophasm 1.00004 1.00013 774 (31.9) 208 (0.05)
Eulertigs 1 1 26.9 (1.11) 4328 (1.00)

616x S. pneumoniae

unitigs 1.679 3.055 21.4 3135
UST 1.027 1.081 25.9 (1.21) 3135 (1.00)
prophasm 1.00004 1.00012 436 (20.3) 434 (0.14)
Eulertigs 1 1 28.5 (1.33) 3135 (1.00)

3682x E. coli

unitigs 1.705 3.092 334 7146
UST 1.031 1.092 416 (1.24) 7146 (1.00)
prophasm 1.00008 1.00023 7456 (22.3) 7221 (1.01)
Eulertigs 1 1 471 (1.41) 7146 (1.00)

Table 2 Experiments on (references of) pangenomes with k = 31 and a min abundance of 1.
The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report
the total time and maximum memory required to compute the tigs from the respective data set.
BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before
they can be computed themselves. Prophasm is run directly on the source data. The number in
parentheses behind time and memory indicates the slowdown/increase over computing just unitigs
with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread.
The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S. pneumoniae pangenome
contains 19.3 million unique kmers and the E. coli pangenome contains 341 million unique kmers.

are the same as in [23], and we also adapted their metrics cumulative length (CL), which is507

the total count of characters in all strings, and string count (SC), which is the number of508

strings. Our implementation does not use the formalisation of bidirected graphs introduced509

in this work, but instead uses the formalisation from [23]. For constructing de Bruijn graphs,510

we do not implement our purely theoretical linear time algorithm, since practical de Bruijn511

graph construction is a well-researched field [8, 13, 15, 9, 20, 19], and we want to focus512

more on computing the compressed representation from unitigs. UST only supports unitigs513

constructed by BCALM2 [8], since it needs certain additional data. BCALM2 is not a linear514

time algorithm, but works efficient in practice. Therefore, we use BCALM2 to construct515

a node-centric de Bruijn graph, and then convert it to an arc-centric variant using a hash516

table.517

Our experimental pipeline is constructed with [16] and using the bioconda software518

repository [11]. We ran all multithreaded tools with up to 28 threads and never used more519

than 128 cores of our machine at once to prevent hyperthreading from affecting our timing.520

The code to reproduce our experiments is available at https://doi.org/10.5281/zenodo.521

6538261.522

The performance figures are all very similar, with two exceptions. Prophasm does not523

support parallel computation at the moment, therefore its runtime is much higher. Compared524

to that, all other algorithms use parallel computation to compute unitigs, but computing525

the final tigs from unitigs seems to be negligible compared to computing the de Bruijn526

topology. Moreover, running UST or Eulertigs on read data sets of larger genomes consumes527

significantly more memory than computing just unitigs. This is likely because BCALM2528

uses external memory to compute unitigs, while the other tools simply load the whole set of529

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.5281/zenodo.6538261
https://doi.org/10.5281/zenodo.6538261
https://doi.org/10.5281/zenodo.6538261
https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:17

unitigs into memory.530

It is notable that the Eulertigs algorithm is always slower than UST. This may be because531

of the Eulertig algorithm being more complex, but also because our loading and storing532

routines might not be as efficient. While UST uses node-centric de Bruijn graphs and can533

therefore directly make use of the topology output by BCALM2 (which is a fasta file with534

arcs stored as custom annotations), we need to convert the graph into arc-centric format.535

This is supported by e.g. the B. mori short read data set, on which the computation of536

Eulertigs uses only 11% of the runtime for the algorithm itself, while 89% are from loading537

the graph (including the conversion to arc-centric) and storing the result.538

In terms of CL, we see that the SPSS computed with UST mostly remains within the539

expected 3% of the lower bound, but they are up to 5% above the lower bound on more540

compressible data sets. The SPSS computed by prophasm is very close to the optimum in541

all cases, and we assume that this difference in quality is because prophasm extends paths542

both forwards and backwards, while the UST heuristic merely extends them forwards.543

Looking at SC, we see that Eulertigs are always the lowest, which is due to the string544

count directly being connected to the cumulative length by Equation (1). This also explains545

the correlation between CL and SC, which can be observed in all cases.546

7 Conclusions547

We have presented a linear and hence optimal algorithm for computing a minimum SPSS548

without repetitions for a fixed alphabet size. This closes the open question about its549

complexity raised in [6, 22]. Using our optimal algorithm, we were able to accurately evaluate550

the existing heuristics and show that they are very close to the optimum in practice. Further,551

we have published our algorithm as a command-line tool on github, allowing it to easily be552

used in other projects.553

Further, we have presented how bidirected de Bruijn graphs can be formalised without554

excluding any corner cases. We have also shown how such a graph can be constructed in555

linear time for a fixed-size alphabet. The construction of the compacted arc-centric bidirected556

de Bruijn graph in linear time independent of the alphabet size stays an open problem.557

References558

1 Anton Bankevich, Andrey V Bzikadze, Mikhail Kolmogorov, Dmitry Antipov, and Pavel A559

Pevzner. Multiplex de bruijn graphs enable genome assembly from long, high-fidelity reads.560

Nature biotechnology, pages 1–7, 2022.561

2 Djamal Belazzougui and Fabio Cunial. Fully-functional bidirectional burrows-wheeler indexes562

and infinite-order de bruijn graphs. In 30th Annual Symposium on Combinatorial Pattern563

Matching (CPM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.564

3 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Versatile succinct565

representations of the bidirectional burrows-wheeler transform. In European Symposium on566

Algorithms, pages 133–144. Springer, 2013.567

4 Djamal Belazzougui, Dmitry Kosolobov, Simon J Puglisi, and Rajeev Raman. Weighted568

ancestors in suffix trees revisited. In 32nd Annual Symposium on Combinatorial Pattern569

Matching, 2021.570

5 Jacek Blazewicz, Alain Hertz, Daniel Kobler, and Dominique de Werra. On some properties571

of dna graphs. Discrete Applied Mathematics, 98(1-2):1–19, 1999.572

6 Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scalable573

representation of de Bruijn graphs. Genome Biology, 22(1):1–24, 2021.574

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:18 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

7 Bastien Cazaux, Thierry Lecroq, and Eric Rivals. From indexing data structures to de Bruijn575

graphs. In Symposium on combinatorial pattern matching, pages 89–99. Springer, 2014.576

8 Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs from577

sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016.578

9 Victoria G Crawford, Alan Kuhnle, Christina Boucher, Rayan Chikhi, and Travis Gagie.579

Practical dynamic de bruijn graphs. Bioinformatics, 34(24):4189–4195, 2018.580

10 Herbert Fleischner. Eulerian graphs and related topics. Elsevier, 1990.581

11 Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A Chapman, Jillian Rowe, Christopher H582

Tomkins-Tinch, Renan Valieris, and Johannes Köster. Bioconda: sustainable and comprehens-583

ive software distribution for the life sciences. Nature Methods, 15(7):475–476, 2018.584

12 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-585

tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.586

13 Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of587

colored and compacted de Bruijn graphs. Genome Biology, 21(1):1–20, 2020.588

14 Marta Kasprzak. Classification of de Bruijn-based labeled digraphs. Discrete Applied Math-589

ematics, 234:86–92, 2018. Special Issue on the Ninth International Colloquium on Graphs and590

Optimization (GO IX), 2014. URL: https://www.sciencedirect.com/science/article/591

pii/S0166218X16304826, doi:https://doi.org/10.1016/j.dam.2016.10.014.592

15 Jamshed Khan, Marek Kokot, Sebastian Deorowicz, and Rob Patro. Scalable, ultra-fast, and593

low-memory construction of compacted de bruijn graphs with cuttlefish 2. bioRxiv, 2021.594

16 Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow engine.595

Bioinformatics, 28(19):2520–2522, 2012.596

17 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh. An efficient algorithm for chinese597

postman walk on bi-directed de bruijn graphs. In Weili Wu and Ovidiu Daescu, editors,598

Combinatorial Optimization and Applications, pages 184–196, Berlin, Heidelberg, 2010. Springer599

Berlin Heidelberg.600

18 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I Tomescu. Genome-scale601

algorithm design. Cambridge University Press, 2015.602

19 Martin D Muggli, Bahar Alipanahi, and Christina Boucher. Building large updatable colored603

de bruijn graphs via merging. Bioinformatics, 35(14):i51–i60, 2019.604

20 Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E Belk, Robert605

Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher. Succinct colored de bruijn606

graphs. Bioinformatics, 33(20):3181–3187, 2017.607

21 Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers. bioRxiv, 2022. URL:608

https://www.biorxiv.org/content/early/2022/04/04/2022.01.15.476199, arXiv:609

https://www.biorxiv.org/content/early/2022/04/04/2022.01.15.476199.full.pdf,610

doi:10.1101/2022.01.15.476199.611

22 Amatur Rahman and Paul Medevedev. Representation of k-mer sets using spectrum-preserving612

string sets. Journal of Computational Biology, 28(4):381–394, 2021.613

23 Sebastian Schmidt, Shahbaz Khan, Jarno Alanko, and Alexandru I Tomescu. Matchtigs:614

minimum plain text representation of kmer sets. bioRxiv, 2021.615

24 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.616

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1017/cbo9780511574931
https://www.sciencedirect.com/science/article/pii/S0166218X16304826
https://www.sciencedirect.com/science/article/pii/S0166218X16304826
https://www.sciencedirect.com/science/article/pii/S0166218X16304826
https://doi.org/https://doi.org/10.1016/j.dam.2016.10.014
https://www.biorxiv.org/content/early/2022/04/04/2022.01.15.476199
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2022/04/04/2022.01.15.476199.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2022/04/04/2022.01.15.476199.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2022/04/04/2022.01.15.476199.full.pdf
https://doi.org/10.1101/2022.01.15.476199
https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:19

A Authors contributions617

JNA and SS discovered the problem, SS solved the problem when the de Bruijn graph is618

given and wrote most of the manuscript, JNA designed the linear-time de Bruijn graph619

construction algorithm and wrote Section 4. SS implemented the algorithm and conducted620

and evaluated the experiments. All authors reviewed and approved the final version of the621

manuscript.622

B Omitted proofs623

▶ Lemma 2 (Sound labels). Let k be a positive integer and let I be a set of strings of length624

at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. For all625

pairs of arcs e1 := (v1d1, v′
1d′

1, η1), e2 := (v2d2, v′
2d′

2, η2) ∈ E it holds that:626

(a) (v′
1 = v2 and d′

1 = ¬d2) if and only if sufk−1(η1) = prek−1(η2),627

(b) (v′
1 = v′

2 and d′
1 = ¬d′

2) if and only if sufk−1(η1) = prek−1(rc(η2)),628

(c) (v1 = v2 and d1 = ¬d2) if and only if sufk−1(rc(η1)) = prek−1(η2), and629

(d) (v1 = v′
2 and d1 = ¬d′

2) if and only if sufk−1(rc(η1)) = prek−1(rc(η2)).630

Proof. Observe that the values of w and w′ computed in Lines 5 and 7 of Algorithm 1631

are equal to prek−1(η1) and sufk−1(η1) for e1 and equal to prek−1(η2) and sufk−1(η2) for632

e2. Further, observe that the values of v and v′ computed in Lines 6 and 8 are equal to v1633

and v′
1 for e1 and equal to v2 and v′

2 for e2. This makes v1, v′
1, v2 and v′

2 the canonicals of634

prek−1(η1), sufk−1(η1), prek−1(η2) and sufk−1(η2). Finally, observe that the sign values d635

and d′ computed in Lines 9–14 are equal to d1 and d′
1 for e1 and equal to d2 and d′

2 for e2.636

(a) If v′
1 = v2 and d′

1 = ¬d2, then w′
1 = w2 for all possible values of d′

1, and therefore637

sufk−1(η1) = prek−1(η2).638

If sufk−1(η1) = prek−1(η2), then w′
1 = w2, and therefore v′

1 = v2 because v′
1 and v2 are639

the canonicals of w′
1 and w2. Additionally, d′

1 = ¬d2 for all possible values of d′
1.640

(b) If v′
1 = v′

2 and d′
1 = ¬d′

2, then w′
1 = rc(w′

2) for all possible values of d′
1, and therefore641

sufk−1(η1) = rc(sufk−1(η2)) = prek−1(rc(η2)).642

If sufk−1(η1) = prek−1(rc(η2)), then w′
1 = rc(w′

2), and therefore v′
1 = v′

2 because v′
1 and643

v′
2 are the canonicals of w′

1 and w′
2. Additionally, d′

1 = ¬d′
2 for all possible values of d′

1.644

(c) If v1 = v2 and d1 = ¬d2, then rc(w1) = w2 for all possible values of d1, and therefore645

sufk−1(rc(η1)) = rc(prek−1(η1)) = prek−1(η2).646

If sufk−1(rc(η1)) = prek−1(η2), then w1 = rc(w2), and therefore v1 = v2 because v1 and647

v2 are the canonicals of w1 and w2. Additionally, d1 = ¬d2 for all possible values of d1.648

(d) This case is equivalent to the first case when swapping e1 and e2, because sufk−1(η1) =649

prek−1(η2) ⇐⇒ sufk−1(rc(η2)) = prek−1(rc(η1)). ◀650

▶ Lemma 3 (Sound sequence of k-mers). Let k be a positive integer and let I be a set of651

strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed652

from I. Let W := (e1 = (v1d1, v′
1d′

1, η1), . . . , eℓ = (vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) be a walk in G, and653

K := (κ1, . . . , κℓ) its sequence of k-mers. Then for each consecutive pair of kmers κi, κi+1 it654

holds that sufk−1(κi) = prek−1(κi+1).655

Proof. Let i ∈ {1, . . . , ℓ−1}. By the definition of walk it holds that v′
i = vi+1 and d′

i = ¬di+1.656

We can apply Lemma 2 case by case.657

(a) If ei, ei+1 ∈ E, then by Lemma 2 (a), it holds that sufk−1(ηi) equals prek−1(ηi+1). By658

definition, κi = ηi and κi+1 = ηi+1, so sufk−1(κi) = prek−1(κi+1).659

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:20 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

(b) If ei, e−1
i+1 ∈ E, then by Lemma 2 (b) applied to ei, e−1

i+1, it holds that sufk−1(ηi)660

equals prek−1(rc(ηi+1)). By definition, κi = ηi and κi+1 = rc(ηi+1), so sufk−1(κi) =661

prek−1(κi+1)662

(c) If e−1
i , ei+1 ∈ E, then by Lemma 2 (c) applied to e−1

i , ei+1, it holds that sufk−1(rc(ηi))663

equals prek−1(ηi+1). By definition, κi = rc(ηi) and κi+1 = ηi+1, so sufk−1(κi) =664

prek−1(κi+1).665

(d) If e−1
i , e−1

i+1 ∈ E, then by Lemma 2 (d) applied to e−1
i , e−1

i+1, it holds that sufk−1(rc(ηi))666

equals prek−1(rc(ηi+1)). By definition, κi = rc(ηi) and κi+1 = rc(ηi+1), so sufk−1(κi) =667

prek−1(κi+1). ◀668

▶ Lemma 4 (Sound spell). Let k be a positive integer and let I be a set of strings of length669

at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. Let W be670

a walk in G, KW its sequence of k-mers and K ′
W the sequence of k-mers of spell(W). Then671

KW = K ′
W .672

Proof. Let (κ1, . . . , κℓ) := KW . We use induction over the length of W . For an empty W ,673

K is empty, spell(W) is empty, and therefore K ′ is empty as well. For |W | = 1, Algorithm 2674

outputs spell(W) = κ1 and it holds that K ′
W = (κ1) = KW .675

For |W | ≥ 2 we consider that KX = K ′
X holds for a prefix X of W with |X| = |W | − 1.676

When i = |W | at the beginning of the loop in Line 8, then s = spell(X). By Lemma 3 it677

holds that the last k−1 characters of s are equal to the first k−1 characters of κℓ. Therefore,678

by appending the last character from κℓ to s, κℓ is appended to K ′
X forming K ′

W . Therefore,679

last k-mer of K ′
W equals the last k-mer of KW , and the first ℓ− 1 k-mers of K ′

W equal those680

of KW by induction. ◀681

C Pseudocode for linear-time construction of compacted de Bruijn682

graphs683

The pseudocode for computing a compacted de Bruijn graph in linear time is given by684

Algorithm 6 which uses Algorithm 5 as a subroutine. The data structure D used by the685

algorithms is that described in Section 4. Note that if we compute the arc labels as plain686

strings as in Algorithm 1, we need up to O(k) bits to store a single-k-mer arc. And since arcs687

are not substrings of input strings (but potentially combinations of input strings), we would688

need a string set of up to O(k||I||) characters to store all arc labels without referring to the689

input strings. This contradicts the algorithm being linear in ||I||. However, we can store the690

labels as tuples (p, η, q, r), where pηq is the label where p and q are explicit strings while η is691

a pointer to a k-mer in the input. If r is true, then the label must be reverse complemented692

to match that defined by Algorithm 1. With this fix, the size of each label is linear in the693

number of k-mers it represents, and in total the de Bruijn graph represents O(||I||) k-mers.694

The comparison on Line 16 of Algorithm 6 can be done in linear time in |η1|+ |η2| by695

finding the suffix array intervals of η1ηη2 and rc(η1ηη2) with extendLeft and extendRight696

from η and rc(η) respectively, and comparing the starts of the intervals. This way, the total697

time taken by all those comparisons is proportional to the sum of |η1|+ |η2| over all unitigs,698

which is linear in ||I|| because each character of η1 and η2 can be mapped to a distinct edge699

in the non-compacted de Bruijn graph of ||I||. Therefore, the algorithm can be implemented700

to run in O(||I||) time.701

Our pseudocode does not compute the first and last character of each arc-label, but this702

can be easily computed in constant time using wi, η1 and η2 in Algorithm 6.703

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

S. Schmidt and J. N. Alanko 2:21

Algorithm 5 FindUnitigEnd

Input: A data structure D, a pair of suffix-intervals [af , bf], [ar, br], an array SE

mapping from suffix-space to boolean, an array SV mapping from suffix
space to nodes, a set of nodes V . Each node in V contains a parameter c.

Output: A node v at the end of the unitig and a sign d, as well as the updated
SE , SV , V and the label η of the traversed path.

1 [af , bf]← contractLeft(D, [af , bf])
2 [ar, br]← contractRight(D, [ar, br])
3 η ← ϵ

// extend over (k − 1)-mers that have indegree and outdegree of 1
4 while |enumerateRight(D, [af , bf]) ∪ rc(enumerateLeft(D, [ar, br]))| =
|enumerateLeft(D, [af , bf]) ∪ rc(enumerateRight(D, [ar, br]))| = 1 do

5 {σ} ← enumerateRight(D, [af , bf]) ∪ rc(enumerateLeft(D, [ar, br]))
6 η ← ησ

7 [af , bf]← extendRight(D, [af , bf], σ)
8 [ar, br]← extendLeft(D, [ar, br], rc(σ))
9 foreach h ∈ [af , bf] ∪ [ar, br] do SE [h]← true

10 [af , bf]← contractLeft(D, [af , bf])
11 [ar, br]← contractRight(D, [ar, br])
12 if SV [af] = ⊥ then
13 insert node v into V

14 foreach h ∈ [af , bf] ∪ [ar, br] do SV [h]← v

15 else v ← SV [af]
16 if af = ar then c(v)← 1 ; d← ⊙ /* v self-complemental */
17 else if af < ar then c(v)← 0 ; d← ⊖ /* v canonical */
18 else c(v)← 0 ; d← ⊕ /* v not canonical */
19 return (v, d, SE , SV , V, η)

WABI 2022

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

2:22 Eulertigs: minimum plain text k-mer sets without repetitions in linear time

Algorithm 6 LinearCompactedDbg

Input: An integer k and a set of strings I = (w1, . . . , wℓ) where each string has
length at least k.

Output: A de Bruijn graph G = (V, E, c) of order k.
1 V ← ∅; E ← ∅ // c is stored as parameter of each node

// $ is a special character outside of the alphabet
2 T ← $w1$w2$. . . $wℓ$ rc(w1)$ rc(w2)$. . . $ rc(wℓ)$
3 SV ← array of length |T | filled with ⊥ mapping from suffix space to nodes in V

4 SE ← array of length |T | filled with false marking used k-mers
5 build data structure D over T // See text in Section 4
6 foreach wi ∈ I do
7 [af , bf]← find(D, prek(wi)) // Suffix array interval of prek(wi)
8 [ar, br]← find(D, prek(rc(wi))) // Suffix array interval of prek(rc(wi))
9 foreach j ∈ (k + 1, . . . , |wi|) do

10 if SE [af] = false then // create arc from unused k-mer
11 foreach h ∈ [af , bf] ∪ [ar, br] do SE [h]← true

12 η ← pointer to prek(wi)
// find unitig start by finding the end on the rev. comp.

13 (v1, d1, SE , SV , V, η1)← FindUnitigEnd(D, [ar, br], [af , bf], SE , SV , V)
// find unitig end

14 (v2, d2, SE , SV , V, η2)← FindUnitigEnd(D, [af , bf], [ar, br], SE , SV , V)
// Reverse because finding the start was done in reverse

15 η1 ← rc(η1)
16 if rc(η1ηη2) < η1ηη2 then // arc labels are always canonical
17 swap v1 and v2
18 swap d1 and d2
19 d1 ← ¬d1
20 d2 ← ¬d2
21 r ← true

22 else
23 r ← false

24 insert e = (v1d1, v2d2, (η1, η, η2, r)) into E

25 [af , bf]← extendRight(D, [af , bf], wi[j])
26 [ar, br]← extendLeft(D, [ar, br], rc(wi)[j])
27 [af , bf]← contractLeft(D, [af , bf])
28 [ar, br]← contractRight(D, [ar, br])

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.05.17.492399doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492399
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 Preliminaries
	2.1 Bidirected graphs
	2.2 Suffix arrays and suffix trees

	3 De Bruijn graphs
	4 Linear-time construction of compacted bidirected de Bruijn graphs
	4.1 Algorithm
	4.2 Implementation of the subroutines

	5 Linear-time minimum SPSS without repetitions
	5.1 A lower bound for an SPSS without repetitions
	5.2 Eulerising a bigraph
	5.3 Computing a Eulerian cycle in a bigraph
	5.4 Computing a minimum SPSS without repetitions

	6 Experiments
	7 Conclusions
	A Authors contributions
	B Omitted proofs
	C Pseudocode for linear-time construction of compacted de Bruijn graphs

