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ABSTRACT

Background: Bumblebees (Hymenoptera: Apidae: Bombus) are well known for their

important inter- and intra-specific variation in hair (or pubescence) color patterns,

but the chemical nature of the pigments associated with these patterns is not fully

understood. For example, though melanization is believed to provide darker colors,

it still unknown which types of melanin are responsible for each color, and no

conclusive data are available for the lighter colors, including white.

Methods: By using dispersive Raman spectroscopy analysis on 12 species/subspecies

of bumblebees from seven subgenera, we tested the hypothesis that eumelanin and

pheomelanin, the two main melanin types occurring in animals, are largely

responsible for bumblebee pubescence coloration.

Results: Eumelanin and pheomelanin occur in bumblebee pubescence. Black

pigmentation is due to prevalent eumelanin, with visible signals of additional

pheomelanin, while the yellow, orange, red and brown hairs clearly include

pheomelanin. On the other hand, white hairs reward very weak Raman signals,

suggesting that they are depigmented. Additional non-melanic pigments in yellow

hair cannot be excluded but need other techniques to be detected. Raman spectra

were more similar across similarly colored hairs, with no apparent effect of

phylogeny and both melanin types appeared to be already used at the beginning

of bumblebee radiation.

Discussion: We suggest that the two main melanin forms, at variable amounts

and/or vibrational states, are sufficient in giving almost the whole color range

of bumblebee pubescence, allowing these insects to use a single precursor instead

of synthesizing a variety of chemically different pigments. This would agree with

commonly seen color interchanges between body segments across Bombus species.
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INTRODUCTION
One of the distinct features of animal phenotypic variation is certainly coloration,

and in many cases it depends on pigments incorporated in cells and tissues

(Bennett & Thery, 2007), with melanins being probably the most prevalent
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ones (Riley, 1997; Nosanchuk & Casadevall, 2006; Gao & Garcia-Pichel, 2011; Eisenman &

Casadevall, 2012; Eliason, Bitton & Shawkey, 2013). In insects, for example, a great

variability in pigmentation pattern can be found among species, among and within

populations and across different life-stages (Majerus, 1998; Wittkopp & Beldade, 2009),

and it depends in many cases on type and degree of melanization (Needham, 1978;

Kohler et al., 2007; Lindstedt et al., 2010; Shamim et al., 2014). Melanins protect cells from

the damaging effects of ultraviolet (UV) radiation (Brenner & Hearing, 2008; Gao &

Garcia-Pichel, 2011) and are also involved in thermoregulation, immune response, cuticle

hardening, desiccation resistance and both intra- and inter-specific visual communication

(Cerenius & Söderhäll, 2004; Nappi & Christensen, 2005; Dubovskiy et al., 2013;

Różanowska et al., 1999; Riley, 1997; Ramniwas et al., 2013; Searcy & Nowicki, 2005;

Price et al., 2008; Koch, Behnecke & ffrench-Constant, 2000; Galván & Møller, 2013).

Melanins are heterogeneous metabolites composed by polyphenolic compounds and

derived from the oxidative condensation of the aminoacid L-tyrosine through enzymatic

reactions involving tyrosinase, the key enzyme of melanogenesis in animals (Ito et al.,

2011; Garcı́a-Borrón & Olivares Sánchez, 2011). One of the intermediate in the

biosynthesis of melanin is dopachrome, which is then polymerized into various forms

of melanin, including eumelanin and pheomelanin, which are the most widespread

in nature. Eumelanin is a polymer of indole units produced via formation of

5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and is

produced from intramolecular cyclization of dopaquinone in the absence of thiol

compounds; this pigment generally leads to dark colorations (Garcı́a-Borrón & Olivares

Sánchez, 2011). Pheomenalin, also deriving from dopaquinone, is an oligomer of sulfur-

containing heterocycles (benzothiazine and benzothiazole) produced with the

intervention of thiols, such as L-cysteine; this pigment generally leads to yellowish to

brownish coloration (Riddle, 1909; Simon & Peles, 2010; Garcı́a-Borrón & Olivares

Sánchez, 2011).

Though both types of melanin were frequently detected in vertebrates (Ito &

Wakamatsu, 2003; Roulin, Mafli & Wakamatsu, 2013; Wolnicka-Glubisz et al., 2012), only

eumelanin was known to be widespread in invertebrates (Needham, 1978; Kohler et al.,

2007; Lindstedt et al., 2010; Shamim et al., 2014). Indeed, pheomelanin has been detected

very recently only in one mollusk (Speiser, DeMartini & Oakley, 2014) and four insect

species (a grasshopper, a butterfly and two parasitoid wasps) (Galván et al., 2015;

Jorge Garcı́a, Polidori & Nieves-Aldrey, 2016; Wakamatsu et al., unpublished data cited in

Galván et al., 2015). These recent findings suggest that pheomelanin could be more

frequent in insects than previously believed, and bees (Apoidea) are good models to check

for its presence given their extremely variable colors, spanning from black to red, yellow,

orange and brown (Michener, 2007).

One bee genus that particularly shows huge variation in color patterns is Bombus

Latreille, 1802 (bumblebees). Indeed, the bumblebee body is covered by a dense layer

of hair-like extensions of the cuticle, known as pubescence (Heinrich, 2004; Williams,

2007; Hines & Williams, 2012; Rapti, Duennes & Cameron, 2014). The diversity in

bumblebee color patterns is due to the variation in the color of the pubescence, since the
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underlying cuticle of bumblebee is black. Differences and similarities in color patterns are

well known among and within bumblebee species (Dalla Torre, 1880; Vogt, 1911;

Rapti, Duennes & Cameron, 2014), and the diverse, segment-specific patterns seem to have

evolved early in the genus history (Cameron, Hines & Williams, 2007). These observations

lead to different hypotheses on the adaptive role of color pattern diversification

and convergence in these insects, including thermoregulation (Heinrich, 2004),

aposematism/Mullerian mimicry (Evans & Waldbauer, 1982; Plowright & Owen, 1980)

and crypsis (Williams, 2007).

All these efforts in studying the variability and evolution of color patterns in

bumblebees contrast, however, with the still unclear evidence on their chemical nature.

As far as we know, indeed, previous work based on different analytical tools such as thin

layer chromatography (TLC), Spectrophotometry and HPLC/mass spectrometry (MS)

suggested black, orange, brown and red coloration depending on melanin (without

further distinction of melanin types) (Babiy, 1925;Owen & Plowright, 1980;Hines, 2008a).

On the other hand, the pigment responsible for yellow color in bumblebees was not

determined in detail yet but it was suggested to be possibly a pterin (Hines, 2008a).

Furthermore, it is actually unknown whether white is due to a pigment or to the absence

of pigments (Hines, 2008a).

Here, by using dispersive Raman spectroscopy analysis, we aimed to test which types of

melanin occur in bumblebee hairs of different colors. We show for the first time that

eumelanin occurs in black hair and pheomelanin in hairs of all the other colors. The only

exception is white, which seems to be due to depigmentation.

METHODS

Study organisms

Females (either queens or workers, or both) of 11 species (one represented by two

subspecies) of Bombus from seven subgenera were selected for the study: Bombus

(Bombus) lucorum (Linnaeus, 1761), Bombus (Bombus) terrestris Linnaeus, 1758, Bombus

(Fervidobombus) dahlbomii Guerin-Meneville, 1835—Bombus (Kallobombus) soroeensis

(Fabricius, 1777), Bombus (Megabombus) gerstaeckeri Morawitz, 1881, Bombus

(Melanobombus) lapidarius decipiens Pérez, 1890, Bombus (Melanobombus) lapidarius

lapidarius (Linnaeus,1758), Bombus (Pyrobombus) monticola Smith, 1849, Bombus

(Thoracobombus) humilis Illiger, 1806, Bombus (Thoracobombus) mesomelas Gerstaecker,

1869, Bombus (Thoracobombus) pascuorum dusmeti Vogt, 1909 and Bombus

(Thoracobombus) ruderarius (Müller, 1776) (Fig. 1). All individuals were collected by

netting on flowers in various years and at various localities in Spain and Chile (Ornosa &

Ortiz-Sánchez, 2004; Polidori et al., 2014), killed by freezing and then deposited in public

or private collection as pinned dry specimen (Table 1). Field collections were approved by

the Ministerio de Medio Ambiente y Medio Rural y Marino (Spain) (permit number:

CO/09/106/2010), Comunidad de Madrid (Spain) (permit number: 10/091686.9/15),

Junta de Castilla y León (Spain) (permit number: EP/CYL/366/2013), Gobierno

de Aragón (Spain) (permit number: CSVM5-1XA8S-75HA5-OUREG), Gobierno de

Navarra (granted on 25/05/2009) and Estación Cientifica de Huinay (Chile)
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(granted on 18/10/2014). On the whole, 46 individuals (30 workers and 16 queens) were

analyzed, three to four per species/subspecies (Table 1). In our sample, color patterns

were very similar within species between queens and workers (Fig. S1), so that no further

distinction between castes was done during the analysis.

Analysis of pigments

To analyze if melanins are responsible for the pigmentation of bumblebee hair we used

dispersive Raman spectroscopy, which was proved to be a useful non-destructive

technique to analyze these pigments (Galván et al., 2013; Galván & Jorge, 2015; Jorge

Garcı́a, Polidori & Nieves-Aldrey, 2016), known to be almost completely insoluble

in all solvents (Gonçalves, Lisboa & Pombeiro-Sponchiado, 2012). The Raman analysis

produces spectra in which signatures of prevalent molecules are visible, allowing

Figure 1 Phylogenetic relationships among the studied species of Bombus, hand-drawn starting

from the results published in Cameron, Hines & Williams, 2007. Close to each species/subspecies

one finds the simplified color pattern of the pubescence, as observed in the studied individuals; the

analyzed areas are indicated by asterisks. The range of colors and corresponding nomenclature is shown

below the tree. Representative pictures of some of the studied species/subspecies are at the bottom of the

figure: (A) Bombus terrestris; (B) Bombus dahlbomii; (C) Bombus gerstaerckeri; (D) Bombus lapidarius

decipiens; (E) Bombus soroeensis; (F) Bombus lapidarius lapidarius (bar = 1 cm).
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their identification through comparisons with published spectra and databases (Colthub,

Daly & Wiberley, 1990; Czamara et al., 2015; Galván & Jorge, 2015). We introduced an

intact individual into a Thermo Fisher DXR confocal dispersive Raman microscope

(Thermo Fisher Scientific, Madison, WI, USA), which was associated with Thermo Fisher

OMNIC 8.1 software. For each species, we checked for the occurrence of eumelanin

and pheomelanin in differently colored hairs, as detailed in Fig. 1, by point-and-shoot

analysis. The spatial resolution was 1 mm and the excitation laser source was at 780 nm of

2–7 mW power, which are optimal parameters for melanin detection in Raman (Galván &

Jorge, 2015; Jorge Garcı́a, Polidori & Nieves-Aldrey, 2016). A 50� confocal objective, a slit

aperture of 25mm and a grating of 400 lines/mmwere used to obtain the spectra, which had

an average resolution of 2.2–4.4 cm-1 in the wavenumber range of 150–2,500 cm-1.

The typical measured linewidth (FWHH) of an average of four spectra in two bands

of polystyrene centered at 1002.30 and 1603.06 were 6.2 cm-1 and 8.9 cm-1, respectively.

An integration time of 5 s� 12 accumulations allowed getting an acceptable signal to noise

ratio. Pure polystyrene was used to check calibration and aligning of the spectra.

We described the color of each analyzed pubescence area as white, yellow, orange,

orange–red/red (red in the following text), orange–brown/brown (brown in the following

text) or black. For any given individual and pigmented area, the analysis was repeated

four times at different points. We also analyzed for one species (Bombus terrestris) the

black ventral side of the thorax, which lacks hairs.

Because the yellow pigment in bumblebees was previously suggested to be due to

non-melanic pigments (Babiy, 1925) and probably to a pterin (Hines, 2008a) we

performed two additional experiments. First, we carried out the Raman analysis on

hair-extracted yellow pigment from 20 workers of one species (Bombus terrestris, one

of those with the brightest yellow). Extraction of the yellow pigment from hairs

(200 mg on fresh weight) was carried out through acid MeOH and NaHCO3 0.01 M

following Hines (2008a), which used the extracts for chemical characterization with

Table 1 Details of the data collection of bumblebees (Bombus spp.) used in this study.

Subgenus Species N Geographic origin Collection

Bombus Bombus lucorum 4 W Huesca (Spain) UCME

Bombus Bombus terrestris 4 Q Madrid, Badajoz, Pontevedra (Spain) UCME

Fervidobombus Bombus dahlbomii 4 W Huinay, Hualaihué (Chile) MNCN

Kallobombus Bombus soroeensis 4 W León (Spain) UCME

Megabombus Bombus gerstaeckeri 3 W León, Huesca (Spain) UCME

Melanobombus Bombus lapidarius decipiens 2 Q, 1 W León (Spain) UCME

Melanobombus Bombus lapidarius lapidarius 2 Q, 2 W León, Navarra, Huesca (Spain) UCME

Pyrobombus Bombus monticola 4 W Cantabria (Spain) UCME

Thoracobombus Bombus humilis 3 Q, 1 W León, Huesca (Spain) UCME

Thoracobombus Bombus mesomelas 4 W León (Spain) UCME

Thoracobombus Bombus pascuorum dusmeti 4 Q Madrid (Spain) UCME

Thoracobombus Bombus ruderarius 1 Q, 3 W Huesca (Spain) UCME

Note:
W, worker; Q, queen; UCME, Museo de Entomologı́a de la Universidad Complutense de Madrid; MNCN, Museo Nacional de Ciencias Naturales (CSIC).
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TLC and HPLC/MS, and the extracts were then moved to the Raman microscope. Second,

we carried out the Raman analysis on commercially available synthetic 95% solid

pterin on KBr disk obtained from Sigma-Aldrich, Saint Louis, MO, USA (P1132).

Conditions of these Raman analyses were the same as described above.

A visual comparison with spectra retrieved by recent literature and reference

database allowed their association with eumelanin or pheomelanin (Galván et al., 2015;

Galván & Jorge, 2015; Huang et al., 2004; De Gelder et al., 2007). Peaks known to be

associated with chitin, the fundamental polysaccharide composing the insect cuticle

(De Gelder et al., 2007), and its precursor N-acetyl-D-glucosamine, the structural

monomer of chitin (Jamialahmadi et al., 2011), were also identified by visual inspection.

Then, to improve the main peak identification, the Raman spectra were analyzed by

the reference deconvolution method (Middendorf, 1974; Morris, Barjat & Horne, 1997)

as in Jorge Garcı́a, Polidori & Nieves-Aldrey (2016), using the software ORIGIN v.7

(OriginLab Corporation, Northampton, MA, USA). This method circumvents distortions

affecting the spectral peaks by using a well-known reference signal, and then reconvolutes

the spectrum with a Lorentzian lineshape (Middendorf, 1974).

The statistical analysis was carried out on the mean Raman intensity values calculated

across individuals for each species/body part/color, giving a total of 47 spectra (data

available as Supplemental Data). To explore the dissimilarities among the differently

pigmented areas and the different species/subspecies based on Raman spectra we used two

methods. First, we performed an agglomerative hierarchical clustering (AHC) (Gordon,

1999). This method found relatively homogeneous clusters of cases based on Raman

peak values (each case represented by the mean peak values across individuals for a given

color, body part and species), and it was performed through Ward’s method based on

Euclidean distance (dissimilarity) between pairs of objects. The analysis also provides the

dissimilarity value that discriminates the major different clusters. Then, using the same

Euclidean dissimilarity matrix, we performed a classical multidimensional scaling

analysis (Torgerson, 1952) for a bi-plot representation of the distribution of the cases in the

six color categories. This technique is commonly used to determine a n-dimensional

space and corresponding coordinates for a set of objects, using a single matrix of pair

wise dissimilarities between these objects (Borg & Groenen, 2005). The cluster analysis

and the multidimensional scaling analysis were carried out in the software XlStat 2012

(Addinsoft, New York, NY, USA).

RESULTS
The studied Bombus species/subspecies presented a variety of color patterns (Fig. 1).

Some, like Bombus terrestris and Bombus lucorum, present a combination of black, yellow

and white; others, like Bombus monticola and Bombus lapidarius lapidarius, present a

combination of yellow, red and black; other species (e.g., Bombus dahlbomii and Bombus

pascuorum dusmeti) present exclusively an orange/brown pubescence (Fig. 1).

The inspection of Raman spectra revealed that all the colorations found in the

bumblebee hairs largely depend on the occurrence of eumelanin and/or pheomelanin,

or on the lack of both pigments.
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The Raman spectra revealed a strong signal of eumelanin, with its typical signature

showing two main bands at about 1,385 cm-1 and at about 1,580 cm-1, in the black hair

(Fig. 2). These two peaks were well highlighted through the reference deconvolution

method (Fig. 2). These spectra clearly resembled eumelanin spectra known for other

organisms (Huang et al., 2004; Perna et al., 2013; Centeno & Shamir, 2008) as well as the

spectrum of synthetic eumelanin (Kim et al., 2015). Major peaks were associated with

the vibration of stretching of the hexagonal carbon rings in the molecule structure, the

vibration of three of the six C–C bounds within the rings and the vibration of the C–H of

methyl and methylene groups in the eumelanin polymers (Huang et al., 2004).

Two further peaks at about 1,490 and 2,000 cm-1 from black hair spectra can be

associated with the additional presence of pheomelanin (Fig. 2). These two peaks were

found associated with synthetic pheomelanin spectrum (Kim et al., 2015) as well as with

pheomelanin spectra in other organisms (Galván et al., 2015). These peaks have been

assigned, respectively, by the out-of-plane deformation and the stretching vibration of the

Figure 2 Examples of Raman spectra of black hair in Bombus and peak identification after having

applied the reference deconvolution method. The gray line represents the Raman spectrum, the dashed

green lines represent the single deconvoluted curves, which highlight the different peaks contributing to

the spectrum, and the red line represents the sum of the deconvoluted curves (i.e., the adjustment to the

spectrum, whose goodness of fit expressed as R2 value). ♦ Signature peaks for eumelanin, signature

peaks for pheomelanin, signature peaks for chitin. (A) Thorax of Bombus lucorum; (B) thorax of

Bombus monticola; (C) abdomen of Bombus soroeensis; (D) thorax of Bombus terrestris.
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phenyl rings in the molecule structure, and to overtone or combination bands (Galván

et al., 2013). Thus, black hair seems to include both melanin types.

Opposite to black, the white hair appeared to be due to the absence of any type of

melanin (Fig. 3). These spectra showed a very low Raman intensity signal (maximum

about 5 AU), particularly when compared with most of the spectra obtained for all the

other colors (maximum between about 30 and 150 AU), and they are clearly noisy in their

patterns (Fig. 3). The reference deconvolution method confirms that no peaks can be

associated with either eumelanin or pheomelanin, though it recognized peaks associated

with chitin (see below) (Fig. 3).

On the other hand, pheomelanin seemed to be the only predominant melanin in the

yellow, orange, red and brown colors of the pubescence (Figs. 4 and 5). Indeed, the

distinct peaks of its signature (1,490 and 2,000 cm-1) (confirmed by the reference

deconvolution method) were well visible (Figs. 4 and 5), while no eumelanin-related

peaks were detected.

Figure 3 Examples of Raman spectra of white hair, and of hairless thorax ventral side cuticle, in

Bombus, and peak identification after having applied the reference deconvolution method. The

gray line represents the Raman spectrum, the dashed green lines represent the single deconvoluted curves,

which highlight the different peaks contributing to the spectrum, and the red line represents the sum of the

deconvoluted curves (i.e., the adjustment to the spectrum, whose goodness of fit expressed as R2 value).

Signature peaks for chitin, signature peaks for N-acetyl-D-glucosamine. (A) abdomen of Bombus

lucorum; (B) abdomen of Bombus terrestris; (C) abdomen of Bombus soroeensis; (D) abdomen of Bombus

gerstaeckeri. Note that no melanin peaks and overall very low intensity signal were detected in white hair.
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Other peaks found in all Raman spectra, such as those at 1,445, 1,640 and 713 cm-1

(Figs. 1–5) were previously associated with the vibration modes of chitin, while three

peaks at 514, 625 and 649 cm-1 are characteristic of the N-acetyl-D-glucosamine

(De Gelder et al., 2007) (Figs. 1–5). Peaks associated with chitin (713 and 1,401 cm-1) and

N-acetyl-D-glucosamine (1,315 and 1,564 cm-1) were also predominant in the spectrum

obtained from hairless cuticle of the ventral side of Bombus terrestris thorax, where no

melanin signatures could be detected (Fig. S2).

The Raman spectrum of the hair-extracted yellow pigment failed to reveal, as expected

from its very low solubility, the pheomelanin signature (Fig. S3A); in addition, it did

not reveal the typical strong peaks of pterin (687 and 1,309 cm-1), which were clearly

visible in the spectrum obtained from synthetic pterin (Fig. S3B). Though both

pheomelanin and pterin are composed of heterocycles and may thus have typical peaks

in similar positions, actually one of the major peaks of pterin (1,309 cm-1) did not fall

very close to the closest pheomelanin peak (at 1,490 cm-1). A high peak at ≈1,300 cm-1,

was well visible in our spectra from yellow as well as from other colors, while

Figure 4 Examples of Raman spectra of yellow hair in Bombus, and peak identification after having

applied the reference deconvolution method. The gray line represents the Raman spectrum, the dashed

green lines represent the single deconvoluted curves, which highlight the different peaks contributing to

the spectrum, and the red line represents the sum of the deconvoluted curves (i.e., the adjustment to the

spectrum, whose goodness of fit expressed as R2 value). Signature peaks for pheomelanin, signature

peaks for chitin, signature peaks for N-acetyl-D-glucosamine. (A) Abdomen of Bombus soroeensis;

(B) abdomen of Bombus terrestris; (C) thorax of Bombus lucorum; (D) thorax of Bombus monticola.
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Figure 5 Examples of Raman spectra of orange, red and brown hair in Bombus, and peak identification after having applied the reference

deconvolution method. The gray line represents the Raman spectrum, the dashed green lines represent the single deconvoluted curves, which

highlight the different peaks contributing to the spectrum, and the red line represents the sum of the deconvoluted curves (i.e., the adjustment to

the spectrum, whose goodness of fit expressed as R2 value). Signature peaks for pheomelanin, signature peaks for chitin, signature peaks for

N-acetyl-D-glucosamine. (A) Orange hair on the abdomen of Bombus mesomelas; (B) orange hair on the thorax of Bombus dahlbomii; (C) red hair

on the abdomen of Bombus lapidarius lapidarius; (D) red hair on the abdomen of Bombus monticola; (E) brown hair on the abdomen of Bombus

pascuorum dusmeti; (F) brown hair on the thorax of Bombus humilis.

Polidori et al. (2017), PeerJ, DOI 10.7717/peerj.3300 10/21

http://dx.doi.org/10.7717/peerj.3300
https://peerj.com/


Hines (2008a) excluded pterin occurrence in non-yellow hairs; this peak was very

close to one of the typical peaks of chitin (1,315 cm-1), so it may not represent pterin.

The other important peak for pterin (687 cm-1) also may fall under a high peak

found in our spectra (≈700 cm-1), but, again, it is visible in spectra of all colors and is

very close to the chitin-related peak at 713 cm-1.

The cluster analysis (AHC) based on the Raman spectra reasonably agreed with the

presence and with the type of melanin, as well as, to some extent, with the observed

color (Fig. 6A). The first bifurcation of the dendrogram separated all white parts (no

melanins) (group 4), together with few yellow–orange parts, from the rest of sample

(Fig. 6A). These few yellow–orange spectra (four out of 19) falling close to the white

spectra had especially poor signals. The melanin signature is visible, but the maximum

signal is low (15–25 AU), closer to that in white spectra (4–11 AU) than to that in the

other spectra (50–125 AU) (Fig. 6B). Within the remaining large group of the

dendrogram, there was a tendency to separate yellow and orange parts (Fig. 5A, group 3)

from darker colors, i.e., red, brown and black (Fig. 5A, group 2). Then, a further

bifurcation discriminated all black parts (eumelanin + pheomelanin) (group 1) from the

rest (pheomelanin only) (Fig. 5A). Body part (thorax or abdomen) did not seem to

affect the distribution of cases in the dendrogram. For example, different black body parts

were intermixed in group 1 (Fig. 6A). Similarly, phylogeny of the studied species did

not seem to account for dissimilarity between cases. For example, spectra of Bombus

soroeensis, Bombus lucorum, Bombus terrestris and Bombus monticola clustered in either

group 1 or group 3 depending on being black or yellow (Fig. 6A).

The plot derived from the multidimensional scaling analysis (Fig. 6C) confirmed the

pattern shown in the cluster analysis. Black body parts are concentrated in an area on

the left (negative values of D1) of the plot, roughly around null D2; other dark colors

(red and brown) seem also to remain in similar position respect to D2, but have positive

D1 values. Lighter colors (yellow, orange) seem also to have mostly positive D1, but

having mainly similar or higher values of D2 compared with darker colors. White body

parts are strongly clustered at the upper limit of D2 in a characteristic position, together

with the few low-signal spectra of yellow and orange.

Bumblebee hair color variation is thus predominantly due to both types of melanin

(black), pheomelanin only (yellowish to brownish), or lack of pigmentation (white).

Raman spectra even varied to some extent with the darkness degree of the observed colors,

and not with phylogeny of the studied species.

DISCUSSION
Despite no previous analytical study was carried out to determine the association between

colors and type of melanin in Bombus, our findings confirm the long-time suggested

hypothesis that melanin is responsible for black and orange/red/brown coloration

(Babiy, 1925; Hines, 2008a). While the association between black and eumelanin is

not surprising, since this pigment was often reported in insects’ black body parts

(Needham, 1978; Lindstedt et al., 2010; Galván et al., 2015), pheomelanin was reported in

very few cases (Galván et al., 2015; Jorge Garcı́a, Polidori & Nieves-Aldrey, 2016), and to
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Figure 6 Results from multivariate analyses. (A) Dendrogram obtained from the agglomerative hierarchical clustering (dashed vertical line

represents the dissimilarity value which discriminates the major different clusters); (B) relationship between colors and maximum intensity signals

in the Raman spectra (+ symbols identify mean values across species/color/body part); (C) multi-dimensional scaling plot, based on the mean

values of each peak across individuals of each species/color/body part. Species abbreviations in (A): B.so, Bombus soroeensis; B.lu, Bombus lucorum;

B.mo, Bombus monticola; B.ru, Bombus ruderarius; B.lade, Bombus lapidarius decipiens; B.lala, Bombus lapidarius lapidarius; B.te, Bombus terrestris;

B.ge, Bombus gerstaerckeri; B.me, Bombus mesomelas; B.da, Bombus dahlbomii; B.pa, Bombus pascuorum dusmeti; B.hu, Bombus humilis.
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date was only suspected for bumblebee reddish hairs (Hines, 2008a). These colorations

have a relatively simple genetic basis (Owen & Plowright, 1980; Owen, Whidden &

Plowright, 2010) and may result from changes made during the same developmental

pathway (Hines, 2008a).

The fact that melanin biosynthesis is at the basis of all colors except white is especially

interesting because future molecular investigations would allow comparisons with other

species in which melanin pathways and genetic control of pigmentation were studied

(Wittkopp, Carroll & Kopp, 2003; Lemonds, Liu & Popadi�c, 2016). These new studies may

find a starting point from our work and by the recent description of the draft genomes of

two bumblebee species (Sadd et al., 2015), which revealed the presence of the dopa-

decarboxylase and prophenoloxidase, two genes involved in pigmentation/melanin

synthesis in other insects (Koch et al., 1998; Zufelato et al., 2004).

Black, which we have showed is due a mixture of eumelanin and pheomelanin, is the

most common pubescence color across bumblebee species (Rapti, Duennes & Cameron,

2014), suggesting that it may serve as a ground plan color which forms contrasts with

other colors (and thus aposemantism). Interestingly, black hair pigmentation in

bumblebees seems to be different from black cuticle in other insects and spiders, in

which eumelanin is the only melanin type present (Galván et al., 2015; Hsiung,

Blackledge & Shawkey, 2015; Jorge Garcı́a, Polidori & Nieves-Aldrey, 2016). The fact that

eumelanin and pheomelanin both occur in black hairs agrees with observations on

the color’s change experienced by bumblebees during their adult life. For example,

Friese & Wagner (1910) noted that bumblebees shift from gray–white hair (in callows) to

either yellow or red, the latter in some cases further shifting to black. Gray colors in callow

may be due to traces of both eumelanin and pheomelanin, and these shifts may be

associated first to an increase of pheomelanin (in the route to yellow and red) and then

to an increase of eumelanin (from red to black). Hines (2008a) showed a lack of

fluorescent pigments in callow hairs fated to become yellow, thus also suggesting that

only melanins (which do not fluoresce) at very low abundance occur in very young

individuals.

Our Raman experiments were not sufficient to clearly associate yellow with a

non-melanic pigment. In the past, the yellow in bumblebee hair was suggested to be due

to either flavonoids (Stein, 1961) or pterins (Hines, 2008a). By TLC and HPLC/MS

chemical analyses, Hines (2008a) discarded the presence of flavonoids and suggested

that the yellow pigment is a small fluorescent heterocyclic compound, as a pterin,

remarkably similar in properties across bumblebee lineages. Indeed, the yellow pigment

shows the characteristic shifts in pH expected of pterins and its mass (177 mw) excludes

the possibility of both flavonoids and melanins or melanin intermediates (which

furthermore do not fluoresce as pterins do) (Hines, 2008a). However, in contrast with

this finding, we obtained clear pheomelanin signature from yellow hairs, and no

correspondence with the typical Raman spectra of synthetic pterin. In addition, our

experiments showed that the Raman did not detect pternis in the hair-extracted yellow

pigment, though this could be due to its low abundance. Thus, at the moment we can

prove that pheomelanin also occurs in yellow hair, but we cannot either confirm or reject
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the possibility that pterin also occurs. New experiments with different techniques are

necessary to solve this point.

Apart from melanins and the still unclear role of pterin, no other pigments seem to be

involved in bumblebee hair coloration. Indeed, based on the TLC and HPLC/MS

analytical results of Hines (2008a), no pigments are xanthopterins (which confers for

example yellow in some butterflies’ wing scales and yellow cuticle in some social wasps

(Wijnen, Leertouwer & Stavenga, 2007; Plotkin et al., 2009)) and certainly not leucopterins

(which confer white, not yellow, coloration). Furthermore, available Raman spectra

for xanthopterin revealed a high peak at ≈1,150 cm-1 that lacked in our spectra

(Saenko et al., 2013). Carotenoids (having a very high peak at ≈1,150 cm-1 absent in our

spectra) and ommochromes (having a very high peak at ≈1,800 cm-1 absent in our

spectra), also found in arthropods (Nijhout, 1997; Heath, Cipollini & Stireman, 2013), can

also be excluded by comparisons with available Raman spectra (Merlin, 1985; Hsiung,

Blackledge & Shawkey, 2015) and following Hines (2008a).

Our results seem to support previous considerations arisen from the study of color

pattern diversity and frequency. Rapti, Duennes & Cameron (2014) found that various

orange and yellow colors occur at high frequency in the abdomen, suggesting that

different pigment classes may be derived from the same pigment that varies in density

within the setae. This pigment was unknown at the time of this consideration, and we

now show that it is pheomelanin. In addition, changes from yellow to black or black to

yellow are among the most common changes in color (Rapti, Duennes & Cameron, 2014).

This now makes sense given that pheomelanin is present in both black (together with

eumelanin) and yellow hair; thus, a decrease or disappearance of eumelanin in black hair

could turn hair to brighter colors. This does not contrast with the possibility that,

particularly in yellow hairs, pheomelanin co-occurs with a non-melanin pigment (Hines,

2008a). Pheomelanin would thus lead to all the other colors except white by varying in

intensity and different modes in frequency of the stretching vibration of the hexagonal

aromatic rings, symmetric and asymmetric tensions, in- and out-of-plan deformations

and other vibration characteristics (Socrates, 2004; I. Galván et al., 2016, unpublished

data), which affect how the pigment interact with radiation and in turn affect the

pigment’s optical properties. Overall, it would be thus not necessary for bumblebees to

produce a wide range of pigments to diversify their color patterns. The use of both

melanin types seemed to be ancient in Bombus, when looking at the more recent

phylogeny of the genus (Fig. 1 and Cameron, Hines & Williams, 2007). This probably

allowed bumblebees to promptly diversify their color patterns during the genus radiation

(Hines, 2008b; Rapti, Duennes & Cameron, 2014).

A very different situation occurs with white color, which was clearly associated with a

lack of melanins in our study. The very noisy and weak spectra obtained from white

hairs, with no clear peaks, did not point toward the presence of any other types of

pigments (at least within the Raman detection power). A similar result was obtained

for white body parts in spiders (Hsiung, Blackledge & Shawkey, 2015). In other cases,

such as in Bombyx mori, white is probably due to uric acid and pteridine (Okamoto

et al., 2008). In our case, the spectra from white hair resemble the spectra from hairless

Polidori et al. (2017), PeerJ, DOI 10.7717/peerj.3300 14/21

http://dx.doi.org/10.7717/peerj.3300
https://peerj.com/


ventral side of the thorax, where only chitin-related peaks are visible. Though we did not

find signature of eumelanin in the hairless black cuticle in Bombus, this pigment is,

however, likely to occur, as melanins are known to be responsible for dark coloration in

insects in general (Needham, 1978); however, eumelanin is probably located too deep

within the cuticle matrix to be detected by Raman. Based on her TLC and HPLC/MS

analytical results, Hines (2008a) also raised the possibility that white hairs are

depigmented, but did not discard the possibility that small amounts of the non-melanic

pigment of yellow hair occur, a hypothesis that needs further experiments to be tested.

The provided evidence that both eumelanin and pheomelanin are predominant in

bumblebee hair opens to new studies in which concentrations of these pigments could be

measured in individuals living in different environments or reared under different

laboratory experiments, in order to link melanization, temperature and oxidative stress

(which is linked with pheomelanin production (Galván et al., 2015; Napolitano et al.,

2014)). This may help understanding the observed, and still not fully understood,

variations of bumblebee color patterns along latitudinal gradients (Pekkarinen, 1979;

Williams, 2007).
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Riley PA, eds. Melanins and Melanosomes: Biosynthesis, Biogenesis, Physiological, and

Pathological Functions. Weinheim: Wiley-Blackwell, 87–116 DOI 10.1002/9783527636150.ch4.
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