
EuroForMix : An open source software based on

a continuous model to evaluate STR DNA profiles

from a mixture of contributors with artefacts

Abstract

We have released a software named EuroForMix to analyse STR-DNA
profiles in a user-friendly graphical user interface. The software imple-
ments a model to explain the allelic peak height on a continuous scale
in order to carry out weight-of-evidence calculations for profiles which
could be from a mixture of contributors. Through a properly parame-
terized model we are able to do inference on mixture proportions, the
peak height properties, stutter proportion and degradation. In addition,
EuroForMix includes models for allele drop-out, allele drop-in and sub-
population structure. EuroForMix supports two inference approaches for
likelihood ratio calculations. The first approach uses maximum likelihood
estimation of the unknown parameters. The second approach is Bayesian
based which requires prior distributions to be specified for the parame-
ters involved. The user may specify any number of known and unknown
contributors in the model, however we find that there is a practical com-
puting time limit which restricts the model to a maximum of four unknown
contributors.

EuroForMix is the first freely open source, continuous model (accom-
modating peak height, stutter, drop-in, drop-out, population substructure
and degradation), to be reported in the literature. It therefore serves an
important purpose to act as an unrestricted platform to compare different
solutions that are available. The implementation of the continuous model
used in the software showed close to identical results to the R-package
DNAmixtures, which requires a HUGIN Expert license to be used. An
additional feature in EuroForMix is the ability for the user to adapt the
Bayesian inference framework by incorporating their own prior informa-
tion.

1 Introduction

Since the inception of forensic DNA profiling, the interpretation of the crime-
scene evidence has been challenging. The technology of polymerase chain re-
action (PCR) has made it possible to amplify small amounts of cell material
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in order to quantify the amount of DNA represented at short tandem repeats
(STR). An ideal amplification would perfectly quantify the amount of DNA
from each contributor(s) inherent to a given sample. In reality, the amplifica-
tion processes is a series of stochastic events which varies the allelic and stutter
peak heights that contribute to the profile.

The method for quantifying the weight-of-evidence that a candidate S is a con-
tributor to the trace sample is based on specifying the proposition set

Hp :“Individual S contributes to the trace sample”

Hd :“Individual S does not contribute to the trace sample”
(1)

where Hp is the prosecution hypothesis while Hd is the defense hypothesis. In
the first step, the fit between the hypotheses and the trace samples are quanti-
fied by the corresponding likelihood functions. In the second step, the likelihood
functions are compared through the likelihood ratio (LR) statistic. Often, trace
samples are complicated and challenging to analyze due to artefacts and being
comprised of a mixture of several contributors. To analyze such samples, there
are two alternative kinds of mathematical models: a) semi-continuous and b)
continuous. The continuous models keep the quantified intensities along with
the qualitative DNA information, while the semi-continuous only uses the qual-
itative DNA information(i.e. the allele information only). However, at this
moment, all of the available open source software are semi-continuous whereas
all of the continuous software are commercial. The lack of availability of con-
tinuous models imposed by commercial constraints has inhibited comparative
studies. Commercial continuous software include: STRmix [14], TrueAllele[11]
and DNAmixtures [6]. Other continuous models are considered in Cowell et al.
[4], Cowell et al. [5] and Puch-Solis et al. [13]. DNAmixtures adapts the “HUGIN
Expert System”[10] to efficiently compute the likelihood function using a prob-
abilistic expert system[9]. In order to eliminate unknown parameters, DNAmix-

tures maximizes the likelihood function using numerical restricted optimization
routines. Note that a license of “HUGIN Expert System” is required to take full
advantage of DNAmixtures. STRmix and TrueAllele are based on a Bayesian
approach through specifying prior distributions on the unknown model param-
eters. They use Markov Chain Monte Carlo (MCMC) methods to calculate
marginalized likelihood expressions by simultaneously sampling over the dis-
crete set of genotypes for the unknown contributors specified in the model, and
the unknown parameters. Last, notice that some of the software requires in-
dependent calibration data in order to specify some of the parameters in the
model.

We have developed a new user-friendly software in a graphical user interface,
EuroForMix, which is included in the R-package euroformix and is freely acces-
sible at the site www.euroformix.com. EuroForMix implements an extended
version of the model proposed by Cowell et al. [6], which assumes the peak
heights to be gamma distributed with mixture proportions, stutter proportion
and peak height mean and variation as unknown parameters. The extension pre-
sented here includes models for allele drop-in, degradation and sub-population
structure. Similar to the method used by DNAmixtures, EuroForMix contains
a maximum likelihood approach for handling unknown parameters. In addition,
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EuroForMix also includes a Bayesian framework. In both cases unknown DNA
profiles are treated as latent variables and are summed out in the likelihood
calculations. Our method differs from STRmix and TrueAllele in that we com-
pute the marginalized likelihood expressions using exact methods without any
need for MCMC sampling. However, as an additional optional tool available
within EuroForMix, the posterior distributions of the unknown parameters can
be efficiently explored using MCMC sampling over the parameter space. Table
1 compares the properties of different software.

Property STRmix TrueAllele DNAmixtures EuroForMix

Calibration Required Required Not possible Possible
GUI Yes Yes No Yes
Drop-in Yes Yes No Yes
Stutter Yes Yes Yes Yes
Degradation Yes Yes No Yes
Coancestry
coefficient

Yes Yes No Yes

Peak height
distribution

Log-normal Truncated
normal

Gamma Gamma

Inference
approach

Bayes Bayes ML ML
Bayes

Table 1: The table compares properties between existing software using the
continuous model. “Calibration” refers to incorporation of validation data from
the user laboratory to specify some of the parameters involved. “GUI” refers
to whether the software is presented through a graphical user interface. “Drop-
in”, “stutter” and “degradation” refer to whether such properties are modeled.
“Coancestry coefficient” refers to whether the model implements Fst. “Peak
height distribution” refers to the assumed distribution family for the allelic
peak heights. “ML” refers to the maximum likelihood approach, while “Bayes”
refers to the Bayesian approach.

The focus of this article is to demonstrate the use of EuroForMix, and to illus-
trate how the unknown parameters in the continuous model are effectively esti-
mated, either through a maximum likelihood or through a Bayesian approach.
EuroForMix also has the option of using calibration data for fixing parameters
or using informative priors, but this is a decision for the user to make.

In the next section we illustrate the functionality of the software and introduce
guidelines to carry out different types of interpretation and validation using a
variety of probabilistic methods. In section 3 we show how these are applied
to a real case example. In section A in Supplementary material we provided
a simulation study to show that the results obtained from a special case of
the continuous model in EuroForMix are consistent with those obtained from
DNAmixtures. The demonstration that consistency is obtained between two
independently written programs is an important feature of the validation. In
section E in Supplementary material we provided another simulation study to
show the practical limitations of EuroForMix.
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2 Interpretation using EuroForMix

2.1 Data

The trace samples are short tandem repeats (STR) allele data with correspond-
ing peak height intensities measured in relative fluorescence units (RFU). The
allelic peak heights are proportionate to the quantities that originate from the
contributing individuals. An individual has either a homozygous genotype (two
identical alleles) or a heterozygous genotype (two different alleles). For an ideal
PCR-process, the peak heights belonging to a heterozygous genotype are ex-
pected to be equally large, while the peak height of a homozygous genotype is
expected to be twice as large as the alleles from a heterozygous genotype. In re-
ality, these peak heights are stochastic and will vary between PCR-processes. A
detection threshold is usually introduced to remove as much background “noise”
as possible without removing alleles that truly originate from contributors. If
the amount of DNA is small or influenced by degradation, then an allele may
fall below the detection threshold. This event is expressed as allele drop-out.
A stutter effect occurs when the DNA originally expressed as allele a loses one
tandem repeat in the PCR-amplification process which then is added to the
peak height intensity at allele position a− 1.

2.1.1 Data import and view in EuroForMix

The user interface of EuroForMix makes it easy to import, view and edit im-
ported trace samples and reference profiles, which may be exported from soft-
ware such as GeneMapper R© and Peak ScannerTM. Before proceeding with more
advanced evaluations, the user may at any time view imported trace sample data
in an electropherogram (epg) like format, along with the imported and selected
reference profiles. This makes it possible to directly compare presence/absence
of the alleles in the reference profile and the trace sample. Exploring the alleles
in the genotypes with their corresponding peak heights is always an important
consideration to do before carrying out the statistical analysis.

2.1.2 An illustration of complex trace sample data

Figure 1 shows a subset of two real trace samples, where the allele information
and corresponding peak heights are presented for four markers. The upper panel
in Figure 1 shows the first type of trace sample where we have labeled the alleles
for reference profile of individual D1 as “1”. The lower panel in Figure 1 shows
another trace where we labeled the alleles for reference profiles of the individuals
P1 and P2 as “1” and “2”, respectively. In the upper panel we observe that
allele 17 from the reference at marker D18S51 is absent in the trace sample.
We also observe that allele 16 in marker D3S1358 is present in the trace sample
but not in the reference. In the lower panel, allele 35 in marker D21S11 and
alleles 11 and 14 in marker D18S51, are all present in reference P2, but absent
in the trace sample. Allele 14 which is present in marker D3S1358 is not present
in any of the references. The former phenomena can be explained as an allele
drop-out, typically observed with low level DNA, while the latter phenomenon
can be attributed to a stutter effect or a drop-in effect (given that the presented
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references are the only true contributors). The illustration shows why trace
samples with small amounts of DNA are difficult to analyze.

Figure 1: The upper panel shows a trace sample where the reference D1 is la-
beled as “1”. The lower panel shows another trace sample, where the references
P1 and P2 are labeled as “1” and “2”, respectively along the horizontal axis.
The labels above the peak heights are the marker names. The horizontal axis
is fragment length given in number of base pairs (bp).

2.2 Theoretical considerations

Our aim is to quantify the weight-of-evidence that a candidate S is a contributor
to a trace sample E. In order to do this we define the proposition set as specified
in equation (1), where Hp is the prosecution hypothesis and Hd is the defense
hypothesis.

In order to link a hypothesis H to the observed data, we specify a probabilistic
model which gives the probability of observing sample E given that hypothesis
H is true, P (E|H). One way to compare the two rivaling hypotheses Hp and
Hd is through the likelihood ratio (LR)

LR =
P (E|Hp)

P (E|Hd)
. (2)

This quantity will evaluate how many times more likely it is to observe the
sample given that Hp is true compared to the alternative that Hd is true.

As shown in Figure 1, there is a possibility that multiple individuals contribute
to the same trace sample. If we believe that there are two contributors, the
probabilistic model can be modified by adding an extra unknown individual.
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2.2.1 The probabilistic model for peak heights

Let m be one of the M markers of the trace sample. The allele outcome vector
Am is defined to be all alleles observed within a database, plus new alleles which
are discovered when new individuals are typed. The peak heights at marker m
is given through the vector Ym which quantifies intensities of the alleles given
in Am. Also let gm,k = (gm,k,1, gm,k,2) be the possibly unknown alleles for
contributor k, out of K contributors, at marker m. We define the proportional
amount of DNA from contributor k to allele a considered at marker m as

αm,a(gm,k) = πk

∑

a′∈gm,k

I(a′ = a) (3)

where I(x) is the indicator function which is one if x is true and zero otherwise,
and the mixture proportion parameter πk ∈ [0, 1] is the proportion of total DNA

amount from contributor k with restriction
∑K

k=1 πk = 1.

Assumption 1: The peak height contribution Ym,a,k from contributor k at
allele a for marker m follows a gamma distribution where the expected
contribution and variation is linearly dependent on the amount of k’s
DNA. More specific, we assume E[Ym,a,k|gm,k,θ] = µαm,a(gm,k) and
V ar[Ym,a,k|gm,k,θ] = (µσ)2αm,a(gm,k) to be the model parametrization
with parameters given as θ.

From assumption 1 it follows that the contributing peak height for contributor
k at allele a for marker m is modelled as

p(Ym,a,k|gm,k,θ) = Gamma
(
σ−2αm,a(gm,k), µσ

2
)

(4)

where the first and second argument is the shape and scale parameter re-
spectively in the gamma distribution so that µ = E[Ym,a,k|αm,a = 1] and

σ =
√
V ar[Ym,a,k|αm,a = 1]µ−1 are parameters that directly interpret the ex-

pectation and coeffiecient of variation of a full heterozygote contributing allele
peak height.

Assumption 2: The contributions from different contributors are independent.

By adding together peak height contributions over the K contributors for allele
a at marker m, assumption 2 enables us to express the peak height density as

p(Ym,a|gm,θ) = Gamma

(
σ−2

K∑

k=1

αm,a(gm,k), µσ
2

)
(5)

where gm = (gm,1, ..., gm,K) is the set of genotypes for the K contributors.

2.2.2 Drop-out model

To remove noise and artificial peak heights from the amplification process, a
detection threshold T is specified so that alleles with corresponding peak heights
below this threshold are removed. When the amount of DNA from a contributor
is small, the corresponding peak heights also typically tend to be small and
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may even be below the threshold. We define Y ∗
m,a = Ym,a if Ym,a ≥ T and

Y ∗
m,a = 0 otherwise. Typically Y ∗

m,a is the observed variable since a threshold
is already applied on the original peak heights. For a marker m, the density of
the truncated peak heights for allele a is given as

p(Y ∗
m,a|gm,θ) =

{
p(Ym,a|gm,θ) if Y ∗

m,a ≥ T.∫ T

0
p(Ym,a = x|gm,θ)dx if Y ∗

m,a = 0.
(6)

Notice that the drop-out probability for an allele is directly related to the prob-
ability of observing a peak height between zero and T given the conditional
contributors and model parameters.

2.2.3 The likelihood function

Assumption 3: Genotypes are independent between markers.

Assumption 4: Peak heights are conditionally independent given the geno-
types and model parameters.

For a given hypothesis H, assumption 3 assumes g1, ...,gM to be independent
such that p(g1, ...,gM |H) =

∏M

m p(gm|H). Assumption 4 allows us to take
the product between alleles when conditioning on the genotypes and model
parameters. With these assumptions, the likelihood function for the observed
trace sample E, applied with a threshold T , can be calculated as

p(E|H,θ) =
M∏

m=1

∑

gm,k ∈ Qm

k = 1, ..,K

(
p(gm|H)

∏

a∈Am

p(Y ∗
m,a|gm,θ)

)
(7)

where the set Qm = {(a, b) : a, b ∈ Am} gives all possible genotype combinations
at marker m. Note that some of the p(gm|H) terms might be zero, or one
depending whether H implies that some of the contributors are known.

2.2.4 Model for unknown genotypes

When the genotype of contributor k is unknown at marker m, prior information
is used to specify p(gm,k). A standard method is to assume Hardy Weinberg
equilibrium (HWE) and use p(gm,k) = 2I(a 6=b)papb, where pa and pb are esti-
mated relative allele frequencies based on samples from the specified population.

An extension of the HWE assumption is to include the coancestry coefficient Fst,
which we assume as a fixed value in order to take sub-population structure into
account[7]. To take the sub-population structure into account, the probability
of observing allele a, pa, is updated to:

p′a =
uaFst + (1− Fst)pa

1 + (v − 1)Fst

(8)

where ua denotes the number of times allele a has previously been typed and v

denotes the number of previously typed alleles. By typed we mean that the allele
has been observed for an individual, either within samples of the population or
within the contributor(s) considered.
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Assumption 5: The genotypes between contributors are independent given
the coancestry coefficient.

For a given hypothesis H and marker m, assumption 5 assumes gm,1, ..., gm,K to

be independent given Fst such that p(gm|H,Fst) =
∏K

k=1 p(gm,k|H,Fst), which
is used as model for p(gm|H) in equation (7).

2.2.5 Stutter model

For a given marker m, the set of alleles given in a database, Am, is extended to
include alleles (a − 1) for all a ∈ Am, to assimilate potential stuttered alleles.
For an allele a ∈ Am, let the peak height originating from the contributors, not
being stutters, be given as Y C

m,a, and the peak height originating by stutters

from contributors at allele a + 1 ∈ Am be given as Y S
m,a. We can extend the

continuous model given in equation (5) to accommodate stutters via the stutter

proportion parameter ξ =
E[Y S

m,a|gm,θ]

E[Y S
m,a|gm,θ]+E[Y C

m,a+1
|gm,θ]

[8]. This parameter is

defined to be the fraction of the expected contributing peak height at allele
a+ 1 which is moved to allele a. Consequently we let the distribution for Y C

m,a

be given as p(Y C
m,a|gm, θ) = Gamma

(
σ−2(1− ξ)αm,a(gm,k), µσ

2
)
, where αm,a

is the expression given in equation (3) and the distribution for Y S
m,a be given as

p(Y S
m,a|gm, θ) = Gamma

(
σ−2ξαm,a+1(gm,k), µσ

2
)
, provided that a+ 1 ∈ Am.

Assumption 6: The peak heights Y C
m,a and Y S

m,a are independent given the
genotypes and model parameters.

From assumption 6 we have that Ym,a = Y C
m,a+Y S

m,a is gamma distributed with
the density given in equation (5) but with αm,a modified to:

α′
m,a(gm,k) =

(
1− ξ

)
αm,a(gm,k) + ξI(a+ 1 ∈ Am)αm,a+1(gm,k) (9)

2.2.5.1 Illustration of the stutter model

Consider marker D3S1358 in the upper panel of Figure 1. Here we observed the
peak heights y∗15, y

∗
16 and y∗17. Assume A = (14, 15, 16, 17) to be the possible

allele outcome in the population. If we condition on the genotype g = {15, 17}
assuming K = 1, then α′

14(g) = ξ, α′
15(g) = (1 − ξ), α′

16(g) = ξ and α′
17(g) =

(1 − ξ). This means that, conditioned on the model, allele 15 and 17 gives
away some of its peak height as stutter to alleles 14 and 16 respectively, while
the peak height of allele 16 is the stutter peak height received from allele 17.
An explanation why allele 14 is not observed, is because stochastic effects have
resulted in a stutter that is below the detection threshold (and therefore not
recorded). Also consider the lower panel of Figure 1. If we condition on the
two genotypes (g1, g2) = ({15, 15}, {15, 16}) assuming K = 2, it follows that
α′
14(g) = ξ(2π1+π2), α

′
15(g) = 2(1−ξ)π1+π2, α

′
16(g) = (1−ξ)π2 and α′

17(g) = 0.

2.2.6 Degradation model

Consider both trace samples in Figure 1. Here, the summed peak heights for
each marker clearly decreases as a function of the fragment length for both of
the samples. This phenomenon is called degradation and is explained by DNA-
strand breakage. The probability of degradation occurring within the shorter
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DNA fragments is less than the probability of degradation occurring within the
longer DNA fragments[16]. For some trace samples, the trend of degradation
is very clear as alleles with high molecular weights (i.e. long fragment length)
have smaller peak heights than alleles with low molecular weights. For such cases
the fitted continuous model may not be adequate to explain the observed peak
heights, unless a degradation module is included. We extend the continuous
model to take into account the model introduced by Tvedebrink et al. [16]
who demonstrated a degradation model with the parameter “probability of no
breakage” per base of a given DNA fragment length.

We model the degradation by scaling αm,a in equation (5) for allele a at marker

m with the expression β
fm,a−125

100 where β becomes an unknown slope parameter
and fm,a is the fragment length in base pair (bp) of an allele a at marker m. A
shift of fragment length 125 bp was selected as a baseline to make the parameter
estimates of µ and σ explainable at fragment length equal 125 bp. The scaling
of 100 makes the parameter β an exponential expression of the “probability of
no breakage”, see Tvedebrink et al. [16].

2.2.7 Allele drop-in model

Allele drop-in may occur in the trace sample. This is where a DNA fragment
from cellular material “falls” into the tube before or during the amplification
process and causes a contaminant allele to be visualized[2]. Following Puch-Solis
[12] and Taylor et al. [14], EuroForMix can also accommodate allele drop-in.
We assume allele drop-in to be all alleles with corresponding peak heights above
the detection threshold which are not explained by conditioned contributors
or stutters. The probability of the event of having allele a as a drop-in at a
particular marker is given as C×pa where C is the probability for a drop-in event
for a particular marker and pa is the allele frequency for allele a. We assume
that the drop in peak height Ya is exponential distributed Exp(λ) = h(Ya|λ),
where λ > 0 is a specified rate parameter. For λ strictly positive, the drop-
in model ensures that smaller peak heights are always more likely to occur
than larger peak heights for allele drop-in. When the detection threshold T

is used to truncate the peak heights, the drop in peak height is distributed as
Y ∗
a = Ya|Ya ≥ T ∼ T + Exp(λ) such that Y ∗

a − T ∼ Exp(λ). Hence we specify
the drop-in model as

p(Y ∗
a |a is a drop-in, λ) = Cpah(Y

∗
a − T |λ). (10)

From this, the extension of the probabilistic model given in equation (7) will be
as follows: p(Y ∗

m,a|g,θ) is exchanged entirely with the drop-in model in equation
(10) if allele a is a drop-in. For the situation of no allele drop-in, the product
over all alleles is scaled with (1− C).

2.3 Inference of the continuous model

After the model specification, we now return to the likelihood ratio (LR) ex-
pression given in equation (2), where we are interested in calculating P (E|Hp)
and P (E|Hd). Given the observed trace sample, the probabilistic model given
in equation (7) is provided as a likelihood function depending on the model pa-
rameters, θp under hypothesis H = Hp, and θd under hypothesis H = Hd. In
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this subsection we will present methods to accomodate the parameters θp and
θd in order to calculate a value for LR. Table 2 shows a summary of the model
parameters, which are either assumed known or unknown. We present two in-
ference methods, a frequentist and a Bayesian inference approach to calculate
the likelihood ratio value given in equation (2).

Parameter Prior User specified Default
K (number of contributors) fixed K ∈ {1, ...} K = 2
µ (expected peak height) Uniform[0, µ1] µ1 > 0 µ1 = 20000
σ (cv of peak heights) Uniform[0, σ1] σ1 > 0 σ1 = 1
m (mixture proportion) Dirichlet(K,1) Cannot change
ξ (stutter proportion) beta-distribution unknown or fixed ξ ∈ [0, 1] beta(1, 1)
β (degradation slope) Uniform(0, 1) unknown or fixed β = 1 β = 1
C (drop-in probability) Uniform(0, C1) C1 ∈ (0, 1] or fixed C ∈ [0, 1] C = 0
λ (parameter in drop-in
model)

fixed λ > 0 λ = 0.01

Fst (coancestry coefficient) fixed Fst ∈ [0, 1] Fst = 0

Table 2: The table explains the model parameters and shows how prior in-
formation can be specified by the user. µ is the expectation of heterozygous
peak heights, σ is the coefficient of variation of heterozygote peak heights. Any
unknown parameters are elements in the model parameter set θ.

To reduce the calculation time of the likelihood function, we followed the method
carried out by Taylor et al. [14] and Puch-Solis et al. [13]. An approximation to
the likelihood function is achieved by grouping together alleles as a compound
allele. Details are given in section B in the Supplementary material.

2.3.1 Frequentist inference

The frequentist inference is based upon maximizing the likelihood function with
respect to the unknown parameters θ in order to obtain the maximum likelihood
estimate

θ̂ = argmax
θ

p(E|H,θ). (11)

Doing so under each of the hypotheses we obtain:

LRF =
p(E|Hp, θ̂p)

p(E|Hd, θ̂d)
(12)

which is the likelihood ratio quantity. Notice that this approach chooses the
parameters which provide the best fit to the observed peak heights. Hence the
uncertainty of the parameters are not taken into account in this likelihood ratio
quantity.

2.3.2 Bayesian inference

The Bayesian inference approach requires a specification of prior density func-
tions on the model parameters, given the considered hypothesis H. Table 2
shows possible specifications for the priors of the individual parameters in Eu-

roForMix, which we assume a priori to be independent of each other. It follows
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from the Bayesian framework that

pB(E|H) =

∫
p(E|H,θ)p(θ|H)dθ (13)

which is the integral over the model parameters. Doing this under each of the
hypotheses provides

LRB =
pB(E|Hp)

pB(E|Hd)
(14)

which is the Bayes factor used as a value for the likelihood ratio quantity in a
Bayesian setting. We used the R-package cubature[3] which makes it possible
to provide efficient multivariate integration over the model parameter space.
This method differs from the MCMC approach in that the method is numerical,
hence it is possible to reflect the accuracy of LRB through δ, the relative error
for an integral. An estimated error-interval of LRB is provided in brackets as

[
L̃RB

(1− δ)

(1 + δ)
, L̃RB

(1 + δ)

(1− δ)

]
(15)

where L̃RB is the value obtained through the numerical integration and δ is
specified by the user.

2.3.3 Deconvolution

Deconvolution is a technique to assign the genotypes of unknown contributors
under a specific given hypothesis. Cowell et al. [6] and Tvedebrink et al. [15]
considered a continuous model in order to search for the most likely genotypes.
This technique is useful to identify genotypes from potential perpetrators of
crime that have not been identified by other means. The assigned genotypes may
be compared against national DNA databases to identify potential suspects[1].
The flexibility of the continuous model enables EuroForMix to accommodate
allele drop-out, stutters, degradation and allele drop-in in the deconvolution
procedure.

Let a suggested set of combined genotypes over all markers be given as G =
(g1, ...,gM ) and p(E|H, θ̂) be the likelihood function from equation (7) inserted
with the maximum likelihood estimates of the model parameters under hypoth-
esis H with θ̂ given in equation (11). The probability of G is then provided
as

p(G|E,H, θ̂) =

( M∏

m=1

p(gm|H)
∏

a∈Am

p(Y ∗
m,a|gm, θ̂)

)/
p(E|H, θ̂) (16)

This is the frequentist approach where each marker can be independently calcu-
lated given the maximum likelihood estimate. EuroForMix produces a ranked
table of the most probable marker-combined genotype profiles of the unknown
individuals, from highest to lowest probabilities.

A Bayesian framework allows the calculation of the posterior probabilities un-
conditioned on the parameter θ, p(G|E,H) =

∫
p(G|E,H,θ)p(θ)dθ. This is

not yet implemented, but will be in a future update.
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2.4 Model selection

In this section we establish a framework to select a model to calculate the
LR quantity in equation (2). We can either follow a frequentist framework
using the maximum likelihood values or a Bayesian framework using marginal
probabilities of the observations. Deciding whether to include (or not include)
stutters, degradation and allele drop-in into the model falls under the model
selection framework. We also consider the number of contributors K in the
model as unknown. We perform the model selection under a setting H including
both hypotheses, that is taking into account the uncertainty of whether S is a
contributor or not.

The possible models discussed in section 2.2 enables comparisons of different
combinations of the following situations:

• No stutter (ξ = 0) versus stutter (ξ ∈ (0, 1)).

• No degradation (β = 1) versus degradation (β ∈ (0, 1)).

• No allele drop-in (C = 0) versus allele drop-in (C ∈ (0, 1)).

• The number of contributing individuals K.

A variant of these combinations can be represented as model candidate Ms

and the likelihood notation in equation (7) is extended to be explicitly given as
p(E|H,θ,Ms). When a drop-in model is considered (i.e. C > 0), the model for
allele drop-in peak heights assumes λ = λ0 fixed.

We consider a model search strategy starting with the simplest model. The
complexity is increased by adding more parameters to the model. The search
stops when it is unlikely that a more complicated model performs better than
one already found.

2.4.1 A frequentist model selection approach

To choose the final model in the frequentist framework we use the Akaike infor-
mation criterion (AIC), given as AICs = −2l̂s + 2ns for candidate model Ms,

where l̂s = maxθ log p(E|H,θ,Ms) is the maximum log-likelihood value and
ns is the number of elements in θ. This criterion favors the model candidates
which fits the data best, but penalized for the number of parameters to avoid
overparameterizing. The model candidate Ms with smallest AIC is chosen as
the final model, M̂F = argmins AICs.

2.4.2 A Bayesian model selection approach

For a selected modelMs, the Bayesian framework requires specification of priors
on the parameters θ to allow calculation of the marginal probability of the trace
sample, pB(E|H,Ms), which is an extended notation of that given by equation
(13). The final model using the Bayesian model criterion would be to select the
model Ms with highest marginal probability, M̂B = argmaxs pB(E|H,Ms).

So far we have considered the number of contributors K to the trace sample
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as part of the model selection problem. In the Bayesian framework, K can be
given a prior with probabilities p(K = k) for K ∈ K, where the set K is chosen
by the user. The extension then becomes pB(E|H) =

∑
k∈K

pB(E|H,K =
k)p(K = k|H), where we have extended the expression in equation (13) to
make it explicitly conditioned on K.

2.5 Model evaluation

The last step in the model inference procedure is to check whether the fitted con-
tinuous model is reasonable for the peak heights above the detection threshold
T . We perform model evaluation under a setting H including both hypotheses.
With θ̂ as the maximized argument under H from equation (11), the conditional
observed cumulative probability for each allele is defined as (Cowell et al. [6]):

Pm,a(ym,a) = P (Ym,a ≤ ym,a|H, θ̂,y(m,−a), Ym,a ≥ T ). (17)

Here ym,a is the observed peak height for allele a at marker m and y(m,−a)

are the other observed alleles in the same marker which exceed T . EuroForMix

provides a Probability-Probability (PP) plot between all the cumulative prob-

abilities {Pm,a(ym,a)}
m=1,...,M
ym,a∈ym

and the standard uniform distribution to check
whether the fitted continuous model is a reasonable assumption for the observed
peak heights y1, ..,yM . Deviation against this assumption indicates whether the
continuous model should be changed or improved.

3 A practical real case example

3.1 Data

The following example originates from a DNA-transfer experiment where the
individuals P1 and P2 are known beforehand to have left epithelial cells on a
wooden item. The considered STR sample was provided by the laboratory of
the Norwegian Institute of Public Health (NIPH). The sample was amplified
using the PowerPlex ESX 17 System kit (Promega) with 17.5 µL template and
the standard 30 cycle amplification protocol on a GeneAmp PCR System 9700
(Applied Biosystems). The sample was injected into the Applied Biosystems
3500xl Genetic Analyzer at 1.2 kV for 10 s. The result was analyzed in the
GeneMapper R© ID-X Software v.1.2 (Applied Biosystems) and the detection
threshold for alleles was given as T = 150 RFU (note that the 3500xl instrument
is much more sensitive compared to the 3130xl). The peak height and allele
information for the sample is given in Table 3 and plotted in an epg-like format
in Figure S1 in Supplementary material. The epg can be used as a reference to
explore reasonable model assumptions.

3.2 Interpretation

The aim of this example was to quantify the weight-of-evidence that the P2
(known) candidate was a contributor to the trace sample, where we treated
P1 as unknown (as this was a controlled experiment, the identity of all donors
is known). Hence we specify the prosecution and defense hypotheses in the
proposition set as in equation (1) where the candidate is P2. We used the

13



marker allele height P1 P2

D3S1358 13 0 0 0
D3S1358 14 178 0 0
D3S1358 15 2405 1 1
D3S1358 16 1982 1 1
TH01 5 0 0 0
TH01 6 419 0 1
TH01 7 282 0 1
TH01 8.3 0 0 0
TH01 9.3 1871 2 0
D21S11 26 0 0 0
D21S11 27 1128 1 0
D21S11 28 0 0 0
D21S11 29 1750 1 1
D21S11 34 0 0 0
D21S11 35 0 0 1
D18S51 10 0 0 0
D18S51 11 0 0 1
D18S51 14 0 0 1
D18S51 15 467 1 0
D18S51 16 0 0 0
D18S51 17 524 1 0
D10S1248 12 0 0 0
D10S1248 13 1856 1 2
D10S1248 14 155 0 0
D10S1248 15 1045 1 0
D1S1656 11 0 0 0
D1S1656 12 1140 1 0
D1S1656 14 0 0 0
D1S1656 15 601 0 1
D1S1656 15.3 0 0 0
D1S1656 16 488 0 1
D1S1656 16.3 155 0 0
D1S1656 17.3 1877 1 0
D2S1338 16 0 0 0
D2S1338 17 290 0 1
D2S1338 18 0 0 0
D2S1338 19 619 1 0
D2S1338 20 259 0 1
D2S1338 22 0 0 0
D2S1338 23 649 1 0
D16S539 8 0 0 0
D16S539 9 217 0 1
D16S539 10 312 0 1
D16S539 11 743 1 0
D16S539 12 619 1 0

marker allele height P1 P2

D22S1045 14 0 0 0
D22S1045 15 1017 1 2
D22S1045 16 610 1 0
VWA 13 0 0 0
VWA 14 1250 1 0
VWA 15 440 0 1
VWA 17 1232 1 1
D8S1179 9 0 0 0
D8S1179 10 206 0 1
D8S1179 12 0 0 0
D8S1179 13 352 0 1
D8S1179 14 978 1 0
D8S1179 15 827 1 0
FGA 20 0 0 0
FGA 21 664 1 0
FGA 22 714 1 1
FGA 24 0 0 0
FGA 25 0 0 1
D2S441 8 0 0 0
D2S441 9 200 0 0
D2S441 10 3362 1 0
D2S441 11 1168 0 2
D2S441 13 0 0 0
D2S441 14 3693 1 0
D12S391 17 0 0 0
D12S391 18 297 0 1
D12S391 17.3 0 0 0
D12S391 18.3 1446 1 0
D12S391 19 751 0 1
D12S391 20 0 0 0
D12S391 21 171 0 0
D12S391 22 1370 1 0
D19S433 12 0 0 0
D19S433 13 1157 1 0
D19S433 14 781 0 2
D19S433 14.2 0 0 0
D19S433 15.2 922 1 0
SE33 26.2 0 0 0
SE33 27.2 0 0 1
SE33 28.2 0 0 0
SE33 29.2 221 0 1
SE33 30.2 473 1 0
SE33 32.2 0 0 0
SE33 33.2 570 1 0

Table 3: The table shows the trace sample considered in the example. Each
row denotes an allele with corresponding peak height for a given marker m. The
P1 and P2 columns denote the number of corresponding alleles per reference
genotype that they have in their genotype (1 is a heterozygote contribution and
2 is a homozygote contribution). In this example we treat the profile of P1 as
unknown.

Norwegian Population frequencies typed with ESX 171. If alleles in the trace
sample or reference samples with corresponding stutter alleles were not recorded
in the population, these alleles were inserted and given a frequency equal to the
value of the smallest observed allele frequency in the dataset. For the Bayesian
approach we required a relative error δ = 0.1 to calculate the integrals.

Notice that a comparison of the alleles of the candidate P2 to the trace sample
showed that there were five alleles from P2 not observed in the sample. Hence

1The relative allele frequencies can be found in the textfile ESX17 Norway.csv under the
installation folder of euroformix: ’R-folder’\library\euroformix\tutorialdata\FreqDatabases
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the only explanation for P2 being a contributor (under Hp) was because of allele
drop-out due to small amount of DNA being present.

3.2.1 Model selection

We followed the model search strategy as mentioned in section 2.4 and assumed
no sub-population structure (Fst = 0). If a model with allele drop-in is con-
sidered, λ = 0.01 is fixed which means peak heights around 500 RFU are very
unlikely to be drop in compared to smaller peak heights. Table 4 shows the
results from the model selection where it is shown that the model with K = 2
contributors including stutter, degradation and no drop-in gave the final model
for both the frequentist and Bayesian framework. The result from the model se-
lection coincides with the inspection of markers with many observed alleles (i.e.
D1S1656, D2S1338, D16S539 and D8S1179). Here it is clear that the sample is
most likely to be a two-person mixture profile where the remaining alleles are
explained as stutters.

K stutt deg dropin AIC pB
1 0 0 1 998.34 3.50e-215
1 0 1 1 983.81 1.71e-212
1 1 0 1 993.72 1.69e-214
1 1 1 1 982.53 1.04e-212
2 0 0 1 964.24 2.16e-207
2 0 1 1 953.54 3.49e-205
2 1 0 0 948.31 1.59e-204
2 1 1 0 934.69* 5.13e-202*
3 0 0 0 958.93 1.96e-206
3 0 1 0 947.54 4.94e-204
3 1 0 0 950.31 1.54e-209
3 1 1 0 936.21 2.92e-208

Table 4: The table shows the frequentist and Bayesian model selection scores
based on AIC and marginal probability, respectively. The star denotes the fi-
nal model which is the model with smallest AIC value (frequentist) or largest
marginal probability (Bayesian). K is number of contributors, Stutt, deg and
dropin are indicators for whether stutter, degradation or allele drop-in is as-
sumed in the model. For the drop-in model λ = 0.01 was assumed fixed.

3.2.2 Weight-of-evidence assuming Hardy Weinberg Equilibrium

We used the final model from the model selection to evaluate the trace sample
with the LR formula provided in equation (2). In this section we assumed no
sub-population effect by fixing Fst = 0. Figure 2 shows the maximum likelihood
based LR which gives LRF = 1010.45, clearly supporting Hp. From the figure
we see that under Hp the mixture proportion of P2 was estimated as π1 =
0.23, the expectation as µ = 1947 and the coefficient of variation as σ = 0.28.
With no degradation (β = 1), the model denoted the drop-out probability for a
heterozygous allele of P2 as 0.084. In contrast, with the estimated degradation
slope β = 0.676, the drop-out probability at fragment length 240 becomes 0.24
and further increased to 0.37 for fragment length 300. This means that it was
likely that the unobserved alleles from P2 had dropped out since these alleles
all have large fragment lengths.
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Figure 2: Screen-shot to show the results of the maximum likelihood estimation,
based on the continuous model incorporating stutter (with stutter proportion
xi) and degradation (with degradation slope beta), assuming K = 2 contribu-
tors. Under Hd, the mixture proportions mx1 and mx2 belong to the unknown
contributors which are decreasingly sorted. Under Hp, mx1 belongs to P2 and
mx2 belongs to an unknown contributor. Further analysis can be carried out
under “Further action”- including model validation, deconvolution and MCMC
simulation to get the posterior densities of the parameters.

Notice that the LR values in D22S1045 and D2S441 (Figure 2) are small since
the observed peak heights of these two markers are smaller and greater, respec-
tively, compared to what is expected (see Figure S2 in Supplementary material).
We checked the performance of the fitted continuous gamma model by creating a
Probability-Probability (PP) plot. The linear trend in Figure 3 showed that the
assumed model followed the observed peak heights quite well. However, there
seems to be more points below the line than above which indicated that some of
the observed peak heights are lower than that assumed by the model. For the
Bayesian approach the likelihood ratio becomes LRB = 108.884[108.798, 108.969].
This is much smaller compared to the maximum likelihood approach, since the
uncertainty of the model parameters and the non-symmetry in the likelihood
are taken into account.
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Figure 3: The plot shows the performance check of the maximum likelihood
fitted model. The y-axis represents the observations which are inserted into the
fitted model compared with the theoretical assumption which is given at the
x-axis.

3.2.3 Weight-of-evidence assuming sub-population structure

We considered the situation where the contributors to the trace sample could
belong to a sub-population of the Norwegian population. We considered the
sub-population model from section 2.2.4 where the coancestry coeffecient Fst

was introduced to decide how divergent the allele frequencies in sub-populations
may be from the allele-frequencies of the general Norwegian population. The
likelihood ratio was calculated as a function of Fst for both the maximum likeli-
hood approach and the Bayesian approach. Table 5 showed the reduction of the
likelihood ratio as the value of Fst increased. Here it is seen that the weight-of-
evidence clearly decreases, but that Hp is still clearly supported, even for large
values of Fst.

Fst 0 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
log10LRF 10.45 10.11 9.81 9.52 9.26 9.02 8.80 8.40 8.04
log10LRB 8.88 8.54 8.22 7.94 7.69 7.40 7.15 6.84 6.50

Table 5: The table shows the resulting likelihood ratio quantities for the max-
imum likelihood approach LRF and the Bayesian approach LRB as a function
of the coancestry coeffecient Fst.

3.2.4 Deconvolution

In this subsection we will assume that the profile of individual P1 is known
beforehand and that this individual is a contributor to the trace sample. We
attempted to assign the genotype profile for the minor contributor in the trace
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sample where we used the final model from the model selection which suggested
two contributors. Hence P1 will be one of the contributors and the last will
be an individual with an unknown genotype profile which was assigned using
the frequentist method described in section 2.3.3. The resulting ranked as-
signed profile table (see Figure S3 in Supplementary material) showed that the
probability of the top rank profile was 1.224e-05 with the next ranking profiles
approximately the same. These small differences in probability indicate that
the full unknown joint genotype profile is difficult to resolve for some markers.
Note here that allele 99 represents all non-present alleles (i.e. potential allele
drop-outs). Comparing the top rank profile with the profile of individual P2,
we found that 13 markers fully matched at both alleles and that 3 markers
partially matched at one allele. We also correctly classified that allele drop-out
(the missing allele cannot be identified of course) had occurred for both alleles
at locus D18S51 and only one allele at D21S11, FGA and SE33. In comparison,
an experienced reporting officer, who used expert opinion to blindly deconvolve
the mixture, reported the markers D3S1358, D18S51 and FGA as inconclusive
(could not assign any alleles) and the markers D21S11, D10S1248, D22S1045,
vWA, D2S441 and SE33 as partially inconclusive (he could only assign one allele
at each locus). The other markers were assigned correctly by him.

4 Summary and discussion

In this article it has been demonstrated with real data how the EuroForMix

software can be used for DNA interpretation utilizing peak heights. In par-
ticular we have implemented an extended version of the continuous model as
presented by Cowell et al. [6] to take into account allele drop-in, degradation
and sub-population structure. The Bayesian inference approach was introduced
as an alternative to the maximum likelihood approach, where its accuracy was
quantified. The Bayesian framework enables the user to specify his/her own
priors in order to take into account the uncertainty of the parameter.

The interpretation requires a probabilistic model which is automatically inferred
using the observed trace sample. Such models are based on peak height infor-
mation, which makes it possible to take into direct account the uncertainty of
allele drop-out, allele drop-in, stutters and degradation. In order to select a
probabilistic model, both a frequentist and a Bayesian model selection frame-
work was introduced, where Akaike information criterion (AIC) was used for the
former, and the integrated likelihood with respect to the model parameters was
used for the latter. After a final model was selected, a model validity plot was
applied in order to investigate the properties of the selected probabilistic model.
Finally, the likelihood ratio (LR) value for a given candidate was calculated in
order to investigate whether the data supported the hypothesis that he was a
contributor to the trace sample or not.

In the real experiment example we considered a major-minor sample which was
challenging since the candidate, the minor contributor, had five alleles dropped
out. From the model selection, for both frameworks, the final model was a
model with two contributors which included degradation and stutter. The LR

values were investigated with the amount of sub-population structure through
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the coancestry coefficient Fst. By considering the maximum likelihood approach
we obtained values between LRF (Fst = 0) = 1010.45 and LRF (Fst = 0.1) =
108.04. In comparison, for the Bayesian approach we obtained values between
LRB(Fst = 0) = 108.88 and LRB(Fst = 0.1) = 106.50, which was about two
orders of magnitudes lower than the maximum likelihood approach. The reason
for this is that the Bayesian approach takes into account the uncertainy of the
parameters which means it should be a more reliable framework than using
the maximum likelihood approach. Finally, using the deconvolution method
described, we assigned the full joint genotype profile of the minor contributor
conditioned on the major profile as a “known” individual. Choosing the top
ranked candidate from the method gave 13 full and 3 partial marker matches.
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Supplementary material

A Comparison with DNAmixtures

In this section we will compare the likelihood values between EuroForMix and
DNAmixtures by randomly generating single source stains and two- and three-
person mixtures. Note that in order to get the same results as DNAmixtures we
let alleles with the same whole integer (e.g. allele 30, 30.2, 30.3 become allele 30)
become one allele (summing their relative frequencies). Also, no degradation
and sub-population structure are assumed (β = 1, Fst = 0). We used the
Norwegian ESX 17 population frequencies, considering 16 markers, where new
observed alleles were assigned as the smallest observed frequency. For a given
number of contributors K, three random crime samples were simulated from the
continuous model with parameters equal to σ = 0.2 and ξ = 0.1. The detection
threshold used in the simulation and models was T = 150 RFU.

In the comparison we let DNAmixtures be optimized (with the true parame-
ters as start values in the optimizer). The optimized parameters values θ =
(π1, ..., πK , µ, σ, ξ) were later inserted into the likelihood function implemented
in EuroForMix to check that the same likelihood values were obtained. The com-
parison tables are shown where the values of θ are represented (5 significant dig-

its) together with the log-likelihood values. Notice here that πK = 1−
∑K−1

k πk.

The sampled evidences were evaluated by conditioning on different types of
hypotheses. We let the code xKyU denote that the model conditions on the
hypothesis that the x first true references from the sampled stain are consid-
ered as known contributors, while y is number of unknown contributors in the
same hypothesis. The script for carrying out the comparison can be found at
www.euroformix.com/validation. The comparison table in Table S1 shows
the likelihood values for each of the sampled evidence up to 12 decimals for
each possible considered hypothesis. By comparison we found that the log like-
lihood values from EuroForMix and DNAmixtures are always identical up to 11
decimals.
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B Technical details of model and inference

Approximation of the likelihood function using a compound

allele

Some alleles who have a peak height below the detection threshold T give im-
portant information to the model parameters. Consider the situation where a
peak height is presented above T for allele a, but not for a − 1 and a + 1. As-
suming the stutter-model, a contributor with allele a will expect to add some
stutter to allele a − 1. However, since the peak height at allele a − 1 is below
the threshold, this indicates a small stutter proportion. Hence the information
about the non-present peak height at allele a−1 is important. For a contributor
at allele a+1 we expect some stutter proportion to allele a. However, since the
peak height at allele a+1 is below the threshold, the contributing stutter from
a+1 to a is expected to be less than ξT . Hence the information about potential
stutters from alleles falling below the threshold is not important. Based on these
arguments, we make an approximation of the likelihood function in equation (7)
by redefining the set of alleles given in the database, Am, as

A′
m = Sm ∪Qm (18)

where Sm = {a ∈ Am : Ym,a ≥ T}∪{a−1 ∈ Am : Ym,a ≥ T} is the set of alleles
with peak heights above the threshold and their corresponding potential stutter
alleles, and Qm is any of the remaining alleles in the set Am \ Sm, grouped
together as a compound allele. As used by Taylor et al. [14] and Puch-Solis
et al. [13], we let the allele frequency of Qm be given as 1 −

∑
a∈Sm

pa. For
the degradation model, Qm, is assigned to have fragment length maxa fm,a, the
maximum fragment length at (undegraded) marker m.

The likelihood function for independent replicated samples

For this particular case we assumed that the sample has been retyped (after ex-
traction) such that stain samples are independent replicates which are assumed
to contain the same contributors and satisfy the same model assumptions (same
model properties across replicates). Consider the number of replicates as R, and
let the observed peak height for allele a at marker m for replicate r be given as
Y ∗
r,m,a. Then the probabilistic model given in equation (7) is extended to

p(E|H,θ) =
M∏

m=1

∑

gm,k ∈ Qm

k = 1, ..,K

(
p(gm|H)

R∏

r=1

∏

a∈Am

p(Y ∗
r,m,a|gm,θ)

)
(19)

C Peak height summary of the trace sample
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Figure S2: The plot shows the sum of the peak heights y per marker as
a function of average fragment length (per marker) x for the evidence pro-
vided in the example. The lines shows the expectation, the 0.005- and 0.995-
quantiles from the maximum likelihood fitted model of the underlying model
y ∼ gamma(2σ−2βx, µσ2) using all data. The values belonging to the points of
D2S441 and D22S1045 are the probability of observing a more extreme value
than observed. Each probability is based on the maximum likelihood fitted
model where the corresponding marker is left out from the data.
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D Resulting deconvolution table

Figure S3: The plot shows the 19 first ranked genotypes with corresponding
probabilities for the unknown profile under a model with two contributors, but
where individual P1 is known to be one of the contributors. In addition the
model assumes degradation and stutters, but does not assume allele drop-in or
sub-population structure. Allele “99” represents any allele not presented in the
sample (a compound allele).
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E Experimental results

To check the practical performance of EuroForMix, we simulated three ran-
dom DNA profiles where one, two, three and four individuals contributed. The
purpose of the experiment was to discover the time taken for the methods in
this article to return results for different scenarios. The experiment was carried
out by first simulating alleles for K number of contributors using the popu-
lation frequencies and the corresponding allelic peak heights using the model
from section 2.2 with specified model parameters. We then considered the first
sampled contributor as the person of interest S. To calculate the likelihood
ratio (LR) we compare hypotheses Hp :“S contributed to the sample” versus
Hd :“S did not contribute to the sample”. We calculated both the maximum
likelihood based LR, LRF , and the Bayesian based LR, LRB . All samples were
simulated with peak height expectation µ = K ∗ 1000, peak height coefficient of
variation σ = 0.2, stutter proportion ξ = 0.07 and degradation slope parameter
β = 0.7. Each sample was generated with different specified mixture propor-
tions (π1, ..., πK) given in Table S2. For the maximum likelihood estimations
we required 5 random start points for the optimization. For the integrals we
required relative error δ = 0.2. The upper boundary of the parameters in the
uniform priors were 10000 for µ, 0.5 for σ and 0.2 for ξ. For the model we as-
sumed K number of contributors, detection threshold T = 150 RFU, no drop-in
(C = 0) and no sub-population structure (Fst = 0). The degradation and stut-
ter model was considered with the corresponding parameters β and ξ treated as
unknown. The total computing time to achieve a LR value was registered with
an Intel Core i7-2600 3.4 GHz processor.

From Table S2 it can be observed how the calculation time grows exponentially
with number of contributors, and how the Bayesian based LR tends to be more
time-consuming than the maximum likelihood based LR.

K π1/.../πK log10LRF time (min) log10LRB time (min)
1 1 22.92 0.03 22.92 0.02
1 1 22.75 0.01 22.43 0.01
1 1 22.41 0.01 22.21 0.02
2 0.5/0.5 13.42 1.2 13.02 2.7
2 0.25/0.75 13.26 0.6 13.09 2.5
2 0.1/0.9 8.24 0.6 7.61 1.8
3 0.5/0.25/0.25 14.68 113.9 13.83 1051.6
3 0.25/0.5/0.25 6.83 102.8 4.97 179.8
3 0.1/0.5/0.4 6.93 71.72 5.9 559.1
4 0.5/0.2/0.2/0.1 18.46 7395.9 15.72 11470.3
4 0.3/0.4/0.2/0.1 9.55 7089.8 8.15 11982.9
4 0.1/0.5/0.2/0.2 4.74 9134.99 0.42 12716.9

Table S2: The table shows the resulting likelihood ratio quantities for the max-
imum likelihood approach, LRF , and the Bayesian approach, LRB , for different
simulated DNA samples. K is the true and assumed number of contributors to
the sample, πx is the specified mixture proportions for contributor x (here π1

is the mixture proportion of P ). The time is total number of minutes taken to
calculate the LR quantity.
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