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Abstract 

Purpose: 

To update literature-based recommendations for techniques used in high-precision 

thoracic radiotherapy for lung cancer, in both routine practice and clinical trials. 

Methods: 

A literature search was performed to identify published articles that were considered 

clinically relevant and practical to use. Recommendations were categorised under the 

following headings: patient positioning and immobilisation, Tumour and nodal 

changes, CT and FDG-PET imaging, target volumes definition, radiotherapy 

treatment planning and treatment delivery. An adapted grading of evidence from the 

Infectious Disease Society of America, and for models the TRIPOD criteria, were 

used.  

Results: 

Recommendations were identified for each of the above categories.  

Conclusion: 

Recommendations for the clinical implementation of high-precision conformal 

radiotherapy and stereotactic body radiotherapy for lung tumours were identified from 

the literature. Techniques that were considered investigational at present are 

highlighted. 
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Introduction  

Considerable advances in thoracic radiotherapy have been made since the last 

recommendations of the European Organisation for Research and Treatment of 

Cancer (EORTC) were published in 2010 (1). These include the routine integration of 

4D-CT and Positron Emission Tomography (PET) imaging in treatment planning, 

accurate dose calculation algorithms, and improved imaging for treatment verification 

on the treatment machine. A large body of evidence supports the use of stereotactic 

body radiotherapy (SBRT) in early stage non-small cell lung cancer (NSCLC), where 

local tumour control rates of around 90 % have been reported, with  survival rates 

that match those of surgery in similar patient groups (2,3). SBRT is currently under 

investigation for the treatment of oligometastatic disease (4), and its use to activate 

the immune system is a promising area of research (5). In locally advanced NSCLC 

and small cell lung cancer (SCLC), concurrent chemo-radiation remains the standard 

treatment for most patients, but more insight has been gained with regards to patient 

selection, such as the elderly (6).  

The rapid pace of advances in technology and clinical practice led the EORTC 

Radiation Oncology and Lung Cancer Groups to update previous recommendations, 

in order to assist departments in implementing high-precision radiotherapy for 

thoracic tumours. Our working party focused on procedures and techniques that are 

relevant to the daily practice of clinicians, physicists and radiotherapy technologists. 

By their very nature, such recommendations have an element of subjectivity. As they 

are based upon current knowledge, they are neither static, nor necessarily applicable 

to every single individual patient.  
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Methods  

MEDLINE and EMBASE were searched with different key words and their 

permutations including radiotherapy, radiation, 3-D, 4-D, conformal, lung, bronchus, 

bronchogenic, cancer, carcinoma, tumour, treatment planning, imaging, functional 

imaging, PET scans, FDG, positioning, mobility, delivery, control, quality assurance, 

intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), 

adaptive radiotherapy, SBRT, SABR, stereotactic, side effects, toxicity, organs at 

risk, image-guided radiotherapy, dose-guided radiotherapy, gross tumour volume, 

clinical target volume, planning target volume, from January 2001- March 2017. 

Studies that were included in the 2010 version (1) were reinterpreted again to re-

evaluate their usefulness. The references identified in individual articles were 

manually searched. Articles referring to outdated techniques for example from the 

pre-CT scan and pre-3D era and investigational studies were excluded. Several 

multi-disciplinary task groups identified and analysed appropriate studies according 

to their topic: Patient positioning (JB, CWH), tumour and nodal motion (UN, MG, 

CWH, DM), definition of target volumes (UN, JB, UN, CLP, DDR), generating target 

volumes (CWH, SS, UN, DM), treatment planning (CWH, SS, DM), dose specification 

and reporting (CWH, CLP), radiotherapy techniques (CWH, SS, MG, DM), dose-

volume constraints (JB, CF, MG, DDR) and treatment delivery (JB, CWH, DM). 

Thereafter, all evidence was discussed with the whole group.   

 

The adapted scheme for grading recommendations from the Infectious Disease 

Society of America (6) (Table 1) was used. 
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Results 

1 Patient positioning and immobilisation  

We did not identify new studies that would change the 2010 recommendations (1). 

Stable and reproducible patient positioning is essential. If possible, patients should 

be positioned with both arms above the head as this position permits a greater choice 

of beam positions. However, this position may be unsuitable for individual patients. 

Reproducible setup can be achieved using a stable arm support, in combination with 

knee support to improve patient comfort. Several studies have shown that SBRT can 

be safely delivered without the use of immobilization casts (8).   

 

2. Tumour and nodal changes 

2.1. Inter-fractional tumour shifts 

Inter-fractional changes in anatomy of the target region are frequent, and can be of 

clinical relevance for both early-stage (9-11) and locally advanced disease (12,13). 

Inter-fractional shifts between primary tumour and vertebra positions range from 5 – 

7mm on average (3D vector), but may be as high as 3 cm (9,14). The use of only an 

external reference system, such as a stereotactic body frame (SBF), cannot account 

for such deviations, and consequently, image guidance and patient setup corrections 

are essential (9,10).  

The treatment volume in locally advanced lung cancer often consists of several 

spatially separated targets (tumour(s), nodes) which will exhibit differential motion and 

shifts (12). These non-rigid uncertainties cannot completely be compensated by 

image-guidance based on couch corrections. Adaptive radiotherapy has been shown 

to reduce this source of error (13).  
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2.2. Intra-fractional tumour shifts 

The intra-fractional target shifts are usually of small magnitude, ranging from 0.15 to 

0.21 cm (12). Small, but systematic, intra-fractional drifts in the cranial and posterior 

direction were reported (12). Intra-fractional drifts increase when treatment times 

exceed 34 minutes (15). 

 

2.3. Intra-fractional respiratory and cardiac motion 

Respiratory tumour motion is frequently observed in primary lung tumours and lymph 

nodes, with the magnitude varying substantially between patients (16,17). Increased 

motion has been observed in lower-lobe tumours (16), for smaller primary tumours (18) 

and for infra-carinal lymph nodes (19). However, due to large inter-patient variability, 

patient-specific motion assessment should be performed (20). The respiratory motion 

of a lymph node typically differs from respiratory- tumour motion, both in terms of 

amplitude and phase (12,17,19). For tumours close to heart or aorta, cardiac-induced 

motion can exceed respiratory motion (16). 

 

2.4. Anatomical changes during fractionated radiotherapy 

Changes in normal anatomy can be observed during a course of radiotherapy, due to 

pleural effusion, onset or resolution of atelectasis, tumour progression or shrinkage, 

and changes in body weight (21). Transient anatomical changes were reported in 72% 

of patients during conventionally fractionated RT for lung cancer (22). Persistent 

changes such as atelectasis, pleural effusion or pneumonia were reported in 23% of 

patients (21), and significant disease shrinkage observed in 30% of patients (22,23). 
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Changes observed indicated an average 1-2% volume reduction per treatment day 

(24). Tumour progression has been reported in up to 10% of patients (22). As these 

changes in anatomy may lead to either over- or under-dosage of the PTV and/ or 

OARs, adaptation of the radiation plan may be required, making imaging during 

treatment mandatory.  

   

3. Definition of target volumes  

3.1. CT scanning  

We did not identify new studies that would change the 2010 recommendations (1). 

Planning CT scans should be acquired in treatment position, and incorporate 

techniques for evaluating motion compensation. 

A planning CT scan should include the entire lung volume, and typically extends from 

the level of the cricoid cartilage to the second lumbar vertebra. Acquiring CT scans 

with a slice thickness of 2-3 mm is recommended (25). Use of intravenous (IV) 

contrast for CT scanning enables improved delineation of centrally located primary 

tumours and lymph nodes. In order to be able to account for motion, a 3D-CT is 

insufficient and a 4D-CT is recommended.  

 

3.2  PET scanning 

Multiple studies have evaluated the potential role for Positron Emission Tomography 

(PET) with 18F-deoxyglucose (FDG) for radiotherapy treatment planning. FDG-PET 

has a higher diagnostic accuracy in detecting lymph node metastases, when 

compared to CT alone (26). However, standardisation of the acquisition protocol is 

necessary, with PET data co-registered with anatomical imaging for radiotherapy 
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planning process (27). The equipment used for patient immobilisation during PET 

scans should be identical to that used for CT scanning and treatment, the quality of 

image co-registration should be verified prior to contouring, as patient movements 

may lead to incorrect hardware fusion, even when using a PET-CT machine. Caution 

is advised in using non-rigid registration algorithms, as they have not been evaluated 

in the context of RT-planning (27). As chemotherapy can lead to a decrease of FDG-

uptake (28), post-chemotherapy FDG-accumulations should not be used for the 

delineation of the gross tumour volume.  

 

3.3. MRI scanning  

MRI may give additional information to CT or PET-imaging, particularly for tumours 

invading the thoracic wall (29). However, the choice of 4D MRI sequences remains 

investigational, and careful consideration of movement artefacts is needed.  

 

3.4. Role of EBUS and mediastinoscopy 

Although FDG-PET-CT scanning has the highest accuracy of all imaging modalities 

for the mediastinum, both false positive and false negative lymph nodes are observed 

(26). Endobronchial ultrasound (EBUS) and/or oesophageal ultrasound (EUS) with 

needle aspiration (E(B)US-NA) have become standard practice for mediastinal 

staging in patients with positive nodes on FDG-PET or CT staging (30). With a 

sensitivity of over 90 %, and a specificity of 100 %, mediastinoscopy is only added, in 

case of a negative EBUS / EUS findings when the FDG-PET-CT scan is positive, or 

in cN1, or in a central tumour with a diameter exceeding 3 cm (30,31). The addition of 

EBUS/ EUS to FDG-PET-CT can decrease geographical miss by 4-5 % (32). In 
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general, lymph nodes that are FDG-PET-positive and EBUS/EUS-negative should be 

included in the GTV, as the false negative rates of EBUS/EUS are high (32).  

 

4. Target volumes definition.  

4.1. Gross Tumour Volume (GTV)  

We did not identify new studies that would change the 2010 recommendations (1). 

The measured diameter of tumours in lung parenchyma or mediastinum is dependent 

on the window width and level chosen to analyse CT slices (33). CT-based 

delineation with standardized window settings are recommended. The best 

concordance between measured and actual diameters and volumes for CT was 

obtained with the settings: W = 1600 and L = -600 for parenchyma, and W = 400 and 

L = 20 for mediastinum. However, for larger tumours, the tumour volume on CT can 

be overestimated (34). Accurate delineation of the lymph nodes regions, and 

identification of blood vessels, requires the use of a CT scan with intravenous 

contrast. Respiratory movements have also to be addressed (see section 4).  

The identification of pathological lymph nodes has been discussed in section 4.  

The easiest, and most widely used approach for FDG based target volume definition, 

is visual GTV-contouring, which uses a clinical protocol that integrates all relevant 

clinical information, the reports of the nuclear medicine physician and radiologist at 

standardized window setting (27). Even when PET is co-registered with CT, 

approaches other than those using visual contouring tools should be used with 

caution, and only in experienced centres that have calibrated and validated such 

methods appropriately. The use of FDG-PET scans to differentiate tumour from 

atelectasis has never been subjected to pathological or clinical studies. Elective 
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nodal irradiation is not indicated in any patient group that receives curative or radical 

doses of radiotherapy for inoperable NSCLC (35,36), as well as for “limited disease” 

(i.e. stage I-III) SCLC (37), the latter when based on FDG-PET-CT scans for the 

supra-and infra-clavicular region.  

 

Following prior induction chemotherapy, it is unclear if the volume of the primary 

tumour to receive full-dose radiotherapy can be limited to only the post-chemotherapy 

volume. For hilar or the mediastinal lymph nodes, pre-chemotherapy nodal CTV 

should be treated, even when a partial or a complete remission was achieved with 

chemotherapy (35,37). The use of co-registered pre-treatment and planning CT and/ 

or PET-CT scans can enable a more accurate reconstruction of pre-chemotherapy 

target volumes (38).  

 

4.2. Clinical Target Volume (CTV) 

Most studies in locally advanced lung cancer have used a GTV to CTV extension of 

approximately 5 mm, both for the primary tumour and for the lymph nodes. A CTV 

margin around the primary tumour and lymph nodes is recommended (39-41), which 

may be tailored according to the histology of the primary tumour (42), size of lymph 

node (43) and possibly, imaging characteristics of the tumour (44). In the absence of 

prospective trials that have compared disease recurrence patterns with CTV margins 

adjusted for histology or size, the clinical relevance of the abovementioned factors 

remains uncertain. The CTV should be manually adjusted, for example when there is 

no evidence for invasion into a vertebral body or other neighbouring organs. In SBRT 

treatments, no CTV margins are generally used (45).   
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When post-operative radiotherapy is indicated in locally-advanced NSCLC, the CTV 

consists of the resected involved mediastinal lymph node regions, the bronchial 

stump, the ipsilateral hilar and station 4 node region, station 7 and the contra-lateral 

lymph nodes at risk (46,47).  

 

4.3. Planning Target Volume (PTV) 

The margins used from CTV to PTV depend on all uncertainties related to planning 

and delivery of radiotherapy (International Commission on Radiation Units and 

Measurements (ICRU) 83): mechanical, dosimetric, tumour deformation or growth, 

inter-and intra-fractional setup errors and baseline shifts, respiratory and cardiac 

motion (41,48-50).  

While other factors determining the choice of planning margins are derived from 

specific clinical settings and populations, respiratory motion is a patient-specific factor 

which should be determined before treatment, typically using a pre-treatment 4D-CT 

or 4D PET/CT scan. Applying the same respiratory margin for all patients is 

discouraged since variations in respiratory motion amplitude are large (51).   

In general, one can differentiate between passive motion compensation strategies 

(abdominal compression, internal target volume (ITV) concept, mid-ventilation 

concept, jet-ventilation) and active motion compensation strategies (gating, breath 

hold, tracking). Abdominal compression can modestly decrease the respiratory 

amplitude (52), but the dosimetric gain is limited (53). Different gating strategies, where 

radiation is only delivered during specific phases of the respiratory cycle can be 

employed to reduce the margin accounting for respiratory motion (54). Deep inspiration 

breath hold (DIBH) reduces tumour motion while increasing the lung volume, resulting 
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in decreased doses to lung, and often also to the heart (55,56). Real time tumour 

tracking is commercially available using robotic radiotherapy (57) for SBRT treatment, 

but requires generally implanted markers. Application of one (either active or passive) 

4D motion compensation strategy is highly recommended; however, current physical 

and especially clinical data do not support the superiority of one particular strategy. If 

respiratory motion management strategies are used, the inter- and intra-fractional 

shifts may differ from those observed in free breathing (FB). For DIBH, larger inter- and 

intra-fractional shifts are seen compared to FB (58) and the margins applied must 

account for this.    

The two most common passive methods used to take the respiratory motion into 

account in a patient specific way are: 

1. Internal target volume concept (ITV): Delineating all phases of the 4D-CT scan 

and combining them (59) or delineation guided by a Maximum Intensity 

projection (MIP) (60). The ITV method takes into account all respiratory 

motion, including tumour deformations during breathing.  

2. Mid-ventilation / mid-position concept: Delineating on a 4DCT image 

reconstruction technique such as the Mid-ventilation scan (51) which displays 

the frame whereby the tumour is closest to its mean time weighted tumour 

position, or the Mid Position scan which displays every voxel in its average 

position. The respiratory uncertainty is then taken into account as a random 

error in the CTV to PTV margin calculation (51,61-63).  

No clinical studies have directly compared the above two methods, but both 

approaches have shown high local control rates over 90 % in patients treated with 

SBRT (62,64) thereby indicating their safety.  
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Respiratory motion can also be managed by irradiating the tumour at a fixed part of 

the trajectory (gating) or irradiating the tumour by following the tumour (tracking) (65-

68). However, one has to take into consideration the increased complexity of these 

techniques. 

Changes arising during the course of irradiation, that cannot be corrected for by on-

line image guidance, may require adaptive radiotherapy, where a new treatment plan 

is made based on the new anatomy (69,70). 

 

4.4. Planning organ at risk volume (PRV) 

The planning organ at risk volume (PRV) concept (71) can be relevant when treating 

lung cancer, especially in case where a maximum dose constraint is used. For serial 

organs, including the spinal cord, the main bronchi, the brachial plexus, the 

oesophagus and large blood vessels, the use of a PRV might be helpful, since it 

reduces the probability of over dosage (72). The PRV concept is not relevant for the 

lung because it is a parallel structured organ (72). It should nevertheless be stressed 

that all published OAR constraints are not based on the PRV concept. 

 

5. Treatment planning  

5.1. Dose calculations 

Dose calculation algorithms currently used for lung radiotherapy generally take into 

account changes in electron transport due to density variations, and are referred to 

as so-called type B or Monte Carlo based algorithms (73-78). Use of older algorithms 

are not recommended as they have been associated with more local recurrences 

(74). Differences between more advanced algorithms still exist (79-82), with Monte 



EORTC recommendations radiotherapy lung cancer 2017  

 

 

 

15 

Carlo algorithms possibly more accurate for estimating dose at the tumour periphery 

(83). There is no consensus yet about the clinical acceptability and relevance of 

reported differences (84-86). Comparisons between 3D dose calculations using the 

‘average CT’ dataset and full 4D calculations show small differences of a few percent 

(87,88).  

 

5.2. Dose specification and reporting  

Dose prescriptions and reporting should comply with international standards (39-41).  

Additionally, the type of dose calculation algorithm and CT dataset on which the 

calculations are based, should also be reported (41).  

 

5.3. Beam arrangements  

In principle, all radiotherapy delivery techniques can be used, as long as established 

dose distribution criteria are met. As intra-fraction motion increases with time, it is 

advisable to limit treatment times. This can be achieved using co-planar techniques 

or volumetric arc therapy and flattening filter-free beams (89-91). 

 

6. Dose-volume constraints (Table 2) 

To predict the probability of radiation-induced damage, many studies have analysed 

the relationship with dose volume histogram (DVH) parameters, either with or without 

patient characteristics. However, many DVH parameters, strongly correlated with 

each other, have not been validated in independent data sets (92). Furthermore, 

studies correlating DVH parameters to clinical outcomes have generally included few 

patients. As normal tissues may be displaced during radiotherapy, a single imaging 
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study performed before therapy may not accurately reflect the actual delivered dose 

(93). There is a need for improved biomarkers or imaging features in radiotherapy 

prediction models, but these are considered experimental now.  

Any application of DVH parameters or Normal Tissue Complication Probability 

(NTCP) models in clinical practice should consider only those based on published 

data, and with a clear knowledge of their limitations (92,93). The LQ model accurately 

describes the biological effects of different fraction doses for both modelling of 

tumour control probability as well as normal tissue complication probability (94-95). In 

the following paragraphs, physical doses are described in the context of 

conventionally fractionated radiotherapy. 

Both the lung V20 (which is in the original definition the percentage volume of both 

lungs minus the PTV receiving 20 Gy, although in some studies the GTV has been 

used) and the mean lung dose (MLD, being the volumes of both lungs minus the 

GTV), correlate with the risk for radiation pneumonitis (98). Although a V20 of 35-37 

% or an MLD value of 20 Gy (both calculated with a more advanced RT planning 

algorithm) have been considered “safe”,  10-15 % of the patients who meet these 

constraints may still develop significant (grade 2 or more) radiation-induced toxicity 

after receiving much lower doses. Conversely, higher V20 or MLD levels may be 

delivered safely. Lower dose parameters such as lung V5 have in some studies been 

correlated with higher risk of lung toxicity with either conventional RT or SBRT 

(99,100). A systematic review showed that cisplatin or carboplatin-based 

chemotherapy can be used safely with concurrent chest radiotherapy (6,101). 

Predictors of grade 5 pneumonitis were daily dose>2Gy, V20 and lower-lobe tumour 

location. Patient features such as lung function, age and gender fail to identify 
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patients at high risk of radiation pneumonitis. However, interstitial lung disease and 

more particularly idiopathic pulmonary fibrosis, should be highlighted as risk factors 

for severe pneumonitis (102-109). Such patients should be assessed by an expert 

pulmonary physician, and patients counselled and informed about high risk of 

radiation-related side-effects.  

Although a meta-analysis comparing concurrent to sequential chemo-radiotherapy 

did not observe use of concurrent chemotherapy to be associated with increased 

lung toxicity (110), drugs such as gemcitabine are not recommended for routine use 

with concurrent radiotherapy in standard practice (6,111,112). At present, no targeted 

agents have shown proven benefit when combined with radiotherapy, and 

experience with concurrent radiotherapy and EGFR tyrosine kinase inhibitors and 

bevacizumab has shown increased toxicity (113). 

 

Severe bronchial stenosis and fistula may manifest 2 years or more after the main 

bronchi have received over 80 Gy, which emphasises the need to limit doses to 

central structures to 80 Gy, and also to follow patients for more than 2 years in order 

to observe late side effects (113). Late proximal bronchial tree complications have 

been reported following both hypofractionated RT and SBRT, and safe dose 

constraints remain to be refined (115-119).   

The incidence of transient grade 3-4 acute oesophagitis is low (<5%) when 

radiotherapy alone or sequential chemo-radiation is used, but may be as high as 30 

% with concurrent chemo-radiation (110). Dosimetric factors predictive of grade 3 or 

higher toxicity, include the mean oesophageal dose (MED) and V60 (120,121).  As 

grade 3 oesophagitis generally heals within 3-6 weeks post-treatment, with late side 
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effects such as strictures occurring in less than 1 % of patients, the survival benefits 

of concurrent chemo-radiation generally outweighs the risk of high-grade acute 

oesophagitis in good performance status patients. For severe late oesophageal 

toxicity, the maximum oesophageal dose is predictive, and not the mean dose (122).   

 

Retrospective studies suggest that as long as the maximal dose to the brachial 

plexus (2 cm3) is kept below 76 Gy, the risk of radiation plexopathy is low (123,124). 

In patients treated with SABR, delivery of absolute brachial plexus doses over 26 Gy 

in three to four fractions, and brachial plexus maximal dose over 35 Gy, and V30 of 

more than 0.2 cm3, all increased the risk of brachial plexopathy (125). 

In SBRT, the chest wall, ribs and vertebral bodies have become organs at risk, 

despite the fact that the majority of patients are asymptomatic or complain of mild 

toxicity. For chest wall pain, the risk increases when the D70cc is over 16 Gy in 4 

fractions, and the D2cc above 43 Gy in 4 fractions (126,127). The risk of symptomatic 

rib fractures after SBRT was significantly correlated to dose, and was <5% at 26 

months when Dmax<225Gy (biological equivalent dose (BED), α/β=3 Gy) (128,129).  

However, target coverage should generally not be compromised for chest wall 

sparing, and more fractionated SBRT regimens should be considered in such cases 

(130).  

In locally advanced NSCLC, thoracic vertebral fractures were reported in 8% of 

patients after a 12 month median follow up time (131,132). Significant dosimetric 

factors associated with vertebral fractures were the V30 and mean vertebral dose, 

with doses of 20-30 Gy being associated with bone injury (132). Although vertebral 
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SBRT is associated with a risk of vertebral fracture, there is limited data available on 

the risk of such fracture after lung SBRT (130). 

Historically, heart toxicity was not considered to be of relevance for most lung cancer 

patients. However, it has become increasingly clear that radiotherapy-related cardiac 

events may occur within months after radiotherapy (133). Both dose to the heart and 

patient’s cardiac risk factors determine the incidence of cardiac events. The mean 

heart doses associated with cardiac events were < 10 Gy, 10 to 20 Gy, or ≥ 20 Gy 

and 4%, 7%, and 21%, respectively. It is unclear which regions of the heart are most 

susceptible for radiation injury. The contribution of heart doses to mortality has not 

been consistently demonstrated (133-135), but it is preferred that heart doses be 

limited as much as possible.   

The tolerance of the spinal cord is, like other organs, is a sliding scale, with estimated 

risks of myelopathy to the full-thickness cord using conventional fractionation of 1.8-2 

Gy/ fraction of <1% and <10% at 54 Gy and 61 Gy, respectively, with a strong 

dependency on the dose per fraction (α/β=0.87 Gy) (136,137).  

 

7. Treatment delivery including imaging and dose guidance during treatment   

7.1. Image guidance 

Daily online pre-treatment imaging, and setup corrections to reduce the inter-

fractional systematic and random errors, allow for use of a smaller CTV to PTV 

margin (14,15). The use of cone beam CT scans (CBCT) scans has been shown to 

allow a more accurate setup than portal imaging (138). For SBRT, 4D-CBCT is 

preferable over 3D-CBCT (139). The highest accuracy is achieved with soft-tissue 

match on either anatomical landmarks or primary tumour, compared with bones and 
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this accuracy is reported to translate into smaller margins, lower lung dose and less 

pneumonitis (71,72). The differential motion of tumour and lymph nodes implies that 

a setup strategy prioritizing one target will result in greater uncertainty in the position 

of the others, and margin calculations should reflect this uncertainty. Primary tumours 

are often visible on a CBCT scan but mediastinal lymph-nodes are more difficult to 

visualize; their position however can be derived from anatomical landmarks (12,48). 

The carina is frequently used as a surrogate for nodal position (12,58), which is most 

accurate for node stations 4,5,7, while other anatomical landmarks may be more 

suitable for stations 1,2,6,10,11 (13). Daily image guidance with soft-tissue setup is 

recommended for all fractionation schemes because of frequent intra thoracic 

anatomical changes (29,30,69). In SBRT delivery, image guidance based on tumour 

setup is mandatory, but tumour baseline shifts   which could impact on doses to 

organs at risk should be evaluated (137).   

 

7.2. Adaptive radiotherapy  

Soft-tissue setup combined with corresponding margins ensures target coverage in 

the majority of patients, but this approach may be insufficient for selected patients 

with either large differential shifts of tumour and nodes, or anatomical changes 

occurring during treatment (29,30,69). In deciding when to adapt treatment plans, it is 

important to keep in mind that only the inter-fractional changes are observed on the 

pre-treatment CBCT. Since the CTV to PTV margin includes all planning and delivery 

uncertainties, maintaining the planned dose is therefore not sufficient to keep the 

target within the PTV. The use of 3D portal dosimetry for detecting dosimetric 
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consequences of anatomical changes has the potential to automate the evaluation, 

but this represents work in progress (140,141).  

  

9. Developing technologies 

New technologies are likely to change the way lung cancer patients will be treated 

with radiotherapy, with or without emerging targeted drugs and immune therapy. 

Proton therapy has the potential to limit the radiation dose to organs at risk, 

especially the low dose volumes, or when maximal advantage can be taken from the 

Bragg peak and the virtual absence of radiation dose distal to it (142). The sensitivity 

of proton beams for anatomical changes are larger than for photons, and the 

technical requirements are more challenging   

The MRI-linac combines regular linear accelerator technology with MRI guidance on 

the machine (143). This could theoretically result in margin reduction and improved 

adaptation processes. The first machines are being installed, and no clinical data or 

randomized trials are yet available.  
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Discussion 

 

As many departments are currently equipped with modern radiotherapy tools 

discussed in this review, it is increasingly feasible to implement high-precision 

thoracic radiotherapy and SBRT. However, centres must be familiar with the 

application of these tools for the treatment of lung cancer. The main aim of this 

review was to formulate practical recommendations for use in departments wishing to 

introduce such techniques, and these are summarized in Table 2.  

It should be emphasized that nearly all data have been derived from patients treated 

for NSCLC.  

As the precision in radiotherapy delivery is rapidly evolving, any conclusion or 

statement in these recommendations may need to be updated as required. This 

document will be used within the EORTC for the development of study protocols, and 

to evaluate the technical capabilities of participating centres.  
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Table 1: Adapted grading recommendations from the Infectious Disease 

Society of America (6) 

 

Levels of evidence 

I  Evidence of at least one large randomized, controlled trial of good 

methodological quality (low potential for bias) or meta-analysis of well-

conducted randomized trials without heterogeneity 

II Small randomized trials or large randomized trials with suspicion of bias (low 

methodological quality) or meta-analyses of such trials or of trials with 

demonstrated heterogeneity 

 III Prospective cohort studies 

IV Retrospective cohort studies of case-control studies 

V Studies without control group, case reports, experts opinions 

 

Grades of recommendation 

A Strong evidence for efficacy with a substantial clinical benefit, strongly 

recommended 

B Strong or moderate evidence for efficacy but with a limited clinical benefit, 

generally recommended 

C Insufficient evidence for efficacy or benefit does not outweigh the risk of the 

disadvantages (adverse events, costs, …) optional 

D Moderate evidence against efficacy or for adverse outcome, generally not 

recommended 

E Strong evidence against efficacy or for adverse outcome, never recommended 
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Table 2: 

EORTC recommendations for planning and delivery of high-dose, high 

precision radiotherapy for lung cancer 

 

Fractionation for stereotactic body radiotherapy (SBRT) 

 SBRT using high doses per fraction should not be given to “ultra-centrally” 

located tumours (Recommendation grade II, E) 

 SBRT with lower doses per fraction that are adapted to critical organs (“risk 

adapted”) should be used carefully for centrally located tumours 

(Recommendation grade IV, C) 

 

Reproducibility of patient positioning and tumour position 

 A stable and reproducible patient position during all imaging procedures and 

treatment is essential (Recommendation grade IV, A)  

 SBRT can be safely delivered without rigid immobilization devices 

(Recommendation grade IV, A) 

 Interventions to reduce tumour motion may be useful in selected patients 

(Recommendation grade IV, C) 

 Gating and tracking may be of value in a small subgroup of patients with large 

tumour motion (Recommendation grade IV, B) 
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CT scanning 

 A planning CT scan should include the entire lung volume, and typically 

extends from the level of the cricoid cartilage to the second lumbar vertebra 

(Recommendation grade IV, A) 

 A 4D-CT scan is recommended as it allows to take into account tumour 

movements and reduced systematic errors and geographical miss 

(Recommendation grade IV, A) 

  The use of CT slice thickness of 2-3 mm is recommended as it permits 

generation of high-resolution digitally reconstructed radiographs (DRR) and 

facilitates accurate tumour delineation (Recommendation grade IV, A) 

 The use of intravenous contrast can improve the delineation of centrally 

located primary tumours and lymph nodes (Recommendation grade III, A) 

 

PET scanning  

 FDG-PET is recommended in the process of target volume definition 

(Recommendation grade III, A) 

 Strictly standardised protocols, preferentially in cooperation with a department 

of nuclear medicine, are preferred when FDG-PET scans are used for 

radiotherapy treatment planning (Recommendation grade IV, A) 

 FDG-PET scans for radiotherapy treatment planning should be acquired in 

radiotherapy position, and co-registered with a planning CT using rigid 

methods if the acquisitions are not simultaneously (Recommendation grade 

IV, A) 
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Generating target volumes 

Gross Tumour Volume (GTV) 

 Recommended CT settings for tumour delineation are: for lung: W = 1600 and 

L = -600, and W = 400 and L = 20 for mediastinum (Recommendation grade 

III, A) 

 Elective irradiation of mediastinal lymph nodes is not recommended for 

NSCLC and for limited disease SCLC (Recommendation grade III, A) 

 For NSCLC, selective nodal irradiation based on information from CT,  FDG-

PET and bronchoscopy, ultrasound-guided fine needle aspiration, 

mediastinoscopy (if available) is the recommended standard. 

(Recommendation grade III, A) 

  

Clinical Target Volume (CTV) 

 A fixed 5 mm CTV margin may be used (Recommendation grade III, B) 

 Manual adjustment of the CTV according to normal tissues (e.g. the bones) 

may be appropriate (Recommendation grade III, B)   

 

Planning Target Volume (PTV) 

 Generation of CTV to PTV margin should be calculated from uncertainties 

based on the patient population, patient positioning, treatment technique, 

treatment unit used and imaging and setup strategies applied. If any of the 

above are changed the margins should be changed accordingly. The 

uncertainties should preferably be determined in each institution. 

(Recommendation grade III, A) 
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 The respiratory induced tumor motion is non-uniform and patient dependent. 

The applied margins should reflect this (Recommendation grade III, A)  

 

Planning organ at risk volume (PRV) 

 The use of a PRV margin around critical serial organs should be encouraged 

to avoid overdosing organs at risk (Recommendation grade IV, C) 

 

Treatment planning 

Dose calculation 

 Advanced dose calculation algorithms (type B or Monte Carlo based) are 

strongly recommended for thoracic radiotherapy as they allow for more 

accurate computation of dose distributions (Recommendation grade III, A) 

 Absolute doses and dose distributions calculated with type A vs. type B or 

Monte Carlo based algorithms cannot be compared (Recommendation grade 

III, A) 

 Full 4D dose calculations do not appear to be essential when type B or Monte 

Carlo based algorithms are used (Recommendation grade III, C) 

 

Dose specification and reporting 

 Dose prescriptions and reporting should follow the appropriate international 

ICRU standards (Recommendation grade III, B) 
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Beam arrangements 

 Beams directions should be chosen to minimize dose to OARs while 

maintaining target coverage. If co-planar techniques can be applied with no 

compromise in terms of dose to OARs compared to non-co-planar techniques 

they should be used to limit treatment time (Recommendation grade III, A) 

 

Dose-volume constraints 

 If possible, the V20 or the mean lung dose should be kept than 35-37 % and 

20 Gy, respectively (Recommendation grade III, A) 

 Patients with idiopathic pulmonary fibrosis (IPF) are at high risk for developing 

severe and even lethal radiation pneumonitis; radiotherapy should therefore 

be avoided if possible (Recommendation grade III, A) 

 With conventional concurrent chemo-radiotherapy, doses to the central 

bronchi in excess of 80 Gy increase the risk of bronchial stenosis and fistula 

(Recommendation grade III, A) 

 Grade 3 acute esophagitis is associated with higher mean oesophageal dose, 

V60 and neutropenia, but usually heals within 6 weeks. Dose reductions are in 

general not recommended (Recommendation grade III, A) 

 Late oesophageal toxicity (stenosis) is only associated with the maximal dose; 

doses over 76 Gy are not recommended (Recommendation grade III, A) 

 In conventionally fractionated radiotherapy, the dose to 2 cm3 of the brachial 

plexus should not exceed 76 Gy (Recommendation grade IV, A) 
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 In stereotactic radiotherapy, the dose to the brachial plexus should not exceed 

26 Gy in 3-4 fractions, the maximal dose should not be over 35 Gy in 3-4 

fractions and the V30 not more than 0.2 cm3 (Recommendation grade IV, A) 

 In stereotactic radiotherapy, to keep the incidence of chest wall pain below 5 

%, the D70cc of the chest wall should not exceed 16 Gy in 4 fractions and the 

D2cc should not be over 43 Gy in 4 fractions (Recommendation grade III, A) 

 In stereotactic radiotherapy, to keep the incidence of symptomatic rib fractures  

below 5 %, the Dmax should not exceed 225 Gy BED (α/β=3 Gy) 

(Recommendation grade III, A)  

 Vertebral fractures occur at doses over 20-30 Gy and are associated with the 

V30. Avoidance of the vertebra should be attempted (Recommendation grade 

IV, A) 

 The mean heart dose should be kept as low as possible; no clear safe 

threshold can be defined (Recommendation grade III, A) 

 Concurrent administration of established carboplatin or cisplatin-based 

regimen with chest radiotherapy is safe (Recommendation grade I, A) 

 As for most targeted agents no safety data are available for their combination 

with thoracic radiotherapy, their concomitant administration should be avoided 

(Recommendation grade III, A) 

 Angiogenesis inhibitors combined with radiotherapy to the mediastinum may 

lead to lethal haemorrhages and should therefore be avoided 

(Recommendation grade III, A) 
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Treatment delivery 

 Daily online imaging and soft tissue setup is recommended for all patients and 

should be mandatory for SBRT treatments (Recommendation grade III, A) 

 Adaptive radiotherapy is recommended for patients with large anatomical 

changes (Recommendation grade IV, A) 
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Table 2: Summary of Organs at Risk constraints  
 

Organ Organ at 

risk 

Endpoint Dosimetric 

parameter 

Maximum 

value 

Conventionally fractionated radiotherapy 

Lung Lungs minus 

GTV 

Symptomatic 

radiation 

induced 

pneumonitis 

V20 35-37% 

Lung Lungs minus 

GTV 

Symptomatic 

radiation 

induced 

pneumonitis 

MLD 20Gy 

Central 

bronchi 

Proximal 

bronchial 

tree 

Stenosis and 

fistula 

Maximum 

dose 

80Gy 

Oesophagus Oesophagus Acute grade 3 

oesophagitis 

Mean 

oesophageal 

dose, V60 

ALARA 

Oesophagus Oesophagus Stenosis Maximum 

dose 

76Gy 

Brachial 

plexus 

Brachial 

plexus 

Plexopathy D2cm3 76Gy 
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Heart Heart Cardiac toxicity Mean heart 

dose 

ALARA 

Stereotactic Body Radiotherapy 

Brachial 

plexus 

Brachial 

plexus 

Plexopathy Maximum 

dose 

35Gy in 3-4 

fractions 

Brachial 

plexus 

Brachial 

plexus 

Plexopathy V30 0.2cm3 

Chest wall Chest wall Chest wall pain D70cm3 16Gy in 4 

fractions 

Chest wall Chest wall Chest wall pain D2cm3 43Gy in 4 

fractions 

Ribs Chest wall Fracture Maximum 

dose 

225 Gy BED 

(α/β=3 Gy) 
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