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ABSTRACT

We present new limits on an isotropic stochastic gravitational-wave background (GWB) using

a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing

Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic

noise parameters for each pulsar, along with common correlated signals including clock, and

Solar system ephemeris errors, obtaining a robust 95 per cent upper limit on the dimensionless

strain amplitude A of the background of A < 3.0 × 10−15 at a reference frequency of 1 yr−1

and a spectral index of 13/3, corresponding to a background from inspiralling supermassive

black hole binaries, constraining the GW energy density to �gw(f)h2 < 1.1 × 10−9 at 2.8 nHz.

We also present limits on the correlated power spectrum at a series of discrete frequencies, and

show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of ∼5 × 10−9 Hz.

Finally, we discuss the implications of our analysis for the astrophysics of supermassive black

hole binaries, and present 95 per cent upper limits on the string tension, Gμ/c2, characterizing

a background produced by a cosmic string network for a set of possible scenarios, and for a

stochastic relic GWB. For a Nambu–Goto field theory cosmic string network, we set a limit

Gμ/c2 < 1.3 × 10−7, identical to that set by the Planck Collaboration, when combining Planck

and high-ℓ cosmic microwave background data from other experiments. For a stochastic relic

background, we set a limit of �relic
gw (f )h2 < 1.2 × 10−9, a factor of 9 improvement over the

most stringent limits previously set by a pulsar timing array.

Key words: gravitational waves – methods: data analysis – pulsars: general.

1 IN T RO D U C T I O N

The first evidence for gravitational-waves (GWs) was originally

obtained through the timing of the binary pulsar B1913+16. The

observed decrease in the orbital period of this system was found to

be completely consistent with that predicted by general relativity,

if the energy loss was due solely to the emission of gravitational

radiation (Taylor & Weisberg 1989). Despite a decrease of only

2.3 ms over the course of 30 yr, by exploiting the high precision

with which the time of arrival (TOA) of electromagnetic radiation

⋆ E-mail: ltl21@cam.ac.uk

from pulsars can be measured, deviations from general relativity

have been constrained by this system to be less than 0.3 per cent

(Weisberg, Nice & Taylor 2010).

Since then, observations of the double-pulsar, PSR J0737−3039,

have provided even greater constraints, placing limits on devia-

tions from general relativity of less than 0.05 per cent (Kramer et al.

(2006), Kramer et al. in preparation). It is this extraordinary preci-

sion that also makes pulsar timing one possible route towards the

direct detection of GWs, which remains a key goal in experimental

astrophysics.

For a detailed review of pulsar timing, we refer to Lorimer &

Kramer (2005). In general, one computes the difference between

the expected arrival time of a pulse, given by a pulsar’s timing

C© 2015 The Authors
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EPTA limits 2577

model which characterizes the properties of the pulsar’s orbital mo-

tion, as well as its timing properties such as its spin frequency, and

the actual arrival time. The residuals from this fit then carry phys-

ical information about the unmodelled effects in the pulse propa-

gation, including those due to GWs (e.g. Sazhin 1978; Detweiler

1979).

Individual pulsars have, for several decades, been used to set

limits on the amplitude of gravitational radiation from a range of

sources (e.g. Kaspi, Taylor & Ryba 1994). However, by using a

collection of millisecond pulsars, known as a pulsar timing array

(PTA; Foster & Backer 1990), one can both increase the signal-

to-noise ratio (S/N) of the effect of gravitational radiation in the

timing residuals, and use the expected form for the cross-correlation

of the signal between pulsars in the array to discriminate between

the GW signal of interest, and other sources of noise in the data,

such as the intrinsic spin-noise due to rotational irregularities (e.g.

Shannon & Cordes 2010), or delays in the pulse arrival time due to

propagation through the interstellar medium (ISM) (e.g. Keith et al.

2013). In the specific case of an isotropic stochastic gravitational-

wave background (GWB), which is the focus of this paper, this

correlation is known as the ‘Hellings–Downs’ curve (Hellings &

Downs 1983), and is only a function of the angular separation of

pairs of pulsars in the array.

The lowest frequency to which a particular pulsar timing data

set will be sensitive is set by the total observing span for that data

set. Sensitivity to frequencies lower than this is significantly de-

creased due to the necessity of fitting a quadratic function in the

pulsar timing model describing its spin-down. PTA data sets are

now entering the regime, where observations span decades, and as

such are most sensitive to GWs in the range 10−9–10−8 Hz. The

primary GW sources in this band are thought to be supermassive

black hole binaries (SMBHBs; Rajagopal & Romani 1995; Jaffe

& Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004; Sesana,

Vecchio & Colacino 2008); however, other sources such as cos-

mic strings (see e.g. Vilenkin 1981; Vilenkin & Shellard 1994)

or relics from inflation (see e.g. Grishchuk 2005) have also been

suggested.

The formation of SMBHBs is a direct consequence of the hi-

erarchical structure formation paradigm. There is strong evidence

that SMBHs are common in the nuclei of nearby galaxies (see

Kormendy & Ho 2013, and references therein). The fact that many

distant galaxies harbour active nuclei for a short period of their

life implies that they were also common in the past. In �-cold

dark matter cosmology models, galaxies merge frequently (Lacey

& Cole 1993). During a galaxy merger, the SMBHs harboured in the

galactic nuclei will sink to the centre of the merger remnant, even-

tually forming an SMBHB (Begelman, Blandford & Rees 1980).

As a consequence, the Universe should contain a potentially large

number of gradually inspiralling SMBHBs. The incoherent super-

position of GWs from these binaries is expected to form an isotropic

stochastic GWB. Deviations from isotropy, however, such as from a

small number of bright nearby sources, could result in individually

resolvable systems (Lee et al. 2011), and an anisotropic distribu-

tion of power across the sky (Mingarelli et al. 2013; Taylor & Gair

2013; Gair et al. 2014). These latter situations are the subject of two

companion papers (Taylor et al. 2015; Babak et al. in preparation);

here, we focus on the possibility of detecting a stochastic isotropic

GWB, and we will discuss the implications of our findings for the

astrophysics of SMBHBs, cosmic strings, and relics from inflation.

An isotropic, stochastic GWB of cosmological or astrophysical

origin can be described in terms of its GW energy density content

ρgw per unit logarithmic frequency, divided by the critical energy

density, ρc, to close the Universe:

�gw(f ) =
1

ρc

dρgw

d ln f
=

2π
2

3H 2
0

f 2h2
c(f ). (1)

Here, f is the GW frequency, ρc = 3H 2
0 /8π is the critical energy

density required to close the Universe, H0 = 100 h km s−1 Mpc−1

is the Hubble expansion rate, with h the dimensionless Hubble

parameter, and ρgw is the total energy density in GWs (Allen &

Romano 1999; Maggiore 2000).

Typically, the ‘characteristic strain’, hc(f), associated with a GWB

energy density �gw(f) is parametrized as a single power law for

several backgrounds of interest:

hc = A

(

f

yr−1

)α

, (2)

where A is the strain amplitude at a characteristic frequency of

1 yr−1, and α describes the slope of the spectrum. Finally, hc is

directly related to the observable quantity induced by a GWB in our

timing residuals, the one-sided power spectral density, S(f), given

by

S(f ) =
1

12π
2

1

f 3
hc(f )2 =

A2

12π
2

(

f

yr−1

)−γ

yr3, (3)

where γ ≡ 3 − 2α. Note that unless explicitly stated otherwise,

henceforth when referring to spectral indices, we will be referring

to the quantity γ .

The expected spectral index varies depending on the source of

the stochastic background. For a GWB resulting from inspiralling

SMBHBs, the characteristic strain is approximately hc(f) ∝ f−2/3

(Rajagopal & Romani 1995; Jaffe & Backer 2003; Wyithe & Loeb

2003; Sesana et al. 2004), or equivalently, γ = 13/3, whereas pri-

mordial background contributions or cosmic strings are expected to

have power-law indices of γ = 5 (Grishchuk 2005), and γ = 16/3

(Ölmez, Mandic & Siemens 2010; Damour & Vilenkin 2005), re-

spectively. However, for cosmic strings in particular, a single spec-

tral index is not expected to accurately describe the spectrum in the

PTA frequency band (Sanidas, Battye & Stappers 2012).

A multitude of experiments have set limits on the amplitude of

the stochastic GWB, either at a reference frequency as is done for

PTAs (Shannon et al. 2013) and ground-based interferometers (Aasi

et al. 2014), or by reporting a value for GW energy density integrated

over all frequencies as is done by big bang nucleosynthesis measure-

ments, e.g. (Cyburt et al. 2005) and cosmic microwave background

(CMB) measurements (Smith, Pierpaoli & Kamionkowski 2006;

Sendra & Smith 2012). As such, an upper limit on the stochastic

GWB reported in terms of either �gw(f)h2, or �gw(f) for a specified

value of h provides a clear way to report our limits.

In the last few years, the European Pulsar Timing Array (EPTA),

Parkes PTA (PPTA), and the North American NanoHertz Observa-

tory for Gravitational waves (NANOGrav) have placed 95 per cent

upper limits on the amplitude of a stochastic GWB at a reference

frequency of 1 yr−1 of 6 × 10−15 (van Haasteren et al. 2011), 2.4 ×
10−15 (Shannon et al. 2013), and 7 × 10−15 (Demorest et al. 2013),

respectively. While many of the same pulsars are used by all the

PTAs, and both the EPTA and PPTA have similar total observing

spans, all of these limits have been placed using different data sets,

and different methodologies. As such, these similarly constraining

limits should not be seen as redundant, but rather as complementary.

For example, the first EPTA limit used Bayesian analysis methods,

producing an upper limit while simultaneously fitting for the in-

trinsic timing noise of the pulsars. Subsequent limits have used

simulations to obtain conservative upper bounds consistent with the

MNRAS 453, 2576–2598 (2015)
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2578 L. Lentati et al.

Figure 1. Summary of key results from the analysis of a six pulsar data set from the 2015 EPTA data release (D15). Results are presented in terms of �gw(f)

as a function of GW frequency, with H0 = 70 km s−1 Mpc−1. We indicate the 95 per cent upper limits on the amplitude of a correlated GWB assuming a

power-law model with a spectral index of γ = 13/3 (solid black line; Section 5) and for a more general analysis, where the power is determined simultaneously

at a set of discrete frequencies (dashed line), as discussed in Section 5.1.1. The red shaded areas represent the central 68 per cent, 95 per cent, and 99.7 per cent

confidence interval of the predicted GWB amplitude according to Sesana (2013b) under the assumptions that an SMBHB evolves purely due to gravitational

radiation reaction and binaries are circular (see Section 6.1 for more details). Only about 5 per cent of the distribution is excluded, meaning that our limit does

not place significant restrictions on the cosmic SMBHB population. We also indicate 95 per cent upper limits obtained for a stochastic relic background (green

dash–dotted line; Section 6.3), and for cosmic string network backgrounds (blue triple-dashed line; Section 6.2). The cosmic string limit plotted corresponds

to a fiducial model for a population of cosmic strings, with the following parameters: string tension Gμ/c2 = 10−7, the birth-scale of loops relative to the

horizon αcs = 1.6 × 10−6, spectral index q = 4/3, cut-off on the number of emission harmonics n∗ = 1, and intercommutation probability p = 1. Finally, we

indicate recent constraints placed by CMB (Sendra & Smith 2012), and BBN (Allen 1997; Maggiore 2000; Planck Collaboration XIII 2015) observations.

data, or made use of frequentist methods, fixing the noise at values

derived from analysis of the individual pulsars. Naturally, a simul-

taneous analysis of the intrinsic properties of the pulsars with the

GWB is the preferred method, and we will show explicitly in Sec-

tion 5 that fixing the noise properties of the individual pulsars can

lead to an erroneously stringent limit on the amplitude of a GWB in

the pulsar timing data. The three PTA projects also work together

as the International PTA (IPTA; Hobbs et al. 2010), where all three

data sets are combined in order to produce ever more robust and

constraining limits on the GWB, with the eventual goal of making

a first detection.

In this work, we make use of the Bayesian methods presented

in Lentati et al. (2013, hereafter L13), which allows us to greatly

extend what is computationally feasible for a Bayesian analysis of

pulsar timing data. In particular, while we obtain upper limits on

the amplitude of a GWB using a simple, two-parameter power law

as in van Haasteren et al. (2011), we can also make use of a much

more general model, enabling us to place robust limits on the corre-

lated power spectrum at discrete frequencies. We can also include

additional sources of common noise in our analysis simultaneously

with the GWB, such as those that could be expected from errors

in the Solar system ephemeris, or in the reference time standard

used to measure the TOAs of the pulses. Finally, we also take two

approaches to parameterizing the spatial correlations between pul-

sars, without having to assume anything about the form it might

take. This spatial correlation is the ‘smoking gun’ of a signal from

a GWB, and so the ability to extract it directly from the data is cru-

cial for the credibility of any future detections from pulsar timing

data.

The key results of our analysis, compared to current theoretical

predictions for a range of models of stochastic background and indi-

rect limits in the PTA range are summarized in Fig. 1. In Section 2,

we describe the deterministic and stochastic models that we in-

cluded in this analysis. In Section 3, we discuss the implementation

of these methods in our Bayesian and frequentist frameworks. In

Section 4, we introduce the EPTA data set adopted for the analysis

(Desvignes et al. in preparation), and in Section 5, we present the

results obtained from our analysis. The implications of our findings

for SMBHB astrophysics, cosmic strings, and relics from inflation

are discussed in Section 6, and finally, in Section 7, we summarize

and discuss future prospects.

This research is the result of the common effort to directly detect

GWs using pulsar timing, known as the EPTA (Kramer & Champion

2013).1

2 SI G NA L A N D N O I S E M O D E L S

The search for a stochastic GWB in pulsar timing data requires

the estimation of a correlated signal of common origin in the pulse

TOAs recorded for the different pulsars in the array. The difficulty

lies in the intrinsic weakness of the signal and the presence of a

range of effects – both deterministic and stochastic – that conspire

to mask the signal of interest. At the heart of our analysis methods

is the variance–covariance matrix,

	IJ [i, j ] = 〈dI [i]dJ [j ]〉 , (4)

1 www.epta.eu.org/

MNRAS 453, 2576–2598 (2015)
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that describes the expectation value of the correlation between TOA

i from pulsar I, with a TOA j from pulsar J. In the following descrip-

tion, upper-case latin indices I, J, . . . identify pulsars, and lower

case latin indices i, j, . . . are short-hand notation for the TOAs ti, tj,

. . . Equation (4) depends on the unknown parameters that describe

the model adopted to describe the data and enter the likelihood

function in the Bayesian analysis, and the optimal statistic in the

frequentist approach.

For any pulsar, we adopt a model for the observed pulse TOAs,

which we denote d, that results from a number of contributions and

physical effects according to

d = τTM + τWN + τ SN + τDM + τCN + τGW. (5)

In equation (5) we have the following.

(i) τTM, the deterministic model that characterizes the pulsar’s

astrometric properties, such as position and proper motion, as well

as its timing properties, such as spin period, and additional orbital

parameters if the pulsar is in a binary.

(ii) τWN, the stochastic contribution due to the combination of

instrumental thermal noise, and intrinsic pulsar white noise.

(iii) τ SN, the stochastic contribution due to red spin-noise.

(iv) τDW, the stochastic contribution due to changes in the dis-

persion of radio pulses travelling through the ISM.

(v) τCN, the stochastic contribution due to ‘common noise’,

present across all pulsars in the timing array (described in Sec-

tion 2.6), as could be expected from errors in the Solar system

ephemeris, or in the reference time standard used to measure the

TOAs of the pulses.

(vi) τGW, the stochastic contribution due to a GWB.

Our model assumes that all stochastic contributions are zero-mean

random Gaussian processes. Each of the contributions just described

depends on a number of unknown parameters that need to be simul-

taneously estimated in the analysis. While all these elements, which

we set out in detail below, will be present in the Bayesian analysis

described in Section 3.1, we do not incorporate the common pulsar

noise terms in the frequentist optimal-statistic analysis described in

Section 3.2, as this approach by design interprets all cross-correlated

power as originating from a stochastic GWB.

2.1 The timing model

The first contribution to the total signal model that we must con-

sider is the deterministic effect due to the intrinsic evolution of the

‘pulsar clock’, encapsulated by the pulsar’s timing ephemeris. We

identify with ǫI the m-dimensional parameter vector for pulsar I that

describes the relevant set of timing model parameters, and denote

as τ (ǫ) the set of arrival times determined by the adopted model

and specific value of the parameters. We use TEMPO2 (Edwards,

Hobbs & Manchester 2006; Hobbs, Edwards & Manchester 2006)

to construct a weighted least-squares fit, in which the stochastic

contributions have been determined from a Bayesian analysis of

the individual pulsars using the TEMPONEST plugin (Lentati et al.

2014). We can define the set of ‘post-fit’ residuals that results from

subtracting the predicted TOA for each pulse at the Solar system

Barycenter from our observed TOAs as

dpost = d − τ (ǫ). (6)

In everything that follows, rather than using the full non-linear tim-

ing model we consider an initial estimate of the m timing model

parameters ǫ0, and construct a linear approximation to that model

such that any deviations from those initial estimates are encapsu-

lated using the m parameters δǫ such that

δǫi = ǫi − ǫ0i . (7)

Therefore, we can express the change in the post-fit residuals that

results from the deviation in the timing model parameters δǫ as:

δ t = dpost − Mδǫ, (8)

where M is the Nd × m ‘design matrix’ which describes the depen-

dence of the timing residuals on the model parameters.

When we perform our Bayesian GWB analysis, we will marginal-

ize analytically over the linear timing model, as described in Sec-

tion 3.1. When performing this marginalization, the matrix M is

numerically unstable. To remedy this issue, we follow the same

process as in van Haasteren & Vallisneri (2014) and take the Singu-

lar Value Decomposition of M, to form the set of matrices USVT .

Here U is an Nd × Nd matrix, which we can divide into two com-

ponents:

U = (GC,G), (9)

where G is an Nd × (Nd − m) matrix, which can be thought of

as a projection matrix (van Haasteren & Levin 2013), and GC is

the Nd × m complement. GC represents a set of orthonormal ba-

sis vectors that contain the same information as M but is stable

numerically. We therefore replace M with GC in the subsequent

analysis.

2.2 White noise

We next consider the contribution to the total signal model that

results from a stochastic white noise component, τWN. This noise

component is usually divided into two components, and this is the

model that we adopt in our analysis.

(i) For a given pulsar I, each TOA has an associated error bar,

σ (I, i), the size of which will vary across a set of observations. We can

introduce an extra free parameter, referred to as EFAC, to account

for possible miscalibration of this radiometer noise. The EFAC

parameter therefore acts as a multiplier for all the TOA error bars

for a given pulsar, observed with a particular ‘system’ (i.e. a unique

combination of telescope, recording system, and receiver).

(ii) A second white noise component is also used to represent

some additional source of time-independent noise, which we call

EQUAD, and adds in quadrature to the TOA error bar. In principle,

this parameter represents something physical about the pulsar, for

example, contributions from the high-frequency tail of the pulsar’s

red spin-noise power spectrum, or jitter noise that results from the

time averaging of a finite number of single pulses to form each

TOA (see e.g. Cordes & Downs 1985; Liu et al. 2011; Shannon

et al. 2014). While this term should be independent of the observing

system used to generate a given TOA, differences in the integration

times between TOAs for different observing epochs can muddy this

physical interpretation.

We can therefore modify the uncertainty σ (I, i), defining σ̂(I ,i) such

that the statistical description is

〈τWN
I [i]τWN

J [j ]〉 = δIJ δij σ̂
2
(I ,i), (10)

where

σ̂ 2
(I ,i) = (α(I ,i)σ(I ,i))

2 + β2
(I ,i), (11)

where α and β represent the EFAC and EQUAD parameters applied

to TOA i for pulsar I, respectively. In Section 4, we list the number of

MNRAS 453, 2576–2598 (2015)
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different observing systems per pulsar used in the analysis presented

in this paper.

2.3 Spin-noise

Individual pulsars are known to sometimes suffer from ‘spin-noise’,

which is observed in the pulsar’s residuals as a red noise process.

This is a particularly important noise source, as most models for

a stochastic GWB predict that this too will induce a red spectrum

signal in the timing residuals. The spin-noise component is specific

to each individual pulsar, and is uncorrelated between pulsars in the

timing array. The statistical properties of the spin-noise signal are

therefore given by

〈τ SN
I [i]τ SN

J [j ]〉 = δIJ CSN
(I ,i,j ), (12)

where the matrix element CSN
(I ,i,j ) denotes the covariance in the spin-

noise signal between residuals i, j for pulsar I. In order to construct

the matrix CSN, we will use the time-frequency method described

in L13, which we will summarize below.

We begin by writing the spin-noise component of the stochastic

signal as

τ SN = F
SN

aSN, (13)

where the matrix FSN denotes the Fourier transform such that for

signal frequency ν and time t we will have both

F SN(ν, t) = sin (2πνt) , (14)

and an equivalent cosine term, and aSN are the set of free parameters

that describe the amplitude of the sine and cosine components at

each frequency.

We include in our model the set of frequencies with values n/T,

where T is the longest period to be included in the model and

the number of frequencies to be sampled is nSN. In our analysis

presented in Section 4, we take T to be ∼18 yr, which is the total

observing span across all the pulsars in our data set, and we take

nSN = 50, such that we include in our model periods up to ∼130 d

which is sufficient to describe the stochastic signals present in the

data (Caballero et al. in preparation). For typical PTA data, Lee et al.

(2012) and van Haasteren & Levin (2013) showed that taking T to

be the longest time baseline in the data set is sufficient to accurately

describe the expected long-term variations present in the data, as the

quadratic term present in the timing model significantly diminishes

our sensitivities to periods longer than this in the data.

The covariance matrix of the spin-noise coefficients aSN between

pulsars I, J at model frequencies i, j, which we denote �SN
(I,J) will

be diagonal, with components

	SN
(I ,J ,i,j ) =

〈

aSN
(I ,i)a

SN
(J ,j )

〉

= ϕSN
I ,i δij δIJ , (15)

where the set of coefficients ϕSN
I represent the theoretical power

spectrum of the spin-noise signal present in pulsar I. In our analysis

of the data set presented in Section 4, we assume that this intrinsic

spin-noise can be well described by a two-parameter power-law

model in frequency, given by

ϕSN(ν,ASN, γSN) =
A2

SN

12π
2

(

1

1 yr

)−3
ν−γSN

T
, (16)

with ASN and γ SN the amplitude and spectral index of the power

law.

We note that as discussed in L13, whilst equation (15) states that

the spin-noise model components are orthogonal to one another,

this does not mean that we assume they are orthogonal in the time

domain where they are sampled, and it can be shown that this non-

orthogonality is accounted for within the likelihood (van Haasteren

& Vallisneri 2015). The covariance matrix C
SN
I for the red noise

signal present in the data alone can then be written:

C
SN
I = N

−1
I − N

−1
I F

SN
I

[

(FSN
I )T N

−1
I F

SN
I + (	SN)−1

]−1

(FSN
I )T N

−1
I ,

(17)

with NI the diagonal matrix containing the TOA uncertainties, such

that N(I ,i,j ) = σ̂ 2
(I ,i)δij .

2.4 Dispersion measure variations

The plasma located in the ISM can result in delays in the propagation

of the pulse signal between the pulsar and the observatory. Variations

in the column-density of this plasma along the line of sight to the

pulsar can appear as a red noise signal in the timing residuals.

Unlike other red noise signals however, the severity of the ob-

served dispersion measure (DM) variations is dependent upon the

observing frequency, and as such we can use this additional infor-

mation to isolate the component of the red noise that results from

this effect.

In particular, the group delay tg(νo) at an observed frequency νo

is given by the relation:

tg(νo) = DM/(Kν2
o ), (18)

where the dispersion constant K is defined to be

K ≡ 2.41 × 10−16 Hz−2 cm−3 pc s−1 (19)

and the DM is defined as the integral of the electron density ne from

the Earth to the pulsar:

DM =
∫ L

0

ne dl . (20)

While many different approaches to performing DM correction exist

(e.g. Keith et al. 2013; Lee et al. 2014), in our analysis we use the

methods described in L13. DM corrections can then be included

in the analysis as an additional set of stochastic parameters in a

similar manner to the intrinsic spin-noise. Further details on the

DM variations present in the EPTA data set, including comparisons

between different models, will be presented in a separate paper

(Janssen et al. in preparation). In our analysis, as for the spin-noise,

we assume a two-parameter power-law model, with an equivalent

form to equation (16); however, we omit the factor 12π
2 for the DM

variations.

We first define a vector D of length Nd for a given pulsar as

Di = 1/(Kν2
(o,i)) (21)

for observation i with observing frequency ν(o, i).

We then make a change to equation (14) such that our DM Fourier

modes are described by

F DM(ν, ti) = sin (2πνti) Di (22)

and an equivalent cosine term, where the set of frequencies to be

included is defined in the same way as for the red spin-noise, such

that we choose the number of frequencies, nDM, to also be 50. Unlike

when modelling the red spin-noise, where the quadratic terms in the

timing model that accounts for pulsar spin-down acts as a proxy to

the low-frequency (ν < 1/T) fluctuations in our data, we are still

sensitive to the low-frequency power in the DM signal. As such

these terms must be accounted for either by explicitly including
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these low frequencies in the model, or by including a quadratic

term in DM to act as a proxy, defined as

QDM(ti) = q0tiDi + q1t
2
i Di (23)

with q0, 1 free parameters to be fit for, and ti the barycentric arrival

time for TOA i. This can be achieved most simply by adding the

timing model parameters DM1 and DM2 into the pulsar timing

model, which are equivalent to q0 and q1 in equation (23), and this

is the approach we take in our analysis here.

As for the spin-noise component, we can then write down the

time domain signal for our DM variations as

τDM = F
DM

aDM, (24)

with aDM the set of free parameters that describe the amplitude of

the sine and cosine components at each frequency.

The covariance matrix of the coefficients aDM between pulsars I,

J at model frequencies i, j, which we denote �DM
(I ,J ) is then equiv-

alent to the spin-noise matrix in equation (15), and we can sim-

ilarly construct the covariance matrix for the signal, τDM, as in

equation (17).

2.5 Combining model terms

In order to simplify notation from this point forwards, for each

pulsar I, we combine the matrices G
C
I , F

SN
I and FDM

I into a single,

Nd, I × (mI + 2nSN + 2nDM) matrix, where Nd, I is the number of

TOAs in pulsar I, mI is the number of timing model parameters, and

the factor 2 in front of both nSN and nDM accounts for the sine and

cosine terms included for each model frequency. We denote this

combined matrix TI , such that

TI =
(

G
C
I ,FSN

I ,FDM
I

)

, (25)

and similarly we append the vectors δǫ,I , aSN,I
, and aDM,I

to form

the single vector bI . In this way, we can write our complete signal

model for a single pulsar I as

τI = TI bI . (26)

We can then construct the block diagonal matrix T such that each

block is given by the matrix TI for each pulsar I, and finally append

the set of vectors bI for all pulsars to form the complete vector of

signal coefficients b. In this way, the concatenated signal model as

described thus far for all pulsars, which we denote here as τ , can

be written simply:

τ = Tb. (27)

2.6 Common noise

In Tiburzi (2015) and Tiburzi et al. (in preparation), it was shown

that additional sources of noise which are common to all pulsars in

the PTA can be highly correlated with the quadrupole signature of a

stochastic GWB. If these sources of noise are present in our data set,

we will become less sensitive to a GWB if we do not include them

in our model. Therefore, in order to ensure that our analysis remains

robust to the presence of such signals, we will include in our model

the three most likely sources of additional common noise.

(1) A common, uncorrelated noise term. This allows us to ac-

count for the possibility that all the millisecond pulsars in our data

set suffer from a similar, potentially steep, red noise process, as

discussed in Shannon & Cordes (2010).

(2) A clock error. Hobbs et al. (2012) showed that a PTA is sen-

sitive to errors in the time standard used to measure the arrival times

of pulses. Errors in this time standard would result in a monopole

signal being present in all pulsars in the data set.

(3) An error in the Solar system ephemeris. Champion et al.

(2010) demonstrated that any error in the planet masses, or any

unmodelled Solar system bodies will result in an error in our de-

termining the barycentric TOA of the pulses. This leads to a dipole

correlation being induced in the timing residuals.

We note that there are other possible sources of common correlated

noise in a PTA data set beyond the three listed above. In Section 2.7,

we will describe models that allow us to fit for a correlated signal,

where the form of the correlation is unknown, and is described

by free parameters in our analysis. In principle, one could then

simultaneously fit for both a GWB, and this additional more general

signal. While this would significantly decrease our sensitivity to

the GWB, it would ensure that our analysis remained robust to the

existence of unknown correlated signals in the data. More optimally,

one could perform an evidence comparison between a model that

includes a GWB, and a model that includes a signal with an arbitrary

correlation between pulsars in the PTA, in order to test which model

the data supports.

A common, uncorrelated noise term can be trivially included by

adding the model power spectrum to the diagonal of the elements

of the matrix � that correspond to the intrinsic red noise, such that

we have

	SN
(I ,J ,i,j ) = ϕSN

I ,i δij δIJ + ϕUC
i δij δIJ , (28)

where the set of coefficients ϕUC represent the theoretical power

spectrum of the common uncorrelated signal, which is the same for

all pulsars in the array.

In order to include a clock error within the framework described

thus far, we append to our matrix T an additional set of matrices

– one for each pulsar in the array – each of them identical to the

matrix F
SN
I , given by equation (14), for the corresponding pulsar

I. Each of these matrices is multiplied by the same set of signal

coefficients aclk, which are appended to the vector of coefficients b,

representing a single signal being fit to all pulsars simultaneously.

We use the same number of frequencies in the model for the clock

error as for the intrinsic spin-noise, and assume a two-parameter

power-law model for the power spectrum, which we denote ϕclk, as

in equation (16). From this we construct the covariance matrix �clk

which we define as

	clk
(i,j ) =

〈

aclk
i aclk

j

〉

= ϕclk
i δij , (29)

the elements of which can be appended to the total covariance ma-

trix for the signal coefficients �. We stress that modelling the clock

signal in this way ensures that we correctly account for both the un-

even time spans, and unequal weighting of the individual pulsars.

Additionally, because we fit for the timing model simultaneously

with the clock signal, the uncertainty in the low-frequency varia-

tions of the signal are factored into the analysis appropriately. We

show this in a simple simulation in which we use the time sampling

from our data set described in Section 4, and include a clock error

consistent with 10 times the difference between the International

Atomic Time and The International Bureau of Weights and Mea-

sures 2013 time standards, and white noise consistent with the TOA

uncertainties in our data set. In Fig. 2, we show the clock signal

used in our simulation after the maximum likelihood timing model

has been subtracted from the joint analysis (black line), and the

time averaged maximum likelihood recovered clock signal with 1σ
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Figure 2. Simulated clock error used in our analysis (black line) after sub-

tracting the maximum likelihood timing models from the joint analysis, and

the time averaged maximum likelihood clock signal with 1σ uncertainties

(red points with error bars). We find the recovered signal is consistent with

the injected signal across the whole dataspan.

uncertainties (red points with error bars). The uncertainties in the

clock error vary by a factor of ∼9 across the data set, as different

pulsars contribute different amounts to the constraints. We find the

recovered signal is consistent with the injected signal across the

whole dataspan.

Finally, in order to model an error in the Solar system ephemeris,

we can define an error signal e, which will be observed in any pulsar

I as the dot product between this error vector, and the position vector

of the pulsar kI , such that the induced residual as a function of time,

τ
eph
I will be given by

τ
eph

I = e · kI . (30)

We can incorporate this effect into our analysis by defining a set

of basis vectors separately for each of the three components of e,

similarly to equation (14). For example, the component in the x

direction for pulsar I will have basis vectors:

F
eph,x

I = F
SN
I k(I ,x), (31)

such that the signal induced in the pulsar will be given by

τ
eph,x
I = F

eph,x
I a(eph,x), (32)

with a(eph,x) the set of signal coefficients to be fit for. This model

term is incorporated into our analysis in exactly the same way as for

the clock error, with the basis vectors Feph for the three components

appended to the total matrix T, the three sets of signal coefficients

appended to the vector b, and the diagonal covariance matrix �eph

constructed from the power-law model appended to the matrix �.

While this parametrization does not constitute a physical model

of the Solar system dynamics, it allows us to incorporate our uncer-

tainty regarding possible errors in the Solar system ephemeris, such

as errors in the mass measurements of a number of planets or the

effects of unknown Solar system bodies. Given the dominant source

of error in the Solar system ephemeris is likely to come from errors

in the masses of planets such as Saturn, it could be advantageous

to include these parameters explicitly in our model. In our analysis

presented in Section 5, we opt for the more conservative approach,

and use the general model described here to model such errors.

Once again we include the same number of frequencies in the

model as for the spin-noise model, and parametrize the power spec-

trum for each of the three components, (x, y, z), of the error vector

e with a separate two-parameter power law, as in equation (16).

2.7 Gravitational-wave background

When dealing with a signal from a stochastic GWB, it is advan-

tageous to include the cross-correlated signal between the pulsars

on the sky. We do this by using the overlap reduction function – a

dimensionless function which quantifies the response of the pulsars

to the stochastic GWB. For isotropic stochastic GWBs, when the

pulsars are separated from the Earth and from each other by many

GW wavelengths (i.e. in the short-wavelength approximation; cf.

Mingarelli & Sidery 2014), this is also known as the Hellings–

Downs curve (Hellings & Downs 1983):

Ŵ(ζIJ )=
3

8

[

1 +
cos ζIJ

3
+ 4(1− cos ζIJ ) ln

(

sin
ζIJ

2

)]

(1 + δIJ ).

(33)

Here, ζ IJ is the angle between the pulsars I and J on the sky and

Ŵ(ζ IJ) is the overlap reduction function, which represents the ex-

pected correlation between the TOAs given an isotropic stochastic

GWB, and the δIJ term accounts for the pulsar term for the autocor-

relation. With this addition, our covariance matrix for the Fourier

coefficients becomes

	SN
I ,J ,i,j = ϕSN

I ,i δij δIJ + ϕUC
i δij δIJ + Ŵ(ζIJ )ϕGWB

i δij . (34)

In our analysis presented in Section 5.1, we define ϕGWB using

both the two-parameter power-law model given in equation (16),

and also take a more general approach, where the power at each

frequency included in the model is a free parameter in the analysis.

In this case, we define ϕGWB simply as

ϕGWB
i = ρ2

i , (35)

where we fit for the set of parameters ρ, and use a prior that is

uniform in the amplitude ρ.

If we do not want to assume the isotropic (Hellings–Downs) over-

lap reduction function as the description of the correlations between

pulsars in our data set, we can instead fit for its shape. In Section 5,

we will do this in two ways: first fitting directly for the correlation

coefficient between each pulsar, Ŵ(ζ IJ), and secondly using a set

of four Chebyshev polynomials, where we fit for the coefficients

c1. . . 4 parametrized such that, defining x = (ζIJ − π/2)/(π/2) we

will have

Ŵ(x) = c1 + c2x + c3(2x2 − 1) + c4(4x3 − 3x) . (36)

3 A NA LY S I S M E T H O D S

While the majority of the results presented in Section 5 have been

obtained using a Bayesian approach, we also employ a frequentist

maximum-likelihood estimator of the GWB strain-spectrum ampli-

tude as a consistency check. In the following sections, we outline

the key elements of both these approaches to aid further discussion.

3.1 Bayesian approach

3.1.1 General remarks

Bayesian inference provides a consistent approach to the estimation

of a set of parameters � in a model or hypothesis H given the data,

D. Bayes’ theorem states that

Pr(� | D,H) =
Pr(D | �,H)Pr(� | H)

Pr(D | H)
, (37)

where Pr(� | D,H) ≡ Pr(�) is the posterior probability distribu-

tion of the parameters, Pr(D | �,H) ≡ L(�) is the likelihood,
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Pr(� | H) ≡ π(�) is the prior probability distribution, and Pr(D |
H) ≡ Z is the Bayesian Evidence.

In parameter estimation, the normalizing evidence factor is usu-

ally ignored, since it is independent of the parameters �. Inferences

are therefore obtained by taking samples from the (unnormalized)

posterior using, for example, standard Markov chain Monte Carlo

(MCMC) sampling methods.

In contrast to parameter estimation, for model selection the ev-

idence takes the central role and is simply the factor required to

normalize the posterior over �:

Z =
∫

L(�)π(�)dn�, (38)

where n is the dimensionality of the parameter space.

As the average of the likelihood over the prior, the evidence

is larger for a model if more of its parameter space is likely and

smaller for a model where large areas of its parameter space have

low likelihood values, even if the likelihood function is very highly

peaked. Thus, the evidence automatically implements Occam’s ra-

zor: a simpler theory with a compact parameter space will have a

larger evidence than a more complicated one, unless the latter is

significantly better at explaining the data.

The question of model selection between two models H0 and

H1 can then be decided by comparing their respective posterior

probabilities, given the observed data set D, via the posterior odds

ratio R:

R =
P (H1 | D)

P (H0 | D)
=

P (D | H1)P (H1)

P (D | H0)P (H0)
=

Z1

Z0

P (H1)

P (H0)
, (39)

where P (H1)/P (H0) is the a priori probability ratio for the two

models, which can often be set to unity but occasionally requires

further consideration.

The posterior odds ratio then allows us to obtain the probability

of one model compared with the other, simply as

P =
R

1 + R
. (40)

3.1.2 MULTINEST

The nested sampling approach (Skilling 2004) is a Monte Carlo

method targeted at the efficient calculation of the evidence, but also

produces posterior inferences as a by-product. In Feroz & Hobson

(2008) and Feroz, Hobson & Bridges (2009), this nested sampling

framework was built upon with the introduction of the MULTINEST

algorithm, which provides an efficient means of sampling from

posteriors that may contain multiple modes and/or large (curving)

degeneracies. Since its release MULTINEST has been used success-

fully in a wide range of astrophysical problems, from detecting

the Sunyaev–Zel’dovich effect in galaxy clusters (AMI Consortium

2012), to inferring the properties of a potential stochastic GWB in

PTA data in a mock data challenge (L13).

In higher dimensions (�50), the sampling efficiency of MULTINEST

begins to decrease significantly. To help alleviate this problem,

MULTINEST includes a ‘constant efficiency’ mode, which ensures that

the sampling efficiency meets some user set target. This, however

comes at the expense of less accurate evidence values. Recently,

the MULTINEST algorithm has been updated to include the concept of

importance nested sampling (INS; Cameron & Pettitt 2013) which

provides a solution to this problem. Details can be found in Feroz

et al. (2013), but the key difference is that, where with normal nested

sampling the rejected points play no further role in the sampling

process, INS uses every point sampled to contribute towards the

evidence calculation. One outcome of this approach is that even

when running in constant efficiency mode the evidence calculated

is reliable even in higher (∼50) dimensional problems. In pulsar

timing analysis, and especially when determining the properties of

a correlated signal between pulsars, we will often have to deal with

models that can contain >40 parameters. As such, the ability to run

in constant efficiency mode whilst still obtaining accurate values

for the evidence when these higher dimensional problems arise is

crucial in order to perform reliable model selection.

All the analyses presented in Section 5 are performed using INS,

running in constant efficiency mode, with 5000 live points and an

efficiency of 1 per cent.

3.1.3 Likelihood function

Equivalent to the approach described in L13, we can write the joint

probability density of the following:

(i) the linear parameters b, which describe variations in the deter-

ministic timing model and the signal realizations for the red noise

and DM variations for each pulsar, and the common noise terms;

(ii) the stochastic parameters, (α, β) that describe the intrinsic

white noise properties for each pulsar;

(iii) the power-spectrum hyper-parameters that define the spin-

noise and DM variation power laws, and the spectra of the common

noise terms such as the stochastic GWB, which we collectively refer

to as �, as:

Pr(b, α, β, �, | δ t) ∝ Pr(δ t|α, β, b)

× Pr(b|�) Pr(�)Pr(α, β)Pr(b). (41)

In our analysis, we simply use priors that are uniform in all the

model parameters, so we can write the conditional distributions that

make up equation (41) as

Pr(δ t|α, β, b) ∝
1

√
det(N)

exp

[

−
1

2
(δ t − Tb)T N

−1(δ t − Tb)

]

,

(42)

and

Pr(b|�) ∝
1

√
det�

exp

[

−
1

2
b

T
�−1

b

]

. (43)

We can now marginalize over all linear parameters b analytically

in order to find the posterior for the remaining parameters alone.

Defining � as (T T
N

−1
T + �−1), and b̄ as T

T
N

−1δ t our

marginalized posterior for the stochastic parameters α, β,� alone

is given by

Pr(α, β, �|δ t) ∝
det (�)−

1
2

√
det (�) det (N)

× exp

[

−
1

2

(

δ t
T

N
−1δ t − b̄

T
�−1

b̄

)

]

. (44)

3.2 Frequentist techniques

As a consistency check of our Bayesian method, we also employ

a weak-signal regime maximum-likelihood estimator of the GWB

strain-spectrum amplitude, known as the optimal-statistic (Anholm

et al. 2009; Siemens et al. 2013; Chamberlin et al. 2014). It also

maximizes the S/N in this regime, reproducing the results of an
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optimally filtered cross-correlation search without explicitly intro-

ducing a filter function.

The form of this statistic is

Â2 =
∑

IJ δ tT
I P

−1
I S̃IJ P

−1
J δ tJ

∑

IJ tr
[

P
−1
I S̃IJ P

−1
J S̃J I

] , (45)

where P I = 〈δ P I δ tT
I 〉 is the autocovariance of the post-fit residuals

in pulsar I, which we can write in terms of the matrices TI and �I

as:

PI = TI�I TI
T, (46)

where the matrix �I is constructed from maximum-likelihood noise

estimates obtained in previous single-pulsar analysis. Any GW sig-

nal will have been absorbed into the red-noise estimation during

this previous analysis. The signal term S̃IJ is defined such that

A2 S̃IJ = 〈δ tI δ tT
J 〉 = SIJ , where we assume that no signal other

than GWs induce cross-correlations between pulsar TOAs. The

normalization of Â2 is chosen such that 〈Â2〉 = A2.

The standard deviation of the statistic in the absence of a cross-

correlated signal reduces to

σ0 =

(

∑

IJ

tr
[

P
−1
I S̃IJ P

−1
J S̃J I

]

)−1/2

, (47)

which can be used as an approximation to the error on Â2 in the

weak-signal regime. Hence, for a particular signal and noise real-

ization, where we have measured the optimal-statistic, the S/N of

the power in the cross-correlated signal is given by

ρ =
Â2

σ0

=
∑

IJ δ tT
I P

−1
I S̃IJ P

−1
J δ tJ

(
∑

IJ tr
[

P
−1
I S̃IJ P

−1
J S̃J I

])1/2
, (48)

with an expectation over all realizations of

〈ρ〉 = A2

(

∑

IJ

tr
[

P
−1
I S̃IJ P

−1
J S̃J I

]

)1/2

. (49)

This S/N effectively measures how likely it is (in terms of number of

standard deviations from zero) that we have found a cross-correlated

signal in our data rather than an uncorrelated signal. The properties

of the signal cross-term S̃IJ are determined by a fixed input spectral

shape, which in this case is a power law with slope γ = 13/3,

matching the predicted spectral properties of the strain-spectrum

resulting from a population of circular GW-driven SMBHBs.

To compute upper limits with the optimal-statistic, we follow the

procedure outlined in Anholm et al. (2009), where the distribution

of Â2 is assumed to be a Gaussian with mean A2 and variance

σ 2
0 . The latter assumption is clearly only appropriate in the weak-

signal regime, but serves as a useful approximation. We want to

find A2
ul such that, in some predetermined fraction of hypothetical

experiments (C), the value of the optimal-statistic would exceed

the actual measured value. Hence we can claim that A2 ≤ A2
ul to

confidence C, otherwise we would have seen it exceed the measured

value a fraction C of the time. The solution is given by

A2
ul = Â2 +

√
2σ0 erfc−1[2(1 − C)]. (50)

It was shown in Chamberlin et al. (2014) that the cross-correlation

statistic of Demorest et al. (2013) is identical to the aforementioned

optimal-statistic, and in fact allows us to achieve a measure of the

individual cross-power values between pulsars. In the high S/N

limit, one would expect these cross-power values to map out the

Hellings and Downs curve when plotted as a function of pulsar

angular separations. The cross-power values and their associated

errors are given by

χIJ =
δ tT

I P
−1
I ŜIJ P

−1
J δ tJ

tr
[

P
−1
I ŜIJ P

−1
J ŜJ I

] , (51)

σ0,IJ =
(

tr
[

P
−1
I ŜIJ P

−1
J ŜJ I

])−1/2
, (52)

where A2ŴIJ ŜIJ = SIJ = A2 S̃IJ , and ŴIJ are the Hellings and

Downs cross-correlation values.

4 TH E DATA SE T

Our limits for an isotropic stochastic background are obtained using

a subset of the full 2015 EPTA data release described in Desvignes

et al. (in preparation, henceforth D15). In particular we use a set of

six pulsars, listed in Table 1, that contribute 90 per cent of the total

S/N for this data set (see Babak et al., in preparation for details).

We use this subset of the full 42 pulsar data set in order to mini-

mize the dimensionality of the problem, and thus enable accurate

evidence calculations using MULTINEST. The pulsar that contributed

next in terms of sensitivity, PSR J1640+2224, contributes at only

the ∼2 per cent level, so even were we to add a small number of

additional pulsars, the overall gain in sensitivity would be minimal.

The DM-subtracted residuals, as well as the frequency coverage

as a function of time for these pulsars are shown in Fig. 3 (left-

and right-hand panel, respectively). For each of these pulsars a full

timing analysis has been performed using the TEMPONEST plugin for

the TEMPO2 pulsar timing package, which simultaneously includes

the white noise modifiers EFAC and EQUAD for each observing

system, as well as intrinsic red noise, and frequency dependent DM

Table 1. Details of the six pulsars used for the isotropic stochastic background analysis. Numbers in parentheses correspond to the maximum likelihood values

from the five-dimensional analysis described in Section 4.

Pulsar J0613−0200 J1012+5307 J1600−3053 J1713+0747 J1744−1134 J1909−3744

Dataspan (yr) 16.05 16.83 7.66 17.66 17.25 9.38

Nsys
a 14 15 4 14 9 3

σ (μs)b 1.691 1.610 0.563 0.679 0.801 0.131

Log10 ASN −13.58 ± 0.40 (−13.41) −13.05 ± 0.09 (−13.04) −13.71 ± 0.54 (−13.42) −14.31 ± 0.46 (−14.20) −13.63 ± 0.27 (−13.60) −14.22 ± 0.42 (−13.98)

γ SN 2.50 ± 0.99 (2.09) 1.56 ± 0.37 (1.56) 1.91 ± 1.05 (1.38) 3.50 ± 1.16 (3.51) 2.21 ± 0.82 (2.16) 2.23 ± 0.89 (2.17)

Log10 ADM −11.61 ± 0.12 (−11.57) −12.25 ± 0.47 (−11.92) −11.75 ± 0.39 (−11.67) −11.97 ± 0.14 (−11.90) −12.19 ± 0.38 (−11.93) −12.76 ± 0.53 (−12.51)

γ DM 1.36 ± 0.48 (1.11) 1.26 ± 0.97 (0.27) 1.64 ± 0.80 (1.46) 2.03 ± 0.55 (1.82) 1.41 ± 1.09 (0.36) 2.23 ± 1.07 (2.16)

Global EFAC 1.01 ± 0.02 (1.01) 0.98 ± 0.02 (0.98) 1.03 ± 0.04 (1.03) 1.00 ± 0.02 (1.00) 1.01 ± 0.03 (1.00) 1.02 ± 0.04 (1.01)

95 per cent upper limitc 9.7 × 10−15 8.3 × 10−15 2.1 × 10−14 4.4 × 10−15 7.0 × 10−15 5.2 × 10−15

Notes. aNumber of unique observing ‘systems’ that make up the data set for each pulsar.
bWeighted rms for the DM subtracted residuals for each pulsar (D15).
cUpper limit obtained from the five-dimensional analysis described in Section 4.
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EPTA limits 2585

Figure 3. Top: timing residuals as a function of Modified Julian Date for the six pulsars included in the stochastic GWB analysis presented in this work, after

the maximum likelihood DM variations signal realization has been subtracted. From top to bottom these are PSRs: J0613−0200, J1012+5307, J1600−3053,

J1713+0747, J1744−1134, and J1909−3744. While the overall timing baseline for this data set is ∼18 yr, only four of the six pulsars have data that extends

across the majority of this timespan, and in particular, PSR J1909−3744 contributes only to the latter half of the data set, significantly reducing our overall

sensitivity to signals at the lowest frequencies supported by the data set. Bottom: frequency coverage for the six pulsars included in the stochastic GWB

analysis presented in this work. The order of the pulsars is as in the top plot. Colours indicate observing frequencies <1000 MHz (red crosses), between 1000

and 2000 MHz (green circles) and >2000 MHz (blue squares). In addition to fewer pulsars extending across the full data set, there is also less multifrequency

coverage in the early data. This further decreases our sensitivity to a stochastic GWB at the lowest sampled frequencies as the signal becomes highly covariant

with the DM variations for the individual pulsars in the first half of the data set.

variations. In Fig. 4, we show the mean parameter estimates and

1σ uncertainties for the EFAC parameters obtained for each system

from this initial analysis. We find all EFACs are consistent with

values equal to or greater than 1 within their uncertainties, with the

exception of the Westerbork 1380 MHz data in PSR J1713+0747.

This could be the result of systematic effects that occur in the tem-

plate forming phase, and is the subject of ongoing work. As these

systems do not contribute a large fraction of the total weight in
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2586 L. Lentati et al.

Figure 4. EFAC values obtained for all systems from the initial analysis

performed for the six pulsars used in our analysis. All EFACs are consistent

with values equal to or greater than 1 within uncertainties, with the exception

of the Westerbork 1380 MHz data in PSR J1713+0747 which have values

consistent with ∼0.5. This could be the result of systematic effects that occur

in the template forming phase, and is the subject of ongoing work.

the data set, however, it will not have a significant impact on the

subsequent analysis. Further analysis of the white noise parameters

will be presented in Caballero et al. (in preparation). In the joint

analysis presented in this work, we use the linear approximation

to the timing model. As such, timing solutions obtained from the

initial TEMPONEST analysis were checked for convergence, and the

linear regime was found to be suitable in all cases.

The EPTA data set contains observations from four of the largest

radio telescopes in Europe: the Effelsberg Radio Telescope in Ger-

many, the Lovell Radio Telescope at the Jodrell Bank Observatory

in the UK, the Nancay Radio Telescope in France, and the Wester-

bork Synthesis Radio Telescope in The Netherlands. Each of these

telescopes operates at multiple observing frequencies, and so the

number of unique ‘systems’ present for any one pulsar can be as

large as 15. For the six pulsars in this data set, we list the number of

observing systems present in each in Table 1, which in combination

results in 118 white noise parameters. When accounting for the four

spin-noise and DM variation power-law parameters for each pulsar,

we have a total of 142 intrinsic noise parameters before the addition

of any correlated model components. In an effort to decrease the di-

mensionality, we therefore use the mean estimates for the EFAC and

EQUAD parameters from the individual timing analysis presented

in D15, and fit a single global EFAC for each pulsar, reducing the

number of intrinsic noise parameters to 30.

In order to check the validity of this simplification, we performed

a five-dimensional analysis for each of the six pulsars in this data

set, fitting for power-law intrinsic red noise and DM variations,

in addition to a global EFAC parameter after adjusting the error

bars using the mean values from D15. The parameter estimates

obtained are given in Table 1, and the one-dimensional marginalized

posteriors for J1909−3744, J1713+0747, and J1744−1134 from

this analysis are shown in Fig. 5. In each case, we show the red

noise and DM variation power law parameters for the full noise

analysis (red) and five-dimensional analysis (blue). We also show

the global EFAC parameter from the five-dimensional analysis in

each case. We find the posteriors are consistent between the two

sets of analysis.

Table 1 also lists the 95 per cent upper limit on a red noise process

with a spectral index of 13/3 at a reference frequency of 1 yr−1

for each of the six pulsars used in our analysis. This limit was

obtained when simultaneously fitting for the five intrinsic noise

parameters for each pulsar in addition to the steep spectrum noise

term. The two pulsars with the most constraining upper limit are

PSRs J1909−3744, and J1713+0747, consistent with the results

obtained in Babak et al. (in preparation), with values of ≈5 × 10−15,

and ≈4 × 10−15, respectively.

5 R ESULTS

5.1 Limits on an isotropic stochastic GWB

5.1.1 Bayesian approach

In Table 2, we list the complete set of free parameters that

we include in the different models used in the analysis pre-

sented in this section, along with the prior ranges used for those

parameters.

When parameterizing the stochastic GWB using the power-law

model in equation (3), we run two parallel sets of analyses: in the first

set we fix γ = 13/3, consistent with a stochastic GWB dominated

by SMBHBs; in the second set we allow γ to vary freely within

a prior range of [0,7]. In both cases, we consider three different

models:

(i) with the intrinsic timing noise for each pulsar fixed at the

maximum likelihood values given in Table 1;

(ii) with the intrinsic timing noise for each pulsar allowed to vary;

(iii) as in (ii), but including additional common uncorrelated red

noise, a clock error, and errors in the Solar system ephemeris as

discussed in Section 2.6.

The 95 per cent upper limits for the amplitude of an isotropic

stochastic GWB in the six different models are listed in Table 3. In

Table 4, we then list the 95 per cent upper limits for the additional

common noise terms that were included in model (iii), when allow-

ing the spectral indices to vary. All upper limits in this section are

reported at a reference frequency of 1 yr−1.

The one-dimensional marginalized posteriors for the amplitude

of the GWB for each of these models are shown in Fig. 6. We

find that in both the fixed, and varying spectral index model for

the GWB, limits placed under the assumption of fixed intrinsic

timing noise are erroneously more stringent than when the noise is

allowed to vary, by a factor ∼1.8 and ∼1.6, respectively. This is a

direct result of using values for the intrinsic noise that have been

obtained from analysis of the individual pulsars, in which the red

spin-noise signal, and any potential GWB signal will be completely

covariant. The natural consequence is that fixing the properties of

the intrinsic noise to those obtained from the single pulsar analysis

will always push the upper limit for the GWB lower in a subsequent

joint analysis.

Both of the most recent isotropic GWB limits from pulsar timing

have been set using frequentist techniques, either by performing

a fixed noise analysis (Demorest et al. 2013), or using simula-

tions (Shannon et al. 2013), obtaining 95 per cent upper limits of

7 × 10−15 and 2.4 × 10−15, respectively. In both cases, therefore,

the analysis performed was fundamentally different to the Bayesian

approach presented in this work. As such it is difficult to compare

our results directly, or to ascertain the effect of fixing the intrinsic

noise parameters on limits obtained using those methods.
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EPTA limits 2587

Figure 5. Comparison of the one-dimensional marginalized posterior probability distributions for PSRs (left to right) J1909−3744, J1713+0747, and

J1744−1134. The y-axis in all plots represents probability. In each case, we show the spin-noise and DM variation power-law parameters for the full noise

analysis (red solid lines) and five-dimensional analysis where the TOA error bars have been pre-scaled by the mean value of the EFAC/EQUAD parameters

for each pulsar backend (blue dashed lines). In both cases, parameter estimates have been obtained using a uniform prior on the amplitude of the spin-noise

and DM variations power-law models. We also show the global EFAC parameters from the five-dimensional analysis in each case. We find the posteriors are

consistent between the two sets of analysis.

The most recent limit placed when allowing the intrinsic noise

parameters of the pulsars to vary is given by van Haasteren et al.

(2011), in which a 95 per cent upper limit of A = 6 × 10−15 was

obtained at a spectral index of 13/3. Our model (ii) is most compa-

rable to this analysis, in which we obtain a 95 per cent upper limit

of A = 3 × 10−15, an improvement of a factor of 2. This translates

into a limit on �gw(f)h2 = 1.1 × 10−9 at 2.8 nHz. We confirm this

result by analysing the 2015 EPTA data set with model (ii) using an
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Table 2. Free parameters and prior ranges used in the Bayesian analysis.

Parameter Description Prior range

White noise

α Global EFAC Uniform in [0.5, 1.5] One parameter per pulsar (total 6)

Spin-noise

ASN Spin-noise power-law amplitude Uniform in [10−20, 10−10] One parameter per pulsar (total 6)

γ SN Spin-noise power-law spectral index Uniform in [0, 7] One parameter per pulsar (total 6)

DM variations

ADM DM variations power-law amplitude Uniform in [10−20, 10−10] One parameter per pulsar (total 6)

γ DM DM variations power-law spectral index Uniform in [0, 7] One parameter per pulsar (total 6)

Common noise

ACN Uncorrelated common noise power-law amplitude Uniform in [10−20, 10−10] One parameter for the array

γ CN Uncorrelated common noise power-law spectral index Uniform in [0, 7] One parameter for the array

Aclk Clock error power-law amplitude Uniform in [10−20, 10−10] One parameter for the array

γ clk Clock error power-law spectral index Uniform in [0, 7] One parameter for the array

Aeph Solar system ephemeris error power-law amplitude Uniform in [10−20, 10−10] Three parameters for the array (x, y, z)

γ eph Solar system ephemeris error power-law spectral index Uniform in [0, 7] Three parameters for the array (x, y, z)

Stochastic GWB

A GWB power-law amplitude Uniform in [10−20, 10−10] One parameter for the array

γ GWB power-law spectral index Uniform in [0, 7] One parameter for the array

ρ i GWB power spectrum coefficient at frequency i/T Uniform in [10−20, 100] One parameter for the array per frequency

in unparameterized GWB power spectrum

model (total 20)

Stochastic background

angular correlation function

c1, . . . , 4 Chebyshev polynomial coefficient Uniform in [−1, 1] See equation (36)

ŴIJ Correlation coefficient between pulsars (I,J) Uniform in [−1, 1] One parameter for the array per unique pulsar

pair (total 15)

Table 3. 95 per cent upper limits on the amplitude of an isotropic stochastic

GWB obtained for different models at a reference frequency of 1 yr−1.

Model 95 per cent upper limit

(× 10−15)

Bayesian analysis

Fixed noise – Fixed spectral index 1.7

Varying noise – Fixed spectral index 3.0

Additional common signals – Fixed spectral index 3.0

Fixed noise – Varying spectral index 8.0

Varying noise – Varying spectral index 13

Additional common signals – Varying spectral index 13

Frequentist analysis

Fixed noise – Fixed spectral index 2.1

Simulations – Varying spectral index

White noise only 4.3

White and intrinsic spin-noise 7.2

White and intrinsic spin-noise and DM variations 12

independent code,2 which makes use of the PAL, parallel-tempered

adaptive MCMC sampler3 which explores the parameter space in a

fundamentally different way to MULTINEST, and obtain a consistent

95 per cent upper limit.

Finally for model (iii) when including additional common or

correlated terms in the analysis we find the extra parameters have

2 https://github.com/stevertaylor/NX01
3 https://github.com/jellis18/PAL2

Table 4. 95 per cent upper limits obtained for common noise terms at a

reference frequency of 1 yr−1.

Model 95 per cent upper limit

(× 10−15)

Additional common signals – Varying spectral index

ACN 13

Aclk 11

Aeph (x) 65

Aeph (y) 14

Aeph (z) 25

a negligible impact on our sensitivity, with consistent upper limits

obtained in both the fixed and varying spectral index models.

We find the upper limits for the uncorrelated common red noise

model to be consistent with those obtained for the GWB, however

we find the upper limit for the clock error signal to be slightly lower,

with Aclk < 1.1 × 10−14 compared to ACN < 1.3 × 10−14. This is

to be expected however, as the clock is handled coherently across

all pulsars, whereas the GWB and common uncorrelated red noise

signals are handled incoherently, as such we have greater sensitivity

when searching for the clock signal and obtain a correspondingly

lower limit for the amplitude.

The limits on the different errors originating in the Solar system

ephemeris can be understood given the components of the unit

vector from the SSB towards the two pulsars that contribute most to

our analysis, PSRs J1713+0747 and J1909−3744, which are given

by (−0.20, −0.97, +0.14) and (+0.24, −0.75, −0.61), respectively.

Both PSRs J1909−3744 and J1713+0747 contribute very little to

the constraints on the ephemeris in the x direction, and so here we

see the greatest degradation in the limit on the amplitude, while in
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EPTA limits 2589

Figure 6. One-dimensional marginalized posterior parameter estimates for the amplitude of a correlated GWB in the six pulsar data set presented in this paper

when: (left) fixing the spectral index of the power law to a value of 13/3, consistent with a background dominated by a population of SMBHB, and (right) when

marginalizing over the spectral index given a prior range of [0,7]. In each case, we show the posterior given: (red solid line) fixed intrinsic noise parameters for

each pulsar, where the values of the parameters are given by the maximum likelihood estimates listed in Table 1, (black dotted line) varying noise parameters

for each pulsar, and (magenta dashed line) varying noise parameters for each pulsar, and additionally including a common uncorrelated red noise process,

clock errors, and errors in the Solar system ephemeris in the model. Vertical lines in each case represent the 95 per cent upper limits for each model.

Figure 7. One and two-dimensional marginalized posterior parameter es-

timates for the amplitude and spectral index of a correlated GWB in the

six pulsar data set presented in this paper when varying the intrinsic noise

parameters for each pulsar. The amplitude and spectral index are highly

correlated, resulting in a significantly higher upper limit when allowing the

spectral index to vary, as opposed to fixing it at a value of 13/3.

the y direction PSR J1713+0747 contributes almost fully and so

the limit we obtain is only slightly worse than that obtained for the

GWB and uncorrelated common noise terms.

We consider model (iii) to be the most robust analysis presented in

this paper, and so conclude that the 95 per cent upper limit provided

by our data set on a power-law GWB is A < 3.0 × 10−15 at γ = 13/3,

and A < 1.3 × 10−14 when marginalizing over spectral index.

That the upper limit is considerably higher in the varying spectral

index model can be understood from the two-dimensional posterior

distribution for A and γ in Fig. 7. Here, we see the clear correlation

between the two quantities; as we will see below, our PTA is most

sensitive at frequencies ≪1 yr−1, meaning that for a single power-

law spectrum, the flatter the spectral index, the less stringent the

limit on A.

As a consistency check on this result we perform a set of three

simulations using the sampled time stamps present in the actual

six pulsar data set. In the first simulation, we include only a white

noise component with an amplitude determined using the TOA

uncertainties from the real data set. In the second simulation, we

then add an intrinsic spin-noise component, with amplitudes and

spectral indices equal to the maximum likelihood values presented

in Table 1. Finally in the third simulation, we also include DM

variations, whereas with the intrinsic spin-noise we use the maxi-

mum likelihood values in Table 1 to set the amplitudes and spectral

indices. Critically in all the simulations, we include no correlated

GWB term, and so in each case we expect to recover only our

uniform prior on the amplitude of the GWB included in our model.

The one- and two-dimensional marginalized posterior parameter

estimates for the amplitude and spectral index of the GWB from

each of the three simulations are shown in Fig. 8. We obtain upper

limits of 4.3 × 10−15, 7.2 × 10−15, and 1.2 × 10−14 in each case,

respectively. In all the one-dimensional posterior distributions for

the amplitude of the signal we are simply recovering our prior, such

that the probability is proportional to the amplitude of the signal

below some limit set by the data. In the case of the third simulation,

which is most similar to the real data set, both the upper limit, and

the form of the posterior is consistent with the results presented in

Fig. 7 and Table 3.

In Fig. 9, we show the 95 per cent upper limits from a power spec-

trum analysis that does not assume a power-law model, but allows

the power at each frequency included in the model to vary sep-

arately. We perform this analysis separately both for a correlated

GWB (red points), and uncorrelated common red noise process

(blue points) while varying the intrinsic noise parameters for each

pulsar, however we do not include any additional common terms.

The upper limit obtained from the equivalent power-law analysis

of the GWB at a spectral index of 13/3 of 3 × 10−15 is over-

plotted as a straight line. Frequencies were included from 1/T up

to 20/T, with T = 17.66 yr, beyond which we do not expect the

data to provide significant constraints on a steep red noise process.

We find that our limit at a spectral index of 13/3 is most heavily
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Figure 8. One and two-dimensional marginalized posterior parameter es-

timates for the amplitude and spectral index of a correlated GWB in three

simulated data sets, including (Top) White noise only, (Middle) White and

intrinsic spin-noise only, and (Bottom) White noise, intrinsic spin-noise,

and dispersion measure variations. In each case, we use the TOAs from

the six pulsars used in the GWB analysis presented in this work, and use

the maximum likelihood noise parameters from Table 1 when constructing

the simulations. The upper limits obtained in each case are 4.3 × 10−15,

7.2 × 10−15, and 1.2 × 10−14. We find both the upper limit, and the form

of the posterior to be consistent between the third simulation and the real

data set. In both cases, we are simply recovering our uniform prior on the

amplitude of the GWB signal at small amplitudes, before the data begins to

place constraints on the upper limit at large amplitudes.

Figure 9. (Top) 95 per cent upper limits from an unparameterized power

spectrum analysis for a correlated GWB (red points), and uncorrelated com-

mon red noise process (blue points) for the six pulsar data set described

in Section 4 obtained while varying the intrinsic noise parameters for each

pulsar. The upper limit obtained from a power-law analysis of the GWB

at a spectral index of 13/3 of 3 × 10−15 is overplotted as a straight line.

Frequencies were included from 1/T up to 20/T, with T = 17.66 yr. Beyond

these frequencies, the data provides increasingly poorer constraints on a

steep red noise process, and so we do not consider higher frequency terms in

our model. Both the correlated and uncorrelated power spectrum are com-

pletely consistent with one another at all frequencies. The difference in the

log evidence between the correlated and uncorrelated models was 0.2 ± 0.3,

indicating no support for the presence of a correlated signal in the data set.

constrained by the 3/T term, corresponding to f ≈ 5 × 10−9 Hz.

This is likely a combination of the lack of multifrequency data in

the early data for PSR J1713+0747 as shown in Fig. 3, which sig-

nificantly impacts our ability to disentangle DM variations from

frequency-independent red noise at the lowest frequencies, and that

our PSR J1909−3744 data set is only ∼9 yr in length. Despite these

limitations, the long timing baseline of the EPTA data set used in

this work is still critical for placing limits on the lowest frequen-

cies in our analysis. Both the correlated and uncorrelated power

spectrum are completely consistent with one another at all frequen-

cies. The difference in the log evidence between the correlated and

uncorrelated models was 0.2 ± 0.3, indicating no support for the

presence of a correlated signal in the data set.

In Fig. 10, we further assess the impact of including, or not,

the Hellings–Downs correlation on the upper limit obtained in our

power-law model (ii) for the varying spectral index case. We show

the one-dimensional marginalized posterior for both the amplitude

of the GWB, which includes the correlation between pulsars (red

solid line), and for the amplitude of an uncorrelated common red

noise power-law process (blue dashed line). We find the upper limits

to be completely consistent with one another, and obtain a change

in the log evidence of −1.0 ± 0.5 for the GWB model over the un-

correlated common red noise model, indicating no strong support

for either model in the data. We confirm this result by obtain-

ing constraints on the correlation between pulsars as a function of

angular separation for a common power-law model, where the am-

plitude and spectral index of the power law are free to vary, and

we fit simultaneously for the intrinsic noise parameters for the in-

dividual pulsars. We fit for the correlation using the two methods

described in Section 2.7, using either the four lowest order Cheby-

shev polynomials, or fitting for the correlation coefficient directly.

In Fig. 11, the red and blue lines represent the 68 and 95 per cent

MNRAS 453, 2576–2598 (2015)

 at U
n
iv

ersiteit v
an

 A
m

sterd
am

 o
n
 M

arch
 2

1
, 2

0
1
6

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


EPTA limits 2591

Figure 10. One-dimensional marginalized posterior parameter estimates

for the amplitude of a correlated GWB (red solid line) and an uncorrelated

common red noise model (blue dashed line) in the six pulsar data set pre-

sented in this paper when marginalizing over the spectral index given a prior

range of [0,7]. Posteriors were obtained when varying the intrinsic noise

parameters, and including only either the GWB, or common uncorrelated

terms. We find the upper limits to be completely consistent with one an-

other, and obtain a change in the log evidence of −1.0 ± 0.5 for the GWB

model over the uncorrelated common red noise model, suggesting no strong

support for either.

Figure 11. The recovered correlation between pulsars as a function of an-

gular separation on the sky for a power-law noise process. The red and blue

lines represent the 68 and 95 per cent confidence intervals for the correla-

tion function when modelled by the lowest 4 Chebyshev polynomials, while

the individual points are the mean correlation coefficient with 1σ uncer-

tainty for each pulsar pair when fitting without assuming a smooth model.

The Hellings–Downs correlation is represented by the dotted line. For both

models, the correlation of a common power-law model between pulsars is

consistent with effectively all possible values (the range [−1,1]).

confidence intervals for the correlation function when modelled

by the lowest four Chebyshev polynomials, while the individual

points are the mean correlation coefficient with 1σ uncertainty for

each pulsar pair when fitting directly. In both cases, the correla-

tion is consistent with effectively all possible values (the range

[−1,1]).

5.1.2 Frequentist approach

Applying the optimal-statistic introduced in Section 3.2 to our re-

duced six pulsar data set, and testing for a strain-spectrum slope

of −2/3, gives Â2 = (−2.86 ± 4.29) × 10−30, with an associ-

ated S/N = −0.67. This is clearly a non-detection, however the

95 per cent upper-limit on A is 2.05 × 10−15, which is more con-

straining than the best published limit of Shannon et al. (2013), and

is consistent with the fixed noise Bayesian limit of 1.7 × 10−15.

The optimal-statistic limits as a function of slope are shown in the

left-hand panel of Fig. 12, with limits at the fiducial slope value

marked in red.

The computed cross-power values for our six pulsar data set are

shown in the right-hand panel of Fig. 12, and are all consistent with

zero correlation, as expected.

6 D I SCUSSI ON

6.1 Implications for SMBHB astrophysics

As discussed previously, the most promising astrophysical source

of GWs in the nHz regime relevant to PTA observations is a cos-

mological population of adiabatically inspiralling SMBHBs.

In this section, we will consider the implications of the upper-

limit obtained in Section 5 on the GW signal for models of astro-

physical populations of SMBHBs. If we assume that an SMBHB

evolves purely due to gravitational radiation reaction, and that all

SMBHBs are in circular orbits – we will return to these assumptions

at the end of the section – the characteristic amplitude, equation (2),

is given by

h2
c(f ) =

4f −4/3

3π
1/3

∫∫

dz dM
d2n

dz dM

1

(1 + z)1/3
M

5/3, (53)

so that

A =
2 f

−2/3
1yr√

3π
1/6

[
∫∫

dz dM
d2n

dz dM

1

(1 + z)1/3
M

5/3

]1/2

. (54)

A limit on the amplitude A, as given by equation (53) there-

fore places constraints on d2n/(dz dM), i.e. the number den-

sity of SMBHB mergers per unit redshift and unit chirp mass

across cosmic history. Although the dominant contribution to

the signal comes from relatively massive (M > 108 M⊙), low-

redshift (z < 2) systems (Sesana et al. 2008), their merger rate

is still poorly constrained, resulting in a fairly wide range of

possible signal amplitudes. Sesana et al. (2008) exploited semi-

analytical merger trees from Volonteri, Haardt & Madau (2003)

to estimate a plausible range for the amplitude of a GWB of

5 × 10−16 < A < 3 × 10−15. Merger rates extracted from cos-

mological simulations like the Millennium (Springel et al. 2005)

and Massive Black (Khandai et al. 2014) simulations, coupled with

different prescriptions for the SMBH–galaxy relation results in a

compatible range of 4 × 10−16 < A < 2 × 10−15 (Sesana, Vecchio

& Volonteri 2009; Ravi et al. 2012). Recently, Sesana (2013b) con-

strained the expected range of A by building a set of phenomenolog-

ical models based on the observed properties of interacting galax-

ies. Thousands of models fulfilling all relevant observational con-

straints were assembled by combining different estimates of the

galaxy mass function, pair fractions, estimated merger times and

galaxy–SMBH relations. The central 90 per cent of the probability

distribution function (PDF) in the amplitude A lies in the range

3 × 10−16 < A < 3 × 10−15, as shown in the right-hand panel of
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Figure 12. Left: frequentist upper-limits on the strain amplitude of the stochastic GWB obtained via the optimal-statistic for our six pulsar data set. Red lines

indicate 90 and 95 per cent upper-limits at the fiducial slope of the strain-spectrum of −2/3, which corresponds to a slope of the residual PSD of −13/3. (right)

The individual cross-power values are shown for our six pulsar data set. All values are consistent with zero cross-correlation.

Figure 13. Comparison between the expected GWB amplitude from a cos-

mological population of SMBHBs and the 95 per cent upper limit obtained

with our PTA experiment. Shaded areas represent the central 68, 95, 99.7 and

100 per cent confidence interval of the predicted signal according to Sesana

(2013b), whereas the red curve is the 95 per cent upper limit presented in this

paper, obtained by converting the unparametrized power spectrum shown

in Fig. 9 to characteristic amplitude. The black triangle is the extrapolated

95 per cent upper limit on A at f = 1 yr−1. The right-hand panel shows the

PDF of the predicted hc at f = 1 yr−1, and the shaded area marks the region

excluded at 95 per cent confidence by our limit (less than 5 per cent of the

distribution).

Fig. 13. A similar approach was employed by Ravi et al. (2014b),

yielding consistent results.

In Fig. 13, we compare the expected range in hc predicted by

the phenomenological models presented in Sesana (2013b) to the

95 per cent upper limit obtained in Section 5.1. Shaded areas repre-

sent the central 68, 95, 99.7 and 100 per cent confidence intervals

for the predicted signal. The red curve is derived by converting the

95 per cent limit on the unparametrized power spectrum shown in

Fig. 9 into hc as

hc = (power × 12π
2f 3T )1/2, (55)

where T is the total observation time. Equation (55) can be calcu-

lated directly from equation (3) by noting that the power at each

frequency is the integral of S(f) over a frequency bin �f = 1/T.

Fig. 13 instructively shows how the limit on A that is usually quoted

in the literature is extrapolated from the actual sensitivity of the

PTA. Our data set is most sensitive at f ≈ 5 × 10−9 Hz, where the

95 per cent limit on hc is ∼1.1 × 10−14. This is then extrapolated

to f = 1 yr−1 assuming a f−2/3 power law, to get a 95 per cent upper

limit of A = 3.0 × 10−15. The right-hand panel of Fig. 13 shows the

probability distribution of A inferred from the theoretical models of

Sesana (2013b) together with the region excluded at 95 per cent con-

fidence by our analysis. Only about 5 per cent of the distribution is

excluded, meaning that our limit does not place severe restrictions

on the cosmic SMBHB population. Note that A values obtained

from merger trees and cosmological simulations quoted above are

generally in the range 4 × 10−16 < A < 3 × 10−15, and therefore

also consistent with this limit.

We caution that Fig. 13 shows the expected range of the GW sig-

nal given circular GW driven SMBHBs, with negligible coupling to

the environment. It has been shown (see e.g. Enoki & Nagashima

2007; Kocsis & Sesana 2011; Sesana 2013a; McWilliams, Ostriker

& Pretorius 2014; Ravi et al. 2014a) that both high eccentricities

and strong environmental coupling might cause a significant sup-

pression of the GW signal at f < 10−8 Hz. If this is the case, our

1.1 × 10−14 limit at f ≈ 5 × 10−9 Hz cannot be extrapolated to

f = 1 yr−1 using a simple power-law model. Even a much more

stringent limit obtained at such low frequencies might not have

significant implications for the cosmic SMBHB merger rate, be-

cause the suppression at low frequencies would invalidate the f−2/3

extrapolation to higher frequencies (see fig. 2 in Sesana 2013a).

Since the detailed dynamical evolution of SMBHBs coupled with

their environment is still poorly understood, current PTA limits do

not allow us to formulate strong astrophysical statements about the

cosmological population of SMBHBs.
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6.2 Limits on the cosmic (super)string tension

The limits computed in Section 5.1 can be converted into upper

limits on the linear energy density of a cosmic (super)string net-

work, μ, or tension in the Nambu–Goto approximation, usually

described by the dimensionless quantity Gμ/c2, where G is New-

ton’s constant and c the speed of light. Field theory cosmic strings

(Kibble 1976; Jeannerot, Rocher & Sakellariadou 2003), are one-

dimensional topological defects, relics of an early, more symmetric

state of the Universe, created through the mechanism of sponta-

neous symmetry breaking during the various phase transitions that

the early Universe underwent. Their formation is a generic property

of supersymmetric hybrid inflation scenarios (Jeannerot et al. 2003),

whereas the creation of their superstring theory counterparts, usu-

ally referred to as cosmic superstrings, are also a natural by-product

of brane inflation scenarios (e.g. Sarangi & Tye 2002; Jones, Stoica

& Tye 2003).

A cosmic string network consists of ‘infinite’ (larger than the

particle horizon) strings and cosmic string loops. A cosmic string

network grows along the expansion of the Universe and is expected

to settle in a scaling regime, were all the fundamental properties

of the network grow proportionally with cosmic time, something

achieved with the creation of loops; the main energy loss mech-

anism of the network. When two cosmic strings intersect, they

‘intercommute’ (exchange partners) with a characteristic probabil-

ity, and form loops. Cosmic string loops, once created, oscillate

and decay emitting all of their energy in various forms of radiation,

with the dominant form thought to be GWs (Vilenkin 1981). The

stochastic GWB created by a cosmic string network is broad-band

(from ∼10−16 Hz, to higher than 109 Hz, depending on the size

of the loops created), a characteristic feature of primordial GW

sources, and is potentially detectable by any present or future GW

detector. The cosmic string GW spectrum consists of a flat part at

high frequencies, originating from loops decaying in the radiation

era, and a broad peak at lower frequencies originating from loops

decaying in the matter era. PTAs are in the privileged position to

typically probe the GW emission originating from loops decaying

either in the matter era or in the radiation-to-matter era transition,

making them excellent instruments to detect the stochastic GWB of

a cosmic string network. In the case of a non-detection, the upper

limits on the GWB can be used to constrain the energy scale of

cosmic strings.

There are numerous investigations on the cosmic string GWB

in the literature (e.g. Damour & Vilenkin 2005; Depies & Hogan

2007; Ölmez et al. 2010), depending on various assumptions con-

cerning the GW emission mechanisms and the computation of the

loop number density. The cosmic string GWB spectra used in this

paper are those computed in Sanidas, Battye & Stappers (2013),

which are based on an updated version of the modelling presented

in Sanidas et al. (2012). The main difference of these two investiga-

tions is the inclusion of the effects of massive particle annihilation,

which reduces the amplitude of the spectrum at higher frequencies.

Both investigations, however, do not make any assumptions about

the values of the fundamental model parameters used to compute

the GW spectrum, granting characteristic robustness to the results

presented here. Sanidas et al. (2012) presented a generic way to

compute the GWB based on the widely accepted one-scale model

for cosmic strings. The basic parameters of this model are the string

tension Gμ/c2, the birth-scale of loops relative to the horizon, αcs,

and the intercommutation probability, p. Based on this modelling,

and assuming that the cosmic string network maintains a scaling

evolution along the expansion of the Universe, one can compute the

Figure 14. The 95 per cent confidence upper limits on the amplitude of

an isotropic, stochastic GWB as a function of the local spectral index at

the frequency of 1 yr−1, imposed by models (ii) (dashed black) and (iii)

(solid red) of Section 5.1. The limits are expressed in terms of the strain of

the GWB, hc, and the dimensionless spectral energy density of GWs, �h2,

where H0 = 100 h km s−1 Mpc−1, as a function of their respective spectral

indices.

loop number density for all the parameter combinations that create

a GWB at the frequency regime probed by PTAs. Additionally, no

assumption is made concerning the dominant GW emission mecha-

nism from the strings (i.e. kinks or cusps), which is modelled using

two additional parameters, a spectral index, q, and a cut-off, n∗, on

the number of emission harmonics n.

In this section, we present updated constraints on the cosmic

string tension, for various values of the intercommutation proba-

bility, but independent of all the rest model parameters. The GWB

upper limits we used are those obtained in the analysis for the mod-

els (ii) and (iii) of Section 5.1, where the spectral index γ was a free

parameter, as these are presented in Fig. 14. Additionally, we used

the GW sensitivity curve in Fig. 13 to investigate tension constraints

across the probed frequency range. In the first case, we used the in-

formation of both the amplitude and the local spectral index of the

GWB in order to create the tension exclusion curves in the cosmic

string model parameter space, whereas in the second case we used

only the amplitude information. In Fig. 15, we present the cosmic

string tension exclusion curves in the parameter space Gμ/c2 − αcs

accessed by the PTAs, for field theory strings (p = 1). These exclu-

sion curves were constructed from the combination of the n∗ = 1

and 104 exclusion curves, depending on which one provided the

highest tension value. The limits are provided by the n∗ = 1 net-

works in the mid-αcs region (−8 � log10αcs � −3), whereas in

the large (log10αcs � −3) and small (−8 � log10αcs) loop regimes,

by the n∗ = 104 networks. As discussed in Sanidas et al. (2012),

the n∗ = 1 and 104 cases will always provide the largest tension

values for fixed values of the rest cosmic string model parameters.

The limits from the n∗ = 1 networks are independent of the GW

emission mechanism since the power emitted per emission mode is

∝ n−q. For the limits provided by the n∗ = 104 networks, we used

a spectral index q = 4/3, corresponding to cusp emission, which

always provides larger tension values than the q = 2 case which cor-

responds to emission from kinks. The cosmic string tension upper

limit for model (ii), where the intrinsic timing noise of each pulsar

is allowed to vary, is

Gμ/c2 < 1.2 × 10−7 (95 per cent confidence), (56)
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Figure 15. Exclusion limits for different cosmic string network config-

urations with the same �h2 value at a frequency f = 1 yr−1 in the

Gμ/c2 − αcs parameter space, for p = 1. Both the amplitude and spec-

tral slope information of the GWB limits were used to construct the limits.

The dashed black and solid red curves, are based on the results of models

(ii) and (iii) presented in Fig. 14, respectively. In the mid-αcs region, the

tension upper limits are provided by the n∗ = 1 networks, whereas in the

regime of large and small loops, by the n∗ = 104 networks.

whereas the tension upper limit for model (iii) where the common

uncorrelated red noise, clock and Solar system ephemeris errors are

included is

Gμ/c2 < 1.3 × 10−7 (95 per cent confidence). (57)

For the particular case of large loop production with α = 0.05, as

suggested by the most recent Nambu–Goto cosmic string evolution

simulations Blanco-Pillado, Olum & Shlaer (2011, 2014), we get

an upper limit Gμ/c2 < 3.0 × 10−11. The tension constraint that

was obtained based on that loop number density and the previous

EPTA GWB limit was Gμ/c2 < 2.8 × 10−9 (Blanco-Pillado et al.

2014). Assuming an ∼1.7 times improvement on the value of the

�gw used in that work, one would expect approximately a constraint

Gμ/c2 � 9.7 × 10−10. This order of magnitude difference stems

mostly from the normalization imposed on the produced number of

loops. Whereas in our model we assume that all of the energy lost

by the cosmic string network in order to attain scaling is channelled

in loops of just one size, the loop production in Blanco-Pillado,

Olum & Shlaer (2014) takes place on a much wider range of large

loops (wider range of α). The difference in these two constraints is

expected, since as we have demonstrated in Sanidas et al. (2012),

where we also assumed a lognormal distribution for the loop birth

scale, a wider range for the values of α has as an effect the low-

ering of the matter era peak GWB amplitude and its broadening.

However, a direct comparison of these two results is not straight-

forward, not only because of the loop number density calculation

differences, but also due to differences in computing the stochas-

tic GWB. Additionally, we computed the tension upper limits in

the case of p �= 1. In general, the intercommutation probability for

cosmic superstrings can acquire values in the range p ∈ [10−3, 1],

depending on their nature (F- or D- cosmic superstrings; Jackson,

Table 5. Upper limits on the cosmic superstring tension Gμ/c2 for p �= 1

and the two scaling laws proposed in the literature, using the GWB limits

placed by models (ii) and (iii).

Scenario (ii) Scenario (iii)

Model (varying spectral index, (varying spectral index,

varying noise) additional common noise)

Scaling law k = 0.6 k = 1 k = 0.6 k = 1

p = 10−1 2.2 × 10−8 1.1 × 10−8 2.4 × 10−8 1.0 × 10−8

p = 10−2 7.3 × 10−9 1.6 × 10−9 6.9 × 10−9 1.5 × 10−9

p = 10−3 2.3 × 10−9 2.8 × 10−10 2.1 × 10−9 2.2 × 10−10

Figure 16. Exclusion curves for a set of network configurations with p �=
1. With thick lines are the configurations with k = 0.6 and with thin lines the

configurations with k = 1. We present exclusion curves for p = 0.1 (solid

lines), p = 10−2 (short dashed lines) and p = 10−3 (long dashed lines). The

dot–dashed curve is the exclusion curve for p = 1, for reference purposes.

For all the results, we used the stochastic GWB limit of model (iii), placed

at a frequency f = 1 yr−1.

Jones & Polchinski 2005). The effect of p �= 1 is the increase of the

amplitude of the stochastic GWB, without affecting the shape of the

GW spectrum, �gw ∝ p−k, where k is the dependence of the scaling

law that describes the effects of the intercommutation probability

on the energy density of the infinite cosmic strings (ρ∞ ∝ p−k).

There is no general consensus on the value of k, with different

investigations suggesting a value of k = 0.6 (Avgoustidis & Shellard

2005) or k = 1 (Sakellariadou 2005). The reduced intercommutation

probability, has as a result an increased number of intercommuta-

tions in order to maintain the scaling evolution of the network, and

therefore, an increased number of loops which give GWBs of higher

amplitude. In Table 5, we present the tension upper limits for vari-

ous cosmic superstring configurations, covering the whole possible

range of p and k values. These upper limits, which are linked with

small tension values, are provided by the networks with the smallest

loop size accessible (αcs ∼ 6 × 10−11; see discussion in Sanidas

et al. 2013). In Fig. 16, we present a set of such exclusion curves

to demonstrate the change in the shape of the exclusion curves as

we probe lower tension values. The exclusion curves in the region

Gμ/c2 � 10−10 are always provided by the n∗ = 104 networks.
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Figure 17. The cosmic string tension upper limits in the case of p = 1,

obtained from the sensitivity curve presented in Fig. 13 for a range of

the probed frequencies. For these limits, only the information about the

amplitude of the GWB has been used. The most stringent constraint is given

by the lowest frequency probed, whereas results for frequencies higher than

∼10−8, Hz have been omitted, since already for frequencies �7 × 10−9 Hz

the tension upper limits are unphysically high.

The apparent discontinuities in some of these exclusion curves are

a combinatory result of the abrupt local changes in the GWB upper

limit curve (more evident in the slope region [−2,0] for the � in

Fig. 14), and our requirement for a matching in the spectral slope

of the GWB limit and the spectral slope of the cosmic string GW

spectrum at a frequency4 f = 1 yr−1.

In Fig. 17, we present the tension upper limits created from the

sensitivity curve of Fig. 13 in the frequency range f ∈ [1.7 × 10−9,

10−8] in the case where p = 1. We did not produce results for

the whole frequency range of Fig. 13, since already for frequen-

cies �7 × 10−9 Hz the tension upper limits are incompatible to the

large-scale structure of the Universe as we observe it (i.e. CMB

anisotropies at large scales and galaxy distribution at small scales).

For its computation, we used only the amplitude of the GWB per

frequency bin, making those results less robust than those which

also incorporate the information of the local GWB spectral index.

The most stringent constraint is provided by the lowest frequency

and is Gμ/c2 < 1.1 × 10−7.

Our upper limit on the string tension for Nambu–Goto strings

is slightly better than the one obtained in the extensive analysis

performed by the Planck Collaboration (Planck Collaboration XXV

2014) using Planck data only (Gμ/c2 < 1.5 × 10−7), and identical

to that obtained when Planck data were combined with high-ℓ data

from the Atacama Cosmology Telescope (ACT) and the South Pole

Telescope (SPT). We note the significant improvement of the EPTA

result in comparison to that presented in Sanidas et al. (2012), which

was ∼3 times less constraining than the best available limit at that

time, set by the Wilkinson Microwave Anisotropy Probe 7-yr+ACT

results.

In terms of robustness, the CMB results are inherently more re-

liable than any GW-derived result because they depend only on the

large-scale properties of the cosmic string network (infinite strings),

4 This has been verified by using smoother GWB sensitivity curves. The

regions of the Gμ/c2 − αcs parameter space where there is also a signifi-

cant change in the local spectral slope of the cosmic string GW spectrum,

might also create such discontinuities, but such were not observed in the

various tests we have conducted to investigate this effect. If one neglects

the requirement for a matching local spectral index, no such artefacts are

observed.

and not on the much more complicated details concerning the GW

emission mechanism and the real cosmic string loop population.

Our results, however, can be considered as quite reliable upper lim-

its, for several reasons. First, the approach we used to compute

the GW spectra does not make any assumption about the funda-

mental cosmic string model parameters used, and is only subject

to a few fundamental assumptions, such as the validity of the one-

scale model and the scale-invariant evolution of the cosmic string

network. In Sousa & Avelino (2013), the authors presented results

based on a possible delay of the onset of the scaling evolution as

the network transverses from the radiation to the matter era evo-

lution. Such a scenario leads to an increase in the amplitude of

the resulting stochastic GWB, with a consequent strengthening of

the upper limits, in comparison to our results where we assumed

that the scaling evolution is always maintained and used a simple

linear transition between the values of characteristic parameters of

the cosmic string network (i.e. the number of infinite strings within

our horizon) from their radiation era to their matter era values.

Therefore, our upper limits remain robust even if such a possibil-

ity is true. Secondly, we have not included the GW emission from

kinks on the infinite strings (Hindmarsh 1990; Sakellariadou 1990;

Allen & Shellard 1992; Kawasaki, Miyamoto & Nakayama 2010)

or the emission of GWs due to the scaling evolution of the cosmic

string network in the radiation era per se (Figueroa, Hindmarsh &

Urrestilla 2013). These mechanisms, even though they contribute to

the general string GWB, can be a few orders of magnitude smaller

than the loop emission and omitting them from our calculations

will not affect our upper limits. Note, however, that if the GWB

originating from loops is not detectable by PTAs (i.e. in the case of

very small loop creation by the network), the GWB created by the

aforementioned mechanisms is the only one that can be detected is

this frequency window.

6.3 Relic gravitational waves

Quantum fluctuations of the gravitational field in the early Uni-

verse, amplified by an inflationary phase, are expected to produce a

stochastic relic GWB (see e.g. Grishchuk 1976, 1977; Starobinsky

1980; Linde 1982). Observations of this radiation would provide a

unique insight into poorly understood processes in the very early

Universe, at energy scales ∼1016 GeV and cosmic times ∼10−32 s

(BICEP2/Keck et al. 2015; Ade et al. 2014). At long wavelengths,

GWs generated during an inflationary epoch produce a character-

istic signature in the polarization of the CMB radiation, as well

as CMB temperature anisotropies (Grishchuk 2005). At shorter

wavelengths, such as the PTA observational window, this radiation

manifests itself as a contribution to the present-day energy density

spectrum �gw(f). The background spectrum is directly related to the

primordial tensor spectral index nt and the equation of state of the

early-Universe (see e.g. Zhao 2011; Zhao et al. 2013).

For standard single-field inflationary models, nt is related to the

scalar-to-tensor ratio r by nt = −r/8 (Copeland et al. 1993). If

we further assume that at the end of inflation the Universe is not

characterized by a ‘stiff’ equation of state but enters a radiation

dominated era, w = 1/3, the spectrum of the background can be

written as in Zhao et al. (2013),

�relic
gw (f ) ≈ 1.3 × 10−161010nt

( r

0.12

)

(

f

yr−1

)nt

, (58)

where it was implicitly assumed that h = 0.6711. Current results

from BICEP2/Keck et al. (2015) set a limit of r < 0.12, and therefore

the background spectrum is almost flat over a wide frequency range.
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By comparing the frequency dependency with our model we can

therefore see that γ ≈ 5.

We can now use the Bayesian analysis methods reported in Sec-

tion 5.1.1 to perform an analysis where we vary the intrinsic noise

parameters for the pulsars, and fix the spectral index of the cor-

related GWB term to γ = 5, which implicitly assumes nt = 0,

see e.g. Zhao et al. (2013). This yields a 95 per cent upper limit of

A < 1.4 × 10−15 which translates to

�relic
gw (f )h2 < 1.2 × 10−9, (59)

a factor of 9 improvement from previously reported limits in

Demorest et al. (2013), and a factor of 16 more constraining than

Jenet et al. (2006). Equation (58) can be inverted to yield a limit

on the scalar-to-tensor ratio of r < 2.5 × 106 (with nt = 0). While

standard inflationary scenarios assume nt ≤ 0, string-gas cosmology

predicts a positive tilt in the primordial tensor spectrum (see e.g.

Brandenberger et al. 2007; Brandenberger, Nayeri & Patil 2014)

which we cannot yet rule out. Future searches can set limits on nt,

providing the cosmology community independent measurements of

this value, as well as independent constraints on r.

The limit on �relic
gw (f ) < 1.2 × 10−9 is a factor ∼106 from the

predicted value reported in equation (58), which may even be

beyond the capabilities of a future PTA using the Square Kilo-

metre Array (SKA; Janssen et al. 2015), but is significantly

more stringent than the indirect big bang nucleosynthesis limit
∫

�gw(f)d(ln f) < 1.1 × 10−5(Nν − 3), where Nν is the effective

number of neutrino species at the time of big bang nucleosynthesis,

see e.g. Allen (1997) and Maggiore (2000). Current Planck Collab-

oration XIII (2015) limits place a limit on Nν < 3.7. CMB exper-

iments also set limits of a similar order of magnitude, h2
∫

�gw(f)

d(ln f) < 8.7 × 10−6, see Sendra & Smith (2012), Smith et al.

(2006), whereas ground-based interferometers, which measure the

relic GWB at specific frequency intervals, have recently been able

to do better. Indeed, LIGO and Virgo reported new constraints in

four different frequency bands, the most stringent being at f = 41.5–

169.25 Hz, where �gw(f) = 5.6 × 10−6 at 95 per cent confidence,

with an assumed H0 = 68 km s−1 Mpc−1 Aasi et al. (2014). To

make a direct comparison to our result, we set h = 0.68 in equation

(59) and find �gw(f) = 2.6 × 10−9, over three orders of magnitude

more constraining.

We want to stress, however, that models such as those described

in Grishchuk (2005), Brandenberger et al. (2014), Brandenberger

et al. (2007) with values of γ ∈ [4.6, 5] with nt ∈ [0, 0.9], may lead

to much larger values �relic
gw (f )h2 ∼ 10−14, which may be within

the reach of the SKA, see Zhao et al. (2013) for further details.

7 C O N C L U S I O N S

In this paper, we have used a six pulsar subset of the recent EPTA

data release presented in D15 to set a robust limit on the amplitude of

a stochastic GWB using several models. When considering a power-

law model for the background, we obtain a limit of A = 3.0 × 10−15

at a spectral index of γ = 13/3, consistent with a GWB dominated

by SMBHBs, equivalent to �gw(f)h2 = 1.1 × 10−9 at 2.8 nHz. When

allowing the spectral index to vary freely over a prior range from

0to7, A = 1.3 × 10−14. This limit was obtained using a Bayesian

analysis, in which we fit simultaneously for the intrinsic spin-noise

and DM variation parameters for each pulsar, along with the GWB

and additional common signals, including clock and Solar system

ephemeris errors. We stress that the simultaneous fit of the GWB

signal with the individual pulsar noise parameters, and additional

sources of common noise is crucial to obtain a robust limit. Fixing

the intrinsic pulsar noise to the maximum likelihood values obtained

by the single pulsar analysis and searching for a correlated signal a

posteriori erroneously leads to an upper limit which is a factor of

2 more stringent. A series of simulations, and a parallel frequentist

pipeline employing the optimal statistic yields consistent results,

corroborating the robustness of our analysis. We also present a

more general analysis, where we do not use a power-law model for

the background, but obtain limits on the correlated power spectrum

at a series of discrete frequencies, and show that our sensitivity is

greatest at a frequency of ∼5 × 10−9 Hz.

In both cases, we performed model selection using the Bayesian

evidence for models that include a common red noise process that is

either correlated between pulsars according to the isotropic overlap

reduction function, or that is uncorrelated between the pulsars in the

data set. We obtained a difference in the logarithm of the Bayesian

evidence of −1.0 ± 0.5 for the power law, and 0.2 ± 0.3 for the

more general model, indicating that the data set is not able to differ-

entiate between these two cases. We confirm this result by obtaining

confidence intervals for the correlation coefficients between pulsars

as a function of their angular separation on the sky and find them to

be consistent both with zero correlation, and the Hellings–Downs

curve.

Finally, we discussed the implications of our analysis on the

astrophysics of SMBHBs, and derived upper limits on the string

tension of a cosmic (super)string network and for a relic GWB. Our

upper limit of A = 3.0 × 10−15 at a spectral index of γ = 13/3 skims

the region of the expected GWB predicted by recent astrophysical

models, but is still too high to place stringent constraints on the

cosmological SMBHB population. An improvement of a factor 2–3

would place our sensitivity at the heart of the expected signal range

for the included models, placing considerable constraints on possi-

ble populations of merging supermassive black holes. In the case of

a Nambu–Goto field theory cosmic string network, the upper limit

on the string tension was evaluated to be Gμ/c2 < 1.3 × 10−7,

identical to the best so far result from CMB investigations; the re-

sult presented by the Planck Collaboration combining data from

Planck, SPT and ACT. Planck has managed to measure the tem-

perature anisotropies of the CMB to an unprecedented detail, and

it is expected that the string tension limits will not be improved

significantly in the future unless there is an inclusion of CMB po-

larization data. On the other hand, the constraints from PTAs will

continue to improve significantly as longer and more precise data

sets are obtained, since μ ∝ �1/2. Therefore, the PTA constraints

on the string tension, as long as there is a careful treatment of

all the involved uncertainties, have the potential to be the most

stringent in the coming years, until full-sky CMB polarization in-

struments become a reality (i.e. COrE+5). Our limit on the relic

GWB, �relic
gw (f )h2 = 1.2 × 10−9, is a factor of 9 more constrain-

ing than the previous NANOGrav limit reported in Demorest et al.

(2013), and 16 times more constraining than the last PPTA limit,

see Jenet et al. (2006). Although the expected level of the relic GW

energy density is �relic
gw (f )h2 ∼ 10−15 in the PTA band, this number

may increase by an order of magnitude for models with non-flat

primordial spectra (i.e. with non-zero tensor indices, nt), described

in Grishchuk (2005). Such models describe a relic GWB which may

just be within the grasp of the SKA according to studies by Zhao

et al. (2013).

5 https://hangar.iasfbo.inaf.it/core/
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