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EuroSAT: A Novel Dataset and Deep Learning

Benchmark for Land Use and Land

Cover Classification
Patrick Helber , Benjamin Bischke , Andreas Dengel, and Damian Borth

Abstract—In this paper, we present a patch-based land use and
land cover classification approach using Sentinel-2 satellite images.
The Sentinel-2 satellite images are openly and freely accessible,
and are provided in the earth observation program Copernicus.
We present a novel dataset, based on these images that covers
13 spectral bands and is comprised of ten classes with a total of
27 000 labeled and geo-referenced images. Benchmarks are
provided for this novel dataset with its spectral bands using
state-of-the-art deep convolutional neural networks. An overall
classification accuracy of 98.57% was achieved with the proposed
novel dataset. The resulting classification system opens a gate
toward a number of earth observation applications. We demon-
strate how this classification system can be used for detecting land
use and land cover changes, and how it can assist in improving
geographical maps. The geo-referenced dataset EuroSAT is made
publicly available at https://github.com/phelber/eurosat.

Index Terms—Dataset, deep convolutional neural network, deep
learning, earth observation, land cover classification, land use
classification, machine learning, remote sensing, satellite image
classification, satellite images.

I. INTRODUCTION

W
E ARE currently on the edge of public and continu-

ous access to satellite image data for earth observation.

Governmental programs such as ESA’s Copernicus and NASA’s

Landsat are making significant efforts to make such data freely

available for commercial and non-commercial purposes with the

intention to fuel innovation and entrepreneurship. With access to

such data, applications can be realized in the domains of agricul-

ture, disaster recovery, climate change, urban development, and

environmental monitoring [2], [3], [5], [36]. However, to fully

utilize the data for such applications, satellite images must first

be processed and transformed into structured semantics [35].

One such type of fundamental semantics is land use and land
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Fig. 1. Land use and land cover classification based on Sentinel-2 satellite
images. Patches are extracted for class identification. This visualization high-
lights the classes: Annual Crop, River, Highway, Industrial Buildings, and Res-
idential Buildings.

cover classification [1], [29]. The aim of land use and land cover

classification is to automatically provide labels describing the

represented physical land type and usage (e.g., residential, in-

dustrial, etc.). Fig. 1 shows an example of land use and land

cover classification based on a Sentinel-2 satellite image. The

illustration in Fig. 2 shows an overview of land use and land

cover classification process using satellite images.

As is often observed in supervised machine learning, the per-

formance of classification systems strongly depends on the avail-

ability of high-quality datasets with a suitable set of classes [21].

In particular, when considering the recent success of deep con-

volutional neural networks (CNNs) [12], having large quantities

of training data available is crucial in order to train such a net-

work. Unfortunately, current land use and land cover datasets

are small-scale or rely on data sources that do not allow for the

mentioned domain applications.

In this paper, we propose a novel satellite image dataset for

the task of land use and land cover classification. The proposed

EuroSAT dataset consists of 27 000 labeled images with ten dif-

ferent land use and land cover classes. The proposed dataset is

unique from previous datasets in which it is multi-spectral, cov-

ering 13 spectral bands in the visible, near infrared, and short

wave infrared parts of the spectrum. In addition, the proposed

dataset is geo-referenced and based on openly and freely acces-

sible earth observation data, and therefore, allowing for a unique

range of applications. The labeled dataset EuroSAT is made
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Fig. 2. This illustration shows an overview of the patch-based land use and land cover classification process using satellite images. A satellite scans the earth
acquiring images. Patches are then extracted out of these images to be used for classification. The aim is to automatically provide labels describing the represented
physical land type or land usage. To do so, an image patch is fed into a classifier (e.g., a neural network, as shown in this illustration) and the classifier outputs the
class shown on the image patch.

publicly available at https://github.com/phelber/eurosat. Fur-

ther, we provide a full benchmark demonstrating robust clas-

sification performance, which is the basis for developing appli-

cations in the previously mentioned domains. We outline how

the classification model can be used for detecting land use or land

cover changes and how it can assist in improving geographical

maps.

We provide this paper in the context of the recently published

EuroSAT dataset, which can be used similar to [18] as a basis

for large-scale training of deep neural networks for the task of

satellite image classification.

In this paper, we make the following contributions:

1) We introduce the first large-scale patch-based land use

and land cover classification dataset based on Sentinel-2

satellite images. Every image in the dataset is labeled and

geo-referenced. We release the RGB and the multi-spectral

(MS) version of the dataset.

2) We provide benchmarks for the proposed EuroSAT dataset

using CNNs.

3) We evaluate the performance of each spectral band of the

Sentinel-2 satellite for the task of patch-based land use

and land cover classification.

II. RELATED WORK

In this section, we review previous studies concerning land

use and land cover classification. In this context, we present

remotely sensed aerial and satellite image datasets. Furthermore,

we review state-of-the-art image classification methods for land

use and land cover classification.

A. Classification Datasets

The classification of remotely sensed images is a challeng-

ing task. The progress of classification in the remote sensing

area has particularly been inhibited because of the lack of re-

liably labeled ground truth datasets. A popular and intensively

studied [6], [19], [20], [27], [29] remotely sensed image classifi-

cation dataset known as UC Merced (UCM) land use dataset was

introduced by Yang et al. [29]. The dataset consists of 21 land

use and land cover classes. Each class contains 100 images, each

measuring 256 × 256 pixels with a spatial resolution of about

30 cm/pixel. All images are in the RGB color space and were

extracted from the USGS National Map Urban Area Imagery

collection, i.e., the underlying images were acquired from an

aircraft. Unfortunately, a dataset with 100 images per class is of

small-scale. In an attempt to enhance the dataset situation, var-

ious works used commercial Google Earth images to manually

create novel datasets, [22], [27], [28], [30] such as the two bench-

mark datasets PatternNet [37] and NWPU-RESISC45 [7]. The

datasets are based on very-high-resolution images with a spatial

resolution of up to 30 cm/pixel. Since the creation of a labeled

dataset is extremely time-consuming, these datasets, thus, con-

sist of only a few hundred images per class. One of the largest

datasets is the aerial image dataset (AID) [27]. The AID dataset

consists of 30 classes with 200–400 images per class. The 600×

600 high-resolution images were also extracted from Google

Earth imagery.

Compared to the EuroSAT dataset presented in this paper,

the previously listed datasets rely on commercial very-high-

resolution and preprocessed images. Using commercial and pre-

processed very-high-resolution image data makes these datasets

unsatisfying for real-world Sentinel-2 earth observation applica-

tions as proposed in this paper. Furthermore, while these datasets

put a strong focus on strengthening the number of covered

classes, the datasets suffer from a low number of images per

class. With a spatial resolution of up to 30 cm/pixel and the pos-

sibility of identifying and distinguishing classes like churches,

schools, etc., these previously defined datasets are difficult to

compare to the dataset proposed in this paper.

A study more similar to this paper, provided by Penatti

et al. [20], analyzed remotely sensed satellite images with a

spatial resolution of 10 m/pixel to classify coffee crops. On

the basis of these images, Penatti et al. [20] introduced the

Brazillian Coffee Scene (BCS) dataset. The BCS dataset covers

the two classes: coffee crop and non-coffee crop. Each class is

comprised of 1423 images. The images consist of a red, green,

and near-infrared band.

Similar to the currently proposed EuroSAT dataset, Basu

et al. [1] introduced the SAT-6 dataset relying on aerial images.

This dataset was extracted from images with a spatial resolution

of 1 m/pixel. The image patches were created using images from

the National Agriculture Imagery Program (NAIP). The SAT-6

covers the six different classes: Barren Land, Trees, Grassland,

Roads, Buildings, and Water Bodies. The proposed patches have

a size of 28 × 28 pixels per image and consist of a red, green,

blue, and a near-infrared band.
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B. Land Use and Land Cover Classification

CNNs are a type of neural network [13], which through im-

pressive results on image classification challenges [12], [21],

[23] became well known as the state-of-the-art image classifi-

cation method in computer vision and machine learning.

To classify remotely sensed images, various different feature

extraction and classification methods (e.g., random forests)

were evaluated on the basis of introduced datasets. Yang et al.

evaluated Bag-of-Visual-Words (BoVW) and spatial extension

approaches on the UCM dataset [29]. Basu et al. analyzed

deep belief networks, basic CNNs, and stacked denoising au-

toencoders on the SAT-6 dataset [1]. Basu et al. also presented

their own framework for the land cover classes introduced in

the SAT-6 dataset. The framework extracts features from the

input images, normalizes the extracted features, and uses the

normalized features as an input to a deep belief network. Along

with low-level color descriptors, Penatti et al. also evaluated

deep CNNs on the UCM and BCS dataset [20]. In addition to

deep CNNs, Castelluccio et al. intensively evaluated various

machine learning methods (e.g., BoVWs, spatial pyramid match

kernels) for the classification of the UCM and BCS dataset.

In the context of deep learning, the deep CNNs used in this

paper have been trained from scratch or fine-tuned by using

a pretrained network [6], [7], [16], [19], [31]. The networks

were mainly pretrained on the ILSVRC-2012 image classifica-

tion challenge [21] dataset. Even though these pretrained net-

works were trained on images from an entirely different domain,

the features generalized well. Therefore, the pretrained networks

proved to be suitable for the classification of remotely sensed

images [17]. The presented work extensively evaluated all pro-

posed machine learning methods and concluded that deep CNNs

outperformed non-deep learning approaches on the considered

datasets [6], [15], [17], [27].

III. DATASET ACQUISITION

Alongside NASA with its Landsat Mission, the European

Space Agency (ESA) is making increased efforts to improve

earth observation within its Copernicus program. Under this pro-

gram, ESA operates a series of satellites known as Sentinels.

In this paper, we use multi-spectral image data, provided by

the Sentinel-2A satellite, in order to address the challenge of

land use and land cover classification. The Sentinel-2A is one

of the two satellites in the two-satellite constellation consist-

ing of the identical land monitoring satellites Sentinel-2A and

Sentinel-2B. The satellites were successfully launched in June

2015 (Sentinel-2A) and March 2017 (Sentinel-2B). Both sun-

synchronous satellites capture earth’s global land surface with

a multispectral imager (MSI) covering the 13 different spectral

bands listed in Table I. The three bands B01, B09, and B10 are

intended to be used in the correction of atmospheric effects (e.g.,

aerosols, cirrus, or water vapor). The remaining bands are pri-

marily intended for identifying and monitoring land use and land

cover classes. In addition to mainland coverage, large islands as

well as inland and coastal waters are covered by these two satel-

lites. Each satellite will deliver imagery for at least seven years

with a spatial resolution of up to 10 m/pixel. Both satellites carry

TABLE I
ALL 13 BANDS COVERED BY SENTINEL-2’S MULTISPECTRAL IMAGER (MSI)

The identification, the spatial resolution, and the central

wavelength are listed for each spectral band.

fuel for up to 12 years of operation, which allows for an exten-

sion of the operation. The two-satellite constellation generates a

coverage of almost the entire earth’s land surface approximately

every five days, i.e., the satellites capture each point in the cov-

ered area about every five days. This short repeat cycle, as well

as the future availability of the Sentinel satellites, allows for

continuous monitoring of the earth’s land surface for the next

20–30 years. Most importantly, the data are openly and freely

accessible and can be used for any application (commercial or

non-commercial).

We are convinced that the large volume of satellite data in

combination with powerful machine learning methods will in-

fluence future research. Therefore, one of our key research aims

is to make this large amount of data accessible for machine

learning based applications. To construct an image classifica-

tion dataset, we performed the following two steps:

1) Satellite image acquisition: We gathered satellite images

of European cities distributed in over 34 countries as

shown in Fig. 5.

2) Dataset creation: On the basis of the obtained satellite

images, we created a dataset of 27 000 geo-referenced

and labeled image patches. The image patches measure

64 × 64 pixels and have been manually checked.

A. Satellite Image Acquisition

We have downloaded satellite images taken by the satel-

lite Sentinel-2A via Amazon S3. We chose satellite images

associated with the cities covered in the European Urban

Atlas. The covered cities are distributed over the 34 Euro-

pean countries: Austria, Belarus, Belgium, Bulgaria, Cyprus,

Czech Republic (Czechia), Denmark, Estonia, Finland, France,

Germany, Greece, Hungary, Iceland, Ireland, Italy/Holy See,

Latvia, Lithuania, Luxembourg, Macedonia, Malta, Republic

of Moldova, Netherlands, Norway, Poland, Portugal, Romania,

Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, and

United Kingdom.
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Fig. 3. Diagram illustrates the EuroSAT dataset creation process.

In order to improve the chance of attaining valuable im-

age patches, satellite images with a low cloud level were se-

lected. Along with the possibility to generate a cloud mask, ESA

also provides a cloud level value for each satellite image; thus,

allowing for quick selections of images with low percentages of

clouds covering the land scene.

We aimed with the objective of covering as many countries

as possible in the EuroSAT dataset in order to cover the

high intra-class variance inherent to remotely sensed images.

Furthermore, we have extracted images recorded throughout

the year to attain a variance as high as possible within the

covered land use and land cover classes. Within each class

of the EuroSAT dataset, different land types of the class are

represented, such as different types of forests in the Forest

class or different types of industrial buildings in the Industrial

Building class. Between the classes, there is a low positive

correlation. The classes most common to each other are the two

presented agricultural classes and the two classes representing

residential and industrial buildings. The composition of the

individual classes and their relationships are specified in the

mapping guide of the European Urban Atlas [38]. An overview

diagram of the dataset creation process is shown in Fig. 3.

The proposed EuroSAT dataset poses challenges for classi-

fication stemming from several sources of intra-class variation.

For example, the class River (see Fig. 4) contains patches where

the width of the stream or its curvature varies significantly. Sim-

ilarly, the angle of the streets in the Highway class are randomly

distributed, making low level features insufficient for classifi-

cation. On the other hand, a limited inter-class variation can be

observed between different classes, such as Pasture and Forest.

Moreover, similar textures can be observed between Industrial

Buildings and Residential Buildings as well as between the two

kinds of crops defined in the dataset. The mentioned properties

make this classification task much more challenging as models

cannot rely on simple low level features such as color histograms

or edge detection methods. Similar properties are present in the

other classes (also see the classes Sea & Lake and Herbaceous

Vegetation in Fig. 4.

B. Dataset Creation

The Sentinel-2 satellite constellation provides approximately

1.6 TB of compressed images per day. Unfortunately, supervised

machine learning is restricted by the lack of labeled ground truth

data, even with this amount of data. There were two motivations

for the generation of the benchmarking EuroSAT dataset: first,

the objective of making this already open and free satellite data

accessible to various earth observation applications, and second,

the observation that existing benchmark datasets are not suitable

for the intended applications with Sentinel-2 satellite images.

The dataset consists of 10 different classes with 2000–3000

images per class. In total, the dataset has 27 000 images. The

patches measure 64 × 64 pixels. We have chosen ten different

land use and land cover classes based on the criteria that they are

distinguishable at a resolution of 10 m/pixel and are frequently

covered by the European Urban Atlas, thus are able to generate

thousands of image patches. To differentiate between different

agricultural land uses, the proposed dataset covers the classes:

Annual Crop, Permanent Crop (e.g., fruit orchards, vineyards, or

olive groves), and Pastures. The dataset also discriminates built-

up areas by covering the classes: Highway, Residential Build-

ings, and Industrial Buildings. The Residential Buildings class

was created using the urban fabric classes described in the Eu-

ropean Urban Atlas. Different water bodies appear in the class

River and in the class Sea & Lake. Furthermore, undeveloped

environments, such as forest and herbaceous vegetation are in-

cluded, each in their own class. An overview of the covered

classes with four samples per class is shown in Fig. 4.

We manually checked all 27 000 images multiple times and

corrected the ground truth by sorting out mislabeled images as

well as images complicated by snow or ice. Examples of dis-

carded images are shown in Fig. 6. The sample images are in-

tended to show industrial buildings. Clearly, however, no in-

dustrial building is visible in the image. Note that the proposed

dataset has not received atmospheric correction, which can re-

sult in images with a color cast. Extreme cases are visualized

in Fig. 7. With the intention of the classifier also learning these

cases, we did not filter the respective samples and let them flow

into the dataset.

Along with the 13 covered spectral bands, the new dataset

also has three further central innovations. First, the dataset is

based on free satellite images, unlike Google Earth imagery,

and does not rely on data sources that are not updated on a high-

frequent basis (e.g., NAIP used in [1]). Instead, an open and free

earth observation program whose satellites deliver images for

the next decades is used allowing real-world earth observation

applications. Second, the dataset uses a ten times lower spatial

resolution than that of the benchmark dataset most similar to

our research, and also distinguishes ten classes instead of six.
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Fig. 4. This overview shows sample image patches of all ten classes covered in the proposed EuroSAT dataset. The images measure 64 × 64 pixels. Each
class contains 2000–3000 images. In total, the dataset has 27 000 geo-referenced images. (a) Industrial buildings. (b) Residential buildings. (c) Annual crop.
(d) Permanent crop. (e) River. (f) Sea and lake. (g) Herbaceous vegetation. (h) Highway. (i) Pasture. (j) Forest.

Fig. 5. EuroSAT dataset distribution. The geo-referenced images are dis-
tributed all across Europe. The distribution is influenced by the number of rep-
resented cities per country in the European Urban Atlas.

Fig. 6. Four examples of unideal image patches, which are intended to show
industrial buildings. Clearly, no industrial building is recognizable due to clouds,
mislabeling, dead pixels, or ice/snow.

Fig. 7. Three image patches affected by color casts due to atmospheric effects.

For instance, we distinguish between built-up class, separating

into a residential and an industrial class, and distinguish between

different agricultural land uses. Third, we release the EuroSAT

dataset in a geo-referenced version.

With the release of the geo-referenced EuroSAT dataset, we

aim to make the large amount of Sentinel-2 satellite imagery

accessible for machine learning. The effectiveness of these ap-

proaches was successfully demonstrated in [32]–[34].

IV. DATASET BENCHMARKING

As shown in previous work [6], [15], [17], [19], deep CNNs

have been shown to outperform non-deep learning approaches

in land use and land cover image classification. Accordingly,

we use the state-of-the-art deep CNN models GoogleNet [25]

and ResNet-50 [9], [10] for the classification of the introduced

land use and land cover classes. The networks make use of the

inception module [14], [24]–[26] and the residual unit [9], [10].

For the proposed EuroSAT dataset, we also evaluated the perfor-

mance of the 13 spectral bands with respect to the classification

task in which we evaluated the classification performance using

single-band and band combination images.

A. Comparative Evaluation

Each dataset was divided into a training set and a test set

(80/20 ratio, respectively). We ensured that the split was applied

class-wise. While three (the red, green, and blue) bands have

already been covered by almost all aerial and satellite image

datasets, the proposed EuroSAT dataset consists of 13 spectral

bands. For the comparative evaluation, we computed images in

the RGB color space by combining the three bands: red (B04),

green (B03), and blue (B02). All images have been rescaled

to 224 × 224 pixels. The 16-bit Sentinel-2 satellite images

were converted to 8-bit images by projecting values in the range

0–2750 onto values in the range 1–255 (with a no data value of 0).
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TABLE II
CLASSIFICATION ACCURACY (%) OF DIFFERENT TRAINING-TEST SPLITS ON THE EUROSAT DATASET

TABLE III
HYPERPARAMETERS USED IN THE EXPERIMENTS

For benchmarking, we evaluated the performance of the

BoVW approach using SIFT features and a trained SVM. In

addition, we trained a shallow CNN (three layers), a ResNet-

50, and a GoogleNet model on the training set. The shallow

CNN consists of three layers each composed of a 3 × 3 convo-

lutional layer (stride = 1, activation = relu) and a subsequent

4 × 4 max pooling layer (stride = 2). The layers are followed

by a fully connected layer. Table III lists the used hyperparame-

ters. Throughout the training of the CNN models, multiple data

augmentation strategies have been used. The used strategies in-

clude horizontal image flipping, shearing with a range of 0.2,

and random zooming with a range of 0.2. In the training process,

we reduced the learning rate by a factor of ten when a plateau

in the validation loss was detected (no improvement over five

epochs).

We calculated the overall classification accuracy to evalu-

ate the performance of the different models on the considered

datasets. In Table II, we show how the approaches performed

with different training-test splits for the EuroSAT RGB dataset.

It can be seen that all CNN approaches outperformed the BoVW

method and, overall, deep CNNs performed better than that of

the shallow CNNs. Nevertheless, the shallow CNN classified the

EuroSAT classes with a classification accuracy of up to 93.62%.

We present how the different CNN approaches perform with dif-

ferent training-test splits for the UCM dataset in Table VI, for

the AID dataset in Table VII, for the SAT-6 dataset in Table VIII,

and for the BCS dataset in Table IX. It can be seen that the shal-

low CNN is sufficient for the datasets SAT-6 and BCS. Deep

CNNs significantly outperform the shallow CNN, however, on

more challenging datasets, such as UCM and AID. Further ex-

periments on the presented datasets can be found in [6], [19],

[22], [27].

Table IV lists the classification results achieved for the two

best performing CNN models, GoogleNet and ResNet-50. In

this experiment, the GoogleNet and ResNet-50 CNN mod-

els were pretrained on the ILSVRC-2012 image classification

TABLE IV
BENCHMARKED CLASSIFICATION ACCURACY (%) OF THE TWO BEST

PERFORMING CLASSIFIERS GOOGLENET AND RESNET-50 WITH

A 80/20 TRAINING-TEST SPLIT

Both CNNs have been pretrained on the image classification dataset ILSVRC-

2012 [21].

TABLE V
CLASSIFICATION ACCURACY (%) OF A FINE-TUNED RESNET-50 CNN ON THE

PROPOSED EUROSAT DATASET WITH THE THREE DIFFERENT BAND

COMBINATIONS COLOR-INFRARED (CI), SHORTWAVE-INFRARED (SWIR),
AND RGB AS INPUT

dataset [21]. In all fine-tuning experiments, we first trained the

last layer with a learning rate of 0.01. Afterward, we fine-tuned

throughout the entire network with a low learning rate between

0.001 and 0.0001. With a fine-tuned network, we were able to

achieve a classification accuracy of about 2% higher compared

to randomly initialized versions of the networks that have been

trained on the EuroSAT dataset with the same training-test split

(see Table II).

The deep CNNs achieved state-of-the-art results on the UCM

dataset and outperformed previous results on the other three pre-

sented datasets by about 2%–4% (AID, SAT-6, BCS) [6], [19],

[22]. Table IV shows that the ResNet-50 architecture performed

best on the introduced EuroSAT land use and land cover classes.

In order to allow for the evaluation on the class level, Fig. 8

shows the confusion matrix of this best performing network. It

is shown that the classifier sometimes confused the agricultural

land classes as well as the classes highway and river.

B. Band Evaluation

In order to evaluate the performance of deep CNNs using

single-band images as well as shortwave-infrared and color-

infrared band combinations, we used the pretrained ResNet-50

with a fixed training-test split to compare the performance

of the different spectral bands. For the single-band image

evaluation, we used input comprised of images consisting of

information gathered from a single spectral band on all three

input channels. We analyzed all spectral bands, even bands not
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TABLE VI
CLASSIFICATION ACCURACY (%) OF DIFFERENT TRAINING-TEST SPLITS ON THE UCM DATASET

TABLE VII
CLASSIFICATION ACCURACY (%) OF DIFFERENT TRAINING-TEST SPLITS ON THE AID DATASET

TABLE VIII
CLASSIFICATION ACCURACY (%) OF DIFFERENT TRAINING-TEST SPLITS ON THE SAT-6 DATASET

TABLE IX
CLASSIFICATION ACCURACY (%) OF DIFFERENT TRAINING-TEST SPLITS ON THE BCS DATASET

Fig. 8. Confusion matrix of a fine-tuned ResNet-50 CNN on the proposed
EuroSAT dataset using satellite images in the RGB color space.

intended for land monitoring. Bands with lower spatial reso-

lution have been upsampled to 10 m/pixel using cubic-spline

interpolation [8]. Fig. 9 shows a comparison of each spectral

band’s performance. It is shown that the red, green, and blue

bands outperformed all other bands. Interestingly, the bands

red edge 1 (B05) and shortwave-infrared 2 (B12), with an

original spatial resolution of merely 20 m/pixel, showed an

impressive performance. These two bands even outperformed

the near-infrared band (B08), which has a spatial resolution of

10 m/pixel.

Fig. 9. Overall classification accuracy (%) of a fine-tuned ResNet-50 CNN on
the given EuroSAT dataset using single-band images.

In addition to the RGB band combination, we also analyzed

the performance of the shortwave-infrared and color-infrared

band combinations. Table V shows a comparison of the per-

formance of these combinations. As shown, band combination

images outperformed single-band images. Furthermore, images

in the RGB color space performed best in the introduced land

use and land cover classes. Note that the networks pretrained on

the ILSVRC-2012 image classification dataset have initially not

been trained on images other than RGB images.
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Fig. 10. Left image, acquired in the surroundings of Shanghai in Decem-
ber 2015, shows an area classified as industrial. The right image shows the
same region in December 2016, revealing that the industrial buildings have been
demolished.

V. APPLICATIONS

The openly and freely accessible satellite images allow for

a broad range of possible applications. In this section, we

demonstrate that the novel dataset published with this paper al-

lows for real-world applications. The classification result with

an overall accuracy of 98.57% paves the way for these applica-

tions. We show land use and land cover change detection appli-

cations as well as how the trained classifier can assist in keeping

geographical maps up-to-date.

A. Land Use and Land Cover Change Detection

As the Sentinel-2 satellite constellation will scan the earth’s

land surface for the next 20–30 years on a repeat cycle of about

every five days, a trained classifier can be used to continuously

monitor land surfaces and detect changes in land use or land

cover. To demonstrate land use and land cover change detection,

we selected images from the same spatial region but from differ-

ent points in time. Using the trained classifier, we analyzed 64 ×

64 image regions. A change is considered to have occurred if

the classifier delivers different classification results for different

time points from patches taken from the same spatial 64× 64 re-

gion. In the following, we show three examples of noted changes.

In the first example shown in Fig. 10, the classification system

recognized that the land cover had changed in the highlighted

area. The left image, acquired in the surroundings of Shanghai,

China, in December 2015, depicts an area classified as Industrial.

The right image, depicting the same area in December 2016,

reveals that the industrial buildings have been demolished. The

second example is illustrated in Fig. 11. The left image, acquired

in the surroundings of Dallas, USA, in August 2015, shows no

dominant residential buildings in the highlighted area. The right

image shows the same area in March 2017. The system has iden-

tified a change in the highlighted area, revealing that residential

buildings have been constructed over this time period. The third

example presented in Fig. 12 shows that the classification sys-

tem detected deforestation near Villamontes, Bolivia. The left

image was acquired in October 2015. The right image shows

the same region in September 2016, revealing that a large area

has been deforested. The presented examples are particularly

of interest to urban area development, nature protection, and

Fig. 11. Left image, acquired in the surroundings of Dallas, USA, in August
2015, shows no dominant residential buildings in the highlighted area. The right
image shows the same area in March 2017 with residential buildings having
been built.

Fig. 12. Left image was acquired near Villamontes, Bolivia, in October 2015.
The right image shows the same area in September 2016, revealing that a large
area of land has been deforested.

sustainable development. For instance, deforestation is a main

contributor to climate change, therefore, the detection of de-

forested land is of particular interest (e.g., to recognize illegal

clearing of forests).

B. Assistance in Mapping

While a classification system trained with 64 × 64 image

patches does not allow for finely graduated per-pixel segmen-

tation, it can not only detect changes as shown in the previous

examples, but it can also facilitate keeping maps up-to-date. This

is extremely helpful with maps created in a crowdsourced man-

ner like OpenStreetMap (OSM). A possible system can verify

already tagged areas, identify mistagged areas, and include large

area tagging. The proposed system is based on the trained CNN

classifier, and provides classification results for each image patch

created in a sliding windows-based manner.

As shown in Fig. 13, the industrial buildings seen in the left

up-to-date satellite image are almost completely represented in

the corresponding OSM mapping. The right up-to-date satel-

lite image also shows industrial buildings. However, major

aspects of the industrial buildings are not represented in the

corresponding map. Due to the high temporal availability of

Sentinel-2 satellite images in the future, this paper, together

with the published dataset, can be used to build systems that

assist in keeping maps updated. A detailed analysis of the re-

spective land area can then be provided using high-resolution

satellite images and an advanced segmentation approach

[4], [11].
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Fig. 13. Patch-based classification system can verify already tagged areas, identify mistagged areas, and do large area tagging as shown in the above images
and maps. The left Sentinel-2 satellite image was acquired in Australia in March 2017. The right satellite image was acquired in the surroundings of Shanghai,
China, in March 2017. The corresponding up-to-date OpenStreetMap (OSM) mapping images show that the industrial areas in the left satellite image are almost
completely represented (colored gray). However, the industrial areas in the right satellite image are not properly represented.

VI. CONCLUSION

In this paper, we have addressed the challenge of land use

and land cover classification. For this task, we presented a novel

dataset based on remotely sensed satellite images. To obtain this

dataset, we used openly and freely accessible Sentinel-2 satellite

images provided in the earth observation program Copernicus.

The proposed dataset consists of ten classes, covers 13 differ-

ent spectral bands, and includes a total of 27 000 labeled and

geo-referenced images. We provided benchmarks for this dataset

with its spectral bands using state-of-the-art deep CNNs. For this

novel dataset, we analyzed the performance of the 13 different

spectral bands. As a result of this evaluation, the RGB band com-

bination, with an overall classification accuracy of 98.57%, out-

performed the shortwave-infrared and the color-infrared band

combination and leads to a better classification accuracy than

all single-band evaluations. Overall, the available free Sentinel-

2 satellite images offer a broad range of possible applications.

This paper is the first important step to make use of the large

amount of available satellite data in machine learning, allow-

ing for monitoring of earth’s land surfaces on a large scale. The

proposed dataset can be leveraged for multiple real-world earth

observation applications. Possible applications are land use and

land cover change detection and the improvement of geograph-

ical maps.
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