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INTRODUCTION

Shallow coastal bays and lagoons are particularly
vulnerable to the rapid changes in population and land
use occurring in the coastal zone (Sand-Jensen &
Borum 1991, Duarte 1995, Valiela et al. 1997, NRC
2000, Havens et al. 2001, Nixon et al. 2001). Current
estimates of external nutrient loading to coastal bays
are in the same range as those for deeper estuaries,
even though their watersheds are significantly smaller
(Table 1). Today nutrient pollution in the USA repre-
sents one of the greatest threats to the ecological
integrity of coastal ecosystems (NRC 2000, EPA 2001),
and it is projected to increase in the coming decades
(Howarth et al. 2000, 2002). The implications to society
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ABSTRACT: Nutrient loading to coastal bay ecosystems is
of a similar magnitude as that to deeper, river-fed estuar-
ies, yet our understanding of the eutrophication process in
these shallow systems lags far behind. In this synthesis, we
focus on one type of biotic feedback that influences eu-
trophication patterns in coastal bays—the important role
of primary producers in the ‘coastal filter’. We discuss the
2 aspects of plant-mediated nutrient cycling as eutrophica-
tion induces a shift in primary producer dominance: (1) the
fate of nutrients bound in plant biomass, and (2) the effects
of primary producers on biogeochemical processes that in-
fluence nutrient retention. We suggest the following gen-
eralizations as eutrophication proceeds in coastal bays: (1)
Long-term retention of recalcitrant dissolved and particu-
late organic matter will decline as seagrasses are replaced
by algae with less refractory material. (2) Benthic grazers
buffer the early effects of nutrient enrichment, but con-
sumption rates will decline as physico-chemical conditions
stress consumer populations. (3) Mass transport of plant-
bound nutrients will increase because attached perennial
macrophytes will be replaced by unattached ephemeral
algae that move with the water. (4) Denitrification will be
an unimportant sink for N because primary producers
typically outcompete bacteria for available N, and parti-
tioning of nitrate reduction will shift to dissimilatory nitrate
reduction to ammonium in later stages of eutrophication.
In tropical/subtropical systems dominated by carbonate
sediments, eutrophication will likely result in a positive
feedback where increased sulfate reduction and sulfide
accumulation in sediments will decrease P adsorption to
Fe and enhance the release of P to the overlying water.
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Eutrophication of shallow coastal bays typically causes a shift
in dominance from seagrasses and perennial macroalgae to
ephemeral, bloom-forming algae.
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of this trend are significant, as coastal bays
and estuaries provide critical ecosystem
services, including fish and shellfish pro-
duction, and human recreational activities
(Costanza et al. 1997). Historically, coastal
bays have been impacted less by develop-
ment than large estuaries, in part because
of their small size and typically limited out-
lets to the ocean. However, the worldwide
trend for increasing human population
densities along the coastline (Cohen et al.
1997) will impact coastal bays as shifts
from forest to agricultural, suburban, and
urban land use accelerate delivery rates of
nutrients from both point and non-point
sources (e.g. wastewater, agriculture, poul-
try farms, groundwater; Valiela et al. 1992,
Nixon 1997). 

Globally, coastal bay ecosystems occur
on all continents except Antarctica, and
are defined primarily by their very shallow
depth (typically 2 to 5 m); they are some-
times also referred to as lagoons or littoral
zone systems. External nutrient inputs to
these shallow systems are largely via
groundwater and atmospheric deposition,
in part due to the high ratio of sediment
surface area to water volume and the lack
of rivers in many systems (Giblin & Gaines
1990, Paerl 1995). Although we have a
general understanding of the conse-
quences of eutrophication in coastal
bays—including the loss of seagrasses,
harmful micro- and macroalgal blooms,
shifts in food web structure, increased
anoxia/hypoxia, and changes in organic
matter burial and degradation (Cooper &
Brush 1993, Bartoli et al. 1996, Boynton et
al. 1996, Cloern 2001)—we lack sufficient
knowledge of the mechanisms responsible
for these patterns to have a predictive
understanding of eutrophication in these
shallow systems. 

The development of both conceptual and
quantitative models for the effects of
eutrophication in coastal bays lags signifi-
cantly behind that for deeper estuarine
systems. Current conceptual models for
eutrophication in deep estuaries link fresh-
water/nutrient loads and water residence
times with water column properties such
as phytoplankton chlorophyll and anoxic/
hypoxic volumes (Fig. 1; e.g. Scavia et al.
2004, 2006, Swaney et al. in press). Cou-
pled ecological-hydrodynamic and statisti-
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Table 1. Total dissolved nitrogen (TDN) and dissolved inorganic nitrogen
(DIN) loading per water body surface area. Deep estuaries are classified as
>5 m average depth, while shallow coastal bays are usually <5 m and often
<2 m average depth. Sources: 1: Boynton et al. (1995); 2: Boynton et al.
(1996) and references therein; 3: Seitzinger (2000) and references therein;
4: Lee & Olsen (1985); 5: Brock (2001); 6: Buzzelli & Christian (2001); 7: Jan-
icki et al. (2001); 8: Nixon et al. (2001) and references therein; 9: Tomasko et
al. (2001); 10: Hauxwell et al. (2003) and references therein; 11: Stanhope 

(2003); 12: Sigua & Tweedale (2003); 13: Carmichael et al. (2004)

System TDN loading DIN loading Source
(gN m–2 yr–1) (gN m–2 yr–1)

Deep estuaries
Choptank River, MD 4.3 2.9 1,3
Patuxent River, MD 12.6 9.7 1,3
Potomac River, MD, VA 29.3 18.2 1,3
Delaware Bay, DE 18.2 2
Narragansett Bay, RI 27.6 20.2 2,3
Pamlico River, NC 12.0 2
Patapsco River, MD 49.0 2
S. San Francisco Bay, CA 22.6 2
Tokyo Bay, Japan 89.1 2
Scheldt Estuary, Netherlands 188 3
Shallow coastal bays
Albermarle Sound, NC 7.1 2
Apalachicola Bay, FL 7.8 2
Mobile Bay, AL 17.9 2
Assawoman Bay, MD 4.1 2
Chincoteague Bay, MD 3.1 2
Isle of Wight Bay, MD 6.5 2
Sinepuxent Bay, MD 2.4 2
Galveston Bay, TX 32.9 3
Guadalupe Estuary, TX 13.3 8.8 3
Ochlockonee Bay, FL 83.9 22.1 3
Norsminde Fjord, Denmark 161.6 3
Ninigret Pond, RI 5.5 4
Nueces Estuary, TX 4.6 5
Neuse River Estuary, NC 10 6
Tampa Bay, FL 3.3–8.1 7,8
Buttermilk Bay, MA 19.4 7.7 8
Great Bay, NH 34.2 8
Great South Bay, NY 4.5 1.5 8
Hillsborough Bay, FL 27.4 8
Indian River, DE 27.6 8
Rehoboth Bay, DE 12.2 8
Tomales Bay, CA 81 8
Itaipu Lagoon, Brazil 13.5 8
Guarapina Lagoon, Brazil 4.4 8
Urussanga Lagoon, Brazil 0.36 8
Flora Lagoon, Brazil 2.2 8
Piratininga Lagoon, Brazil 7.7 8
Kertinge Nor, Denmark 4.6 8
Randers Fjord, Denmark 231 8
Harvey Estuary, W. Australia 7.7 8
Lagoon of Venice, Italy 30.1–36.8 8
Ems Estuary, Netherlands 55.7 8
Point Judith Pond, RI 5.6 8
Charlestown Pond, RI 6.1 8
Potter Pond, RI 9.5 8
Green Hill Pond, RI 12.7 8
Lemon Bay, FL 4.2 9
Childs River, MA 40.7 10
Eel Pond, MA 6.3 10
Hamblin Pond, MA 2.8 10
Jehu Pond, MA 3.0 10
Quashnet River, MA 29.8 10
Sage Lot Pond, MA 0.76 10
Timms Pond, MA 0.53 10
Hog Island Bay, VA 1.0 11
Indian River Lagoon, FL 1.2 12
Pleasant Bay, MA 2.5 13
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cal models are used to quantify the responses to
increased nutrient loading (e.g. Cerco 1995, Hagy et
al. 2004). These models have limited relevance to shal-
low coastal bays because coastal bays differ from deep
estuaries in 2 fundamental ways: (1) the photic zone
extends to most of the seafloor, and the benthos (sea-
grasses, macroalgae, benthic microalgae) typically
dominates primary production (Valiela et al. 1997,
McGlathery et al. 2001a), and (2) high rates of metabo-
lism of benthic primary producers mediate nutrient
cycling processes and result in strong benthic–pelagic
coupling (e.g. Krause-Jensen et al. 1999, Tyler et al.
2001, Eyre & Ferguson 2002). For example, because of
the importance of benthic–pelagic coupling and the
temporary retention of nutrients in longer-lived plant
biomass (compared to phytoplankton), coastal bays
often have relatively high apparent water quality (low
water column nutrient concentrations, low phyto-
plankton biomass) even when nutrient loading rates
are high for much of the year (Fig. 1; Valiela et al. 1997,
McGlathery et al. 2004). Also, water column stratifica-
tion typically does not occur in these shallow systems;
thus, anoxia occurs in eutrophic bays as episodic
events driven by the collapse of autotrophic communi-
ties, rather than as seasonal bottom water anoxia as in
deep estuaries (Boynton et al. 1996). To date there are

no quantitative models to predict the response of
coastal bay ecosystems to increased nutrient loading.

The current conceptual model of eutrophication in
coastal bays describes a change in biological struc-
ture yet little change in total system metabolism
(Sand-Jensen & Borum 1991, Duarte 1995, Boynton
et al. 1996, Nielsen et al. 2004). This general model
now needs to be extended to integrate both biotic
feedbacks on nutrient cycling as ecological structure
changes during eutrophication and the importance of
water residence time and other physical processes as
drivers of ecosystem response to eutrophication. In
this synthesis, we first briefly review the current con-
ceptual model of eutrophication of shallow coastal
bay ecosystems. We then focus on one type of biotic
feedback that influences eutrophication patterns in
these systems — the important role of primary pro-
ducers in the ‘coastal filter’, and how they influence
the fate and retention of watershed nutrients on
their trajectory to the open ocean. We discuss the
2 aspects of plant-mediated nutrient cycling as
eutrophication induces a shift in primary producer
dominance: (1) the fate of nutrients bound in plant
biomass, and (2) the effects of primary producers on
biogeochemical processes that influence nutrient
retention. 
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Fig. 1. Conceptual models showing general effects of eutrophication in (a) deep, river-fed estuaries and (b) shallow coastal bays
and lagoons. In deep estuaries, nutrient loading is correlated to phytoplankton biomass and/or volume of anoxic water, and the
response is in part related to water residence time. Below the dotted line is the volume of seasonal anoxic water. In shallow bays,
nutrient loading can result in an increase in macroalgal or phytoplankton biomass, depending on water residence time and the
magnitude of nutrient loading. In all cases, seagrasses are lost from the photic zone due to decreased light availability caused by
increased algal standing stocks. Shading reflects water transparency, with the darker areas indicating higher phytoplankton 

biomass
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CURRENT CONCEPTUAL MODEL

The conceptual model of eutrophication in shallow
coastal bays describes a shift in dominance from sea-
grasses and perennial macroalgae to ephemeral,
bloom-forming macroalgae and epiphytes (Sand-
Jensen & Borum 1991, Duarte 1995, Valiela et al.
1997), and ultimately, to phytoplankton dominance in
the most heavily eutrophied systems (Duarte 1995,
Valiela et al. 1997) (Fig. 1). This represents a shift from
large benthic macrophytes with relatively high light
requirements, high biomass per unit area, and low
nutrient turnover rates to algae with lower light
requirements, low biomass per unit area, and high
nutrient turnover rates (e.g. Duarte 1995, Taylor et al.
1995, Borum 1996). It should be noted that very little
attention has been paid to the relative importance of
benthic microalgae as systems become eutrophied
(Sand-Jensen & Borum 1991). Benthic microalgae have
a relatively high tolerance to hypoxia and anoxia
(Sundbäck et al. 1990), sulfide (Admiraal 1984, Kennet
& Hargraves 1985), and long periods of darkness
(Gargas & Gargas 1982, Sundbäck & Graneli 1988),
which suggests that they may be important in the
resilience to, and recovery from, eutrophication (Sund-
bäck & McGlathery 2005). Also, a better under-
standing of eutrophication effects in tropical systems
is needed to refine the model. For example, there is
evidence that in the more speciose and oligotrophic
tropical systems, nutrient enrichment may cause a shift
in seagrass dominance (Fourqurean et al. 1995, Udy &
Dennison 1997) and enhance seagrass production and
areal coverage (Udy et al. 1999) before a shift to algal
dominance occurs. 

Ultimately, the increased decomposition of auto-
trophs in heavily eutrophied systems will cause the
sediments to become increasingly heterotrophic
(Borum & Sand-Jensen 1996). This will result in a
higher nutrient efflux from the sediment to the water
column, which will cause accelerating eutrophication
through internal loading of nutrients (e.g. Rizzo et al.
1992, Meyercordt & Meyer-Reil 1999, Eyre & Ferguson
2002). Sulfide concentrations increase as a result of
high sulfate reduction rates during decomposition, and
high sulfide levels will have an inhibitory effect on
macrophytes, macrofauna, and on some biogeochemi-
cal processes such as coupled nitrification/denitrifica-
tion (Sorensen et al. 1980, Joye & Hollibaugh 1995,
Chambers et al. 2003). Changes in benthic faunal com-
munities as the sediments become more anoxic and
sulfidic will also feed back to influence redox condi-
tions and N cycling processes in the sediment (Diaz &
Rosenberg 1995, Grall & Chauvaud 2002). 

Within this general conceptual framework, there is
also a suggestion that water residence time is a key

factor influencing whether phytoplankton or macroal-
gae contribute the most to total production as systems
become eutrophied, with longer residence times favor-
ing phytoplankton dominance (Fig. 1; Valiela et al.
1997, 2000, Oberg 2005). The assumption is that be-
cause phytoplankton can grow before being flushed
from the system, they can outcompete benthic algae
via shading effects. However, Nixon et al. (2001) failed
to find predictive relationships between nutrient
loading and the dominance of macroalgae versus
phytoplankton in a recent review of 30 shallow coastal
systems with varying nitrogen (N) input rates from 1 to
230 gN m–2 yr–1 and hydraulic residence times from 0.3
to 100 d, or in lagoon mesocosm studies. Several fac-
tors may be responsible for this lack of pattern in addi-
tion to the high interannual variation noted by Nixon et
al. (2001). These include grazing, tidal amplitude, and
the relative importance of internal nutrient loading.
High tidal amplitude in estuaries tends to lower phyto-
plankton biomass for a given nutrient load (Monbet
1992). This is perhaps due to increased sediment
resuspension and decreased light availability (Monbet
1992) or to tidal breakdown of stratification in some
systems like San Francisco Bay that may facilitate
grazing by benthic suspension feeders (Alpine & Clo-
ern 1992). Also, regardless of tidal amplitude or water
residence time, benthic algae can outcompete phyto-
plankton for nutrients if the major nutrient supply is
internal loading from mineralization in the sediments.
Active macro- and micro-algal mats uncouple sedi-
ment biogeochemical cycling from water column pro-
cesses, and reduce the flux of remineralized nutrients
from the sediment to the overlying water (e.g. Sund-
bäck et al. 1991, McGlathery et al. 1997, Anderson et
al. 2003, Tyler et al. 2003), which limits the supply of
nutrients for phytoplankton growth. Short-lived phyto-
plankton blooms that occur in these systems often
coincide with low benthic algal biomass (Sfriso et al.
1992, Valiela et al. 1992, McGlathery et al. 2001a). 

Increased micro- and macro-algal standing stocks
during eutrophication lead to a decline in the depth
limit and abundance of seagrasses and perennial
macroalgae (Kautsky et al. 1986, Abal & Dennison
1996, Short et al. 1995, Nielsen et al. 2002). One report
suggests that 60% of the global seagrass loss is due to
nutrient loading related to anthropogenic activities
(Short & Wyllie-Escheverria 1996). We know from field
observations and experimental mesocosm studies that
much of this decline is due to a reduction in light avail-
ability and altered biogeochemical conditions from
increased algal standing stocks (as macroalgae, epi-
phytes and/or phytoplankton; Twilley et al. 1985, Neck-
les et al. 1994, Short et al. 1995, Taylor et al. 1995,
Hauxwell et al. 2001, 2003, Nixon et al. 2001). Epi-
phytes attenuate up to 90% of the light at the scale of
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the seagrass blade (Sand-Jensen 1977, Howard & Short
1986, Brush & Nixon 2002). Bloom-forming macroalgae
form dense canopies up to 1 m thick over seagrass beds
in eutrophic waters and can also decrease light levels
by >90% in the upper few centimeters of the mat
(Krause-Jensen et al. 1996, Peckol & Rivers 1996, Astill
& Lavery 2001). Shading by increased algal standing
stocks reduces the photosynthetic oxygen production of
seagrasses, which decreases oxygen translocation and
release to the rhizosphere (Goodman et al. 1995, but
see Terrados et al. 1999). The high concentrations of
sulfide that develop in the rhizosphere decrease nutri-
ent uptake and plant energy status (Pregnall et al.
1984), and result in further reductions in photosynthe-
sis, growth, and leaf density, and sometimes, eventual
mortality (Goodman et al. 1995, Holmer & Bondgaard
2001). In addition, oxygen depletion and high ammo-
nium (NH4

+) concentrations that typically result from
mineralization in the lower layers of dense macroalgal
mats can cause seagrass mortality, especially for new
shoots that may exist completely within the anoxic layer
(Krause-Jensen et al. 1996, McGlathery et al. 1997,
Hauxwell et al. 2001). Greve et al. (2003) showed that
the meristematic tissue at the base of the seagrass leaf
is particularly sensitive to anoxia, presumably because
this tissue lacks the physiological adaptations that exist
in roots and rhizomes to deal with anoxia.

Even though there is a shift in the relative contribu-
tion of the different plant groups to total primary pro-
duction when shallow systems are eutrophied, there is
some evidence from comparative studies that total
primary production (gC m–2 yr–1) does not change
(Fig. 2a; Borum & Sand-Jensen 1996, Nixon et al.
2001). This is in contrast to deeper systems where
eutrophication enhances phytoplankton production
and results in increased total system production (Clo-
ern 2001 and references therein). This difference is
due to the switch between benthic and pelagic produc-
tion as eutrophication proceeds in shallow coastal bays
(Borum & Sand-Jensen 1996). There may be a small
initial increase in total production as fast-growing
algae are stimulated but seagrasses still survive, but as
phytoplankton ultimately replace benthic macro-
phytes, total production appears to remain relatively
stable (Fig. 2b). 

As ecological structure changes, biotic feedbacks of
primary producers at the local scale are important
determinants of the response to eutrophication (1) dir-
ectly through uptake, and the fate of plant-bound
nutrients via mineralization and long-term retention of
recalcitrant organic matter in sediments, grazing, and
advection; and (2) indirectly through the influence on
physicochemical conditions that affect bacterially- and
chemically-mediated nutrient transformations such as
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mineralization, nitrification, denitrification, N fixation,
dissimilatory nitrate reduction to ammonium (DNRA),
anaerobic ammonium oxidation (anammox), sediment
diagenesis and sorption/desorption characteristics of
the sediments. Variations in the rates and dominance
of these processes will influence the retention of water-
shed nutrients on their trajectory to the open ocean. 

BIOTIC FEEDBACKS — THE ROLE OF PLANTS IN
THE ‘COASTAL FILTER’

Direct effects

Temporary retention in plant biomass

Pedersen et al. (2004) estimated the combined
annual N and phosphorus (P) assimilation by microal-
gae, macroalgae and rooted macrophytes in 18 shallow
temperate systems and found that assimilation by pri-
mary producers was similar to, or in excess of, external
nutrient inputs to the systems as long as nutrient
loadings were less than about 50 gN m–2 yr–1 and

5 gP m–2 yr–1 (Fig. 3). Most of the N loading rates for
shallow coastal bays reported in Table 1 are below this
value, suggesting that most nutrients entering coastal
bay ecosystems pass through the primary producer
communities. Interestingly, though biomass and pro-
duction rates vary substantially among the primary
producer groups, the magnitude of nutrient assimila-
tion may not be tremendously different (Table 2; K. J.
McGlathery, A. C. Tyler, M. S. Thomsen & P. Berg
unpubl.). These similar rates imply that the turnover
time and fate of nutrients bound in plant tissue have a
key influence on the role of primary producers in nutri-
ent retention. 

Nutrients that are assimilated by plants as systems
become eutrophied are, for the most part, only tem-
porarily retained in the system on a time scale of days
to months. Tissue turnover times vary for the different
autotrophs, with seagrasses having longer retention
time (weeks to months) than bloom-forming macroal-
gae (days to weeks) and microalgae (days). Most of the
nutrients bound in plant tissue will ultimately become
available through leakage from live tissue, reminer-
alization, transfer to microbial and grazing trophic
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Table 2. Calculated nitrogen assimilation of benthic microalgae (BMA), macroalgae (MA), and phytoplankton in the temperate
coastal bay, Hog Island Bay, Virginia. Shown are seasonal mean rates at 3 sites that represent a mainland to barrier island
transect across the bay. Benthic microalgal and phytoplankton nitrogen assimilation rates are calculated from 90% gross primary
production (AssGPP), using a C:N ratio of 9 for benthic microalgae and 6.6 for phytoplankton. Macroalgal N assimilation is based
on growth, calculated as an increase of biomass, and measured C:N ratios. Units are mmolN m–2 d. Data from K. J. McGlathery, 

A. C. Tyler, M. S. Thomsen & P. Berg (unpubl.)

Winter Spring Summer Fall
BMA MA Plankton BMA MA Plankton BMA MA Plankton BMA MA Plankton

Mainland creeks 3.02 0.50 0 0.32 0.43 0.24 2.63 0.51 1.12 5.27 0.13 0.56
Mid-lagoon shoals 1.98 1.00 0 1.83 1.14 0.31 0.84 6.17 2.28 2.71 1.85 1.14
Barrier islands 1.38 0.11 0 1.18 0.07 0 4.55 0.33 2.15 3.07 0.16 1.08
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levels, and subsequent excretion by grazers (Duarte &
Cebrián 1996, Cerco & Seitzinger 1997, Cebrián 2002);
some is retained over longer (>1 yr) time scales. The
timing of the short-term temporary retention is impor-
tant as it can slow the seaward transport of nutrients
and reduce nutrient availability for other autotrophs
during the growing season. For example, nutrients that
were temporarily retained in Zostera marina leaf tissue
in a Danish coastal bay were either nearly completely
mineralized (95 to 98%) in the fall when the negative
effects of anoxia from stimulated phytoplankton
blooms were less likely to occur, or were lost when the
leaves were detached and transported from the system
(Risgaard-Petersen & Ottosen 2000). Similarly, for
macroalgae, N temporarily retained in plant tissue pro-
vides a short-term buffer to nutrient loading effects in
the water column; however, most of this is released
during senescence over a period of several weeks to
several months (Buchsbaum et al. 1991, Tyler et al.
2001). Many macroalgal blooms go through ‘boom and
bust’ cycles, with mid-growing season population
crashes due to high temperatures and self-shading
within macroalgal mats. Benthic microalgae are pre-
sent and active throughout the year (Rizzo et al. 1996
and references therein), and their relative importance
for nutrient turnover depends on the presence, sea-
sonal pattern and areal coverage of other primary pro-
ducers that can shade the sediment, as well as physical
factors such as sediment resuspension and pore water
advection (Asmus & Asmus 1985, McGlathery et al.
2001a). 

Fate of plant-bound nutrients

Decomposition and retention in recalcitrant material.
Incomplete or slow decomposition of organic matter
could contribute material for long-term (decadal) reten-
tion of nutrients via sediment accumulation. Also, bac-
terial processing of dissolved organic matter (DOM) re-
leased during decomposition may result in the release
of bacteria-specific organic matter such as D-alanine,
which is less labile than plant-derived organic matter
(Veuger et al. 2006). The long-term retention of nu-
trients in particulate or dissolved forms that are recalci-
trant and less available to support further primary
production is an important biotic feedback as commu-
nity structure changes during eutrophication.

Detritus from microalgae (pelagic and benthic) and
ephemeral macroalgae that both have relatively little
structural tissue and high nutrient content tend to
decay faster than slow-growing perennial macroalgae
and seagrasses (Buchsbaum et al. 1991, Enriquez et al.
1993, Banta et al. 2004). This suggests that nutrients
will be recycled faster in systems dominated by micro-

algae and ephemeral macroalgae than in those domi-
nated by perennial macrophytes (Duarte 1995). Miner-
alization rates of N and P may be different than those
for carbon (C) or total mass and this is likely due to dif-
ferences in nutrient content of the detritus (Banta et al.
2004). More work is needed on net mineralization rates
of N and P bound in tissue of the different primary pro-
ducer groups and in sediment in order to determine
the potential for long-term nutrient retention in shal-
low coastal systems.

Since most algal and seagrass leaf detritus decom-
poses on a relatively short time scale (days to months),
the presence of a refractory pool in the detritus is sug-
gested to be the main determinant of the potential for
long-term retention in shallow systems (Duarte & Ce-
brián 1996, Cebrián 1999, Banta et al. 2004). In a review
of over 100 published data sets, Banta et al. (2004)
showed that all types of detritus, including microalgae,
typically contain some refractory pools that could con-
tribute to long-term nutrient retention. The slower and
more incomplete decomposition of perennial macro-
phyte tissue, particularly the seagrass roots and rhi-
zomes, likely leads to the most significant organic
matter and nutrient accumulation in sediments. Banta
et al. (2004) found that over 50% of Zostera marina root
and rhizome detritus and 15% of leaf detritus remained
after nearly 2 yr of a litter bag experiment. However,
the majority of the organic matter and nutrient accumu-
lation in some seagrass-vegetated sediments can be at-
tributed to imported allochthonous material (Boschker
et al. 2000, Gacia et al. 2002). Seagrass canopies reduce
water current velocities and promote deposition, partic-
ularly of fine, organic-rich particles (Kenworthy et al.
1982, Benoy & Kalff 1999, Gacia et al. 2002), and also
reduce particle resuspension and erosion, which fur-
ther enhances sediment accumulation (Middelburg et
al. 2004). Benthic microalgae (particularly diatoms) in
seagrass-vegetated sediments also enhance sediment
stability by producing biofilms of extracellular poly-
meric substances that reduce sediment erodability
(Madsen et al. 1993, Underwood & Paterson 1993, de
Brouwer et al. 2000). This sediment stabilization, how-
ever, is a seasonal phenomenon at least in temperate
systems, and the deposited material may be resus-
pended at times of the year when the microalgae are
less productive (Middelburg et al. 2004). More work is
needed on the effects of benthic microalgae on sedi-
ment organic matter and nutrient accumulation, partic-
ularly in tropical systems where they may be highly
productive throughout the year. Although benthic
microalgae are effective at retaining remineralized
nutrients when productive, given the smaller pool of
recalcitrant material in benthic microalgae, it is likely
that their contribution to long-term nutrient retention
is small compared to seagrasses.
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These studies suggest the main impact of eutrophi-
cation on long-term nutrient retention (as recalcit-
rant material in coastal bays) is the loss of seagrasses
(Fig. 4a). At low external nutrient loading rates, uptake
and retention of nutrients in seagrass biomass, and the
subsequent accumulation of the relatively large refrac-
tory component of this tissue in the sediments, can act
as a natural buffering mechanism to enhanced nutrient

loading (de Wit et al. 2001). This buffering is reduced
as seagrasses are replaced by fast-growing algae and
nutrient turnover increases. Decomposing macroalgal
mats contribute significant amounts of organic matter
to the sediments (Trimmer et al. 2000, Tyler et al. 2003),
and this temporarily increases nutrient retention in the
sediments, although over a shorter time scale than for
seagrasses. Tyler et al. (2001) reported that dissolved N
release rates from sediments following the collapse of a
macroalgal bloom (650 g [dry weight] m–2) were suffi-
cient to completely mineralize the macroalgal biomass
within 2 wk. Burial and retention rates may even be
reduced before a major shift in plant communities
occurs. Perez et al. (2001) found a net accumulation of
N and P in slowly-degrading below-ground detritus in
N-limited Cymodocea nodosa seagrass beds, but in
eutrophic waters where below-ground production was
reduced and decay rates of N-rich leaves were high,
the seagrass meadow became a source of nutrients to
the water column. The more rapid turnover of nutrients
in eutrophic algal-dominated systems functions as a
positive feedback mechanism that increases nutrient
availability to sustain large algal standing stocks. 

When sediments become anoxic in the most eutro-
phied systems, there may be a slight increase in
nutrient retention in sediments due to the slower
decomposition of refractory material under anoxic con-
ditions and the loss of bio-irrigating and bioturbating
benthic fauna (Kristensen et al. 1995, Kristensen 2000).
However, the organic matter deposited on the sedi-
ments during this stage of eutrophication would be
mostly labile material derived from phytoplankton or
fast-growing macroalgae, and anoxia appears to have
little effect on the decomposition of this labile fraction
(Middelburg et al. 2004). Another factor that may influ-
ence nutrient retention in anoxic sulfidic sediments is
an increased rate of DNRA and potential NH4

+ uptake
by bacteria and burial of bacterial biomass. We need
more information on the relative importance of this
process during eutrophication to understand the
changes in long-term nutrient retention as sediments
become heterotrophic.

Grazing. The response of the primary producer com-
munity to eutrophication in coastal bays may be modu-
lated by benthic herbivory. Numerous experimental
and observational studies from coastal bays indicate
the capacity of a variety of benthic grazers including
filter-feeding bivalves, ascidians, sponges, polychaetes,
amphipods, gastropods, and small herbivorous fish to
buffer the effects of nutrient enrichment (e.g. Alpine &
Cloern 1992, Neckles et al. 1993, Williams & Ruck-
elshaus 1993, Lin et al. 1996, Heck et al. 2000, Hille-
brand et al. 2000, Lotze & Worm 2002, Heck &
Valentine 2007). For example, dense populations of
filter-feeding bivalves limit the accumulation of phyto-
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Fig. 4. Conceptual model of hypothetical changes in the fate
of nitrogen bound in plant biomass in relation to shifts in
autotroph community composition as nitrogen loading is in-
creased and sediments and the overlying water (including the
macrophyte canopy) ultimately become heterotrophic for
(a) long-term retention in sediments, (b) grazing, and (c) ex-
port. Evidence suggests that the magnitude of nutrient assim-
ilation by the autotrophs is of similar magnitude to nutrient
loading rates, suggesting that the autotrophs are an important 

part of the coastal filter
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plankton under non-stratified conditions in San Fran-
cisco Bay (Alpine & Cloern 1992). Mesograzers (e.g.
amphipods and gastropods) can control the abundance
of algal epiphytes on seagrasses and hard substrates
even under moderate nutrient loading (Neckles et al.
1993, Williams & Ruckelshaus 1993, Hillebrand et al.
2000, Lotze & Worm 2002). Likewise, macroalgal
responses to eutrophication, and the shading impact of
macroalgal blooms on seagrasses, may be mediated by
grazing (Worm et al. 2000, Hauxwell et al. 2001). Pref-
erential feeding by herbivores can influence algal
abundance and species composition (e.g. Duffy &
Harvilicz 2001, Duffy et al. 2003, Cebrián 2004); how-
ever, we know relatively little about the implications of
this for the storage and trophic transfer of nutrients as
systems become eutrophied (Duffy et al. 2003). 

From large-scale comparative studies, we know that
grazing intensity can be highly variable, both within
and between primary producer groups (Duarte &
Cebrián 1996, Cebrián 2002). Many studies show an
association between high nutrient content of the pri-
mary producers and high consumption rates (Horn
1989, McGlathery 1995, Cebrián 1999 and references
therein, Goecker et al. 2005); however, other factors
such as herbivore abundance, per capita grazing rates
of the dominant herbivores, and feeding preferences
also play important roles in determining patterns of
herbivory (Cebrián 2004 and references therein).
Based on these factors, we would expect a unimodal
pattern of relative grazing rate in response to elevated
nutrient loading (Fig. 4b). 

In general, herbivores consume a smaller percentage
of primary production in seagrass communities com-
pared to macro- and micro-algal communities (Cebrián
2004 and references therein), and this appears be at
least in part due to the lower nutrient content of sea-
grass leaves. However, the study by Valentine & Heck
(2001) shows evidence of compensatory feeding in
urchins, where urchins increased feeding on leaves
with low N to meet their nutritional demands. More
information is needed on how other aspects of plant
nutritional quality, such as chemical deterrents, influ-
ence herbivory in systems with different nutrient sta-
tus. As the dominance in benthic communities shifts
to bloom-forming macroalgae and epiphytes during
eutrophication, one would expect a higher proportion
of primary production to be channeled through the
herbivores. At some point, enhanced algal growth
from high nutrient loading will saturate grazing poten-
tial and decrease per capita consumption rates; grazer
abundance will also be negatively impacted by the
changes in physicochemical conditions (i.e. low oxy-
gen, high sufide and NH4

+) that result from the decom-
position of algal blooms (Hauxwell et al. 1998, Rosinski
2004). The increase in phytoplankton biomass that

occurs during eutrophication of some systems may
support higher filter-feeder biomass until their filtra-
tion capacity is exceeded and the increase in organic
matter decay causes anoxia and mortality of filter feed-
ers (Cloern 2001). Grazing of phytoplankton by ben-
thic suspension feeders can buffer the initial effects
of eutrophication as long as water residence time is
longer than the clearance time of the filter feeders or
the systems are not stratified (Haamer 1996, Haamer &
Rohde 2000). We would expect the lowest consumption
to occur in the most eutrophied systems where anoxia,
sulfide and NH4

+ concentrations negatively impact
consumer populations (Fig. 4b). 

The grazing impact on benthic microalgae as eutroph-
ication proceeds is less clear. A large part of benthic mi-
croalgal production is thought to pass through the
macrofaunal grazing/deposit feeding chain (Asmus &
Asmus 1985, Duarte & Cebrián 1996, Herman et al.
2000), while part of it may also be channeled through the
‘small food chain’ consisting of micro- and meiofauna
(Kuipers et al. 1981, Sundbäck et al. 1996, Pinckney et al.
2003). However, since much of the organic matter is re-
leased as DOM by live and dead material (Goto et al.
1999, Wolfstein et al. 2002), processing of particulate or-
ganic matter by grazers and bacteria may only account
for a portion of the total carbon fixed by benthic micro-
algae. During the initial stage of eutrophication, grazing
of benthic microalgae by meiofauna can be expected to
increase (Nilsson et al. 1991), however, we still lack a
clear understanding of how grazing modulates the ben-
thic microalgal response to nutrient loading (Hillebrand
& Kahlert 2002).

Export. Plant material that is not decomposed in situ,
retained through long-term retention, or grazed may be
lost from the system via mass transport. Seagrass leaves
are transported primarily at the water surface due to
their extensive aerenchyma tissue, whereas macroalgal
material moves either as bedload or as floating mats at
the water surface, depending on their specific gravity
(which is influenced by invertebrates that colonize
mat-forming macroalgae). Most of the bloom-forming
macroalgae (e.g. Ulva sp., Chaetomorpha sp., Entero-
morpha sp., Gracilaria sp., Polysiphonia sp.), live unat-
tached or loosely attached to hard surfaces (i.e. bivalve
shells, worm tubes) on the sediment (Schories &
Reise 1993, Thomsen & McGlathery 2005). Transport of
plant-bound nutrients is often not included in mass bal-
ance calculations of shallow coastal systems in part be-
cause of the difficulty in doing representative sampling.
Unattached, living macroalgae move at water current
velocities as low as 2 cm s–1 (Flindt et al. 2004, Thomsen
2004), and these current velocities are common in shal-
low coastal bays where both winds and tides affect
current speeds at the sediment surface (Lawson et al.
2007). Macroalgae also settle 1000 to 5000 times faster
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than phytoplankton, and hence if transported out of
coastal bays, usually settle on the ocean floor rather
than being returned on the flood tide (Flindt et al.
2004). Seagrasses settle more slowly than macroalgae
due to the air-filled arenchyma tissue, and their surface
movements are influenced by wind speed and direction
as well as current speed. Few studies include mass
transport of nutrients bound in plant material, and this
can cause significant overestimates of nutrient reten-
tion in coastal bays. For example, Flindt et al. (2004) de-
termined that for 2 European systems (Venice Lagoon,
Italy, and Roskilde Fjord, Denmark), the exclusion of
mass transport of plant tissue nutrients would lead to an
overestimate of N retention by 18 to 60% and P reten-
tion by 23 to 44%.

As eutrophication proceeds, the potential for export of
plant-bound nutrients on an annual basis will likely in-
crease by at least 2 mechanisms as the plant community
shifts (Fig. 4c). First, algal shading, anoxia or high sulfide
levels will stress seagrasses and increase the rate at
which leaves are sloughed and, thus, the potential for ex-
port (Holmer & Bondegaard 2001, Greve et al. 2003).
Second, ephemeral macroalgae that displace rooted sea-
grasses and perennial algae with strong holdfasts have
lower erosion thresholds and will more likely be moved
and transported from the system at lower current speeds.
Nutrient loss via export should be most pronounced in
highly eutrophic systems where phytoplankton domi-
nate and simply move with the water. It has also been
suggested that export may constitute a major fate of
benthic microalgal production (Admiraal 1984, de Jonge
& van Beusekom 1996). Clearly, other physical charac-
teristics of the system, such as the degree of exchange
with the ocean and water residence times, will influence
advective transport of all plant types, but studies quanti-
fying the effects of physical factors on export of plant
material are few. Fish and other mobile fauna may also
be important vectors of nutrients (and energy) from
coastal systems, but are rarely studied. One example is a
study by Deegan (1993), which showed that N and P
export by gulf menhaden from a Louisiana estuary to the
nearshore Gulf of Mexico was of the same magnitude as
passive waterborne export of dissolved inorganic nitro-
gen (DIN) and phosphorus (DIP), and that carbon export
accounted for approximately 5 to 10% of the total
primary production.

Indirect effects

Modification of physicochemical environment by
benthic plants

The indirect effects of primary producers on nutrient
cycling are mediated by photosynthetic oxygen pro-

duction and leakage of DOM. Seagrasses leak both
oxygen and DOM from the roots, and this is driven by
photosynthesis. Oxygen is transported from the leaves
to the roots to support aerobic respiration via a well-
developed lacunal system, a series of air channels
comprising up to 60% of the total plant volume. The
oxygen that is not respired by the roots is released
into the rhizosphere, creating oxidized micro-zones
(<100 µm from root surface) where reduced iron and
sulfur may be reoxidized (Greve et al. 2003, Fredrick-
sen & Glud 2006). DOM released from the roots as sim-
ple organic carbon compounds (Koepfler et al. 1993,
Ziegler & Benner 1999) has been shown to stimulate
bacterial activity in the rhizosphere (e.g. Moriarty et al.
1986, Welsh et al. 1996, McGlathery et al. 1998, Blaab-
jerg et al. 1998). The release of oxygen and DOM also
influences the forms and availability of sediment P, and
this is especially important in carbonate sediments of
the tropics and subtropics where primary production is
often limited by P (Jensen et al. 1998, Burdige &
Zimmerman 2002). Photosynthesis and respiration by
benthic microalgae in the top few millimeters of the
sediments cause large diel variations in oxygen con-
centrations and penetration depth, dissolved inorganic
carbon (DIC) concentrations and pH (e.g. Glud et al.
1999). The steep and dynamic oxygen gradients cre-
ated by benthic microalgal activity affect the vertical
position and rates of redox-sensitive processes such
nitrification, denitrification, DNRA, anammox and re-
duction of Mn, Fe and sulfate (e.g. Risgaard-Petersen
2003 and references therein). Within macroalgal mats,
variations in light availability, and in nutrient, oxygen,
and pH conditions linked to algal photosynthesis, res-
piration, and decomposition, influence nutrient cycling
at the sediment–water interface, and perhaps even
deeper into the sediments. The presence of dense
macroalgal mats can move the location of the oxic–
anoxic interface up from the sediments into the macro-
algal mat, since usually macroalgae in only the upper
few centimetres of the mat are in the photic zone and
are actively productive (Krause-Jensen et al. 1999,
Astill & Lavery 2001). Sediment nutrient cycling also is
enhanced by the presence of macroalgae, presumably
due to the input of organic matter (Trimmer et al. 2000,
Tyler et al. 2003).

Effects of plants and their decomposition on
biogeochemical processes

Nitrogen cycling. Nitrogen cycling processes in
sediments are regulated primarily by concentrations
of oxygen, sulfide and dissolved organic carbon
(DOC), and by competition with benthic autotrophs for
substrate. The relative importance of denitrification,
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anammox and DNRA, all processes requiring anoxic
conditions, determines to some extent the degree to
which N is retained in sediments, since denitrification
and anammox result in net loss whereas DNRA retains
N as NH4

+.
Denitrification is not likely to be a significant sink of

external nutrient inputs in most shallow bays with pho-

tosynthetically-active benthic populations when exter-
nal nutrient loading is low to moderate (Fig. 5). These
low and invariable rates are expected for 2 reasons: (1)
In general, most benthic primary producers do not
stimulate coupled nitrification–denitrification in N-
limited systems because they outcompete bacteria for
DIN (Rysgaard et al. 1995); this is described in more
detail below. (2) There does not appear to be a large
difference in the effect of different primary producers
on denitrification rates (Table 3), so a shift in biological
structure of the autotrophic community will not mea-
surably affect denitrification rates. This is different
from the scenario for deep estuaries where denitrifica-
tion increases in proportion to N loads during the early
to mid stages of eutrophication (Nixon et al. 1996).

Although some studies show enhancement of cou-
pled nitrification–denitrification in the seagrass rhizo-
sphere (Potamogeton perfoliatus and Zostera marina;
Caffrey & Kemp 1992, Flindt 1994, Cornwell et al.
1999), seagrasses in general appear to suppress
nitrification–denitrification in the rhizosphere relative
to bare sediments (Rysgaard et al. 1996, Risgaard-
Petersen & Ottosen 2000, Risgaard-Petersen 2004).
This is attributed to low rates of nitrification in the oxic
microzones surrounding the roots and to competition
for NH4

+ between nitrifying bacteria and benthic
microalgae (Ottosen et al. 1999, Risgaard-Petersen &
Ottosen 2000). There are relatively few measurements
of denitrification in seagrass-vegetated carbonate sed-
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Fig. 5. Conceptual model of hypothetical changes in denitrifi-
cation and dissimilatory nitrate reduction to ammonium
(DNRA) rates during eutrophication that are indirectly af-
fected by the changes in dissolved organic matter, oxygen
and sulfide concentrations in the sediments caused by the
benthic autotrophs, and as the sediments and the adjacent
water column (including the macrophyte canopy) ultimately 

become heterotrophic

Table 3. Comparison of denitrification rates (including range of light and dark values) for sediments associated with different 
benthic autotrophs in temperate and tropical/subtropical coastal bays

Dominant autotroph Location Denitrification rate Source
(µmolN m–2 h–1)

Temperate
Seagrass
Zostera marina Limfjord, Denmark 16.7 Risgaard-Petersen et al. (1998)
Zostera noltii Arcachon Bay, France 2.1–5.8 Welsh et al. (2000)
Zostera noltii Arcachon Bay and Etang du Prevost, France 13.8 Rysgaard et al. (1996)
Zostera capricorni Edmunds Bay, Australia 7.9 Eyre & Ferguson (2002)

Macroalgae
Chaetomorpha linum Kertinge Nor, Denmark 22–28 Krause-Jensen et al. (1999)
Enteromorpha sp., Ulva sp. Langstone and Chichester Harbors, England 2–55 Trimmer et al. (2000)
Ulva sp., Chaetomorpha sp., Virksund & Ulbjerg, Limfjorden, Denmark 12–30 Dalsgaard (2003)
Enteromorpha sp.

Benthic microalgae Kalmar Sound, Baltic Sea 0.02–6.6 Sundbäck et al. (in press)
Danish shallow coastal bays 4 Risgaard-Petersen & Ottosen (2000)
European estuaries in the UK, Sweden, 0–34 Risgaard-Petersen (2003)
Denmark, Italy, and Portugal 4.2 median

Virksund and Ulbjerg, Limfjorden, Denmark 5–60 Dalsgaard (2003)
Hog Island Bay, VA 1.7–40 Anderson et al. (2003)
Galveston Bay, TX 4–91 An & Joye (2001)

Tropical/subtropical
Seagrass
Thalassia testudinum Oyster Bay, Jamaica 83–167 Blackburn et al. (1994)
Thalassia testudinum Florida Bay, FL 67–125 Kemp & Cornwell (2001)
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iments in tropical/subtropical environments, but rates
tend to be somewhat higher than in temperate sedi-
ments (Blackburn et al. 1994, Kemp & Cornwell 2001,
Miyajima et al. 2001). More work is needed to deter-
mine if denitrification is stimulated in sediments vege-
tated by tropical seagrasses. These species typically
allocate more biomass to roots and rhizomes than tem-
perate species, and are more likely to be P-limited in
carbonate sediments so that competition between bac-
teria and plants for N is less likely to occur.

Under N-limiting conditions, the activity of benthic
microalgae also generally inhibits denitrification rates
through competition for N with bacteria (Rysgaard et
al. 1995, An & Joye 2001). Recent field data from 18
European estuaries showed that net autotrophic sedi-
ments colonized by microalgae had lower rates of
coupled nitrification–denitrification than net hetero-
trophic sediments (Risgaard-Petersen 2003). This was
also the case for shallow bays in Sweden, where deni-
trification rates were higher (20% of remineralized N)
in net heterotrophic than in net autotrophic sediments
(10% of remineralized N) (Sundbäck & Miles 2002).
However, when there is sufficient N to prevent N limi-
tation, photosynthetic oxygen and DOM release can
result in increased rates of coupled nitrification–
denitrification (Lorenzen et al. 1998, An & Joye 2001,
Risgaard-Petersen 2004).

There is relatively little information on the influence
of macroalgae on denitrification rates. Trimmer et al.
(2000) found that both direct denitrification, using
nitrate (NO3

–) supplied from the water column, and
denitrification coupled to sedimentary nitrification
were low in sediments underlying macroalgal mats.
High free sulfide concentrations in organic-rich sedi-
ments underlying macroalgal accumulations (Viaroli et
al. 1996) may inhibit nitrification (Henriksen & Kemp
1988, Sloth et al. 1995) and partially account for the
low denitrification rates. It appears that the net effect
of dense macroalgal mats is to move the zone of deni-
trification from the sediments up into the oxic–anoxic
interface in the mat, but not to influence the rates
significantly compared to ‘bare’ sediments with ben-
thic microalgae (Krause-Jensen et al. 1999, Dalsgaard
2003). Like benthic microalgae, it is expected that
macroalgae will compete with bacteria for NH4

+ and
NO3

– (Dalsgaard 2003). 
Dentrification rates may increase slightly as N lim-

itation is relaxed, and then would likely decline
precipitously as sediments become anoxic and highly
sulfidic and DNRA increases. The partitioning be-
tween coupled nitrification–denitrification and DNRA
depends on oxygen, DOC and sulfide concentrations
in the sediment. As sediments become anoxic and sul-
fidic in the later stages of eutrophication due to high
rates of plant decomposition, partitioning of NO3

–

reduction is likely to shift from coupled nitrification–
denitrification to DNRA, resulting in less N removal
from the system. This will create a positive feedback,
as the NH4

+ concentration in the sediment and the
efflux of NH4

+ from the sediments to the water column
will both increase (Joye & Hollibaugh 1995, An &
Gardner 2002, Senga et al. 2006), stimulating phyto-
plankton production, at least in temperate systems. On
the other hand, anammox, a process whereby NO3

–

serves as an electron acceptor for NH4
+ oxidation,

results in loss of fixed N as N2. Recent results suggest
that anammox bacteria are widely distributed through-
out a variety of marine sediments; however, their
importance in shallow coastal bays and their regula-
tion by sulfide is currently unknown (Strous et al. 1999,
Penton et al. 2006). 

Few studies have addressed the degree to which N
fixation compensates for losses of N via denitrification
in shallow coastal bays and how this changes during
eutrophication. In low-nutrient systems, N fixation
may more than compensate for N loss by denitrification
(seagrasses; Risgaard-Petersen et al. 1998), and is
important in supporting high rates of primary produc-
tion particularly in tropical/subtropical systems
(McGlathery et al. 1998, Risgaard-Petersen et al. 1998,
Hanson et al. 2000, Welsh 2000). As eutrophication
proceeds, N fixation would be expected to decline due
to the greater availability of DIN as an alternate source
(e.g. Yoch & Whiting 1986, Howarth et al. 1988).

Phosphorus sorption/desorption in sediments. The
effects of eutrophication on P cycling is particularly
important in subtropical and tropical bays dominated
by carbonate sediments where P is more likely to be
limiting to growth. However, we know less about
plant-mediated feedbacks on P cycling as eutrophica-
tion proceeds in these environments than we do about
N cycling in temperate systems. In oligotrophic habi-
tats, iron oxides that form in the seagrass rhizosphere,
effectively bind P in the solid phase and decrease the
release of P to overlying waters (Chambers et al. 2001,
Rozan et al. 2002). While it was previously thought that
carbonate sediments were a permanent sink for P and
that mineral P was not available to plants, recent stud-
ies suggest that seagrass metabolism facilitates the dis-
solution of carbonate minerals in the rhizosphere,
releasing bound P (Jensen et al. 1998, Burdige & Zim-
merman 2002). This is due in part to the decrease in pH
resulting from root respiration and/or the stimulation
of bacterial respiration by root DOM release (Burdige
& Zimmerman 2002), or to the release of organic acids
by seagrass roots (M. Long, K. J. McGlathery, J. C. Zie-
man & P. Berg unpubl.). However, the dissolution of
these pools is likely too slow to support maximum sea-
grass growth and the pore-water pools represent only
a small portion of the required nutrients (McGlathery
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et al. 2001b). An increase in P loading may initially
stimulate seagrass production and result in an increase
in carbonate dissolution and release of sediment-
bound P, but as eutrophication proceeds and algal
blooms shade the seagrasses (e.g. McGlathery 2001,
Hauxwell et al. 2001, 2003), seagrass metabolism will
decline. In sediments of highly eutrophic systems, sul-
fate reduction will likely increase and sulfides will
compete with phosphate for oxidized iron (Heijs et al.
2000, Chambers et al. 2001); this would likely result in
the seagrass meadow switching from being a net sink
to a source of P (Perez et al. 2001). The increase in P
release to the overlying water would be a positive
feedback further stimulating algal production and pro-
longing the negative effects of shading associated with
eutrophication (Heijs et al. 2000, Perez et al. 2001). 

CONCLUSION

Primary producers clearly play an important role in
the ‘coastal filter’ in shallow coastal ecosystems, and
their effect on nutrient cycling as biotic structure
changes during progressive nutrient enrichment is key
to understanding eutrophication responses. These
biotic feedbacks are manifested in 2 ways: (1) the fate
of nutrients temporarily bound in plant biomass (min-
eralization, long-term retention, grazing, advection),
and (2) the effects of plant metabolism on sediment
oxygen, nutrient and DOM concentrations that influ-
ence biogeochemical processes and nutrient retention.
Although we currently have a good understanding of
the physiological basis for the change in ecological
structure during eutrophication of coastal bays, we still
need more information on the mechanisms driving
these biotic feedbacks on nutrient cycling and the links
to physical processes that will allow us to build quanti-
tative models to predict the response to, and recovery
from, eutrophication in these shallow systems. Some
have also suggested that eutrophication could lead to
alternate stable states of either an algal-dominated or
seagrass-dominated community (Knowlton 2004,
Valentine & Duffy 2006), similar to what has been
observed in lakes (van Nes et al. 2002, Scheffer & Car-
penter 2003).

Our synthesis on plant-mediated feedbacks suggests
that a shift in ecological structure during eutrophication
from large macrophytes with slow turnover rates to
ephemeral, bloom-forming algae will result in a de-
crease in long-term retention of recalcitrant dissolved
and particulate matter and an increase in mass-
transport of plant-bound nutrients from the system.
Also, denitrification is not likely to be a significant
buffer for N loading to nutrient enrichment because up-
take by benthic primary producers typically outcom-

petes bacteria for available N, and as sediments be-
come anoxic during the later stages of eutrophication,
partitioning of nitrate reduction will shift to DNRA.
Both processes result in less removal of N from the sys-
tem. Grazing of bloom-forming algae is likely to buffer
the effects of nutrient enrichment only at low to moder-
ate nutrient loading rates. Some of these responses to
eutrophication are reversible, although recovery is
likely to be a slow process, partly because of continuing
internal loading from the sediment that would support
algal populations (e.g. Hodgkin & Birch 1986, Richard-
son 1996, Pihl et al. 1999). As light availability increases
following a reduction in external nutrient loading, ben-
thic primary producers once again become important
and can accelerate the recovery process by reoxygenat-
ing the sediment, intercepting the sediment–water col-
umn nutrient flux, and temporarily retaining nutrients
in plant biomass. 
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