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Pedro Daleo13, Ellen I. Damschen14, Kendi F. Davies15, Philip A. Fay16, Jennifer Firn17, Daniel S. Gruner18, Virginia L. Jin19,
Julia A. Klein20, Johannes M. H. Knops21, Kimberly J. La Pierre22, Wei Li23, Rebecca L. McCulley24, Brett A. Melbourne15,
Joslin L. Moore25,26, Lydia R. O’Halloran27, Suzanne M. Prober28, Anita C. Risch29, Mahesh Sankaran30,31, Martin Schuetz29
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Studies of experimental grassland communities1–7 have demon-
strated that plant diversity can stabilize productivity through spe-
cies asynchrony, in which decreases in the biomass of some species
are compensated for by increases in others1,2. However, it remains
unknownwhether these findings are relevant to natural ecosystems,
especially those for which species diversity is threatened by anthro-
pogenic global change8–11. Here we analyse diversity–stability rela-
tionships from 41 grasslands on five continents and examine how
these relationships are affected by chronic fertilization, one of the
strongest drivers of species loss globally8. Unmanipulated commu-
nitieswithmore species had greater species asynchrony, resulting in
more stable biomass production, generalizing a result from bio-
diversity experiments to real-world grasslands. However, fertiliza-
tion weakened the positive effect of diversity on stability. Contrary
to expectations, this was not due to species loss after eutrophication
but rather to an increase in the temporal variationof productivity in
combination with a decrease in species asynchrony in diverse com-
munities. Our results demonstrate separate and synergistic effects
of diversity and eutrophication on stability, emphasizing the need
to understand how drivers of global change interactively affect the
reliable provisioning of ecosystem services in real-world systems.
Rapid declines in plant diversity have prompted concern over the

consequences for the stability of ecosystem functioning and the reliable
provisioning of ecological services7,12,13. The first attempts to address this
concern used observational studies of natural variation in diversity14,15

and were limited in their ability to separate effects of diversity from
other confounding factors16. In response, more recent studies have
directly manipulated diversity in experimentally established commu-
nities (that is, biodiversity experiments) to assess its impact on eco-
system functioning, particularly above-ground net primary production
(ANPP)1–7. Numerous biodiversity experiments have shown that greater
species diversity promotes a greater stability of productivity over time2,3,6,
with asynchronous response of species to environmental fluctuations as
an important underlyingmechanism1,2. There would be no stabilizing

effect if species fluctuated in perfect synchrony. However, asynchrony
in species response to environmental fluctuations causes declines in
the biomass of some species tobecompensated forby increases inothers,
thus buffering temporal fluctuation in the productivity of the whole
community. Species asynchrony can increase the stability of aggregate
functions in species-rich communities, because compensatory effects are
more likely to occurwhen the species pool is larger andmore diverse17–19.
Biodiversity experiments, in turn, have their own limitations, and their

relevance to natural grassland ecosystems is debated11,12,16. For example,
experimental gradients of diversity are usually assembled randomly from
a local species pool,whereas innatural systems composition anddiversity
are influenced by a variety of factors including nutrient availability,
climatic conditions and anthropogenic land use9–11. It is also likely that
diversity is not the only, or even the primary, driver of the stability of
ANPP20,21; however, few experiments have simultaneously addressed
changes in both biodiversity and other aspects of global change.
In natural grasslands the situation is likely to be complex, because

anthropogenic impacts such as climate change and eutrophication are
likely to change diversity—with potential consequences for stability—
aswell as having their owndirect effects on stability4,13,22,23. Inparticular,
anthropogenic increases in nutrient inputs into grasslands (through
direct organic and inorganic fertilization and atmospheric deposition)
affect the structure and functioningofnatural ecosystemsworldwide8,24,25.
For instance, nutrient enrichment usually increases productivity and
reduces plant diversity24,25. However, the effect of eutrophication on
the stability of productivity in natural grasslands remains unclear. On
the basis of theory and results limited to single-site experiments22,23,
we expect eutrophication to reduce the stability of productivity, because
the well-known negative effects of nutrient enrichment on diversity24,25

could in turn reduce species asynchrony and stability1,6,14,22,26. However,
eutrophication may have additional impacts on stability that are inde-
pendent of any changes in diversity. The temporal stability of ANPP is
the ratio of the temporalmean to the temporal standard deviation, so an
increase in stability can result from an increase in themean, a decrease
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in the standard deviation, or both. Because eutrophication is expected
to increase productivity it may have a stabilizing effect by increasing
the temporal mean. However, there is also the potential for effects of
eutrophication on stability through changes in the temporal standard
deviation, but these are less well understood. We therefore require a
better picture of howdrivers of global change affect ecosystem stability
both through changes in diversity and through other routes. Here we
compare the relationshipbetweendiversity and stability found in grass-
land biodiversity experiments with those in fertilized and unfertilized
plots in natural grasslands.We also assess the effects of eutrophication
on the diversity–stability relationship both through changes in diver-
sity and through other routes.
We evaluated the relationships between species diversity, species

asynchrony and stability of ANPP across 41 naturally assembled grass-
land ecosystemson five continents (ExtendedData Fig. 1 andExtended
Data Table 1), using data from the Nutrient Network (NutNet; http://
www.nutnet.org) collaborative experiment27,28. We used standardized
methods to assess plant diversity and ANPP at each site in both unma-
nipulated controls and experimentally fertilized plots in awell-replicated
design. We quantified diversity as the average plant species richness in
standard 1-m2 plots over a three-year period. Stability can take a variety
of meanings in the ecological literature29,30; here we focus on temporal
stability of community-level, above-ground live plant biomass from
all species in a plot (a measure of ANPP) over three years. We define

temporal stability for each plot as the temporalmean of ANPPdivided
by its temporal variability—that is, the temporal standard deviation
over a common period (see Methods).
Stability of ANPP was positively associated with plant diversity in

the unmanipulated communities (Fig. 1a). Using a hierarchical sam-
pling design and statisticalmodelwe found that stability increasedwith
diversity consistently within and among sites, resulting in parallel rela-
tionships (coloured and black lines, respectively, in Fig. 1a). The con-
sistent relationship between diversity and stability is concordant with
experimental results obtained in grasslands across Europe1 and with
experiments and observations at single locations2,3,6,21,26. We usedmul-
tiple regression to evaluate the influence of plant diversity and keybiotic
and abiotic factors on stability in our 41 grasslands. Stability was still
associatedwithdiversity afterusing covariates to control fordifferences in
average site productivity andclimatic conditions includingannual trends,
seasonality and extreme or limiting environmental factors (Extended
Data Tables 1 and 2). Together these results demonstrate that temporal
stability ofANPPwaspositively related to variation inplant diversity in
our 41 naturally assembled grassland ecosystems.
We determined the role of species asynchrony as a mechanism pro-

moting stability, by using a community-widemeasure that alloweddirect
comparison between communities with different numbers of species17–19.
Because the biomass of individual plant species was available at few
sites,weused estimates basedonour three-year recordof thepercentage
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Figure 1 | Relationships of temporal stability of ANPP (upper row) and
species asynchrony (lower row) with species diversity. a–d, Unmanipulated
(a, b) and fertilized (c, d) communities of the Nutrient Network. e, f, The
BIODEPTH network of grassland biodiversity experiments. Relationships of
temporal stability of ANPP (temporal mean/temporal standard deviation;
natural log transformed for analysis) of 41 grassland sites of the Nutrient
Network were positive in the unmanipulated communities (a, b) (slopes and
95% confidence intervals: 0.028 (0.006 to 0.050) and 0.060 (0.023 to 0.097)), but
not detectible in the fertilized communities (c, d) (20.001 (20.025 to 0.022)
and 0.008 (20.031 to 0.047)). (e, f) Relationships in the BIODEPTH network

were positive (0.018 (0.003 to 0.039) and 0.073 (0.053 to 0.093)). Species
asynchrony varied from zero (perfect synchrony) to one (perfect asynchrony).
Species richness values for the Nutrient Network are average values over the
three years of post-treatment data. Points are values for individual plots
(n5 117 for Nutrient Network, n5 480 for BIODEPTH). Black lines are the
back-transformed fixed-effect linear regression slopes between sites from the
mixed-effects model; coloured lines show patterns within sites. Dashed lines
show regression slopes between sites in the unmanipulated communities of the
Nutrient Network. Colours correspond to the ‘colour code’ column in
Extended Data Table 1.
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cover of individual plant species in each plot (see Methods). Our ana-
lysis of potential stabilitymechanisms showed that species asynchrony
was positively related to plant diversity (Fig. 1b) and stability (Fig. 2a),
consistent with theory on the stabilizing effects of species asynchrony
in species-rich communities.Greater stability at higher diversity can also
result froman increase in the temporalmean ofANPPwith diversity (a
‘performance-enhancing effect’ that results in a higher ratio of the
temporal mean to the temporal variation)1,17. Consistent with earlier
NutNet analyses27, we found that the temporal mean of ANPPwas not
related to plant diversity (Fig. 3a). Although it is an indirect test, our
result provides no support for a performance-enhancing effect in stabi-
lizing higher-diversity communities in our study. Instead, we found
stronger support for a decrease in temporal variation of ANPP (mea-
sured by the standard deviation)with diversity (Fig. 3a). In otherwords,
greater stability at higher diversity resulted because diversity decreased
the temporal variationofANPP relative to itsmean, resulting in amore
stable mean-to-variance ratio.
Tocompareour results fromnaturally assembledgrasslandswith results

fromartificially assembled biodiversity experiments, we calculated values
of species asynchrony from theBIODEPTHexperiment1. BIODEPTH—
a pan-European network of grassland biodiversity experiments—was
conducted at eight field sites with a comparable hierarchical design,
plot size andmeasurements (seeMethods). Our results are comparable
to those from BIODEPTH because both studies use the same three-
year experimental duration and cover a similar range of diversity levels
(although, by design, biodiversity experiments featuremanymore low-
diversity communities than observational surveys). We found that the
signand slopeof the overall relationships betweendiversity and stability
and between diversity and asynchrony from our global multisite study
were comparable to those from the BIODEPTH network of grassland
biodiversity experiments (Fig. 1e, f; compare the solid anddashed lines).
We tested the impact of eutrophication on temporal stability and

species asynchrony by using data fromNutNet plots that were fertilized
for three years with a combination of nitrogen, phosphorus, potassium
andmicronutrients (seeMethods). Fertilization weakened the positive
effect of diversity on stability and species asynchrony (Fig. 1c, d; com-
pare the solid and dashed lines).We expected this result on the basis of
theory, because nutrient enrichment often reduces diversity24,25, which
could in turn reduce species asynchrony and stability1,6,14,22,26. However,
although fertilization reduced diversity by an average of 1.3 species
(95%confidence interval 0.7–1.9) per site (corresponding to a reduction

of diversity from 2.0% to 16.9% relative to average levels in the control
plots ranging from 4.4 to 32.3 species per square metre (Extended Data
Table 1)), counter to expectations this loss of diversity did not lead to a
reductionof stability through adecrease in species asynchrony (Extended
DataFig. 2). Instead, the lower slopeof thediversity–stability relationship
in the fertilized communities (Fig. 1c) can be explained by a combina-
tion of two factors. First, fertilization increased the temporal variation
of ANPP in diverse communities in comparison with unmanipulated
communities (Fig. 3a, b; compare the dashed lines). Because fertilization
generally increasedmean productivity in comparison with unmanipu-
lated communities (Fig. 3a, b; compare the solid lines), this increased
variation weakened the positive effect of diversity on stability in com-
parisonwith unmanipulated communities. Second, fertilization resulted
in a decrease in species asynchrony in diverse communities compared
with unmanipulated communities (Fig. 1d; compare the dashed and
solid lines). Because fertilization did not alter the positive relationship
between species asynchrony and stability (Fig. 2b), this decrease in
species asynchrony resulted in decreased stability in diverse commu-
nities comparedwith unmanipulated communities. In total, the results
of our fertilization experiment did not show the expected destabilizing
effects of diversity loss. Instead, eutrophication affected stability directly
through a combination of diversity-dependent effects on species asyn-
chrony and on the temporal variation of productivity. These direct effects
of eutrophication on the diversity–stability relationship could not have
beenpredicted fromstudies of natural or experimental diversity gradients.
The results of our observational study of naturally assembled grass-

landcommunities are consistentwith a stabilizing effect of asynchronous
responses of species to environmental fluctuations inmore diverse plant
communities—a result previously restricted to biodiversity experiments1

and observational studies at single locations21,26. However, the drivers
of global change causing a loss of diversity may have additional effects
on stability. The results of our fertilization experiment demonstrate
impacts on stability that were not caused by changes in diversity but
came about through effects of eutrophication on both the temporal
variation in production andon species asynchrony.However, although
the effects of fertilization on stabilitywere not caused by species loss, the
changes in species asynchrony and temporal variation thatwere respon-
sible were both affected by levels of community diversity. Predicting the
effectsofdriversof global change therefore requires abetterunderstanding
of both their direct effects on ecosystem stability and their indirect
effects through changes in diversity. Our results indicate that although
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Figure 2 | Relationships between temporal stability of ANPP (natural log
transformed) and species asynchrony in 41 grassland sites of the Nutrient
Network. a, Unmanipulated communities; b, fertilized communities. The
temporal stability was greatest in plots in which species fluctuations were
asynchronized in both the unmanipulated (slope and 95% confidence intervals:

1.93 (1.70 to 2.16)) and fertilized communities of 41 grassland sites of the
Nutrient Network (1.90 (1.58 to 2.21)). Points are values for individual plots
(n5 117). Colours correspond to the ‘colour code’ column in Extended Data
Table 1.
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eutrophication is intended to increase average levels of productivity it
can also affect its temporal stability. Sustainablemanagement of grass-
land ecosystems therefore requires a better understanding of the com-
plex interrelationships between diversity, productivity and stability
and how they are affected by fertilization.

METHODS SUMMARY
The41sites arepartof theNutrientNetworkGlobalResearchCooperative28 (Extended
Data Fig. 1 andExtendedData Table 1) (seeNutNet’s website). Experimental plots
included untreated controls and plots with nitrogen, phosphorus and potassium
and micronutrients added in combination (NPK). The analyses presented here
include all siteswith the first three years of post-treatment community-levelANPP
(gm22 yr21) and species-level ANPP estimates based on percentage cover.
Wealsoexamineddata fromBIODEPTH,aconsortiumof coordinatedbiodiversity

experiments that manipulated plant diversity at eight European grassland sites1. We
analysed community and species-level ANPP for the threemain years of this project8.
Ecosystem temporal stabilitywas defined for eachplot asm/s, wherem is the tem-

poral mean of ecosystem-level ANPP and s its temporal standard deviation over
the three-year period. Species asynchrony was measured for each plot as 12Qb,

where Qb is species synchrony and is calculated as 1{Qb~1{
s
2

P

S

i~1 si

� �2 ,

where si is the temporal standard deviation of species i in a plot with S species
over the three years18. Thus, stability and species asynchrony are related such that
higher levels of species asynchrony are associated with greater stability of the
community as a whole14.
We modelled relationships with linear mixed-effects models by using the lme

function from the nlme library in R 2.15.1. To improve normality, the ecosystem
temporal stability and community-wide species asynchronywere log-transformed
before analyses. Sites and blocks nested within sites for the NutNet data and sites
and species composition nested within sites for BIODEPTH were treated as ran-
dom effects, allowing both the intercepts and slopes of regression versus diversity
to vary between sites if supported by model selection.

Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Site selection and experimental design. The 41 study sites are part of theNutrient
Network (NutNet)Global ResearchCooperative (ExtendedData Fig. 1 andExtended
Data Table 1) (see also NutNet’s website). See ref. 28 for a complete description of
site selection, methods and measurements. To be as representative as possible of
realistic grassland ecosystems, our analyses included sites covering a wide range
of grassland habitats (for example alpine grassland, prairie, pasture, shrub steppe,
savanna and old field). Thus, the between-site variation across NutNet sites cap-
tures a globally relevant gradient of fine-scale (1-m2) and site-level variation in
factors including above-ground biomass, species richness, land-use history and
environmental variables (Extended Data Table 1). In some sites, human land use
(grazing, burning and mowing as part of the traditional site management) is cur-
rently or has been recently carried on (ExtendedData Table 1). However, our ana-
lyses were robust to land-use history: effects of species richness were similar after
we removed 13 sites with strong anthropogenic influence.
All sites included in the analyses presented here included control plots and plots

with nitrogen (N), phosphorus (P) and potassium and micronutrients (K) added
in combination (NPK) (details are given below).
Treatments were randomly assigned to the 25-m2 plots and were replicated in

three blocks at most sites, although the number of blocks ranged from one to six
between sites (Extended Data Table 1). Treatments and sampling followed a
standardized protocol at all sites, detailed in ref. 28. Treatment application started
at most sites in 2008, although eight sites started in 2009 and two in 2010. For this
study we included all sites with three year of post-treatment data collection. We
used data collected during the first three-years of post-treatment data collection so
that our results would be independent of the time since the start of treatment
application. All of our sites had three years of post-treatment data, although three
sites haddiscontinuous data collection (ExtendedDataTable 1). Longer time series
currently exist for only a limited number of sites, but the results were qualitatively
the same when extended to four and five years.
Climate data.Wequantifiedprecipitationandtemperaturedatausing theWorldClim
Global Climate database31 (version 1.4; http://www.worldclim.org/). A principal
component analysis (PCA) was used to reduce the number of climatic variables,
many of which were collinear, resulting in a subset of bioclimatic variables repre-
senting annual trends (mean annual temperature (uC) and precipitation (mm)),
seasonality (mean annual range in temperature, standard deviation in tempera-
ture, coefficient of variation of precipitation) and extreme or limiting environ-
mental factors (mean temperature during the wettest four months).
Fertilization. Nitrogen (N), phosphorus (P) and potassium (K) were applied
annually to fertilized plots, before the beginning of the growing season, at relatively
high rates: 10 gm22 y21. These rates are comparable to those for other grassland
experiments that seek to alter diversity32. N was supplied as time-release urea
((NH2)2CO) or ammonium nitrate (NH4NO3) (the form of N did not have differ-
ential effects onproduction28). Pwas supplied as triple superphosphate (Ca(H2PO4)2),
and K as potassium sulphate (K2SO4). In addition, a micronutrient mix (Fe, S, Mg,
Mn, Cu, Zn, B andMo) was applied at 100 gm22 y21 to the K-addition plots, once
at the start of the experiment but not in subsequent years to avoid toxicity.
Species richness and cover. Diversity was quantified as the average plant species
richness in standard 1-m2 plots over the three years of post-treatment data for the
analyses. We used species richness as a measure of diversity because species asyn-
chrony in response to environmental fluctuations is the basis for functional com-
pensation between species and stability theory33; decreases in the functioning of
some species are partly or wholly compensated for by increases in other species.
Cover was estimated independently for each species, so that total summed cover
can exceed 100% formultilayer canopies. To bettermatch theory, percentage cover
was converted to biomass estimates for each species by assuming that the propor-
tion of total cover for each species was equivalent to its proportion of total above-
ground biomass34, because we did not have direct measures of biomass for each
individual species. Our results were independent of the measure chosen; results of
our analyses using percentage cover data did not differ qualitatively from the
results presented in the text using estimated biomass data for species, based onper-
centage cover.
Productivity. We used above-ground live biomass as a measure of primary pro-
ductivity, which is an effective estimator of above-ground net primary production
(ANPP) in herbaceous vegetation35,36. At some sites with strongly seasonal com-
munities, cover and biomass were estimated twice during the year to assemble a

complete list of species, and the summed biomass of each species was used in the
analyses (Extended Data Table 1). However, our results were retained when we
performed analyses excluding these sites.
BIODEPTH. The BIODEPTH data used in our analysis are available online
(http://www.esapubs.org/archive/ecol/E091/155/) from Ecological Archives1.
BIODEPTH comprised a consortium of eight coordinated biodiversity experi-

ments that manipulated plant diversity at different European grassland sites1,37,38.
The analyses presented here use data on net above-ground biomass production
(gm22 yr21) of species from the experimental plots at eachof the eight BIODEPTH
field sites for the threemain years of the project1,38. The data set comprises informa-
tion on 480 plots, each containing between 1 and 32 species. In total this produces
1,934 data points per year, with each data point reporting the biomass of a species
in an individual plot. Each monoculture or species mixture was replicated in two
identical plots (with a few exceptions: five plant assemblages were replicated four
times38). Monocultures were removed from the analysis to produce a more com-
parable range of species richness.
Stability. Ecosystem temporal stability was defined for each plot as m/s, where m is
the temporal mean of ecosystem-level ANPP and s is its temporal standard devi-
ation over the three-year period.
Asynchrony. Species asynchrony was measured for each plot as 12Qb, where Qb

is species synchrony and is calculated as 1{Qb~1{
s
2

P

S

i~1 si

� �2 , where s
2 is the

temporal variance in ecosystem function and si is the temporal standard deviation
in function of species i in a plot with S species over the three years18. Thus, stability
and species asynchrony are related such that higher levels of species asynchrony
are associated with greater stability of the community as a whole18,39,40.
Analyses. We modelled the relationships with linear mixed-effects models by
using the lme function from the nlme library41 in R 2.15.1 (ref. 42). To improve
normality, the temporal stability of ANPP, community-wide species asynchrony,
temporal mean of ANPP and temporal standard deviation of ANPP were log-
transformed before analyses. Changes in diversity, stability and asynchrony were
calculated as the average difference per block between the fertilized and unmani-
pulated plots of the Nutrient Network. Sites and blocks nested within sites for the
NutNet data and sites and species composition nested within sites for BIODEPTH
were treated as random effects allowing both the intercepts and slopes of regres-
sion versus diversity to vary between sites if supported by model selection. For the
fixed-by-random-effects interactions, we used a model-selection approach based
onminimization of BIC41, in whichwe comparedmodels with andwithout a given
random effect to determine which level of variation was required in the model. In
every case, model selection for NutNet data retained variation between sites but
excluded variation due to blocks, whereas model selection for BIODEPTH data
retained variation between sites and species composition. Inference for the fixed
effects was based on 95% confidence intervals.
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Extended Data Figure 1 | Locations of the 41 Nutrient Network sites included in this study. Numbers correspond to the ‘site code’ column in Extended Data
Table 1.
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ExtendedData Figure 2 | Effect of fertilization-induced changes in diversity
on changes in stability of ANPP and changes in species asynchrony.
a, Changes in stability of ANPP (slope and 95% confidence intervals: 0.009
(20.048 to 0.030)); b, changes in species asynchrony (0.012 (20.004 to 0.027)).
Neither was related to changes in species richness caused by fertilization.

Flat lines represent the overall non-significant mean effects. Nutrient-induced
changes were calculated as the average difference per block between fertilized
and unmanipulated Nutrient Network plots. Colours correspond to the
‘colour code’ column in ExtendedData Table 1. Points are values for individual
plots (n5 117).
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Extended Data Table 1 | Additional information on the 41 Nutrient Network study sites

*Years of data collection used in the analyses.

{Number of blocks in each site.

{Mean annual temperature (uC)

1Mean annual precipitation (mm)

IMean annual range in temperature (uC)

"Standard deviation in temperature.

#Coefficient of variation of precipitation.

qMean temperature during the wettest four months (uC).
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Extended Data Table 2 | Multiple regression evaluating the influ-
ence of plant diversity and key biotic and abiotic factors, productivity
and climate, on stability of ANPP in our 41 grasslands

{Mean annual temperature (uC).

1Mean annual precipitation (mm).

IMean annual range in temperature (uC).

"Standard deviation in temperature.

#Coefficient of variation of precipitation.

qMean temperature during the wettest four months (uC).
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