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ABSTRACT

RESCAN is an actinic patterned EUV mask metrology tool based on coherent diffraction imaging. An image of
the reticle is reconstructed from recorded diffraction patterns using a phase retrieval algorithm. As semiconductor
manufacturing has moved to EUV lithography to meet the next technology node, accurate photomask metrology
with resolution in the nanometer range is crucial for high production yield. To find the optimal reconstruction
strategy to achieve the highest resolution, sensitivity and reconstruction speed in RESCAN, we compared three
algorithms. We demonstrate that, for the current setup, the best approach is the difference map algorithm.
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1. INTRODUCTION

RESCAN (REflective-mode EUV mask SCANning microscope) is a prototype for Extreme Ultra Violet (EUV)
mask metrology developed at the Paul Scherrer Institut.1 It is based on Coherent Diffraction Imaging (CDI),
a technique also referred to as lensless imaging.2,3 EUV photomasks are a key component of the lithography
process for the manufacturing of semiconductor devices and they require accurate metrology at the nanometer
scale to prevent eventual defects from reducing the production yield. A schematic of the RESCAN optical layout
is shown in Fig. 1. The coherent EUV illumation from the synchrotron source is focused by a toroidal, multilayer
coated mirror (M1) and folded onto the reticle by mirror M2 with a 6o angle of incidence. From the reticle,
the EUV illumination is reflected and propagated onto the detector where the diffraction pattern of the mask
is recorded. As only the intensity (information on the diffraction pattern magnitude) is recorded but all phase
information is lost, we need phase retrieval algorithms to reconstruct the (complex) image of the EUV reticle.
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Figure 1. Schematic of the RESCAN setup.

Using CDI for actinic EUV reticle imaging has the advantage that no expensive and complex optical EUV
optics are required. Furthermore, the magnitude and phase of the sample are reconstructed, allowing for ampli-
tude defect detection alongside with the detection of phase defects. RESCAN can detect defects in die-to-die and
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die-to-database mode, where the reconstructed object is compared to a reference and the defects are detected as
a difference in signal.1 We have demonstrated down to 50 x 50 nm2 defect detection on mask for both, absorber
and phase defects.4

As several phase retrieval algorithms have different performance characteristics, it is important to find the
optimal strategy for mask inspection using RESCAN towards higher resolution, sensitivity and optimal recon-
struction speed.

2. PHASE RETRIEVAL ALGORITHMS

RESCAN uses a CDI technique called ptychography to get a (complex) image of the EUV reticle. Historically,
ptychography was proposed in the 1960’s by Hegerl and Hoppe5 as a solution to the phase problem in scanning
transmission electron microscopes. In short, a finite-sized coherent illumination probe scans the object (here
the reticle) in partially overlapping positions. For each probe position, one corresponding diffraction pattern is
recorded. The real space overlap of the probes introduces redundancy in the diffraction patterns, as two patterns
from partially overlapping positions contain information from the same area of the sample. This redundancy
allows for a high quality object reconstruction as well as a large field of view.6,7

Most phase retrieval algorithms used in ptychography are iterative and follow the general principle outlined
in Fig. 2. From an initial (complex) object and probe guess, the exit wave Ψj = O(r)P (r − rj) (the outgoing
beam after being reflected by the reticle) is obtained.7 The exit wave is then propagated onto the detector plane
using the Fourier transform (we consider here a detector in far-field), where it forms the complex amplitude
diffraction pattern. The magnitude of the diffraction pattern is replaced by the magnitude measured on the
detector. The new magnitude is recombined with the unchanged phase. Then the updated complex diffraction
pattern is back-propagated to the object plane using the inverse Fourier transform, forming a new exit wave
estimate from which the object guess is updated. This is repeated until convergence is reached.
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Figure 2. Working principle of iterative phase retrieval algorithms. More details on the reconstruction procedure can be
found in the text.

As in ptychography many diffraction patterns are collected that correspond to the overlapping scan positions,
the question remains how we treat all of the positions within the reconstruction procedure described above. Fig. 3
schematically illustrates the two different approaches how we can combine the information from all the positions.
In the sequential approach, the object section illuminated by the first scan position is updated by replacing
the estimated magnitude with the corresponding measured diffraction pattern magnitude (in the illustration
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turning from purple to yellow). When an adjacent scan position is considered, the object is already partially
updated. Each object update benefits from a better initial guess which makes sequential algorithms generally
faster (fewer iterations until convergence is reached) than parallel ones.8 Each position is updated one after the
other until every scan position is updated once. Having updated each position once corresponds to one iteration.
In the parallel update, all positions are considered and updated in parallel. Parallel solvers typically need more
iterations to converge to a solution but are naturally structured for parallel execution on a suitable computer
architecture, which makes them more efficient in terms of computation time, having a lower per-iteration time.8
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Figure 3. Illustration of the sequential versus parallel approach to update the object in a ptychography scan.

Today, the most common algorithms used for phase retrieval in ptychography are the difference map7 (DM)
and the ptychographic iterative engine9 (PIE), where the latter describes a whole family of algorithms. The
algorithms differ in the way they search for a solution to the phase problem, resulting in different behaviour,
for example regarding noise, convergence efficiency, and requirements on the initial guess accuracy. To find the
optimal strategy for RESCAN, we compare here the DM and the rPIE algorihtm to a recently reported method,
the Least-squares maximum-likelihood (LSQML) approach.8

The DM algorithm is a parallel solver, known to be robust against systematic and random errors, such as
image noise or probe positioning errors, that typically converges to a steady state without finding the optimal
solution.7 For this study, we furthermore considered the rPIE algorithm, a member of the PIE family.9 It is
a sequential solver designed to be more robust than the more common ePIE algorithm. The rPIE is still less
robust against systematic and random errors than the DM method,8 nevertheless, when it converges, the rPIE
algorithm is more likely to find the global optimum.8 The last algorithm for this comparison is the LSQML
method that uses a block-update approach, which employs advantages of both, parallel and sequential solver.
All scan positions are grouped into blocks of equal size, within one block, the positons are updated in parallel
whereas one block is updated sequentially after the other.8 LSQML is the statistical optimal approach to the
phase retrieval problem and reported to achieve the best imaging performance compared to the DM and PIE
methods.8

3. SIMULATION RESULTS

For a first evaluation of the algorithm performance, we carried out a realistic simulation matching the charac-
teristics and illumination conditions used in the RESCAN setup. We included a Poisson noise level consistent
with the photon flux level used in RESCAN.

The object used in the simulations is a flat, binary mask obtained from the reticle design file of the sample
described in Sec. 4. A region of about 40 x 40 µm2 with a pixel size of 34.44 nm is chosen for the simulation.
The probe was generated as the image of the beam shaping aperture with a radius of 5 µm on reticle and an
illumination wavelength of 13.5 nm (EUV). To generate the diffraction patterns, the object was scanned by the
probe in a circular scan pattern to avoid regular grid pathology7 with step size of 1 µm .
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Here, we consider four different reconstruction strategies. At first, we compare the performance of a parallel
solver, the difference map7 (DM), to a sequential one, rPIE,9 running each for 100 iterations. Then, we compare
again 100 iterations of DM to 100 iterations of rPIE each followed by 50 iterations of LSQML,8 to see whether
a statistically optimal approach can further improve the solutions obtained with the DM or rPIE method.

To compare the algorithm performance, we considered two different error metrics. First, the Fourier error,
which is commonly used (with various names) to report algorithm performance.9,10 The Fourier error is a
measure of convergence:

EFourier =

∑

q

∑

i,j |
√

Iij − |F [Ψij ]||
∑

q

∑

i,j 1
, (1)

where I is the intensity measured on the detector and Ψ is the current exit wave guess. F corresponds to the
Fourier transform operator which, in this case, approximates well the propagation of the light in the far-field.11

In the iterative reconstruction procedure described in more detail in Sec. 2, the magnitude of the complex
amplitude (the Fourier transform of the exit wave) is replaced by the square root of the measured intensity on
the detector. Thus, as the difference between the estimate and the measured amplitude gets smaller, the Fourier
error decreases and the algorithm approaches a solution. The Fourier error is summed over all pixels (i, j) and
averaged over the scan positions (q). Here, only the inner scan positions are considered for averaging to avoid
artifacts from the boundary regions of the scan.

A B

Figure 4. A Fourier error for the reconstruction cases considered in the simulation: DM, DM + LSQMLs, rPIE and rPIE
+ LSQMLs. The s in LSQMLs stands for a sparse grouping in the block-update approach for the LSQML algorithm.8 B

Object error for the same cases as shown in A.

In Fig. 4A the Fourier error for all four cases is decreasing until it stagnates at a constant error. It is
important to note that the curves for the DM and DM+LSQML reconstructions lie exactly on top of each other,
as the ones for rPIE and rPIE+LSQML. Convergence for all four cases is reached after about 20 iterations with
the error for both rPIE runs stagnating even a bit earlier. As described in Sec. 2 this is a typical characteristic of
sequential algorithms compared to parallel ones. In both cases, for rPIE+LSQML and DM+LSQML, the Fourier
error is decreasing further as soon as the LSQML algorithm is started after the first 100 iterations (dashed line
in Fig. 4A).

From the Fourier error curves one would consider the rPIE algorithm as optimal choice for the object recon-
struction as it converges in the fewest iterations and additional runs with LSQML seem only to bring a minor
improvement in the error. But as we are more concerned about the image quality than the convergence behaviour
for EUV mask metrology, we need to consider a second error metric, here named the object error Eobj

Eobj =

∑

r

∑

i,j ||O
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ij | − |Ôij ||
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which compares the reconstructed object (Ôij) to a reference image (Oref
ij ) which is obtained from the reticle

design. This metric is similar to the simulation error Esim introduced by Maiden et al.12 For the simulation
described here, the object from which the diffraction patterns were generated is used as reference.

The object error for all four simulation cases is shown in Fig. 4B. Similarly to the Fourier error, the DM and
rPIE algorithm reach a constant error level after the first 20 iterations. Surprisingly, the reconstructed image
quality for the rPIE algorithm is lowest after ca. 5 iterations and slightly decreases (larger error) for further
iterations. The most important difference to the Fourier error is observed as soon as the LSQML algorithm is
started (dashed grey line) after the first 100 iterations of DM or rPIE. The error is not decreasing further but
remains on the same level as reached from the previous DM and rPIE iterations. We therefore conclude that for
the simulations performed here, the LSQML algorithm is not further optimizing the image quality and does not
lead to a lower object error.

4. EXPERIMENTAL RESULTS

To compare our findings of the previous section to experimental data, we measured an EUV mask manufactured4

using the same design of the object used in the simulation. The scan pattern and step size, as well as other
reconstruction parameters are the same as in the simulation described above. The object error for a reconstruction
using first 300 iterations of DM respectively rPIE, with additional 100 iterations of LSQML is shown in Fig. 5.
The reference object is generated with the mask design file13 and is aligned and scaled to match the inspected
area.4

Figure 5. Object error for each 300 iterations of DM or rPIE with additional 100 iterations of LSQMLs. The data was
collected using the corresponding EUV reticle to the mask design file used in the simulation.

The object error is decreasing for both cases within the first 300 iterations without stagnating to a fixed error
level. This implies that additional iterations with DM and rPIE could have improved the image quality further.
In contrast to the simulation case, the DM algorithm is performing better for the experimental data than rPIE.
The DM is reconstructing in fewer iterations to a lower object error. For both cases, as soon as the LSQML
iterations are started (after the first 300 iterations, indicated by the dashed grey line), the object error is not
decreasing but remains at the same level as the last rPIE resp. DM iteration.

In Fig. 6, the reconstructed object magnitude is shown after 300 iterations of DM (A) and additional 100
iterations of LSQML (B) as well as for 300 iterations of rPIE (C) and also additional 100 iterations LSQML (D).
The difference map algorithm reconstructs the main features of the reticle, the power lines and the structures
in between are clearly visible. The reconstruction quality is not optimal as some phase artifacts cause vertical
stripes in the magnitude of the reconstructed object. Further DM iterations could improve this reconstruction,
as well as additional modifications of the algorithm to account for illumination wavefront instabilities or sample
drift.14–17 From Fig. 6B one can see that rPIE failed to reconstruct the object. Even though one can guess
some of the structure shapes as the crosses or the power lines, the reconstructed image quality is unacceptable
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for mask metrology. As the corresponding object error (see Fig. 5) is converging, the algorithm seems to get
stuck in a local minimum not finding the optimal solution. As rPIE is known to be less robust to systematic
and random errors than the DM algorithm8 , we believe that the error level in the experimental data case was
too high for a high quality reconstruction using rPIE. With an improved initial guess that is starting closer to
the optimal solution, rPIE could perform better than here reported. This remains an open question for further
investigation.

DM DM + LSQML rPIE rPIE + LSQML

A CB D

Figure 6. Reconstructed image magnitude after 300 iterations of DM (A) and additional 100 iterations of LSQML (B)
and 300 iterations of rPIE (C) with additional 100 iterations of LSQML (D).

5. CONCLUSIONS AND OUTLOOK

In this study, we compared different algorithms to identify the optimal image reconstruction strategy for the
RESCAN microscope. First, we compared the performance of the parallel DM7 algorithm to the sequential
rPIE9 solver. Additionally, we studied if following iterations using the statistically optimal LSQML8 approach
result in further image quality improvement.

We observed that the Fourier error, which measures the converge of the algorithm, is not suited for a compar-
ison of the reconstructed image quality. Therefore, we introduced a second error metric, the object error Eobj,
that measures the reconstructed image quality with respect to a reference. From both the simulations and the
experimental data reconstructions, we couldn’t observe a significant improvement in reconstructed object quality
with additional iterations using the LSQML algorithm. In the experimental data case, only the DM algorithm
reconstructed the reticle image, whereas the rPIE algorithm failed to reconstruct the experimental data with the
required accuracy. Therefore, our current best strategy is to use the DM as standard reconstruction approach.
The difference map algorithm has the additional advantage that it can be optimized for per iteration speed, as
it is parallelizable on a suitable computational architecture.

We will continue to investigate different reconstruction strategies for the RESCAN microscope to find the
optimal approach for higher image reconstruction quality and reconstruction speed.
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