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Abstract. The increase in greenhouse gas emissions into the atmosphere, and 

their adverse effects on the environment, has prompted the search for alternative 

energy sources to fossil fuels. One of the solutions gaining ground is the electri-

fication of various human activities, such as the transport sector. This trend has 

fueled a growing need for electrical energy storage in lithium-ion batteries. Pre-

cisely knowing the degree of degradation that this type of battery accumulates 

over its useful life is necessary to bring economic benefits, both for companies 

and citizens. This paper aims to answer the current need by proposing a research 

question about electric motor vehicles. It focuses on habits EV owners practice, 

which could harm the battery life. This paper seeks to answer this question using 

a data science methodology. The results allowed us to conclude that all other 

factors had a marginal effect on the vehicles’ autonomy decrease except for the 

car year. The biggest obstacle encountered in adopting electric vehicles was the 

insufficient coverage of the charging stations network. 

Keywords: electric vehicles, charging process, behavior, data mining, ma-

chine learning 

1 Introduction 

The electrification of most human activities is nowadays a necessity. It is crucial to 

reduce greenhouse gas emissions – targeting the larger goal of decarbonizing human 

society. The application of energy storage technology in the transportation sector, 

mainly adopted in electric passenger vehicles, is a strategic step towards the widespread 

adoption of this type of mobile technology towards the mentioned decarbonization of 

society. This research on lithium-ion (Li-ion) batteries aims to know more about a sub-

ject still requiring broader understanding. Also, it aims to collect and obtain insights 

into the state-of-the-art on the topic and extract information from data relinquished by 

EV owners. This information is expected to discuss the degree of satisfaction EV users 

have with the current solutions available in Portugal, potentially repel consumers from 

purchasing this type of vehicle. 

In recent decades, the increased occurrence of manifestations of intense and erratic 

climatic change has made it crucial to find alternative forms of energy consumption and 

conservation to conventional methods such as fossil fuel that significantly contribute to 
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greenhouse gas emissions. Therefore, it is of particular importance to adopt these alter-

natives with the utmost celerity. 

Battery aging is currently a problem that cuts across all sectors of activity that de-

pend on them now or may depend on it soon, such as the transport sector in general and 

specifically in private vehicles. For example, electric mobility is an emerging, ever-

growing mode of transport that causes an increased demand for Li-ion batteries in ve-

hicles. However, these batteries have a limited useful life and are usually grouped in 

packs that make them difficult to replace. In addition, the recycling of batteries’ toxic 

components has proven to be a hazard to the environment. Thankfully, there is a grow-

ing need to find methods that can extend the life of these battery packs to reduce their 

environmental footprint [1] and instead find non-toxic elements to their manufacturing 

process. 

In the automotive industry, this premature aging of batteries is adverse in two ways: 

firstly, it limits the autonomy range of the private vehicle, and it also affects its general 

acceptance and adoption by the public. Therefore, the need to know the exact pace of 

battery degradation often motivates information campaigns for technology adoption, 

academic research, and industrial research and development to improve its performance 

and longevity [1]. 

Future potential owners of vehicles powered by Li-ion batteries are starting to re-

quire accurate information on how long their vehicle batteries will last [1]. Hence, con-

sumers are interested in determining whether it is advantageous to invest in this new 

technology and pay extra fees for its early adoption. 

Our study focuses on EV owners driving habits. Data for this study were retrieved 

from a public inquiry to Tesla vehicles owners. The Tesla dataset was published [2], an 

electrical news website, on Apr. 14, 2018. It depicted a downward trend curve for ve-

hicle degradation that stabilized at a deficit of ten percent of battery total capacity after 

one hundred and sixty thousand miles, which was promising news. Furthermore, con-

firming the Tesla findings, in early 2020, Tesla Inc. published a report stating their 

batteries would retain 90 percent of their original capacity after 200,000 miles of usage 

[3]. 

We applied the Cross-Industry Standard Process for Data Mining (CRISP-DM) 

methodology to the Tesla dataset by creating a classification model based on the vari-

ables available in the raw file obtained by the Tesla article [2]. The end goal was to 

answer the following research question “Which factors have the most impact on the 

battery degradation?” 

2 Literature Review 

Actions[4]–[7]to reduce greenhouse gases (GHG) emissions have been imple-

mented, even before the covid-19 pandemic, resulting in CO2 emissions decreasing by 

1.8 percent from 2018 to 2019. The USA Environmental Protection Agency (EPA) [5] 

as well as the European Green Deal [6] explain that this was primarily due to a drop in 

total energy used and improved energy efficiency in 2019 compared to 2018, brought 

down by fossil fuel emissions reduction [5]. In tandem with CO2 emissions reduction, 
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an ongoing shift from coal to natural gas (the least harmful greenhouse gas-emitting 

fossil fuel) occurs in the energy sector. 

One alternative solution to the burning of fossil fuels in the transportation sector is 

adopting Li-ion batteries. This type of battery is currently empowering EVs. Techno-

logical improvements have been implemented in the last ten years to increase these 

batteries’ energy capacity and efficiency [8]. However, because its capacity is finite, 

any factor that decreases its energy retention ability is crucial. The degradation of the 

energy capacity of this type of battery, which is observed, for instance, in cell phones, 

is one of the main problems faced by energy experts. 

Battery early aging often depends on the Li-ion battery materials’ chemical compo-

sition, namely its anode, cathode, and electrolyte. In addition, external factors, such as 

voltage, discharge intensity, temperature, and the number of charging-discharging cy-

cles performed, are also considered important factors. However, the reference literature 

does not quantify how relevant these factors are to the overall battery longevity. For 

instance, the Tesla manufacturer applies solutions to mitigate premature battery aging; 

all its vehicles have a management system whose primary function is to control the 

battery’s temperature to remain below 55 degrees Celsius [1]. 

However, behavioral factors associated with the operation and charging of electric 

cars and their storage are significantly considered to impact the degradation of batteries 

[1]. As already observed with mobile phones, car batteries are subjected to premature 

aging if left unused. This concern regards that both cases use the same technology and 

materials. On the other hand, their continued use also leads to progressively shorter 

service life. May [9] suggest that both technologies’ similarities would not stop at that 

point, and the EV would be as prevalent as the mobile phone. May also envisions that 

one day, everyone would be able to have one. 

The evaluation of Li-ion batteries’ performance is still an ongoing process. This 

technology continues to be studied and matured iteratively by the scientific community 

that seeks different methods to measure its capacity, internal resistance, and voltages 

and its influence in charge and discharge cycles [10]–[12]. 

According to Yun, [11] the high complexity of practical solutions brings difficulty 

in measuring the variables mentioned above, especially in controlling the internal var-

iables related to the consistency of the manufacturing quality of the various components 

of the batteries. Thus, it becomes necessary to assess batteries’ health status or State of 

Health (SoH). 

The SoH of the battery, expressed as a percentage, represents its current capacity in 

Watts, concerning its original capacity. This value weighs various parameters of Li-ion 

batteries, such as their voltage, current, and capacity. Currently, few articles [13]–[18] 

can accurately predict the actual value of SoH. 

There are two types of battery capacity forecasting methods to determine the SoH: 

model-based methods and data-based methods. Model-based methods were always re-

lated to the chemical composition of batteries, and there is plenty of reference literature 

available on this subject. However, most authors did not focus on this area of scientific 

knowledge. 

There are two types of battery capacity forecasting methods to determine the SoH: 

model-based methods and data-based methods. Model-based methods were always 
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related to the chemical composition of batteries, and there is plenty of reference litera-

ture available on this subject.  

Regarding data-based prediction models, these sometimes use the parameters re-

ferred to earlier [18]–[23] to monitor the SoH and forecast the state of the RUL [19], 

[20]. Compared to prediction methods based on chemical models, these data-based 

methods [21] are faster, more convenient, and less complex [22]. Moreover, Machine 

Learning (ML) methods can be used, resulting in the accuracy improvement of these 

models. These prediction methods have raised a growing interest in verifying the SoH 

of batteries [23]. 

3 Data Analytics 

CRISP-DM [24] is a methodology widely used by data science specialists to develop 

solutions for business problems based on data [24]. CRISP-DM can be understood as a 

cross-industry standard process for data mining and envisages transforming the com-

pany’s data into knowledge and helpful information for management and decision-mak-

ing. 

Data Mining is part of Data Science, which uses statistics, mathematics, and ML 

approaches as a basis for crossing data, using induction techniques to propose hypoth-

eses and solve business issues.  

The CRISP-DM approach gathers the best practices so that the DM is as productive 

and efficient as possible, analyzing financial data, human resources, production, cus-

tomer habits, and other data sources to propose data-based models for improvement or 

problem-solving. It defines a Data Mining project’s life cycle, dividing it into the six 

phases, shown below in Fig. 1, and following a linear progression. 

It is essential to emphasize the theoretical character of this research. The application of 

the CRISP-DM phases to our case is therefore limited. For this reason, there are phases 

of this methodology that are less explored than others. 
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Fig. 1. – CRISP-DM methodology flowchart. 

 

3.1 Business Understanding 

The first phase of CRISP-DM aims to understand the entity’s primary needs and busi-

ness requirements where the methodology will be implemented. It looks for all the de-

tails about its internal organization, terminology, marketing strategies, target audience, 

and available products. The conclusion of this step defines guidelines for the steps that 

follow, such as the selection, cleaning, and interpretation of the information retrieved 

for the implemented data mining project. In the case of this study, the final client is an 

individual electric car driver. For example, a potential EV car buyer needs estimates of 

what an EV car’s range would be. The EV car buyer would be interested in predicting 

the range of a car on a full charge based on its attributes. More precisely, the EV car 

buyer would need to answer the business question related to our research question: 

“Which factors have the most impact on battery degradation?”. 

3.2 Data Understanding 

The second step of CRISP-DM consists of organizing and documenting all the available 

data sources relevant to the institution or client. This documentation implies the identi-

fication of a target audience and the selection of sources of data. This stage is an itera-

tive process that includes searching for data sources and data essential for its selection. 

It is expected to obtain an extensive dataset with the potential of obtaining meaningful 

information about EV users and their vehicles. Ideally, it would reach a diversity of 

responses high enough to ensure a comprehensive analysis of the problem in focus. 

However, in this paper, the original dataset was obtained through a single source. It 

came from an international news blog called Elektrek [2]. This blog shares a dataset 
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compiling answers to a survey from a forum of Tesla users, who registered their range 

entries and other data in an excel spreadsheet, collecting a total of 1425 observations, 

structured in 43 variables. 

3.3 Data Preparation 

The data preparation phase aims to transform the information collected into clean, 

structured, and integrated data. It comprised procedures performed with the Python pro-

gramming language [25], using the Jupyter Notebook tool [26]. Our data preparation 

included foursteps: first, removal of out-of-scope variables, followed by the elimination 

of blank records, elimination of outliers and finally the matching of variable formats. 

These four steps are described as follows: 

Removal of out-of-scope variables: the original dataset (with 43 variables) had out-

of-scope variables for this study. Table 2 below lists all the variables present in the 

Tesla dataset, as collected, before any data cleaning operations, their data type, exclu-

sion status from the study, and the reason behind the exclusion 
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Table 1. Tesla dataset variable list by type. 

Variable Name Data type 

Location String 

Model String 

Mileage in Miles Float 

Mileage per day Float 

EPA rated range Float 

RNG Mode On/Off Float 

EPA range Mode off Float 

Battery Replacement Y/N Boolean 

Battery mileage after replacement Float 

Battery days after replacement Float 

Total Average Energy Consumption Float 

Rated range when new Float 

Remaining original range Float 

Wh capacity until range is zero Float 

Freq. SCHG String 

Freq. 100% String 

Freq. empty String 

Daily charge level Float 

Daily charge power in Watts Float 

100% range when new Float 

Range mode on/off previous reading Float 

Vehicle age (days) Float 

Cycles Float 

Total Km Float 

Wh/mi to Wh/km Float 

Avg. Cap. All cars at this mileage Float 

Cap below trendline Float 

 Elimination of blank records: some of the observations from the dataset had miss-

ing fields. A visual representation of each variable’s number of null values was created 

(see Fig. 1). The higher the bars, the more complete the variable was. Given that these 

missing values can lead to bias, leading to wrong conclusions, all missing responses 

had to be excluded from the dataset for further analysis. 

Elimination of outliers: when existing variable values were too far from the re-

maining observations, they were considered outliers and needed to be removed. The 

method used to detect outliers was based on percentiles. With the percentile’s method, 

all data variables outside an interval formed by the 5th and 95th percentiles were con-

sidered potential outliers and removed (see Fig. 3). 

Matching of variable formats: the normalization of the dataset variables with for-

mats (e.g., dates, distance units in the Imperial system). Some of the variables were in 

object format (mostly text ones), which had to be transformed from their original format 

to a numerical form. Variable encoding was performed as follows: for the location var-

iable, integers were attributed to the name of the countries; for the model variable, each 

car model was given a distinct integer; for the Freq. SCHG, Freq. 100%, and Freq. 

empty, their values were encoded by employing a Likert scale, whose values ranged 

from 1 to 8. This step processed the variables across all observations (see Table 1). 
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• Fig. 1. – Visual representation of null values by each variable. 

 

Fig. 2. – Example of outliers’ identification of the three Frequency variables. 

Table 2. Exclusion of the Tesla dataset variables. 

Variable Type Excluded Reason 

Username String Yes Irrelevant 

Location String   

Vehicle manufacture date Date   

Date of range reading Date Yes No insights were found. 

Model String   

Mileage in miles Int   

Mileage per day Float Yes Duplicate variable. 

EPA rated range at 100% charge in miles Int Yes 

No correlations were 

found with other varia-

bles. 



9 

Range mode on/off at the time of reading? 
Bool-

ean 
Yes 

No correlations were 

found with other varia-

bles. 

EPA range after correction if range mode 

was off 
Float Yes 

No correlations were 

found with other varia-

bles. 

Did you have a battery replacement? 
Bool-

ean 
Yes 

Very few vehicles had 

their battery replaced. 

What happened to the EPA range after re-

placement? 
String Yes 

Excessive number of null 

values. 

At what miles did you replace the battery? Int Yes 
Excessive number of null 

values. 

Mileage in mi after correction if the bat-

tery was replaced 
Int Yes 

Dependent on battery re-

placement. 

Battery age (days) after correction if the 

battery was replaced 
Int Yes 

Dependent on battery re-

placement. 

Lifetime average energy consumption at 

the time of reading Wh/mi 
Int Yes Irrelevant for this study. 

Rated range of this model when new Int Yes 
Like variable mileage in 

miles. 

Remaining original range Float Yes 
Variable replaced by Av-

erage Capacity 

Remaining usable Wh capacity until typi-

cal range shows zero 
 Yes 

No correlations were 

found with other varia-

bles. 

Unanswered questions Int Yes Majority of no answers. 

Frequency of supercharging String   

Frequency of 100% charge String   

Frequency of almost empty (5mi or less) String   

Daily charge level Float Yes 
Excessive number of null 

values. 

Daily charge power in watts Float Yes 
Excessive number of null 

values. 

What was the 100% rated range when the 

car was new? 
Int Yes 

Excessive number of null 

values. 

Range mode on/off at the time of reading 

the previous column? 

Bool-

ean 
Yes 

Excessive number of null 

values. 

Rated range at the beginning of the trip Int Yes 
Excessive number of null 

values. 

Rated range at the end of the trip Int Yes 
Excessive number of null 

values. 

Consumption for this trip Float Yes 
Excessive number of null 

values. 

Range mode on/off when reading these 

trip numbers? 

Bool-

ean 
Yes 

Excessive number of null 

values. 

Typical range consumption for the trip Float Yes 
Excessive number of null 

values. 

Typical range after correction if range 

mode was off 
Int Yes 

Excessive number of null 

values. 

Remaining usable capacity until typical 

range shows zero according to trip data 
Float Yes 

Excessive number of null 

values. 
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Remaining original capacity Float Yes 
Excessive number of null 

values. 

Trip based battery capacity calculation 

explained 
Float Yes 

Excessive number of null 

values. 

100% range when the car was new after 

range mode adjustment 
Int Yes 

Dependent on range 

mode. 

Vehicle age (days) Int   

Cycles Int   

Mileage in miles Int   

Wh/mi to wh/km Float Yes 
Unit conversions made in 

Python and SPSS. 

Average capacity of all cars at this mile-

age according to chart trendline 
Float Yes Irrelevant for this study. 

Your capacity minus chart trendline at 

this mileage 
Float Yes Irrelevant for this study. 

Most vehicles from the sample traveled a few kilometers because the vast majority have 

a range below 100,000 kilometers. This occurrence aligns with the fact that most vehi-

cles in the sample are less than ten years old.  

3.4 Modeling 

In this phase, ML techniques were applied to the Tesla dataset to understand how sev-

eral factors affected the range of the EVs present in the dataset, as stated in our research 

question. Therefore, it was necessary to take the following steps to know which varia-

bles affect a car maximum range with a full charge:  

Classification analysis: Several ML supervised classification algorithms from the 

Scykit-learn package [27] were exploited to classify which variables influenced the 

cars’ maximum range on a full charge, addressing the research question. The objective 

of these classifiers was to label the current range that each car had in comparison to the 

original range value announced by their respective manufacturers. We created a new 

discrete variable called “Degradation,” containing two labels: “Normal” and “Abnor-

mal.” These two labels represented the batteries’ degree of energy capacity loss in a 

percentage of the original maximum range. Degradation levels lower than ten percent 

were labeled “Normal” and higher than ten percent as “Abnormal.” The ten percent 

threshold was used based on the Elektrek article claiming that ten percent was the av-

erage capacity degradation of EVs after 160,000 miles [2]. The following ML classifi-

cation models were chosen and assessed to perform the labeling task: 

• K-Nearest Neighbours (KNN) [28] 

• Logistic Regression [29] 

• Naïve-Bayes [30] 

• Support Vector Machine – Linear (L-SVM) [31] 

• Support Vector Machine – Radial (R-SVM) [32] 

These models were selected because they are of low complexity, and as such, they 

should generalize better when dealing with small datasets. Since the Tesla dataset is a 

small dataset with just 1,425 observations, the decision boundary of complex models 
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such as Decision Trees or the Random Forest would change wildly and, therefore, be 

inappropriate to tackle our problem. As a result, the results from those more complex 

models would have high degrees of variance. Simpler models such as those chosen 

above were believed to perform better as they have more minor degrees of freedom. 

Following best practices from the literature, each classification model was preceded 

by a split of the original dataset into a training set and a test set, the split chosen was 80 

percent - 20 percent, respectively, [33][34], so that fitted models would be evaluated 

regarding their performance and compared using a confusion matrix. 

Cross-Validation: We employed a standard iterative cross-validation technique 

[35] to compare model performance, obtain the best model, and avoid overfitting [36]. 

Overfitting happens when a model obtains near-perfect scores after being trained with 

known training and testing sets but cannot make accurate predictions when using new 

data. In our case, the training set was split into ten smaller equal sets. A model was 

trained using nine sets as training data and judged its results against the tenth set. Then, 

a loop was created to switch the testing set between all ten sets. The average of the 

values computed in the loop reports the global performance of the model. 

3.5 Evaluation 

The evaluation phase aims to assess the validity of the results of our automatic labeling 

process. First, the cars’ current range was checked to see if the vehicles retained more 

or less than ten percent of the initial total battery capacity. Subsequently, the classifi-

cation models and the cross-validation technique labeled the vehicles with an abnormal 

or regular decline of energy capacity. Finally, the factors that had the most negative 

impact on the batteries were pinpointed, answering our research question. Generally, 

the models’ performance presented accuracy results ranging between 57.18 percent and 

62.84 percent, as seen in Table 3. 

3.6 Modeling Results 

Table 3 shows test accuracy models by median and standard deviation. The median 

accuracy was calculated by using the accuracy formula shown in Equation 1. 

Table 3. Test Accuracy results from the Cross-validation. 

Classifiers Median Standard Deviation 

K-Nearest Neighbours 0.5718 0.0682 

Logistic Regression 0.6284 0.1068 

Naïve-Bayes 0.5872 0.0847 

L-SVM 0.5921 0.1109 

R-SVM 0.6175 0.1058 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

Eq.1. – Accuracy formula used for determining the classifiers’ performance. TP-True Positive, 

TN-True Negative, FP -False positives, FN-False Negatives. 

The two best-fitted models identified using cross-validation are highlighted in bold. 

The key takeaway from the cross-validation evaluation results was the Logistic 
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Regression and the Radial Support Vector Machine (Radial SVM). These were the two 

best performing models from the group, reaching 62.84% and 61.75% of median accu-

racy, respectively, for the labeling task. Moreover, it shows that from the 500 observa-

tions (vehicles), the best classification model, the Logistic Regression, correctly 

guessed 62.84% of the degradation labels.  

At this point in the analysis, each independent variable’s weight over the Degrada-

tion dependent variable remains unknown to answer the research question. However, t 

below depicts just that, showing both the weight and significance of each variable. 

Table 4. Degradation - Coefficients of the independent variables 

Degradation Regression Coefficient Chi-Squared p-Value 

Country 0.384 4.52 0.052 

Year 2.191 12.62 0.037 

Maker 0.137 0.03 0.184 

Model 0.012 0.01 0.982 

Freq. Fast -0.02 0.90 0.814 

Freq. Full 0.09 0.55 0.555 

Freq. Empty 0.027 0.28 0.370 

Mileage 0.059 0.10 0.627 

Max Range 0.061 0.88 0.837 

From Table 4, it is possible to conclude that there were two predominant independent 

variables: the Year and Country. Furthermore, these two predictors seem to have posi-

tive and strong correlations with the Degradation dependent variable. Lower values for 

the Year variable correspond to older vehicles, and an “Abnormal” value of the Degra-

dation variable means a higher than usual degrading of the battery. 

There is a correlation regarding the variable Country, possibly due to a large volume 

of vehicles from Asia and the Pacific regions, causing a dataset imbalance. However, 

it would be necessary to have more data to draw more elaborated conclusions to explain 

this phenomenon. As for the remaining variables listed, there seems to be no relation-

ship between them and Degradation.  

In conclusion, the variable Year was the most impactful factor on the rate of degra-

dation. However, none of the behavioral factors were significant, which would aid in 

answering the research question Which factors have the most impact on battery degra-

dation? 

3.7 Deployment 

In the deployment phase, knowledge extracted from the data is delivered and applied. 

From this moment, the processes within the organization might be changed or new 

products created. Our Logistic Regression ML classification algorithm is, in essence, 

our final prototype. It aims to determine which behavioral habits from the EV drivers 

negatively impact the Li-ion battery capacity of the cars, answering the research ques-

tion. 
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The chosen model allowed us to gather and label the degree of battery degradation 

in two categories and get a general sense of the degradation trend of all vehicles. For 

the personas to whom this study is aimed, i.e., the owners of EVs, this information can 

be crucial. It sheds light on the current rate of degradation of the car batteries and an-

ticipates the need for future maintenance events, such as a complete battery replace-

ment.  

4 Conclusions 

This paper aimed to investigate the effect of capacity degradation on electric vehicles’ 

batteries by following a data science and analytics approach. The objective was attained 

by answering the research question “Which factors have the most impact on the battery 

degradation”? 

As shown in Table 4, charging and parking habits were negligible at best and almost 

irrelevant to the decay of the cars’ Li-ion batteries. EVs regularly charged at fast-charg-

ing stations did not display significantly lower values from the Max Range variable 

than those that avoided that practice. Additionally, the results have revealed that the 

cars’ model year (expressed by the Year variable) was the only variable that signifi-

cantly impacted the batteries’ capacity. In short, the CRISP-DM methodology answered 

the research question by identifying the vehicle’s year of release as the determining 

factor for battery degradation, without any of the identified behavioral factors having a 

meaningful part in the decay effect. 

Our work relied on a dataset made public by a forum of EV users, limited to its 

participants. This approach can be improved by reaching more platforms of EV users, 

obtaining more responses, and a larger dataset. This could improve the model’s accu-

racy score. In addition, future work could include other factors that affect battery per-

formance, such as battery replacements and data extracted from the vehicles’ Battery 

Management Systems, such as voltage, temperature, and current going in and out of the 

batteries. 
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