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ABSTRACT 9 

Pre-determined evacuation zones can be used to estimate the demand of evacuees, which 10 

is helpful in assessing the resilience of transportation systems in the presence of natural 11 

disasters. Evacuation zones defined based on current road networks, environmental and 12 

demo-economic characteristics of a region cannot remain the same in the future, since the 13 

long-term climate change such as the rise of sea level would have major impacts on 14 

hurricane-related risks. Traditional methods for the prediction of future evacuation zones 15 

rely heavily on the storm surge models and could be time-consuming and costly to use. 16 

This study develops a novel grid cell-based data-driven method which can predict future 17 

evacuation zones under climate change without running the expensive storm surge models. 18 

The map of Manhattan, which is the central area of New York City (NYC), was uniformly 19 

split into 45×45 m2 grid cells as the basic geographical units of analysis. A decision tree 20 

and a random forest were used to capture the relationship between grid cell-specific 21 

features such as geographical features, evacuation mobility, and demo-economic features 22 

and current zone categories which could reflect the risk levels during hurricanes. Ten-fold 23 
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cross-validation was used to evaluate model performance and it was found that the random 24 

forest outperformed the decision tree in term of the accuracy and Kappa statistic. The 25 

random forest was used to predict the delineation of evacuation zones in the 2050s and 26 

2090s, based on the predicted sea level rises and changes of demo-economic features. 27 

Compared with the current zoning, the areas with need of evacuation are expected to 28 

expand in the future. The proposed method can be used to promptly estimate the future 29 

evacuation zones under different sea level rise scenarios and can provide the convenience 30 

to assess transportation system resilience in the context of climate change. 31 

 32 
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INTRODUCTION 35 

Hurricanes can devastate coastal areas with flooding, high wind, and rainfall, resulting in 36 

serious loss of lives and property. It is important for emergency planners to define 37 

evacuation zones which can indicate inhabitants whether or not they are prone to hurricane-38 

related risk in advance of disaster impacts Pre-determined evacuation zones can be used to 39 

estimate the demand of evacuees, which is helpful in assessing the resilience of 40 

transportation systems. The term resilience has been used in a variety of domains ranging 41 

from ecology to infrastructures systems (Ayyub 2014; Francis and Bekera 2014; Holling 42 

1973; Linkov et al. 2014; Park et al. 2013; Vugrin et al. 2011). In this study, resilience is 43 

defined as the ability of the transportation systems to maintain certain level of service under 44 

hurricane evacuation scenarios. Similar definition can be seen in Heaslip et al. (2010), and 45 

this definition reflects the absorptive capacity - the degree to which a system can mitigate 46 

the impact of adverse events - of systems, which is one of three pillar resilience capacities 47 

as stated in Francis and Bekera (2014). Since the long-term climate change could have 48 

major impact on hurricane-related risks, evacuation zones defined based on current 49 

network, environmental and demo-economic characteristics of a region cannot remain the 50 

same in the future. One notable factor of climate change is global warming and the resulting 51 

rise of sea level. According to the study of the United States Geological Survey in 2012, 52 

the sea level of the Atlantic coast of North American rose  by  1.97–3.80  mm  per  year  53 

since  1990 (Sallenger Jr et al. 2012). The rise of sea level in the future is likely to promote 54 

the flooding risk for coastal areas. Therefore, it is essential to consider the impact of climate 55 

change on evacuation zone determination when evaluating the transportation system 56 

resilience.  57 
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A framework for assessing the resilience of transportation systems with respect to 58 

climate change is presented in Fig.  1. Future evacuation zones can be estimated based on 59 

climate change and the developed evacuation zone prediction model. Knowing the 60 

population in the evacuation zones and their evacuation behaviors (the specific decisions 61 

of whether or not to evacuate, where to evacuate, etc.), we could estimate the evacuation 62 

demand. A recent study by Yang et al. (2016) uses structural equation models to jointly 63 

estimate evacuation decision choices and the evacuation destination choices. Evacuation 64 

demand along with the background traffic are used as inputs for evacuation simulation. A 65 

recent study by Zhu et al. (2016) presents evacuation simulation with consideration of 66 

traffic incident-induced highway capacity loss. The level of services under different 67 

climate change scenarios can be estimated using the outputs of evacuation simulation, and 68 

thus the resilience of transportation systems can be assessed. 69 

70 

<Insert Figure Here> 71 

Fig.  1. Framework for assessing the resilience of transportation systems under climate 72 

change 73 

Manhattan, which is the central area of New York City (NYC), is used as a case 74 

study. NYC is a city vulnerable to hurricanes. The NYC evacuation zones were updated in 75 

2013 by using the latest high-resolution SLOSH (sea, lake, and overland surges from 76 

hurricanes) models from the National Weather Service. The new zoning model 77 

incorporates improved elevation data, accounts for the accessibility of the neighborhoods 78 

by bridges and roads and consider the scenarios when storm surge coincide with high tide 79 

(NYC 2013). According to NYC Office of Emergency Management, NYC has about 966 80 
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km of coastline and almost 3 million people living in the areas at the risk of hurricanes 81 

(Gregory 2013). Considering the larger number of vulnerable coastal population, it is 82 

essential to define up-to-date evacuation zones for the development of detailed evacuation 83 

plan. Hurricane Sandy, which made landfall in October 2012 and is the second-costliest 84 

hurricane in United States history (Xie et al. 2015), provides us valuable data to study. 85 

 This study focuses on the prediction of future evacuation zones in the context of 86 

climate change. To predict future evacuation zones, traditional methods rely on the 87 

estimation of surge flooding using models such as the SLOSH  model and the ADCIRC (a 88 

parallel advanced circulation model for oceanic, coastal, and estuarine waters) model 89 

(Wilmot and Meduri 2005). However, the implementation of the SLOSH and ADCIRC 90 

models can be really time-consuming and costly. For example, multiple runs of the SLOSH 91 

model need to be executed to determine the maximum water elevation under scenarios with 92 

different land fall points and storm intensities (Wilmot and Meduri 2005). Thereby, we 93 

propose a novel data-driven method that can predict future evacuation zones under 94 

different climate change scenarios, without running expensive storm surge simulations. 95 

Machine learning algorithms are used to establish the relationship between current pre-96 

determined evacuation zones and hurricane-related factors, and then to predict how those 97 

zones should be updated as those hurricane-related factors change in the future. Moreover, 98 

a special consideration is given to the demo-economic factors such as the disability and 99 

poverty, since communities with more vulnerable populations are known to be at higher 100 

risk when confronting hurricanes. 101 

102 

103 
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LITERATURE REVIEW 104 

Evacuation planning is a thematic research topic, particularly after a number of natural 105 

disasters such as recent hurricanes Irene and Sandy on the east coast. There have been a 106 

large number of research studies on related issues such as shelter location, transportation 107 

routing and medical service in evacuation planning. However, only a limited number of 108 

studies are available on the determination of evacuation zones. 109 

Generally, hurricane evacuation zones are determined based on the risk of flooding. 110 

Wilmot and Meduri (2005) and Meduri (2004) are among the early studies to develop a 111 

detailed procedure to delineate hurricane evacuation zones using TransCAD. In the method 112 

they proposed, basic zones of evacuation were created based on the key geographic 113 

information system (GIS) data including a ground elevation layer, a zip code boundary 114 

layer, and land use data. The SLOSH model was used to estimate the storm surge elevations 115 

in the study area. The depth of inundation was estimated by subtracting the ground 116 

elevation from the predicted surge height in each zone. Their proposed procedure was 117 

demonstrated through a case on identifying the hurricane evacuation zones in the New 118 

Orleans metropolitan area. 119 

FRPC (2012) identified the evacuation zones in South Florida region according to 120 

factors such as storm tide limits, wind vulnerability, population at risk, and flood prone 121 

areas (based on 100-year flood zones). 122 

When PBS&J were conducting hurricane evacuation studies in several states 123 

(PBS&J 2007a; PBS&J 2007b), the evacuation zones were determined based on the surge 124 

inundation limits developed by the US Army Corps of Engineers (USACE) using the 125 

SLOSH model. The limits for category 1 through 4 tropical cyclones and the boundaries 126 
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of the minor civil divisions within each country were used to develop the evacuation zones 127 

for various storm scenarios. 128 

Other than hurricane evacuation zones, the National Tsunami Hazard Mitigation 129 

Program (NTHMP) (NTHMP 2011) provide some guidelines and best practices for 130 

tsunami evacuation mapping. It suggests that the evacuation mapping should consider 131 

historical inundation information, select reasonable elevation based on local topography, 132 

tectonic setting, and distance from local shorelines, interpolate and extrapolate inundation 133 

based on estimated models. In case of no other tsunami hazard information and hurricane 134 

storm surge maps, the Storm Surge Atlas Maps in consultation with the NTHMP scientific 135 

representative was suggested for tsunami evacuation planning. 136 

Similarly, the practices in Hawaii also provide some valuable experience in 137 

evaluating and adjusting evacuation zones. For example, Mader (2010) modeled the hazard 138 

of the evacuation zones in Hawaii based on the potential tsunami events. According to the 139 

study, both elevation criteria and the Fritz criteria generalized from the surveys were used 140 

to check the current evacuation zones in Hawaii (Liu et al. 2005; Mader 2010). The Fritz 141 

criteria that defined the evacuation zones are: “(a) areas below 15 m above sea level and 142 

within 0.4 km of shoreline or along rivers; (b) areas below 10 m above sea level and within 143 

1.6 km of shoreline or along rivers; and (c) areas below 5 m above sea level and within 4.8 144 

km of shoreline”. Similarly, in order to update the current evacuation zone maps developed 145 

in the 1980s, the Fritz criteria have also been used by Meadows (2013) when comparing 3 146 

potential new tsunami evacuation zone delineations for Hawaii. 147 

All the aforementioned studies delineated the evacuations zones based on 148 

hydrogeological and / or geographical features such as elevation, surge inundation, and the 149 
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distance to the shorelines. There are a number of studies exploring the demo-economic 150 

factors that put residents at high risk when confronting natural disasters. Zoraster (2010) 151 

reviewed 228 articles on vulnerable populations during hurricanes. He summarized risk 152 

factors to be considered when planning for disaster preparation, which include poverty, 153 

home ownership, poor English language proficiency, ethnic minorities, immigrant status, 154 

and high-density housing. Morrow (1999) investigated the examples from Hurricane 155 

Andrew and found that “the poor, the elderly, women-headed households and recent 156 

residents, are at greater risk throughout the disaster response process”. Chakraborty et al. 157 

(2005) used both geophysical risk and social vulnerability indices to assist the development 158 

of evacuation strategies. The social vulnerability index is related to factors such as total 159 

population, number of mobile homes, population below poverty level, children, the elderly, 160 

and population with disabilities. Various studies (Chakraborty et al. 2005; Eldar 1992; 161 

McGuire et al. 2007; Ortíz et al. 1986; Rizzo 1977; Sommer and Mosley 1972) suggested 162 

that elderly persons and children are more vulnerable to the safety and health hazards of 163 

natural disasters. The cut-off ages for defining the elderly differ from 60 (Rizzo 1977; 164 

Sommer and Mosley 1972), to 65 (McGuire et al. 2007; Ortíz et al. 1986) and to 85 165 

(Chakraborty et al. 2005). Similarly, cut-off ages for defining children differ from 5 166 

(Chakraborty et al. 2005) to 9 (Rizzo 1977; Sommer and Mosley 1972). In this study, we 167 

don’t use the cut-off ages to define the elderly and children. Instead of doing that, the 168 

populations in seven different age groups (0-4, 5-9, 10-14, 60-64, 65-74, 75-84, and 85+) 169 

are used as predictors in the evacuation zone prediction model, and the relationship 170 

between different age groups and hurricane-related risk could be established automatically 171 

by the proposed machine learning methods. 172 
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Most previous studies on evacuation zoning focus heavily on the implementation 173 

of storm surge models. Evacuation zoning is mainly determined by the flooding risk and 174 

less consideration is given to other risk factors such as evacuation mobility and demo-175 

economic features. This study aims to use machine learning methods to capture the 176 

relationship between evacuation zoning and various hurricane-related factors. The 177 

delineation of future hurricane evacuation zones can be estimated even if the outputs from 178 

the storm surge models are unavailable. The effects of vulnerable populations such as are 179 

accounted for in the proposed evacuation zoning models. 180 

181 

DATA PREPARATION 182 

The map of Manhattan was uniformly split into a total of 25,440 grid cells with size of 183 

45×45 m2 as the basic geographical units of analysis. The selection of cell size is a trade-184 

off between information precision and computation cost. The width of a standard block in 185 

Manhattan is about 90 m and the length of it is about 270 m (both are divisible by 45 m). 186 

Using cells with lengths of 45 m can capture cell-specific features more precisely and can 187 

provide street-by-street resolution for evacuation management. Zone category, 188 

geographical features (e.g. average elevation above sea level), evacuation mobility (e.g. 189 

distance to the nearest subway station) and demo-economic features (e.g. total population 190 

and population with disability) were obtained for each cell using spatial analysis tools of 191 

ArcGIS (Johnston et al. 2001). Detailed description on data collection will be presented in 192 

the following paragraphs. 193 

The NYC Hurricane Evacuation Zones Map (http://maps.nyc.gov/hurricane/) was 194 

updated in 2013 after Hurricane Sandy. The 2013 evacuations zones are listed from zone 195 

http://maps.nyc.gov/hurricane/
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1 to zone 6, from the highest risk to the lowest risk. Each grid cell was attached to its zone 196 

category which could reflect the risk level during hurricanes. In this study, four-level zone 197 

category is used as the response variable in the proposed machine learning methods, with 198 

“E1” corresponding to NYC 2013 evacuation zone 1, “E2” corresponding to NYC 2013 199 

evacuation zone 2 and zone 3, and “E3” corresponding to NYC 2013 evacuation zone 4, 200 

zone 5 and zone 6, and “S” corresponding to the safe zone beyond the evacuation region. 201 

Digital Elevation Model (DEM) data of NYC provides a representation of the 202 

terrain with elevations above the ground in a regular raster form. The DEM data of 203 

Manhattan was extracted from National Elevation Dataset (NED, http://ned.usgs.gov/) 204 

developed by U.S. Geological Survey (USGS). The resolution of the DEM data is 1 arc 205 

second (about 27 m) and the pixel values are elevations in feet based on North American 206 

Vertical Datum of 1988 (NAD83). The average elevation which is associated with the 207 

flooding risk was aggregated for each grid cell. Another geographic feature collected for 208 

each cell is the distance to the coast, since areas closer to the coast are more likely to be 209 

affected by the storm surges. 210 

Evacuation mobility is related to the efficiency of pre-storm evacuation. NYC 211 

Office of Emergency Management (OEM) offers shelters during hurricanes in evacuation 212 

centers. The distance to the nearest evacuation center was computed for each grid cell of 213 

the map. Additionally, transportation mobility such as the distance to the nearest subway 214 

station, the distance to the nearest bus stop and the distance to the nearest highway were 215 

also obtained by using spatial tools of ArcGIS (Johnston et al. 2001).   216 

In addition to evacuation mobility, demo-economic features can affect the division 217 

of evacuation zones. For example, the total population is related with the priority of 218 

http://ned.usgs.gov/
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evacuation, and the zones with large number of disables, elderlies, and children tend to be 219 

more vulnerable. Twelve demo-economic features for each census tract were obtained from 220 

the U.S. Census Bureau (http://factfinder.census.gov) 221 

The descriptive statistics of predictors including geographic features, evacuation 222 

mobility and demo-economic features are presented in Table 1. The spatial distributions of 223 

those predictors are demonstrated in Fig.  2. 224 

225 

<Insert Figure Here> 226 

Fig.  2. Spatial distributions of predictor 227 

228 

229 

METHODOLOGY 230 

In this section, we introduce classification tree and random forest models which can be 231 

used to explore the pattern of evacuation zoning by using zone category as the response 232 

variable and geographic features, evacuation mobility and demo-economic features as 233 

predictors. Statistic measures for performance and cross-validation method are also 234 

introduced in this section. 235 

236 

Classification Tree and Random Forest 237 

A classification tree classifies observations by reclusively partitioning the predictor space 238 

(Breiman et al. 1984). The classification tree is a non-parametric classifier, and hence no 239 

assumption needs to be made on the form of relationship between the predictors and the 240 

response variable. The classification tree is capable of capturing the nonlinear relationship 241 

between the evacuation zone categories and relevant features. Additionally, the 242 

classification tree is able to perform feature selection automatically by maximizing entropy 243 

http://factfinder.census.gov/
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reduction (Breiman et al. 1984). The entropy for the node m  is defined by the following 244 

equation (Quinlan 1986):  245 
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where ,m pN  is the number of instances that take the branch p  and ,

j

m pN  is the number of 258 

instances that take the branch p  and belong to the class j . The split that can maximize 259 

'

m mEntropy Entropy  is taken at the node m .  260 
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Let i
x  indicate a vector of predictors for the instance i  ( 1,2,...,i N , where N  is 261 

the sample size), iy  denote the category for the instance i . The algorithm for developing 262 

a classification tree is as follows:  263 

Step 1. Grow a large tree structure based on collected N  samples and M  264 

predictors. A recursive process is conducted by picking the best predictors from i
x  to 265 

reduce the entropy.  266 

Step 2.  Prune the large tree to obtain subtrees kST  ( 1,2,...,k K , where K  is the 267 

total number of subtrees). 268 

 Step 3. Predict the category ˆ
iy  of the instance i  using the subtrees kST  in a cross-269 

validation setting. The accuracy of the subtrees kST  is /
N

i

i

c N ; where 1ic   when 270 

ˆ
i iy y , otherwise  0ic  .  271 

Step 4. Select the best tree model from the subtrees based on the prediction accuracy.  272 

Despite its advantages, the classification tree is found to generate unstable 273 

predictions given certain perturbations (Breiman 1996). To improve stability, Breiman 274 

(2001) proposed the random forest method which constructs multiple classification trees 275 

by bootstrapping (i.e. random sampling with replacement) the samples and employing 276 

random feature selection. The random forest lets each individual tree vote for the predicted 277 

class and uses the majority vote as the final output. The structure of the random forest is 278 

demonstrated in Fig.  3. The algorithm for developing and evaluating a random forest is as 279 

follows: 280 
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Step 1. Create a training subset b  ( 1,2,...,b B  , where B  is the predefined 281 

number of trees) by bootstrapping n  samples from the whole training set with size N . 282 

Step 2. Select m  predictors at random from M predictors collected. 283 

Step 3. Grow a classification tree bT  based on selected n  samples and m  predictors 284 

in Steps 1 and 2. Obtain the predicted categories ( )bT
i

x  for each instance. 285 

Step 4: Repeat Steps 1-3 for B  times. 286 

Step 5: Predict the category ˆ
iy  for the instance i  using the mode of the set 287 

{ ( ) | 1,2,..., }bT b Bix . 288 

Step 6: The accuracy of the random forest is /
N

i

i

c N ; where 1ic   when ˆ
i iy y , 289 

otherwise  0ic  . 290 

The random forest has been widely used in natural disaster management recently 291 

(Guikema et al. 2014; Nateghi et al. 2014; Staid et al. 2014; Wanik et al. 2015). Via 292 

selecting samples and features randomly and integrating outcomes of individual trees, the 293 

random forest is more robust with respect to noises. This noise robustness is essential in 294 

cell-based projection of evacuation zones in the presence of noisy data. 295 

296 

<Insert Figure Here> 297 

Fig.  3. A structure demonstration of the random forest model 298 

Model Assessment 299 

Classification accuracy is widely used as a statistical measure of the extent to which the 300 

proposed classification tree and random forest perform. The accuracy can be simply 301 
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computed by using the number of correctly classified instances divided by the total number 302 

of instances. However, using the accuracy as the only performance indicator can be 303 

misleading. For example, in the case there is a large class imbalance, a model which always 304 

predicts the majority class can achieve a high classification accuracy, but is not useful in 305 

the problem domain. 306 

As an alternative to accuracy, Kappa statistic corrects for the potential biases caused 307 

by class imbalance. Kappa statistic is computed based on the difference between the 308 

observed agreement and the expected agreement obtained by random guess (Viera and 309 

Garrett 2005): 310 

311 

0

1

c

c

P P
K

P





(5) 312 

where 0P  is the proportion of observed agreements and cP  is the proportion of agreements 313 

expected by chance. The Kappa statistic lie on a -1 to 1 scale, where 1 is the best agreement, 314 

0 is what would be expected by chance and -1 is the worst agreement. According to Landis 315 

and Koch (1977), the magnitude of the Kappa statistic can be interpreted as: -1~0 = poor, 316 

0.01~0.20 = slight, 0.21~0.40 = fair, 0.41~0.60 = moderate, 0.61~0.80 = substantial, and 317 

0.81~1 = almost perfect. 318 

To compare the predictive performance of different algorithms, a ten-fold cross-319 

validation was performed in this study. The total dataset was split into 10 subsets randomly, 320 

and each of them was repeatedly left out as the validation set while the rest was used for 321 

training. The final accuracy and Kappa statistic were the combinations of outcomes when 322 



16 

using each validation set for model assessment. The cross-validation can properly address 323 

the over-fitting issues. 324 

MODELING RESULTS 325 

The proposed classification tree and random forest were used to estimate evacuation zone 326 

categories based on the geographic features, evacuation mobility and demo-economic 327 

features. Open source software, Weka, was used to estimate the classification trees and 328 

random forests (Hall et al. 2009). A ten-folder cross-validation was performed to obtain 329 

accuracies and Kappa statistics. The selection of parameters in the classification tree and 330 

the random forest can have impacts on model outcomes. We tested a variety of parameter 331 

sets and selected the best combination based on model performance and convergence time. 332 

The parameters selected are summarized in Table 2. 333 

Performance measures of the classification tree and the random forest are reported 334 

in Table 3. For comparison purpose, the performance measures of other commonly used 335 

machine learning methods including the logistic regression (Hosmer Jr and Lemeshow 336 

2004), the support vector machine (SVM) (Cortes and Vapnik 1995) and the neural 337 

network (Hagan et al. 1996) are also presented. According to Table 3, both the 338 

classification tree and the random forest can result in higher accuracies than other machine 339 

learning methods and “almost perfect” Kappa statistics which are greater than 0.8. When 340 

comparing their performance, the random forest can yield higher accuracy than that of the 341 

classification tree (95.69% vs 91.95%). In addition, the higher value of Kappa statistic of 342 

the random forest provides additional evidence that the random forest has a better 343 

predictive performance. 344 
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To have a detailed evaluation of the predictive performance, the confusion matrices 345 

of the classification tree and the random forest are reported in Table 4 (a) and (b), 346 

respectively. For each zone category, the random forest results in more correctly classified 347 

instances than the classification tree does. For example, the random forest identifies 1,880 348 

cells in the E1 zone correctly, which is greater than the number 1,745 by using the 349 

classification tree. Additionally, according to Table 4 (a), the random forest can output a 350 

really accurate prediction for each zone category. Only 13 cells out of 1,988 in E1 zone 351 

with high risk are classified as belong to safe zone, and only 7 cells out of 13,823 in the 352 

safe zone are regarded to be in the risky E1 zone. 353 

Regarding the better performance, the prediction outcomes of the random forest are 354 

visualized in the GIS map and compared with actual evacuation zones as presented in Fig. 355 

4. It is found that the estimated evacuation zone division is quite similar to the actual one.356 

It implies that the random forest succeeds in learning the potential pattern of delineating 357 

zones with different risk levels. However, it is likely that the same random forest developed 358 

for Manhattan couldn’t achieve the same prediction accuracy for other regions, since the 359 

relationship between zone categories and risk factors are location-specific. The effects of 360 

predictors such as the distance to the cost and average elevation on flooding risks can vary 361 

greatly when confronting totally different hydrogeological environments in other regions. 362 

It is highly recommended to re-estimate the random forest models to capture the local 363 

characteristics of other coastal regions vulnerable to hurricanes and future effects of 364 

climate change. 365 

366 

<Insert Figure Here> 367 
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Fig.  4. Current evacuation zones (left) and predicted evacuation zones using the random 368 

forest (right) 369 

370 

PREDICTION OF FUTURE EVACUATION ZONES 371 

The main climate change which would have a great impact on the evacuation zoning is the 372 

sea level rise. The propose method can be used to promptly predict evacuation zones under 373 

different scenarios of sea level rises. As an example, this paper uses the sea level 374 

projections of the work reported in Zhang et al. (2014), which is a part of the New York 375 

State Resiliency Institute for Storms & Emergencies (NYRISE) project. In their study, two 376 

greenhouse gas emission scenarios are used to predict future sea level rise including the 377 

Representative Concentration Pathway (RCP) 4.5 (Thomson et al. 2011) and RCP 8.5 (Van 378 

Vuuren et al. 2011). In the RCP 4.5 scenario where countries work together to combat 379 

climate change, the climate radiative forcing to the atmosphere from anthropogenic 380 

emissions is 4.5 watts per square meter over the globe. The RCP 8.5 scenario assumes that 381 

little coordinated actions are made among countries, so that the climate radiative forcing 382 

to the atmosphere from anthropogenic emissions is as high as 8.5 watts per square meter 383 

over the globe. 384 

Zhang et al. (2014) used a component-by-component analysis (Slangen et al. 2012) 385 

to project future sea level rises. The main components affecting sea level include global 386 

thermal expansion, local changes in ocean height, loss of ice from Greenland and Antarctic 387 

ice sheets, land water storage, etc. The future sea levels are forecasted under the “business 388 

as usual” emission scenario RCP 8.5. The upper 95% bounds of sea levels are estimated to 389 

be 0.92 m for the 2050s and 1.14 m for the 2090s. As a result of climate change, the terrain 390 
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elevation above the sea level is expected to decrease. This will lead to a higher flooding 391 

risk and thus the evacuation zone categories need to be updated accordingly. 392 

The change of demo-economic features is taken into consideration as well. Table 5 393 

presents the population growth rate by age group. The projected growth rate for the whole 394 

population in Manhattan is 2.17% per ten years. Population decline is only observed for 395 

the age group 60~64. It is worth mentioning that the population over 85 have the highest 396 

growth rate 16.78%, which would increase the hurricane-related vulnerability. The total 397 

population and the populations in different age groups in the 2050s and the 2090s were 398 

predicted based on the assumption that the growth rates listed in Table 5 stay constant. 399 

Population below the poverty level, population not covered by health insurance, population 400 

with disability and population who are not proficient in English in the 2050s and the 2090s 401 

were predicted use the grow rate for the whole population in Manhattan (2.17%). 402 

The proposed random forest is used to predict the evacuation zones for the 2050s 403 

and 2090s, based on the expected decrease in average elevation above the sea level, the 404 

changes in demo-economic features and the assumption that evacuation mobility is kept 405 

the same the future. The predicted future evacuation zones are presented in Fig. 5 406 

Compared with the current zoning in Fig. 4, the areas with need of evacuation are expected 407 

to expand in the future. Despite the good performance of the random forest, it is inevitable 408 

to have prediction errors. A procedure to modify evacuation zones manually is suggested. 409 

Some principles are suggested to guide the modification of evacuation zones. For example, 410 

one type of evacuation zone may not be established within another. Also, some 411 

consideration should been given to the identifiable features of zoning (Wilmot and Meduri 412 

2005). 413 
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<Insert Figure Here> 414 

Fig.  5. Predicted evacuation zones for the 2050s (left) and the 2090s (right) 415 

Comparisons of the current evacuation zones with the predicted evacuation zones 416 

for the 2050s and the 2090s are presented in Table 6. In the 2050s, the areas of the E1, E2 417 

and E3 categories are expected to increase by 11.07% and 10.71% and 3.10%, respectively, 418 

compared with the current zone division; whereas the areas of the S category are expected 419 

to decrease by 5.33%. Similarly, in the 2090s, 15.95% more area of the E1 category, 4.94% 420 

more area of the E2 category, 5.83% more area of the E3 category and 6.09% less area of 421 

the S category are predicted. Projected evacuation zone divisions can be used by 422 

emergency managers to estimate evacuation demand in the future. Knowing the evacuation 423 

demand can be helpful in developing effective evacuation plans such as time to start 424 

evacuation and selection of evacuation routes, and in managing emergency resources such 425 

as determining the number of shelters, food and medicines provided to evacuees. 426 

427 

SUMMARY AND CONCLUSIONS 428 

This study develops a novel data-driven method to predict the division of future evacuation 429 

zones in the context of climate change, which is an essential input to estimate the resilience 430 

of transportation systems. The map of Manhattan was uniformly split into 45×45 m2 grid 431 

cells as the basic geographical units of analysis. Evacuation zone category (E1, E2, E3 and 432 

S), geographical features (including average elevation above sea level and distance to 433 

coast), evacuation mobility (including distance to the nearest evacuation center, distance 434 

to the nearest subway station, distance to the nearest bus stop and distance to the nearest 435 

expressway), and demo-economic features (including total population, population below 436 
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the poverty level, and population with disability) in the current year were captured for each 437 

cell. The future sea level rises estimated by Zhang et al. (2014) were used as an example 438 

to predict future evacuation zones. As a result of sea level rises, the average elevation above 439 

sea level is predicted to decrease and storm-related risk for the same region is likely to be 440 

higher in the future. Various machine learning methods were trained to relate cell-specific 441 

features with current zone categories which could reflect the risk levels during storms. Ten-442 

fold cross-validation was used to evaluate model performance and it was found that the 443 

random forest outperformed the others in term of the accuracy and Kappa statistic. The 444 

random forest was used to predict the delineation of evacuation zones in the 2050s and 445 

2090s, based on the predicted sea level rises and changes of demo-economic features. 446 

Compared with the current zoning, the areas with need of evacuation are expected to 447 

expand in the future. 448 

A practical usage of our integrated methodology is that it combines the zoning 449 

model with the climate model to determine the change in evacuation zones in response to 450 

climate variability. The proposed data-driven method can be used to promptly estimate the 451 

evacuation zones under different sea level rise scenarios, without running storm surge 452 

simulations which are generally time-consuming and costly. Transportation system 453 

resilience in the context of climate change can be estimated based on the projected zonings 454 

under different scenarios. The proposed method can support decision-making in the 455 

evacuation planning and the management of emergency resources. For example, if the 456 

demand of evacuees increases dramatically in scenarios with sea level rises, it could take 457 

longer time to evacuee the residents prone to the hurricane-related risks, and thus the 458 

evacuation process should be started earlier. Also, the number of shelters, the amount of 459 
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food and medicine stocked in evacuation centers are closely related to the demand of 460 

evacuees predicted. Thus, our results in this paper can be used to develop various realistic 461 

planning and training scenarios that reflect the impact of the predicted changes of 462 

evacuation zoning. 463 

Despite the great performance of the random forest, domain experts are still needed 464 

to make the final decision about the size and type of evacuation zones. But we hope that 465 

the methodology proposed in this paper will provide them with additional insights. For 466 

future work, the study area will be expanded from Manhattan to the whole New York 467 

metropolitan area. An estimation of the number of residents to be evacuated in a larger 468 

region can be obtained. Additional work is needed to predict the future variation of 469 

evacuation mobility and demo-economic features, since they are closely related to the 470 

division of evacuation zones. Travel time could be used instead of travel distance as the 471 

metrics to represent evacuation mobility. In addition, evacuation simulation under different 472 

sea level rise scenarios will be conducted and level of services under those scenarios will 473 

be estimated to assess the resilience of transportation systems. 474 
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Table 1. Descriptive Statistics of Predictors (N = 25,440 Grid Cells) 613 

Predictor Mean S.D. 

Geographic feature 

Average elevation above sea level (m) 15.99 13.84 

Distance to coast (m) 762.46 464.84 

Evacuation mobility 

Distance to the nearest evacuation center (m) 1014.34 519.64 

Distance to the nearest subway station (m) 352.19 222.05 

Distance to the nearest bus stop (m) 104.86 91.50 

Distance to the nearest expressway (m) 565.47 434.10 

Demo-economic feature 

Total population 42.78 31.43 

Population not covered by health insurance 6.54 6.82 

Population below the poverty level 8.11 10.22 

Population with disability 6.00 3.84 

Population who are not proficient in English 9.60 13.81 

Population aged 0-4 2.94 2.47 

Population aged 5-9 1.85 1.68 

Population aged 10-14 2.68 2.64 

Population aged 60-64 3.24 2.56 

Population aged 65-74 4.40 3.52 

Population aged 75-84 2.59 2.42 

Population aged 85 and over 1.17 1.25 

Note: All the demo-economic features are indicating the number of people in specific groups. 614 
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Table 2. Parameter Selection for the Classification Tree and the Random Forest 615 

Classification Tree Random Forest 

o Prune trees: true

o Confidence factor for pruning: 0.25

o Maximum depth of the tree:

unlimited 

o Minimum number of instances per

leaf: 10 

o Maximum depth of the tree:

unlimited 

o Number of features randomly

selected: log(M)+1, where M is the 

total predictor number 

o Number of trees: 60

616 

617 
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Table 3. Performance Measures of the Classification Tree and the Random Forest 618 

Logistic 

Regression 

SVM 

Neural 

Network 

Classification 

Tree 

Random 

Forest 

Correctly classified instances 21582 21881 22784 23392 24342 

Incorrectly classified instances 3858 3559 2656 2048 1098 

Total number of instances 25440 25440 25440 25440 25440 

Accuracy 84.83% 86.01% 89.56% 91.95% 95.69% 

Kappa statistic 0.7537 0.7724 0.8292 0.8694 0.9299 

619 

620 
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Table 4. Confusion Matrix of the Classification Tree (a) and the Random Forest (b) 621 

(a) 622 

Decision Tree 

Classified as 

Total 

E1 E2 E3 S 

Actual zone 

category 

E1  1,745   164   53   26   1,988 

E2  180   2,436   339   43   2,998 

E3  52   286   5,857   436   6,631 

S  33   47   389   13,354   13,823 

623 

(b) 624 

Random Forest 

Classified as 

Total 

E1 E2 E3 S 

Actual zone 

category 

E1 1,880 76 19 13 1,988 

E2 92 2,679 204 23 2,998 

E3 12 191 6,180 248 6,631 

S 7 22 191 13,603 13,823 

625 

626 
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Table 5. Population Growth Rate by Age Group627 

in Manhattan (Bloomberg and Burden 2013) 628 

Age 

Group 

Population 

in 2010 

Predicted 

Population 

in 2040 

Growth Rate 

/10 years 

0-4 76,579 76,687 0.05% 

5-9 61,323 66,801 2.89% 

10-14 58,229 63,630 3.00% 

60-64 85,574 82,682 -1.14% 

65-74 115,369 131,655 4.50% 

75-84 68,397 97,394 12.50% 

85+ 30,387 48,395 16.78% 

Total Population 1,585,873 1,691,617 2.17% 

629 

630 
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Table 6. Comparisons of the Current Evacuation Zones with Predicted 631 

Evacuation Zones in the 2050s and the 2090s 632 

Zone 

Category 

2050s 2090s 

Cell 

Number 

Percentage 

Change 

Cell 

Number 

Percentage 

Change 

E1 (current cell number=1,988)  2,208 11.07%  2,305 15.95% 

E2 (current cell number=2,998)  3,319 10.71%  3,146 4.94% 

E3 (current cell number=6,631)  6,827 3.10%  7,008 5.83% 

S (current cell number=13,823)  13,086 -5.33%  12,981 -6.09% 

633 

634 
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Figure 1 635 
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Figure 2 638 
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Figure 3 641 
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Figure 4 644 
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Figure 5 647 
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