
Received February 27, 2019, accepted March 19, 2019, date of publication March 28, 2019, date of current version April 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2908033

Evading Anti-Malware Engines With
Deep Reinforcement Learning

ZHIYANG FANG, JUNFENG WANG , BOYA LI, SIQI WU, YINGJIE ZHOU , AND HAIYING HUANG
College of Computer Science, Sichuan University, Chengdu 610065, China

Corresponding author: Junfeng Wang (wangjf@scu.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2018YFB0804503 and Grant
2016YFB0800605, and in part by the National Natural Science Foundation of China under Grant U1836103, Grant 91338107,
and Grant 61801315).

ABSTRACT To reduce the risks of malicious software, malware detection methods using machine learning
have received tremendous attention in recent years. Most of the conventional methods are based on
supervised learning, which relies on static features with definite labels. However, recent studies have shown
the models based on supervised learning are vulnerable to deliberate attacks. This work tends to expose and
demonstrate the weakness in these models. A DQEAF framework using reinforcement learning to evade
anti-malware engines is presented. DQEAF trains an AI agent through a neural network by constantly
interacting with malware samples. Actions are a set of reasonable modifications, which do not damage
samples’ structure and functions. The agent selects the optimal sequence of actions to modify the malware
samples, thus they can bypass the detection engines. The training process depends on the characteristics of
the raw binary stream features of samples. The experiments show that the proposed method has a success
rate of 75%. The efficacy of the proposed DQEAF has also been evaluated by other families of malicious
software, which shows good robustness.

INDEX TERMS Anti-malware engines evasion, deep machine learning, malware detection, reinforcement
learning.

I. INTRODUCTION

Due to the massive exchange of messages on the network,
variety of malware and their variants appear explosively [1].
New malicious software have the characteristics of rapid
growth, powerful survivability, and strong anti reconnais-
sance [2], which make many security-sensitive applications
more vulnerable to be attacked. To tackle this problem,
various malware detection methods have been developed,
which depend on signature [39], the sequence of program
API calls [14], supervised machine learning [4], and so on.
Owing to the hardware advancement [3], machine learning

plays a critical role in extracting meaningful information out
of the huge amount of data and therefore vast of detection
methods depend on that to discover unknown malware fam-
ilies and variations [7]. Most state-of-the-art classifiers used
today are based on supervised learning, which are trained on
dataset with labels to classify the given software.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ilsun You.

However, the robustness of these methods is not
certain [28], [29], especially methods using supervised learn-
ing, which tends to extract static features and statistical
characteristics, instead of doing dynamic or in-depth anal-
ysis. That may make supervised learning vulnerable to be
attacked [20] or evaded.

As many malware detection methods rely on machine
learning for automated decisions, several attacks have
emerged on using potential vulnerabilities introduced by
supervised learning algorithms to evade detections [8].
Sophisticated attackers have strong incentives to manipu-
late the results and models generated by supervised learn-
ing algorithms to achieve their objectives [19]. For instance,
attackers can deliberately influence the training dataset to
manipulate the results of a predictive model [9] (in poi-
soning attacks [10]–[12]), causing misclassification of new
data in the testing phase [13] (in evasion attacks [21]–[23]).
Potential adversaries can also modify the samples, while
preserving malicious behaviors, to evade the detection. For
example, genetic programming can be used to make evasive
variants [31] and reinforcement learning can offer a sequence

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

48867

https://orcid.org/0000-0003-1699-2270
https://orcid.org/0000-0002-1129-0213

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

of actions to modify the samples to obfuscate detection [7].
These circumvention technology will cause serious conse-
quences, including failure of the detection tools and risks to
security of system and network.
The aforementioned references illustrate that classifiers

using supervised learning may fail under certain scenarios.
Thus, the malware detection based on supervised learning
could lose defense when encountering complicated and pow-
erful attackers. Our work aims to expose the weaknesses in
their architectures by modifying the malicious samples and
making them evade the detection without knowledge of the
classifier. The result can be used to improve the efficacy of
classifiers. Besides, due to the variety of formats and huge
number of malware, our work focuses on PE file to prove the
lack of robustness in the detection method using supervised
learning.
A general framework using deep Q-network to evade anti-

malware engines (DQEAF) is proposed in this work. A spe-
cific attacking model is established, and an AI agent is
set up to confront the malware detector. The agent firstly
inspects malware samples, and then selects a sequence of
functionality-preserving actions deliberately to modify the
samples. For any given malware sample, the framework
can eventually determine the optimal sequence of actions
to evade the supervised-learning-based detector. The newly
modified sample may not be easily detected by the anti-
malware engine. In the study, the static Windows portable
executable (PE) malicious softwares are used as the training
samples to validate the proposed DQEAF. Results show that
75% success rate of evasion on samples can be achieved.
For extraction of features from the PE malicious files, raw
binary byte stream is used. As the features are irrelevant to
file structure, the proposed method can be extended to other
platforms such as ELF, Android, etc.
The proposed DQEAF has the following characteristics:

• Fewer functionality-preserving actions (only 4 actions);
• Low-dimensional raw binary stream features to observe
samples (only 513 dimensions);

• High evasion success rate;

The rest of this paper is organized as follows: Section II
discusses the related work. Section III describes the proposed
DQEAF in details. Section IV presents the experimental set-
up and numerical simulation results. Section V concludes the
paper.

II. RELATED WORK

There are several attempts to bypass or directly attack the
machine-learning-based malware classifiers to achieve the
purpose of confrontation. At present, machine learning tech-
nology is widely used in human-machine interaction [40],
recommender systems [15], security protection [16] and other
fields [17], [18]. However, models based on machine learn-
ing are always fronted with deliberate attacks. According to
attacker’s understanding of target classifier, methods can be
divided into two cases:

A. WHITE BOX ATTACK

Adversaries can interact with detection systems in the pro-
cess of generating adversarial attack data, for the algorithm
used by the malware classifiers and the parameters used by
the algorithm are available. Most of the previously reported
successful attacks assume that the attacker has full knowledge
of the learnedmodel. It can, therefore, be argued that reducing
the amount of knowledge leaked about the model, as well
as a proactive response to potential exploitation of such
knowledge would provide adequate protection against adver-
sarial data manipulation. Šrndić and Laskov [22] performed
on a real learning-based system, PDFrate, for detection of
PDF malware. They defined an orthogonal set of evasion
strategies reflecting various degrees of available knowledge
and inserted dummy content into PDF files to confuse the
classifier. Their study was limited to evading the initial binary
classifier and limited to known detector. Grosse et al. [26]
proposed to use the gradient-based approach to generate
adversarial Android malware examples evading their own
white box classifier. Biggio et al. [27] also presented a
gradient-based approach to systematically assess different
classification algorithms against evasion attacks. They exhib-
ited different risk levels for the classifier by increasing the
attacker’s knowledge of the model and samples.

B. BLACK BOX ATTACK

An attacker does not know the algorithms and parameters
used by the malware classifiers, but they can still interact
with the system, and has the ability to retrieve a Boolean
label. Researchers generate adversarial networks and some
other methods to evade detection without knowledge of the
models [25]. Xu et al. [31] modified malware samples iter-
atively and tested them against a detection method using
genetic programming for guiding this process. In addition,
Hu and Tan [30] proposed a model called MalGAN which
generates adversarial examples to attack black-box malware
detection algorithms. Instead of attacking the black box
directly, the attacker creates a substitute model trained to
reproduce outputs observed by probing the target model with
corresponding inputs. Then, the substitute model is used for
gradient computation in a modified GAN to produce evasive
malware variants.

Among the black box attacks, Anderson’s pioneering
works [7], [34] use deep reinforcement learning to attack
the malware engines. Without prior knowledge of the static
PE malware classifier’s structure, features and parameters,
the authors design a series of actions to interact with the
malware samples. Their main purpose is to come up with
a framework to solve problems in security field using rein-
forcement learning. There are some comparisons with these
pioneering works in Section IV.
This work focuses on the following points and has made

some improvements: (1) Each action is guaranteed to be
effective on all samples and will not lead to corruption. Thus,
the training process would not be interrupted; (2) Low dimen-
sions of the observation is used to reduce the instability raised

48868 VOLUME 7, 2019

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

FIGURE 1. Reinforcement learning general structure.

by high dimensions; (3) Priority is taken into consideration
during the replay of the past transitions.

III. METHOD

A. PRIMARY CONCEPT

Reinforcement learning is a branch of machine learning
where an agent seeks to learn optimal action decision-making
by trying to maximize cumulative rewards. The learning
process requires interaction between Environment and Agent,
as is shown in Figure 1.

The functions of Environment, which integrate with
observation and rewards evaluation, are to provide state
(the description of current stage) and reward (action evalu-
ation value) for Agent. Agent is composed of parameters and
algorithm to determine the action to take next. So, the input of
reinforcement learning is rewards and states of Environment
observation. The output is the strategy of action selection in
the Agent for a certain problem.

B. MODEL STRUCTURE

Using reinforcement learning to tackle anti-malware eva-
sion problem, appropriate definition of environment, action,
reward and agent are necessary. In more details, Figure 2
exhibits the entire architecture of DQEAF. The environment
represents a holistic view of the malware samples, which
consists of a feature extractor observing the sample state and a
black-box malware classifier to judge the samples. The judge
result (malware or benign) is used to define the reward as
detailed in section III-E. The reward and state are then fed
back into the agent.
Then the agent takes the features of the samples and reward

with two neural networks to compute action-value Q and
target action-value Q̂. During training process, networks are
updated for global optimization of Q̂. Then it can choose one
reasonable action based on action choosing policy, which is
exerted on the file sample to evaluate for the next turn. After
several turns when this malicious sample is classified as a
benign one, the training for this sample ends. When all train-
ings come to an end, the agent achieves optimal parameters of
neural networks. Its network value with extracted features as
input decideswhich action to adopt. The action space consists
of a set of modifications exerted on the PE malware samples
which do not break the format and functions of them.

FIGURE 2. DQEAF model structure.

There exists a series of states transitions (s1, s2, s3, . . . , st)
to an end state under Markov hypothesis. The transition prob-
ability of state and the output probability of observation are
only dependent on the current state. Due to its dependency,
we record

(st , at , rt+1, st+1) (1)

as one piece of transition information in the training, each
of which works out a Q with some weights θ to present its
correctness in action selection.

The intelligent learning in our framework comes from
MDP (Markov Decision Process) which consists of 4-tuple,
(S,A, γ,R(A, S)).

• S: a set of states (as detailed in section III-C Envi-
ronment) representing the current composition of the
malware sample, offered by the environment and then
transferred to agent, of which St indicates the state at
the time of t .

• A: a set of actions (as detail in section III-D Action
Space) to alter the sample’s structure, of which At indi-
cates the chosen action at the time of t .

• γ : a discount factor γ ∈ [0, 1] referring to the relative
significance of future rewards to the present.

• R(A, S): reward value Ra(s, s′) (how to define R will be
explained in the section of III-E Reward) offered by the
environment after the state transiting from s to s′ through
action a.

Transitions will be used in training section III-F as past
experience to replay. With several pieces, an action that
brings out the maximum reward in the condition of s can
be found. That is the final approximate action for state s
in Equation (2).

at = argmax
a
Q(st , a; θ) (2)

After this maximization process, our chief goal, to obtain
the best DQEAF agent which will take the optimal actions to
modify a malicious software to evade detection, is achieved.

VOLUME 7, 2019 48869

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

FIGURE 3. PE file format and actions to modify the content.

C. ENVIRONMENT

In DQEAF, the environment is used to observe the manifes-
tation and composition of PE malware samples. The more
comprehensive and reasonable the observation is, the easier
the training results may reach the expected rate. Due to the
characteristics of reinforcement learning, the pre-process of
the samples is not needed.
The environment is defined by the raw binary feature as it

can represent a holistic view of the malware samples and it
is sensitive to each step of action. We count byte histogram
normalized to sum to unity, which is done by counting num-
ber of occurrences of each feature value over the entire binary
file. Besides, two-dimensional entropy histogram [4] is used
to represent the distribution of bytes, which is implemented
by sliding a window with constant bytes and computing the
base-2 entropy of each window.

D. ACTION SPACE

After the agent observed the state of the environment, it must
choose one action from the set of all available actions. For-
mally the set of all possible actions is defined as A = {ARBE,
ARI, ARS, RS}. Therefore, at time t , the agent chooses
an action at . All actions exerted on PE files are shown
in Figure 3. In this paper, the actions are only a few possible
choices. Reinforcement learning with extremely large action
spaces will increase the difficulty of model training and the
time elapse [33]. As for the action space designing, two
aspects are taken into consideration.
It is necessary to ensure that the modification of the file is

as simple as possible to guarantee the successful modifica-
tion. Modification process should not result the failure, such

as the collapse of malware due to the modification of ‘‘rude
action’’. These failures will interrupt the training process.
According to the training of this work, the simplest actions
as follows are chosen.

1) ARBE. Append random bytes to the end of PE file.
2) ARI. Append a randomly named library with random

function name to the import address table of PE file.
3) ARS. Append a randomly named section to the section

table of PE file. The following section types are ran-
domly set for additional data.

ARS-BSS. Set the section type to BSS. The BSS
section, which refers to ‘‘Block Start with Sym-
bol’’, stores any uninitialized static and global
variables.
ARS-UNKNOWN. Set the section type to
unknown.
ARS-IDATA. Set the section type to IDATA. The
IDATA section contains information about func-
tions (and data) that the module imports from
other DLLs.
ARS-RELOCATION. Set the section type to
RELOC. The RELOC section holds a table of
base relocations.
ARS-RESOURCE. Set the section type to RSRC.
The RSRC section contains all the resources for
the module.
ARS-TEXT. Set the section type to TEXT. The
TEXT section is the default section for code.
ARS-TLS. Set the section type to TLS. The
TLS section, which refers to ‘‘thread local

48870 VOLUME 7, 2019

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

storage’’, is related to the TlsAlloc family of
Win32 functions.

4) RS. Remove signature from certificate table of the
DataDirectory.

To begin with, the agent reads the content of original
binary PE file, append or remove content at the specified
location, and amend the relative virtual address for sample
with ensurance of the integrity of the file. Details are in
Algorithm 1.
In addition to that, it is necessary to ensure that the original

function of the file is not damaged after the actions. The
essential thing is that actions will not have any impact on
the structure and functions of PE files. Proof of this part is
available in the experimental section IV-C.

Algorithm 1 Section-Table Related Manipulate Algorithm
1: Parse the of content original binary file bint
2: Create an unused new section Sectionnew
3: Fill Sectionnew with content
4: Amend the RVA address
RVASectionnew = maxRVAbint sections

5: Sectionnew + bint ⇒ bint+1
6: return bint+1

E. REWARD

The reward is an element that differentiates reinforcement
learning from other types of machine learning. How to select
the appropriate reward for a given task is an unanswered
problem in traditional reinforcement learning. It would be
desirable if the agent could choose its own reward, instead
of requiring an expert to define it.
An independent classifier is used to evaluate the observa-

tion and the output is a label (malicious or benign) defined
as reward. After an action at is executed, the classifier will
return a label according to current environment. As our aim
is to evade detection and take actions as few as possible,
we define reward for each training ‘‘TURN’’ based on the
label from the classifier and the amount of actions taken.
The reward is 0 if the label is ‘‘malicious’’, and is calculated
using Equation (3) when the label is ‘‘benign’’. The trend
of this equation is shown in Figure 4, which means that
the smaller the ‘‘TURN’’ is, the larger the reward will be.
‘‘MAXTURN’’ is defined, whichmeans that the agent should
claim failure if ‘‘MAXTURN’’ steps of modification have
been taken and the reward is still 0. Whenever a positive
reward is returned, which means the malicious file evades
successfully, the process will end and the agent can learn from
it.

rt = 20−(TURN−1)/MAXTURN ∗ 100 (3)

In this part, this work is inspired by CarRacing-v0 on
OpenAI Gym [37]. Reward of it is −0.1 for every frame and
+1000/N for every track tile visited, where N is the total

FIGURE 4. The calculation of reward.

number of tiles in track. Thus, the agent can be trained to
finish all tiles as fast as possible.

In addition, due to environment is multivariable, it’s uncer-
tain whether the same reward can be gotten after the next
same action. The more the times are, the more the differences
are. Therefore, discount future incentives is necessary. The
reward value is calculated by Equation (4) in step t . γ is a
discount factor between 0 and 1, and the farther away from
now, the less the reward is. It is easy to see that the value of
the discounted future rewards in the step t can be expressed
in the same way as in the step t + 1.

Rt = rt + γ rt+1 + γ 2rt+2 + . . . + γ n−trn

= rt + γ (rt+1 + γ (rt+2 + . . .))

= rt + γRt+1 (4)

The discount factor is defined as γ = 0, then the strategy
will be too easy, which is based on instant reward. The
immediate and future rewards could be kept balanced when
the discount factor equals to 0.9. If environment is determined
and the same actions always lead to the same reward, then
we can define the discount factor as γ = 1. In the context,
we tried several values of γ , and finally we summarized that
the best γ (see details in section IV-B.4).

F. AGENT

Agent may contain the algorithm itself or simply provide
an integration between an algorithm and the environments.
It describes the method to run a reinforcement learning algo-
rithm against an environment. In this case, it decides which
training path DQEAF to take. The value of different actions
in a certain state is valuable. If we know the value of each
action, we can choose the most valuable action to perform.
We designed a deep convolutional Q-network as an agent,
taking efficient actions tomodify amalware to evademalware
detection. A convolutional network is a class of deep, feed-
forward artificial neural networks that use a variation of mul-
tilayer perceptrons designed to require minimal preprocess-
ing. As the dimension of data goes up, the required resources

VOLUME 7, 2019 48871

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

for training and computation grow exponentially. However,
artificial neural network can generalize from the input data
and solve the problem of high-dimensional sensory input.
The deepQ-network in DQEAF is an extension of convolu-

tional neural networks, by adding some new features with an
action-value Q and a target action-value Q̂ which map states
to action utilities (which is the value of each action according
to state or observation) for long-term reward.
Two networks usedQvalue andQtarget separately in comput-

ing loss function. The loss function is defined in Equation (5),
as shown at the bottom of the next page.
In the context of evading malware detection, network

takes the features extracted from the raw binary stream of
a malware sample as input, then produces the next malware
manipulation the agent will take. As for the output layer
of network, it’s set to action-index in actions set A. In this
context, the output dimension equals 4, which refers to the
total dimension of action space.
In more details, the hidden layers, the values of which are

not observed in the training set, are designed to 2 layers.
The first consists of a convolutional layer with 256 filters
using linear activation function, a batch-normalization
layer [35] and a rectified linear unit function. The second con-
sists of a convolutional layer with filter number of 64, a batch-
normalization layer and a rectified linear unit function. Here,
batch normalization is used to improve generalization with
choosing Dropout of the network and initiate a large learn-
ing rate to speed up the training. What’s more, the advan-
tages of rectified linear unit functions are faster convergence
in SGD, alleviating the problem of gradient disappearance
and a simple implementation. These layers cooperate into a
strong network to compute from the input malware features
to the output action-index. The network diagram is showed
as Figure 5.

Dropout has been demonstrated to be a very simple and
efficient approach for preventing over-fitting in deep neural
network. The dropout solution is potentially more resilient to
imperfect or dirty data (which is common when extracting
features from similar malware that was compiled or packed
using different software) [4]. Rectified linear units (ReLU)
have been shown to significantly speed up network training
over traditional sigmoid activation functions.

G. TRAINING

The training process is illustrated in Training Algorithm
(Algorithm 2) integrated with Testing Algorithm
(Algorithm 3) to generate models with a higher evasion
accuracy.
When it comes to the action-selection policy of the learn-

ing, exploration and exploitation policy is considered. Explo-
ration refers to random choice of modifications to explore
more possibilities. Exploitation is the choice of the best
modification that has been executed to improve the model.
Here ǫ − greedy policy is used, which practices a random
action with a probability ǫ and selects the most valuable
action with a probability 1− ǫ otherwise. The ǫ reflects how

FIGURE 5. DQEAF training network diagram.

much importance is attached to exploratory action policy [5].
The value of ǫ decreases during training epochs progress
according to Equation (6).Where n is the current training step
and N is the total number of training steps.

ǫn = 1.0 −
n

N
(6)

Experience replay is used to let reinforcement learning
agents remember and reuse experiences from the past. In the
process of replay, temporal correlations are broken and transi-
tions are replayed with the same frequency. Our framework is
inspired by prioritized experience replay [6], which takes the
priority of transitions into consideration and transitions with
high significance can be replayed more frequently. In this
work, only the successful modifications of the malware can
get high reward and these transitions should have higher
priority to be replayed than others.

In each step, transition Experiencet = (st , at , rt+1, st+1)
(previously mentioned in Equation (1)) will be stored at
maximal priority in memory to make sure that each experi-
ence will be replayed at least once. As is shown in Training
Algorithm 2, after B transitions are stored, the experience
replay begins. K transitions from M will be sampled and the

48872 VOLUME 7, 2019

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

Algorithm 2 Training Algorithm
1: Initialize MemoryM to capacity N
2: Initialize two identical networks, action-value Q and

target-value Q̂,
with random weights θ and weights θ̂ = θ respectively

3: for episode = 1 to D do

4: Initialize binary stream bininit of a file selected from
the malware files list E

5: Extract binary features
sinit = ExtractBinaryFeature(bininit)

6: for t = 1 to T do

7: With probability ǫ using equation (6) select a ran-
dom action at or
choose at = argmaxa Q(st , a; θ) using equation (2)

8: Modify bint by action at to bint+1 and
st+1 = ExtractBinaryFeature(bint+1),
observe reward rt+1

9: Store transition (st , at , rt+1, st+1) using (1)
with priority p = max pi

10: if sizeofM > B then

11: for i = 1 to K do

12: Sample transition Xi ∼ P(Xi) = pXi/
∑

j pj
using equation (7)
(j represents each transition inM)

13: Compute TD-error δXi using equation (8)
14: Update pXi = |δXi |

15: Set loss function LossXi using equation (5)
16: end for

17: Exert Adam optimizer to optimize parameter θ

18: end if

19: Every U step reset θ̂ = θ

20: if done then
21: break
22: end if

23: end for

24: if episode mod TEST_INTERVAL == 0 then

25: Run Testing Algorithm and get success ratio SR
26: Store Q and Q̂ to a new model m
27: if SR > MAX_RATIO then

28: break
29: end if

30: end if

31: end for

probability of sampling transition Xi is

P(Xi) = pXi/
∑

j

pj (7)

Algorithm 3 Testing Algorithm
1: Initialize total reward R = 0
2: The amount of test files F
3: for i = 1 to F do

4: Analyze binary stream bininit of F
and get sinit = ExtractBinaryFeature(bininit)

5: for t = 1 to T do

6: Compute Q̂ and choose at = argmaxa Q̂(st , a; θ̂)
7: Alter bint by action at to get bint+1,

st+1 = ExtractBinaryFeature(bint+1),
observe reward rt+1

8: Add up rt+1 to R
9: if done then
10: break
11: end if

12: end for

13: end for

14: Compute the value of SR
15: return SR

The priority of each transitions will be recalculated after
replay. TD error is used to measure the significance of tran-
sitions, and it is calculated by Equation (8). The priority is
updated according to TD error, and valuable transitions will
get higher priority and are more possible to be replayed.

δXi = rXi + γ Q̂(st+1Xi , argmax
a
Q(st Xi , aXi; θ); θ̂)

−Q(sXi , aXi; θ) (8)

Optimizer can reduce the loss with discount factor γ to
approach the optimum. The unique feature of DQN lies in the
future reward from target action-value Q̂ instead of action-
value Q. After U turns, Q̂ will be updated to Q. While
training, the agent progressively gets close to the optimal
action-values through the reward offered by the environment.

IV. PERFORMANCE EVALUATION

The DQEAF’s architecture for evading static PE anti-
malware engines is implemented based on reinforcement
learning, and the experimental results are shown in this
section.

A. THE IMPLEMENTATION

DQEAF’s environment is defined on the gym toolset, a toolkit
for developing and comparing reinforcement learning algo-
rithms, provided by OpenAI. The basic class of environment
which namedMalwareEnv is extended to fit into the malware
detection evasion problem. The environment must define its
observation space and action space and have at least two
methods: reset and step.

Lossi =

{

(ri − Qvalue)2 episode terminates at step i+1

(ri + γQtarget − Qvalue)2 otherwise
(5)

VOLUME 7, 2019 48873

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

TABLE 1. Number of samples in training set and testing set.

• env.reset function will reset the environment to initial
state and return the initial observation s0.

• env.step will execute a given action, move to the next
state, then calculate the detection result of the malware
sample in the next state.

DQEAF is implemented in Python 3.6. Experiments use
the Chainer deep learning library to implement the neural
network model. Modification of the PE file uses LIEF [36]
toolkit version 0.7.0, which provides a cross platform library
to parse, modify and abstract PE formats. The latest version
cannot support our framework, because byte stream of PE file
cannot be used as input. Each sample’s features are extracted
by a single thread process. Plotting experimental data uses
Visdom library.

B. EXPERIMENT SETUP

1) SAMPLES

a: SAMPLE SELECTION

Samples used in this work comes from VirusTotal, which is
open source. In the classifier used in this paper, all samples
are classified as malicious files. These samples are divided
into training set and testing set. In order to reduce the disk IO
operation to speed up the training process, all the samples are
cached before training, read all the binary data of the sample
into memory, and read the observation space directly from the
memory during the training process. The number of samples
are shown in Table 1. Four agents are trained based on four
families of malicious PE files under the Win32 platform,
including ‘‘Backdoor’’, ‘‘Trojan’’, ‘‘Worm’’ and ‘‘Email’’.

b: FEATURES NORMALIZATION

In addition to use batch normalization for each layer of the
network in agent training, the 513-dimensions observation of
each step is normalized to [0.5, −0.5].

c: SAMPLE EFFECTIVENESS

In order to prevent training process interrupted by the failure
of the ‘‘rude action’’, mentioned in section III-D, each sample
is executed in turn to ensure that all actions are effective on
all samples. Besides, all samples are classified as malicious
software by the target classifier.

2) ACTIONS

a: SUCCESSFUL MODIFICATION

To prove that the actions are executed successfully, some tests
are done. For each sample, a random sequence of actions is
generated and all actions in action space are ensured to be
covered. After each step of modification, the binary streams

FIGURE 6. The flow chart of Backdoor.Win32.PcClient.sx and the flow
chart of it after executes ARBE action.

and some features before and after the modification are com-
pared to determine whether the action is executed success-
fully. The features considered in this work include: length of
sections, section name, existence of signature, existence of
debug section and imported function.

b: NO CORRUPTION

In order to verify action manipulations will not corrupt the
samples’ execution, the Cuckoo sandbox [38] is used. Cuckoo
runs a submitted sample and analyzes it in a virtual machine.
It also reports comprehensive analysis results that outline
what the malware does while running inside an isolated oper-
ating system, the behavior of a sample including network
APIs called, their parameters and so on. The experimental
results show that the modified samples can be successfully
executed without corruption.

c: FUNCTION PRESERVATION

It is necessary to determine whether variants preserve mali-
cious behavior. IDA Pro is used to disassemble the files to
generate function call graphs, flow charts and binary files,
and display the import tables and function tables of files.
By comparing the function call graphs of all the samples
before and after modification respectively, the flow charts
have not changed, which can prove that actions do not affect
the structure and functions of the files. The flow chart of a
sample is showed in Figure 6.

3) INDEPENDENT CLASSIFIER

This classifier is trained on 50k malicious and 50k benign
samples, and extracts features including byte-level data,
header, section and import/exports. The model is based
on gradient boosted decision tree and trained by Sklearn.
To evaluate this classifier, Receiver Operating Characteristic
curve (ROC curve) and Area Under the Curve (AUC) are
used. ROC is widely used in machine learning and data
mining, describing the compromise between Detection Rate
(DR) and False Positive Rate (FPR). Besides, ROC curve can

48874 VOLUME 7, 2019

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

TABLE 2. List of major parameter and their values in the training algorithm.

keep constant while the distribution of positive and negative
samples changes. AUC is a method to calculate DR based on
ROC, and the larger the value is, the better the model is. The
AUC score of the model is 0.96.

4) PARAMETERS SETTING

In experiments, the independent machine learning classi-
fier to be evaded is a gradient boosted decision tree model
trained in 50,000 malicious and 50,000 benign samples.
As is shown in training algorithm of section III-G, training
rounds terminate early when the agent bypass the detector
prior to the T=80 rounds. Each model can be trained for
up to D=30,000 rounds, of which the agent is evaluated
each TEST_INTERVAL = 1000 steps, and each evaluation
is tested on F=200 test samples one by one. After training,
if the evaluation mean score is more than MAX_RATIO =7,
the training is stopped ahead of time (by this time the success
rate has exceeded 70%, and it is proved that the continued
training cannot be higher in this work).

What’s more, for the DQEAF parameters setup, discount
factor γ uses 0.99. Adam algorithm with minibatche of size
32 is used, replay buffer start-size B uses 1000. Agent target-
update-interval uses 100 and uses ‘‘hard’’ update method.
Agent also utilizes a ‘‘LinearDecayEpsilonGreedy’’ explo-
ration/exploitation strategy, in which mutations are drawn
proportionally to their expected Q-value. The behavior policy
during training was ǫ−greedywith ǫ annealed linearly from 1

to 0.1 over the first 1000 steps, and fixed at 0.1 thereafter. The
major parameter settings in the training algorithm are shown
in Table 2.

C. RESULT

In supervised learning, one can easily track the performance
of a model during training by evaluating it on the train-
ing and validation sets. In reinforcement learning, however,

FIGURE 7. The average reward per episode during training.

accurately evaluating the progress of an agent during training
can be challenging [24].

The result of the model is trained on ‘‘Backdoor’’ files.
Other models are trained and evaluated in the same way.

Statistical metric of model evaluation steps in the training
process are recorded periodically. In Table 3, the indicators
include metric of the average total reward value, the policy’s
estimating action-value function Q, which provides an esti-
mate of how much discounted reward the agent can obtain
by following its policy from any given state, and the average
value of the loss. As shown in the table, the model goes into
a stage when training for about 23,019 steps, the SR is up
to 7.5.
The agent’s improvement after training can be seen below.

The average total reward plot in Figure 7 tends to be very
noisy because small changes to the weights of a policy can
lead to large changes in the training path. The plot in Figure 9
shows loss value dropped to a very small value after 20,000
steps of training. The trend of the change of average pre-
dicted Q in Figure 8 is much more smoothly than the average
total reward in Figure 7.

VOLUME 7, 2019 48875

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

TABLE 3. Evaluation metric during training steps.

FIGURE 8. The average value of action-value function Q during training.

Testing method is the same as that evaluation approach
during the training process. Two methods are used to test the
200 testing samples. In particular, for each of the 200malware
samples, the trained agent by DQEAF to manipulate the
samples (up to MAXTURN = 80 times), and test whether
any sequence of actions can result in a successful evasion.
This agent achieves general expectation of robustness. This

work also evaluates the effectiveness of proposed methods
on other quantities of ‘‘Backdoor’’ files, and this method
achieves general expectation of robustness. The evasion suc-
cess rate of 2000 samples can still reach 70% in the test
process. Evasion rate on other quantities of test samples is
shown in Table 4.

FIGURE 9. The average value of the loss during training.

TABLE 4. Evasion Success Rate on ‘‘Backdoor’’ Test Samples.

TABLE 5. Evasion Success Rate of models trained on different families.

TABLE 6. Evasion Success Rate of cross validation.

TABLE 7. Evasion Success Rates of models when DQEAF and
Gym-Malware are trained on the same training set.

The efficacy of models trained on other families of PE
malware are shown in Table 5.

Cross-validation is used to evaluate the robustness of each
model. The models trained on one family samples are used to
test other family samples. The result is in Table 6.

The work of Anderson et al. [7], [34] in adversarial
machine learning has shown that deep learning models are
susceptible to attacks and evasions. They present a gen-
eral algorithm named Gym-Malware to attack the PE mal-
ware classifier by generating adversarial malware examples.

48876 VOLUME 7, 2019

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

TABLE 8. 20 examples of successful modification sequence.

VOLUME 7, 2019 48877

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

As their open source implementations are available and
their method only requires black-box access to the classifier,
we made a comparison between the proposed DQEAF and
their algorithm.
Their framework is used to train these four families sam-

ples aforementioned in Table 1. The comparative experimen-
tal results are shown in Table 7. These two models trained on
the same training set against the same classifier.
Our framework shows more advantages and the evasion

success rate of adversarial examples in each families from
DQEAF are higher than that from Gym-Malware. Priority
is taken into consideration during the replay of the past
transitions, thus transitions with higher value can be replayed
more frequently and the reinforcement learning network is
optimized. Low dimensions observation is used to reduce the
instability raised by high dimensions, and the convergence
speed of network training is increased.
Successful evasion samples of ‘‘Backdoor’’ produced by

DQEAF are uploaded to Virustotal, and found that the aver-
age detection ratio was 28 / 66, down from 54 / 66.
The focus of this paper is static Windows PE malware, and

furthermore it can be extended to other sorts of malware. The
training process does not extract any feature value based on
the PE file structure features, but is based on the characteris-
tics of binary byte stream. So this evasion method can also be
applied to other platforms such as ELF, Android.

V. CONCLUSION

This paper proposed a framework named DQEAF using rein-
forcement learning to evade anti-malware engines. The core
component of DQEAF is an AI agent, which is constantly
interacting with malware samples. The agent could choose
optimal sequences of functionality-preserving actions delib-
erately by deep reinforcement learning, which aims to evade
the supervised detector. Experiments show that the proposed
DQEAF has a high success rate in PE samples. In the future
work, we will consider other platforms with different file
structures and try to explore the defense of the attacks.

APPENDIX A LOG OF TRAINING ACTIONS SELECTION

We logged the selection of actions in training process for each
sample. Details about the sequence of actions for samples
that have been modified successfully can be seen in Table 8.
As listed in the table, 4 families that include 20 examples are
shown.

REFERENCES

[1] L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, ‘‘Information security in big
data: Privacy and data mining,’’ IEEE Access, vol. 2, pp. 1149–1176, 2017.

[2] Mobile Threat Intelligence Report, Symantec, Mountain View, CA, USA,
2017.

[3] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, ‘‘Hardware for
machine learning: Challenges and opportunities,’’ in Proc. IEEE Custom

Integr. Circuits Conf., Apr./May 2017, pp. 1–8.
[4] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection

using two dimensional binary program features,’’ in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), Fajardo, Puerto Rico, Oct. 2015,
pp. 11–20.

[5] E. R. Gomes and R. Kowalczyk, ‘‘Dynamic analysis of multiagent
Q-learning with ǫ-greedy exploration,’’ in Proc. Int. Conf. Mach. Learn.,
2009, pp. 369–376.

[6] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. (2016). ‘‘Prioritized
experience replay.’’ [Online]. Available: https://arxiv.org/abs/1511.05952

[7] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, ‘‘Evading machine
learning malware detection,’’ presented at BlackHat, Jul. 2017.

[8] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and
B. Li. (2018). ‘‘Manipulating machine learning: Poisoning attacks
and countermeasures for regression learning.’’ [Online]. Available:
https://arxiv.org/abs/1804.00308

[9] B. Biggio, B. Nelson, and P. Laskov, ‘‘Poisoning attacks against support
vector machines,’’ in Proc. ICML, 2012, pp. 1–8.

[10] A. Newell, R. Potharaju, L. Xiang, and C. Nita-Rotaru, ‘‘On the practicality
of integrity attacks on document-level sentiment analysis,’’ in Proc. Work-
shop Artif. Intell. Secur.Montreal, QC, Canada: AIESEC, 2014, pp. 83–93.

[11] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, ‘‘Is
feature selection secure against training data poisoning?’’ in Proc. 32nd
Int. Conf. Mach. Learn., vol. 37, 2015, pp. 1689–1698.

[12] B. I. Rubinstein et al., ‘‘Antidote: Understanding and defending against
poisoning of anomaly detectors,’’ in Proc. 9th Internet Meas. Conf. (IMC),
2009, pp. 1–14.

[13] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neu-
ral networks,’’ in Proc. IEEE Secur. Privacy Symp. (SP), May 2017,
pp. 39–57.

[14] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze,
‘‘Malware detection based on mining API calls,’’ in Proc. ACM Symp.

Appl. Comput., 2010, pp. 1020–1025.
[15] H.-T. Cheng et al., ‘‘Wide & deep learning for recommender systems,’’ in

Proc. 1st Workshop Deep Learn. Recommender Syst., 2016, pp. 7–10.
[16] H. Li et al., ‘‘A machine learning approach to prevent malicious calls over

telephony networks,’’ in Proc. IEEE Symp. Secur. Privacy, San Francisco,
CA, USA, May 2018, pp. 53–69.

[17] Y. Xue, P. Zhou, S. Mao, D. Wu, and Y. Zhou, ‘‘Pure-exploration bandits
for channel selection in mission-critical wireless communications,’’ IEEE
Trans. Veh. Technol., vol. 67, no. 11, pp. 10995–11007, Nov. 2018.

[18] Z. Qin, Y. Wang, H. Cheng, Y. Zhou, Z. Sheng, and V. C. M. Leung,
‘‘Demographic information prediction: A portrait of smartphone applica-
tion users,’’ IEEE Trans. Emerg. Topics Comput., vol. 6, no. 3, pp. 432–444,
Jul./Sep. 2018.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy. (2015). ‘‘Explaining
and harnessing adversarial examples.’’ [Online]. Available: https://arxiv.
org/abs/1412.6572

[20] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’
in Proc. IEEE Eur. Secur. Privacy Symp. (Euro S&P), Mar. 2016,
pp. 372–387.

[21] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, ‘‘Distillation as
a defense to adversarial perturbations against deep neural networks,’’ in
Proc. IEEE Secur. Privacy Symp. (SP), May 2016, pp. 582–597.

[22] N. Šrndić and P. Laskov, ‘‘Practical evasion of a learning-based classifier:
A case study,’’ in Proc. IEEE Secur. Privacy Symp. (SP), May 2014,
pp. 197–211.

[23] C. Szegedy et al. (2014). ‘‘Intriguing properties of neural networks.’’
[Online]. Available: https://arxiv.org/abs/1312.6199

[24] V. Mnih et al., ‘‘Playing Atari with deep reinforcement learning,’’ in Proc.
Mach. Learn. Princ. Pract. Knowl. Discovery Databases, 2013, pp. 1–9.

[25] H. S. Anderson, J. Woodbridge, and B. Filar, ‘‘DeepDGA: Adversarially-
tuned domain generation and detection,’’ in Proc. ACM Workshop Artif.

Intell. Secur., 2016, pp. 13–21.
[26] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel.

(2013). ‘‘Adversarial perturbations against deep neural networks for mal-
ware classification.’’ [Online]. Available: https://arxiv.org/abs/1606.04435

[27] B. Biggio et al., ‘‘Evasion attacks against machine learning at test time,’’
in Proc. Eur. Conf. Deep Neural Netw. Malware Classification, 2013,
pp. 387–402.

[28] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. M. Leung, ‘‘A survey
on security threats and defensive techniques of machine learning: A data
driven view,’’ IEEE Access, vol. 6, pp. 12103–12117, 2018.

[29] Z. Guan, L. Bian, T. Shang, and J. Liu, ‘‘When machine learning meets
security issues: A survey,’’ inProc. IEEE Int. Conf. Intell. Saf. Robot. (ISR),
Aug. 2018, pp. 158–165.

48878 VOLUME 7, 2019

Z. Fang et al.: Evading Anti-Malware Engines With Deep Reinforcement Learning

[30] W. Hu and Y. Tan. (2017). ‘‘Generating adversarial malware exam-
ples for black-box attacks based on GAN.’’ [Online]. Available:
https://arxiv.org/abs/1702.05983

[31] W. Xu, Y. Qi, and D. Evans, ‘‘Automatically evading classifiers,’’ in Proc.
Netw. Distrib. Syst. Symp., 2016, pp. 21–24.

[32] H. Hasselt, A. Guez, and D. Silver. (2015). ‘‘Deep reinforcement
learning with double Q-learning.’’ [Online]. Available: https://arxiv.
org/abs/1509.06461

[33] G. Dulac-Arnold et al. (2016). ‘‘Deep reinforcement learning in large dis-
crete action spaces.’’ [Online]. Available: https://arxiv.org/abs/1512.07679

[34] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth. (2018).
‘‘Learning to evade static PE machine learning malware models via rein-
forcement learning.’’ [Online]. Available: https://arxiv.org/abs/1801.08917

[35] S. Ioffe and C. Szegedy. (2015). ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift.’’ [Online]. Available:
https://arxiv.org/abs/1502.03167

[36] Quarkslab. (2018). LIEF: Library for Instrumenting Executable Files.
[Online]. Available: https://lief.quarkslab.com

[37] OpenAI Environment CarRacing-v0. Accessed: Aug. 31, 2018. [Online].
Available: https://gym.openai.com/envs/CarRacing-v0/

[38] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser. Cuckoo Sand-Box:
A Malware Analysis System. Accessed: Sep. 15, 2018. [Online]. Available:
http://www.cuckoosandbox.org/

[39] J. Bai and J. Wang, ‘‘Improving malware detection using multi-view
ensemble learning,’’ Secur. Commun. Netw., vol. 9, no. 17, pp. 4227–4241,
2016.

[40] E. Levin, R. Pieraccini, and W. Eckert, ‘‘A stochastic model of human-
machine interaction for learning dialog strategies,’’ IEEE Trans. Speech

Audio Process., vol. 8, no. 1, pp. 11–23, Jan. 2000.

ZHIYANG FANG received the M.S. degree in
computer science and technology from Sichuan
University, Chengdu, Sichuan, China, in 2009,
where he is currently pursuing the Ph.D. degree in
computer science and technology. He is currently
involved in research work on information security.
His research interest includes software security.

JUNFENG WANG received the M.S. degree
in computer application technology from the
Chongqing University of Posts and Telecommuni-
cations, Chongqing, in 2001, and the Ph.D. degree
in computer science from the University of Elec-
tronic Science and Technology of China, Chengdu,
in 2004. From 2004 to 2006, he held a postdoctoral
position with the Institute of Software, Chinese
Academy of Sciences. Since 2006, he has been
with the College of Computer Science and the

School of Aeronautics and Astronautics, Sichuan University, as a Profes-
sor. His recent research interests include network and information security,
spatial information networks, and data mining. He is currently serving as
an Associate Editor of the IEEE ACCESS, the IEEE INTERNET OF THINGS, and
Security and Communication Networks.

BOYA LI received the B.E. degree in computer
science and technology from Sichuan University,
China. Her research interest is software security.

SIQI WU received the bachelor’s degree in com-
puter science and technology from Sichuan Uni-
versity, Chengdu, Sichuan, China, in 2017, where
she is currently pursuing the M.S. degree in com-
puter science and technology. She is currently
involved in research work on malware detection
and attacking malware detection. Her research
interests include software security and network
traffic analysis.

YINGJIE ZHOU received the Ph.D. degree from
the School of Communication and Information
Engineering, University of Electronic Science and
Technology of China (UESTC), China, in 2013.
He was a Visiting Scholar with the Department
of Electrical Engineering, Columbia University,
New York. He is currently an Assistant Professor
with the College of Computer Science, Sichuan
University (SCU), China. His current research
interests include network management, behavioral
data analysis, and resource allocation.

HAIYING HUANG received the master’s degree
in biomedical engineering from the University
of Electronic Science and Technology of China,
in 2008. She is currently pursuing the Ph.D. degree
with College of Computer Science, Sichuan Uni-
versity, Chengdu, China. She joined the Informa-
tion Management Department of West China Sec-
ond University Hospital, Sichuan University. Her
research interests include software security and
neural network in medical big data.

VOLUME 7, 2019 48879

	INTRODUCTION
	RELATED WORK
	WHITE BOX ATTACK
	BLACK BOX ATTACK

	METHOD
	PRIMARY CONCEPT
	MODEL STRUCTURE
	ENVIRONMENT
	ACTION SPACE
	REWARD
	AGENT
	TRAINING

	PERFORMANCE EVALUATION
	THE IMPLEMENTATION
	EXPERIMENT SETUP
	SAMPLES
	ACTIONS
	INDEPENDENT CLASSIFIER
	PARAMETERS SETTING

	RESULT

	CONCLUSION
	REFERENCES
	Biographies
	ZHIYANG FANG
	JUNFENG WANG
	BOYA LI
	SIQI WU
	YINGJIE ZHOU
	HAIYING HUANG

