EVAL: Utilizing Processors with Variation-Induced Timing Errors *

Smruti Sarangi, Brian Greskamp, Abhishek Tiwari, andJosep Torrellas
Department of Computer Science
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

Abstract processors may be designed not for worst-case parameter values
o N . but for closer to nominal-case parameter values — and provide
Parameter variation in integrated circuits causes sections of . - o

- .~ - ~'some transistor budget to tolerate the resulting variation-induced
a chip to be slower than others. If, to prevent any resulting tim- - .
. : errors. The result may be a higher-performing processor and/or a
ing errors, we design processors for worst-case parameter values . . .

. cheaper manufacturing process — in short, a more cost-effective

we may lose substantial performance. An alternate approach G asian
plored in this paper is to design for closer to nominal values, and 9

. . . o To explore this scenario, itis first necessary to consider how pa-
provide some transistor budget to tolerate unavoidable variation- s o A
induced errors rameter variation induces timing errors in high-performance pro-

To assess this approach. this paver first presents a novel frame(‘:essors. Second, while we could reuse existing fault-tolerant ar-
pp ' pap P chitectures to handle these errors, it is important to understand

work that shows how microarchitecture techniques can tradehoW the rate of these errors can be traded-off for other quanti-

off variation-induced errors for power and processor frequency.ties such as processor power or frequency. Finally, we need to

Then, the paper introduces an effective technique to maximize, : A
L) . _“Identify microarchitecture techniques that minimize such errors,
performance and minimize power in the presence of variation-

induced errors, namelfligh-Dimensionaldynamic adaptation. possibly also affecting the power and frequency of the processor.

For efficiency, the technique is implemented using a machine:rhls paper addresses the last two challenges and makes two con-

learning algorithm. The results show that our best confi urationmbunons'
. gajg ' 9 . First, it introduces a novel framework called EVAL (Environ-
increases processor frequency by 56% on average, allowing the o :)
. L ment for Variation-Afflicted Logic) to understand how processors
processor to cycle 21% faster than without variation. Processor I S :
; S can tolerate and mitigate variation-induced errors. In EVAL, mi-
performance increases by 40% on average, resulting in a per- . 4
. . . L croarchitecture techniques can trade off error rate for power and
formance that is 14% higher than without variation — at only a

processor frequency.
0,
10.6% area cost. Second, this paper presemtgyh-Dimensionabdynamic adap-

1 Introduction tation, an effective microarchitecture technique to maximize pro-
cessor performance and minimize power in the presence of
As integrated circuit technology continues to scale, the nexiariation-induced timing errors. The parameters adapted include
major challenge faced by high-performance processor designetfe processor frequency, multiple voltages, and two processor
is parameter variation [30]: the fact that Process, Voltage, andtructures. To efficiently support this technique, we propose an
Temperature (PVT) values change from their nominal specificaimplementation based on machine learning.
tions. Designing processors under variation is harder because they Our results show that, under variation-induced timing errors,
have to work under a wide range of conditions. high-dimensional dynamic adaptation is feasible and effective.
One of the most harmful effects of variation is that some SeC+\ith no support for handling variation, a processor can only cy-
tions of the chip are slower than others — either because theigle at 78% of its no-variation frequency. However, by dynami-
transistors are intrinsically slower or because temperature or sugzally adapting processor frequency, per-subsystem voltages, issue
ply voltage conditions render them so. Logic paths in these secqueue size, and functional-unit structure, the processor increases
tions may take too long to propagate signals and, as a result, ints frequency by 56% on average — effectively cycling 21% faster
duce timing errors. On current trends, designers in upcominghan under no variation. Processor performance increases by 40%
technology generations may have to create overly conservativen average (or 14% over the no-variation scenario), always within
designs to avoid risking these errors. It has been suggested thajror-rate, power, and temperature constraints. The area overhead
parameter variation may wipe out a sizable fraction of the potenqof this technique is only 10.6% of the processor area.
tial gains of future technology generations [2]. This paper is organized as follows. Section 2 gives a back-
An alternative scenario, which this paper explores, is that inground; Section 3 presents the EVAL framework; Section 4 de-
a high-variability environment, cost-effective processors may bescribes high-dimensional dynamic adaptation and its implemen-
designed to tolerate errors due to parameter variation. In this casgtion: Sections 5-6 evaluate it; and Section 7 discusses related

*This work was supported by the National Science Foundation undework'

grant CPA-0702501 and by SRC GRC under grant 2007-HJ-1592. Smruti
Sarangi is now with IBM India Software Laboratories, in Bangalore (sr-
sarangi@in.ibm.com). Abhishek Tiwari is now with Goldman Sachs, in
New York City (abhishek.tiwari@gs.com).

Processor

~ |1 _
2 2 Chl f D_UJ
! ; 5 3 S
c =
& & £ i e
k<] Delay k<] 2 Frequency 2
#* #* w IR w T
Tnom fvar f Frequency
(€Y (b) (0 (d)
Figure 1:Impact of variation on processor frequency.
2 Background 2.2 Modeling Variation-Induced Timing Errors

2.1 Modeling Process Variation Process variation slows down some critical paths in a proces-
. . . sor. As a result, the maximum frequency attainable by the proces-
,W_h'le process var_lat'lon eX|§ts fit several levels, we fOCl_JS Ofor decreases. If we do not operate the processor at the resulting
Within-Die (W“.D) vanatlo_n,.whlch IS _caused by boﬂystemat_lc low, safe frequency, the processor will suffer timing errors. To es-
effe<_:ts due to Ilthqgraphlc iregularities _arahdomeffect_s, Pr" " timate the rate of these timing errors as a function of the processor
marily due to varying dopant concentrations [30]. Two 'mportamfrequency, we use the VATS model [26].
process parameters affected by variation are the thrgshold volt- VATS considers the dynamic distribution of the delays of all the
age () and the effectl_/e channel IengtIiLe(,:f). Variation of exercised paths in a pipeline stage. Without variation, such distri-
these ,two pgrameters directly affects a gate’s delgy [25] and bution may look like that in Figure 1(a). All paths take less than
agate’s static power fr:om SUbthreShOId Ieaka@#ﬂp' These two the nominal clock periodT....). Parameter variation changes
measures plus a gate's dynamic powi.) are given by: gate delay (as per Equation 1), making some paths faster while
others slower. The result is a more spread-out dynamic path de-

T _ VaaLess 1 lay distribution as in Figure 1(b). The processor now requires a
9 V. V,)e () . . e

p(Vaa — Vi) longer clock periodT..) to operate without timing errors.
Psta o VggT?e 9Vt/FT 2) If a processor is clocked with a peried< T (Figure 1(b)),

®) when the paths to the right bfire exercised, they may cause tim-
ing errors. An alternate way to see this is by plotting the error

where Vg4, T, C, andf are the supply voltage, temperature, ca- 'ate (or prob.abillity of errotPg) of the pipeline stage as we in-
pacitance, and frequency, respectively, whilanda are process ~ crease the pipeline frequency (Figure 1(c)). For fua,, where
parameters ang andk are physical constants. Jvar=1/Tyar, there are errors. _ o

To model process variation, we use the model in [26]. In this VATS generates @ (f) curve like the one in Figure 1(c) for
model, the systematic component f's variation is modeled & given pipeline stage. VATS then modelsrasstage pipeline as
with two parameterso,,, and¢. A chip is divided into a grid. & series failure system, where each stage can fail independently.
Each grid cell takes on a single valueldfs systematic compo- Each stage has an activity factop;, which is the number of
nent as given by a multivariate normal distribution with parame-times that the average instruction exercises the stage. Finally, the
ters ;=0 ando.,.. Along with this, the systematic component of PrOCESSor error rate per instruction as a function of the frequency
V; is spatially correlated using a function that only depends on the’ IS given by Equation 4, and is shown in Figure 1(d) for a 2-stage
distance between two points — not on their position in the chipPiPeline. n
or on the direction of the line _that connects them. SL_J(_:h a func- Pr(f) = Z(p" x Pg,(f)) 4)
tion decreases to zero for a distantcealledrange Intuitively, i=1
this means that at distange there is no correlation between the 5 3 rine-Grain ABB and ASV Application

systematic components &f for two transistors.L.ss is mod-]])
eled similarly with a different.,. but the same. Overall, with Two techniques that modify the properties of gates are Adap-

this model, we can generate per-chip personalized maps of thiivé Body Biasing (ABB) and Adaptive Supply Voltage (ASV).
systematic components & and L. . ABB [21, 35, 36] applies a body-bias voltag&, between the
Random variation occurs at the much smaller granularity ofSubstrate and the source (or drain) of transistors to either decrease

individual transistors. Random variation is added analytically, as/* (Forward BB or FBB), or increast; (Reverse BB or RBB).
random values from a normal distribution wjix0 ando ... As per Equations 1 and 2, decreasligeduces/, but increases
By combining the systematic and random components of vari£sta; increasingV; causes the opposite behavior. ABB requires
ation, we get the total variation. From here, using Equations Z°Me extra fabrication steps. _
and 1, we compute the variation in the static power and delay of ASV changes th&,, applied to gates [5]. As per Equations 1,
2 and 3, increasindzq reducesly, but increase$s:, and, espe-

gates. Then, integration of the static power over the whole pro<, . ¢ i !
cessor provides an estimate of the processor's static power. T9@!lY: Payn; decreasing/za causes the opposite behavior. ASV

estimate the processor’s frequency, we take the variation in gatl$ SIMPler to implement than ABB. , ,
delay and, ideally, would apply it to the design files of a state- A ChiP can have multiple ABB or ASV domains — an envi-
of-the-art processor. Since we do not have such files, we appljPnment referred to as fine-grained. Tschanal. [35] built a

the gate delay variation to the models of critical path distributionsCNiP With 21 ABB domains. Narendet al. [21] built a chip with

in pipeline stages with logic and with memory structures found® Single ABB domain, although the chip includes 24 local bias

in [26]. From the resulting slowest critical paths, we estimate thedenerators with separate local bias networks — just as would be
processor frequency. required in an implementation with domains. Both sets of authors

estimate that the area overhead of their ABB suppoxtd86.

den XX CVd2df

o e w o W ol
e g o o e e
Q % Q Q Q]
b S I I b bl
o 5 o o o4 14
s b s s 8 s
m i i i m
£ 7 f 7/ > Frequency fvar f Frequency far f Frequency foa f Frequency fvar f1 f5> Frequency

var opt from
@ (b) (© (d) ©
Figure 2:Tolerating (a) and mitigating (b)-(e) variation-induced errors in the EVAL framework.

If we assume that ASV supplies are chip-external, the aredhe branch misprediction penalty, since recovery involves taking
overhead of multiple ASV domains is small. Existing power sup-the result from the checker, flushing the pipeline, and restarting
ply pins are repurposed to deliver customiZég levels to each it from the instruction that follows the faulty one. On the other
domain. Then, level converters may need to be added to crodsand, botrmpand Pg increase witH.
voltage domains. For smallf, Pg is small (Figure 1(c)), which makeBg x rp

In this paper, we will initially assume that we can support over small. Consequently, dsncreasesPerfgoes up because the nu-
10 ABB and ASV domains in a processor pipeline. While this merator grows while the denominator increases only slowly —
is a stretch with current technology, current research (e.g., [15]iriven by the second and third terms. Eventuallyf &seps in-
points to promising directions to make it feasible. We will then creasing,Pr reaches a point of fast growth, as shown in Fig-

see that we do not need as much support. ure 1(c). At this point,Pr x rp swells, andPerf levels off and
quickly dips down. The result is shown in Figure 2(a), which
3 The EVAL Framework shows thePerf(f) curve with a solid line and th&z () curve in

We assume that, in a high-variability environment, cost-dashes. We calfo,: thef at the peakPerf. With this approach,
effective processors will not be slowed down to operate at worste réach frequencies higher th#in, by tolerating errors.
case parameter values — their performanc&.at. is low. In- 3.2 Mitigating Errors: Taxonomy of Techniques
stead, we assume that they will be clocked with a pefiedT ., We can reduce the number of variation-induced errors with mi-
(Figure 1(b)) and suffer timing errors during normal execution. croarchitectural techniques. We group such techniques into four
To design cost-effective processors in this challenging eNViroNg|asses, depending on how they affect the vs f curve. In this

ment, we propose the EVAL framework to tolerate and mitigatesetion, we describe the four classes — shown in Figures 2(b)-(e)
variation-induced errors. In EVAL, microarchitecture techniques__ \ynije in Section 3.3. we present one example of each class.

can trade-off error rate for power and processor frequency. . . .
P P q y Tilt: This class of techniques speeds-up many paths that are al-

3.1 Tolerating Errors most critical in a pipeline stage, but does not speed-up the slowest
If we augment the processor with support for error detectionpaths in the stage. As a result, the slope of e vs f curve

and correction, it is possible to cycle the processdrat f,qr decreases, but the point where the curve meet$ &x& (fuar)

while still ensuring correct execution. For instance, we can add aemains unchanged (Figure 2(b)). Overall, forfamoderately

checker unit like Diva [40] to verify results from the main pipeline higher thanf,..., Pr has decreased.

at instruction retirement. To ensure that the checker is error-freeghift: This class speeds-up all the paths in a stage by a similar

it can be clocked at a safe, lower frequency than the main coréamount. As a result, the curve largely shifts to the right (Fig-

(Section 2.3) — according to [40], it is feasible to design a wide-
issue checker thanks to its architectural simplicity. Alternately,ipg the curve as just described. Consequently, another class of

we can "’?dd a checker processor I|k_e n Pacellne [9], or augmeQechniques speeds-up the slow paths in the stage (thus consuming
the plpellr)e staggs or functional units with error checlgng hard'energy) and then saves energy by slowing down the fast paths.
ware like in a variety of schemes (€.g., [8, 37, 38]). With any of TPe first action shifts the bottom of thiéz vsf curve to the right

these architecture_s, the performance in instructions per second Bhd/or reduces the curve’s initial slope; the second action shifts
the processor cycling ais: the top of the curve to the left and/or increases the curve’s final

Reshape: There is typically anenergy cosin tilting or shift-

f f slope (Figure 2(d)). For thieconsidered, the result is a lowe;
Pert/) = cPI — CPleomp + CPlLmem + CPlyec with potentially little energy cost. In reality, it may be easier to
f obtain this behavior at the processor level by speeding-up slow

= 5 . . .
CPloomp + mr x mp(f) + Pa(f) x rp (5) pipeline stages and slowing down the fast stages.

Adapt: As an application executes, it changes the types of op-
where, for the average instructiaf PIcom, are the computation erations it performs. As a result, if3z vs f curve also changes,
cycles (including L1 misses that hit in the on-chip L&)PImem as shown in Figure 2(e). A final class of techniques adapt$ the
are stall cycles due to L2 misses; afid’I,... are cycles lostto of the processor dynamically, to keep it as high as possible while
recovery from timing errors. In additiomr is the L2 miss rate maintainingP low at all times (Figure 2(e)).
in misses per instructiompis the observed L2 miss penalty in s .
cycles non?overlapped witFk)\ computatid®y is the errorprate ger 3.3 Example of Error-Mitigation Techniques
instruction, andp is the error recovery penalty in cycles. We now list one example of each of the four classes of tech-

To a first approximation(’' P1.,mp,, Mr, andrp remain con- hiques to mitigate variation-induced errors.
stant as we chande If we use a Diva-like schemep is equal to

3.3.1 Tilt: FU Replica without Critical-Path Wall the upper part of the curve to the left and increases its final slope.

Design tools often design pipeline stages or Functional Units3.3.4 Dynamic Adaptation

(FUs) with many near-critical paths. This is because, to save area Many algorithms have been proposed to dynamically change

and power, the non-critical paths are not subjected to high 0ptiy,rameters such as voltage, frequency, or cache size to adapt to

mization_— as long as they are s_horter than thg_critical path, the)épplication demands (e.g., [6, 7, 10]). In the context of mitigating
are considered good enough. This creates a critical-path wall. Th@p narameter variation, the key difference is that the problem

typical Tilt technique consists of taking a design and optimizing 55 5 verigh dimensionality The reason is that, to be effective,
the near-critical paths to be shorter, so that the distribution of patr\}ve need to sense from and actuate on many chip localities — as

delays and, therefore, thé vsf curve, become less steep. One .y a5 regions with different parameter values — and then opti-
possible way to do so is by increasing the widfl) Of the tran- 76 giohally. Due to the complexity of the problem, we propose
_S|stors in t_he non-critical paths. This dec_reases_thelrdelay, w_hlchn implementation using machine learning algorithms; they en-
is proportional tok; + K»/W. However, it also increases their e rapid adaptation in multiple dimensions with minimal com-
power and area, since they are proportionaM{22]. putation cost

Consequently, we propose to have two implementations of an - jiuh_gimensional dynamic adaptation is the key technique in

FU side-by-side. Both contain the same logic circuit, but one iSgya) | and the one that agglutinates all the other techniques. We
the original designNormal) and the other has the transistors in describe it next

the non-critical paths optimized.¢wSlopé. LowSlopeis less
power-efficient, but it has a lower-slopdek: vs f curve. Con- 4 High-DimensionaI Dynamic

sequently, if the pair of FUs falls on a chip area with fast transis- Adaptation for Variation Errors
tors, since the FUs will not limit the processor frequency, we en-

ableNormaland disabld.owSlope— the processor will be more We proposeHigh-Dimensionaldynamic adaptation as a novel

power efficient. If the pair falls on an area with slow transistorstechnique to effectively mitigate WID parameter variation in up-

and limits the frequency of the processor, we endlieSlope coming processor chips. The goal is to boost the processor fre-

and disableNormal — the processor will cycle at a highéfor guency when there is room in the toleralifg, power, andT.

the samePg. This technique involves (i) sensing from the several variation lo-
We implement this technique in the most critical (typically, the calities, (i) relying on local techniques titt, shift, or reshapehe

hottest) FUs: we replicate the integer ALU unit and, inside the Pz vs f curve in each locality, and (jii) finally optimizing glob-

FP unit, replicate the adder and multiplier. Due to the area im-ally. Given the complexity of the problem, we propose an im-

plications discussed in Section 5, we conservatively add one explementation with aoftware-based fuzzyontroller. Every time

tra pipeline stage between the register file read and the executbat a phase change is detected in the application, the processor

stages. is interrupted and runs the controller algorithm. The algorithm

3.3.2 Shift: Resizable SRAM Structures uses software data structures that contain fuzzy rules built by the

manufacturer in a learning phase. In this section, we describe the

A technique that has been proposed for SRAMSs such as cachegspiem statement, the algorithm, and its implementation. As an
or queues is to dynamically disable sections of them to reduceyample, we adapt using all the example techniques described in
power, access time or cycle time (e.g., [4]) — since smaller strucggction 3.3, namely different ABB and ASV for eachiopro-

tures are faster. In these schemes, transmission gates separgifqqr subsystems, FU replication, and issue-queue resizing.
sections of the structure; disabling transmission gates reduces the L
1 Optimization Problem Statement

structure size. According to [4], SPICE simulations show that the™
impact of properly-designed transmission gates on the cycle time Every optimization problem has a set of outputs subject to con-
is negligible. straints, a final goal, and a set of inputs.

This is a possibl&hifttechnique. On chips where the RAM Outputs. There ar&@n + 3 outputs: (i) the core frequency, (ii) the
structure falls on a fast region, the whole structure is keptge ~ Vaa and Vi, for each of then subsystems in the processor, (iii)
design). On chips where it falls on a slow region and limits thethe size of the issue queue (full or 3/4), and (iv) which FU to use
chip’sf, we disable a fraction of the structu@nalldesign). With ~ (normal or low sloped). The last two outputs apply to integer or
shorter buses to charge, most of the paths in the structure speed (g} units depending on the type of application running.
shifting the P curve to the right. Consequently, at a@ngmalls Constraints. There are three: (i) no point can beTahigher than
Py is lower thanLarges. A shortcoming is that downsizing may 7w ax, (i) the processor power cannot be higher th ax,
decrease IPC. However, we now have room to trade mgréor and (jii) the total processaPr cannot be higher tha®z,, , . .
higherf and still come out ahead in performance. The reason for the latter is justified next.

We implement this technique in the integer and FP issueGoal. Our goal is to find the processbthat maximizes perfor-
queues, since they are often critical. We enable them to operate mance. However, taking Equation 5 and finding the point where
either full or3/4 capacity. its derivative is zero is expensive. Instead, we can find a very
3.3.3 Reshape: Fine-Grain ABB or ASV similar f with little effort if our goal is to maximize subject to

the processor'®x being no higher thaiz,, , , — assuming we

ABB and ASV have been used to sp_eed up slow s_,ections of 3hoose an appropriatez,, , . - Specifically, thePg (f) curve in
chip and reduce the power of fast sections of the chip (e.g., [31Figure 2(a) is so steep that the rangélnétweenPs — 10~ and

36]). Using them in our framework reshapes tHg curve as p. _ 101 errors/instruction is minuscule (only 2-3%). More-

in Figure 2(d): speeding-up the slow pipeline stages pushes th@ver, for typical values 06 Pleomp, CPLmem, andrp in Equa-

lower part of the curve to the right and reduces its initial slopeitjon 5 p, "= 10~* makesC P1, .. negligible, whilePs = 10~

slowing down and saving power on the fast pipeline stages pUSherﬁakesCPITec so high thatPerf has already dropped. Conse-

core

MIN
— 11yl
a

N {R}h’Kdyn’Ksta’V‘O' #

fmax j Ty

fnormal Min(f)rest
(R K3 \ I
@

n N gn
th'' “dyn KearVio %5}

FregAlgorithm Freq Algorithm Power Algorithm

foore \ 0 f
F‘:"—L £ ormal Min(t)res
Power Algorithm
\ i (ii)

%J

T n
H {F\;llh'Kdyn

|

n n n:
KgarVio 91} vl 1

1 .1 1
a
{R}h’Kdyn’Ksla'VtO’f]} dd Vbb

(a): Freq algorithm

quently, if we set our goal to maximifesubject toPr being no
higher thanPz = 10~* errors/instruction, we will obtain arand
aPerfthat are both very close to the optimal ones.

Inputs. We need inputs that enable us to compute Th&s:,,
and P, of each subsystem. Such values are given by:

T = T+ Rin X (Piyn + Psta) (6)
Piyn = KaynayCViyf (7)
Pia = KaaVaaT?e /T ®)

Vi = Vio+ki(T —To) + k2Vaa + ksVies)

Equation 6 gives the steady-stdteas function of the temper-
ature of the common heat sinl{’§) and the thermal resistance
of the subsystemZK;). In Equation 7,Kg4,, is a constant for
the subsystem and; is the activity factor of the subsystem in
accesses per cycle. In Equationf8,:, is a constant for the sub-
system. Finally, in Equation 9, to compuig at T, we need to
know its valueV;, at a reference temperatufg. The effect ofT,
Vaa andVi, on'V; is captured by constants, k2, andks [19].

(b): Power agorithm
Figure 3:Overview of the optimization algorithm.

0 f

Min(f)rest flowslope
i i (iii)

0 f
Figure 4: Possible frequency out-
comes for the replicated FU.

n n
Vad Vob

and then modifying the solutions slightly to make them compat-
ible. We proceed in two steps, namely fheq andPoweralgo-
rithms.

In theFreqalgorithm, each subsystermdependently finds the
maximum frequencyf!, ... at which it can cycle using any value
of ABB or ASV, and without violating the temperature constraint
(Tarax) or error rate constraint (which we conservatively set to
Pr,, 4x/n). Then, we take the minimum of alf’,,,, which
becomes the core frequengy,... Next, in thePoweralgorithm,
each subsystemtakes f.... and independently recomputes its
Vi, andVj, that minimize the power consumed by the subsystem
without violatingTa ax or Pe,, , . /n. Finally, a check is made
that the overall processor power is lower tha 4 x .

An overview of the overall process is shown in Figure 3. In the
two algorithms, each subsystarntakes the 6 inputs described in
Section 4.1, which we represent with supersaript
FU Replication. This technique is representative of those that
provide the choice of one of two configurations in a subsys-
tem. In this case, we need to run theeq algorithm for each of

These equations form a feedback system and need to be solvélge two configurations, and generate tWQ,.., namely frnormat
iteratively. In these equations, the inputs to our control algorithmfor the normal FU andfowsiope fOr the low-sloped one, where

areTrw, Rin, Kayn, a5, Ksta, Vio, andf — the rest are either out-

Sfrormat < flowsiope. TO decide which of the two FUs to en-

puts (Vza andVis), constants, or intermediate parameters. Amongable, we comparg,ormai @and fiowsiope t0 the minimum value

these inputsR:n, Kayn, Ksta, andVio are per-subsystem con-

of fi .. for all the other subsystems in the processor, which we

stants that the manufacturer can measure and store on chip. Thisll Min(f)..s:. The possible relative values of these three fre-

is done as follows. FirstR:x, Kayn, and K., are unaffected by
variation, and are either a function of the subsystem afgg)(

guencies create three cases, as shown in Figure #hotfra <
Min(f)rest like cases (i) and (i), the FU is critical and, there-

or are estimated by the CAD tools based on the number and typfore, we enable the low-sloped implementation to maximize fre-

of devices in the subsystenkg,, and K,:,). Second,Vio is
variation-dependent, and is measured on a tester at a Kihdyn

quency. Otherwise, like case (iii), we enable the normal one to
save power.

suspending the clocks and individually powering on each of thessue Queue ResizingThis technique is representative of those
subsystems. The current flowing in is the leakage of that subsyghat provide two configurations which, at the safneduce a dif-

tem, from whichV;, can be computed according to Equation 8.
On the other hand]’z and the per-subsystem; must be
sensed dynamicallyl'z can be measured with a singlesensor

ferent processor CPI. This is what occurs with the two different
gueue sizes: at the sarfiehey result in different processor CPIs.
In this case, at the beginning of each phase, we need to take sev-

on the heat sink. Since the thermal time constant of the heat sinkral s to estimate with counters the CR),,, with either queue
is of the order of tens of seconds [29], it only needs to be measize, namely CRbyyp, o, and CPlomp, »5. We then run thé&req

sured every few seconds. Finally, within a program phagen a

algorithm for each queue size and, together with fhe,. of all

given subsystem does not change much [28]. We can measure itise other subsystems, compute the frequency we would select
average value at the beginning of every phase with performanctor the core, namelyfcore, oo and feore, ,5. Finally, we com-
counters similar to those already available. Adding up all inputs pare the estimated performance given in Equation 5 with either

we getbn + 2 inputs, of which onlyn + 1 need to be sensed (the
per-subsystem; and theT'y).

4.2 Optimization Algorithm

Cplcomm,oo and fCOT51.00! or with CP'COmPO.75 and fCOT€0.75-
Finally, we enable the queue size that delivers the higher perfor-
mance of the two.

To make the problem tractable, we propose to solve it by se-

lecting a good solution in each of thesubsystems independently,

filled y, o

#rules |

#input variables #input variables input vector output value
[]

= EE ‘
g K L —

(b) Training Phase

matrices
and y vector

vl o y
input

0 . L)| controller =L

X1 Xm estimated
output

@ () Deployment Phase

Figure 5:Operation of a Fuzzy Controller (FC).

4.3 Implementation manufacturer on the chip hardware. Moreover, we discussed in
4.3.1 Freq and Power Algorithms Section 4.1 thaV;, can be measured quickly. The second step in-
volves populating the FCs. This is done by running many inputs

The Freq and Power algorithms are non-linear, multidimen- on a software model of the chip that implemeBthaustive

sional problems that have no analytic or simple algorithmic so-
lution. In this section, we outline an exhaustive solution and therf+-3.2 Controller System Interface

our proposed solution based on a fuzzy controller. The controller system consists of a set of privileged-mode soft-
Exhaustive Algorithm. In this algorithm, we start from a finite ware routines and data structures that implement FCs for each
set of values for each df V4, and V4, in a subsystem, and ex- subsystem. The FCs access a sensor attached to the heat sink that
haustively try all possible combinations to select the best one foprovidesT’, and a set of performance counters that provide

the subsystem subject to constraints. Specifically, irFtieq al- for each subsystem. In addition, there are per-subsystem ther-
gorithm for subsystenn, we compute, for each V4, and Vi, mal sensors [29] to detect overheating, a core-wide power sen-
value combination, the resulting subsyst&nand Pr. We se- sor to detect power overruns, and a core-wige counter from

lect asf},,., the maximunt that does not violate th&y, 4x or the checker hardware (Section 3.1) to detect error-rate overruns.
Pg,, . /n constraints. In théPower algorithm, we takefcore When a hardware-based application phase predictor like the one
and compute, for eack;; and V4, value combination, the re- by Sherwoockt al.[28] detects a new phase, it interrupts the pro-
sulting subsyster, Pg, and power. We select thé;; and V4, cessor, which then runs the controller routines.

combingtion that, while not violating th€;ax or Pg,, . /1 4.3.3 Timeline

constraints, consumes the lowest power. Unfortunatethaus-
tive is too expensive to execute on-the-fly.

Fuzzy Controller Algorithm. Fuzzy Controllers (FC) are use

Figure 6 shows the timeline of the whole system. The phase
d detector detects a new phase on average evel20ms, and in-
when we know that there is a relationship between a multidimen-ter'ru_pts th_e processor. If this phase has been seen before, a s_aved
configuration is reused; otherwise, the controller attempts to find

sional input and an output but we do not know the form of the . i) -
function [39] — and therefore non-linear regression cannot be® good configuration. For that, it first lets the application run for

used. An FC learns a set of rules during a training phase, stores 20us, wgle_cour#ers e§t:jmate each snIJbsystt_em’s new activity
them, and uses them later-on in deployment to provide accurat@_cmraf' uring _t IS period, counters_ also estlmﬂe?[c_omp
answers to queries. The advantages of using an FC for each su jith the fuII-s!zed issue queue (for the first half of the pgnod) and
system'sFreq and Power algorithms (each box in Figure 3) are the 0.75 configuration (for the second h&lIfjs per Section 4.2,

FC's good accuracy and very low response time. In our schemeéhese ((';_Pls WI||hbe used ’][(o resl!ze ’_[he |nteger or FP issue queue —
we use a software FC implementation. epending on the type of application running.

An FC operates on two matrices callecindo, and a column Subsequently, the fuzzy controller routines take over the CPU
vector of the same number of rows (Figure 5,(a)) Each row ofand execute. Based on the number of instructions executed in
the matrices is a fuzzy rule, and its output is an element of théhese routines, we .es.tlmate that. a 4GHz processor tgke; about
column vector. The number of columns in each matrix is equaI6“s to run them. This is the only time when the application is not

to the number of variables per input vector. In the training phaséunn'ng' After the new configuration is chosen, the application

(Figure 5(b)), we train the FC with thousands of training exam-"4"> again and the system transitions to the seleftgd and
ples to fill in the matrices and vector (Appendix A). A training per-subsystenivaa andVi,. While the transition latency depends

example is an input vector along with its correct output. We gen-on the mag_nltude (,)f the change requm_ed, we estimate itis at m,OSt
10us — a figure slightly more aggressive than the one for Intel’s

erate each training example by runniBghaustiveoffline. In the Scal hnol
deployment phase (Figure 5(c)), the FC takes an input vector anfScale te_c nology. L . i
Due to inaccurate estimation when using fuzzy control, the fi-

produces an estimated output (Appendix A).) . :)
d nal configuration may not be optimal or may not meet constraints.

In the Freq algorithm, the 6 inputs shown in Figure 3 are fe fiti . | int violati
to a per-subsystem FC whose outpufls, . : in the Poweralgo- itis too aggressive, a sensor may log a gonstramt violation — a
thermal/power violation within a thermal time constast 2ms)

rithm, there are two FCs per subsystem — one for outffiytand A :
or an error constraint violation sooner. In this case, the system

one for outpufi;i,. Their inputs are shown in Figure 3. P . di hich invol d £i
We do not expect that training the FCs will increase the chipIOer orms a minor readjustment, which involves decreabiew

test time excessively. First, of all the constants needed in Sec- 1}t these two tests end up testing very different code sections, we may
tion 4.1, only the per-subsystefri, must be measured by the make a suboptimal decision. Correctness is never in question.

L Error-F
4-core CMP; Tech: 45nm; Vdd: 1V; f (no variation): 4GHz Subsystem Type Instr. Queue O:v/er'FrrerglrJenrc?
Round trip latency in cycles from processor to: DTLB memory Processor .

.9 19 Q. . Core M Checker

L1: 2; L2: 8; Memory: 208 Dcache memory

Parameter changes) . LO Caches
. From 2.4GHz to over 4GHz in 100MHz steps FPUnit logic i 1
ABB: From -500mV to 500mV in 50mV steps FPQ mixed O T 0D
ASV: From 800mV to 1200mV in 50mV steps FPReg memory ‘ Cache ‘ Cache ‘

Area measured from die photo:. FPMap memoary (c): Logical organization of the checker
IntALU subsystem (3 add/shift + 1 mult): 0.55% proc area IntALU logic

1 FPadd + 1 FPmult: 1.90% proc area

Full-sized issue queues: LAStQ mixed Source Area (% Prog)
Integer: 68 entries IntReg memory ASY 0.0
FP: 32 entries IntQ mixed -

Fuzzy controller system: N IntMap memory Checker 7.0
Each FC: 25 rules; 10,000 training examples IntALU Repl 0.7

. R ITLB memory
Phase detector: 32 buckets; 6 bits/bucket FPAdd/Mul Rep 25

Process parameters: Icache memory I-Queue ResiZe 0.0
Vt: p: 150mV at 100Co/p :0.09; :0.5 BranchPred mixed .
Leff: o/t 0.5 X VE'So/p ¢:0.5 Decode logic Phase Detectqr 03

Number of chips per experiment: 100 X Sensors 01

— — — - i b): Subsystems used
Puax =30W/proc, T~ =85C, T~ =70C,P =10 erfinst (b) y: Total 10.6

d): Additional area
(a): Some parameter values @

Figure 7:Characteristics of the system modeled.

Heat sink cyclex= 2-3 s links to the other cores. We estimate a nominal (i.e., without
Phase== 120 ms Phase variation) frequency of 4GHz with a supply voltage of 1V. Fig-
ure 7(a) shows some characteristics of the architecture. In this

)g >t evaluation, we choose to have 15 subsystems per core, as shown
in Figure 7(b).

Retuning cycles The frequency changes like in Intel XScale, and all changes

can be effected in 16s. V4, and Vg, can be adjusted on a per-

subsystem basis, as in [36]. Figure 7(a) shows the ranges and step

i {f sizes of the changes. Based on [21, 35], we estimate that the area

overhead of ABB i~ 2%. However, we will not include ABB

New Ouglo PO, —2ms —2ms in qur_ p'referred configuration. As indicated in Section_ 2.3, we
phase /' \ 0.5 &@M | optlmlgtlcally assume _that the area overhegd of AS_/ Is largely
detected Bring to chosen wofﬁ’if]g ;gig[negllglble [5], given chlp-e_xterngl ASV supplies. We will include
Run fuzzy controller algorithm ASV in our preferred configuration.
Test CPI,, for the 2 queue configurations Each core has a checker like Diva [40] to detect and tolerate
Measure o for cach subsystem core errors (Figure 7(c)). The checker is sped up with ASV so that
Figure 6:Timeline of the adaptation algorithm. it runs at 3.5GHz without any errors. It has a 4KB LO D-cache,

a 512B LO I-cache, and a 32-entry queue to buffer instructions
ponentially — first by 1 100MHz step, then by 2 steps, 4, andretiring in the processor. To ensure that the checker reads the L1
8 without running the controller — until the configuration causesreliably, the L1 is augmented with the SRAM Razor scheme [14],
no violation, and then gradually ramping fip constant 100MHz ~ which adds duplicate sense amplifiers to L1. L1 reads are per-
steps up until right below Bthat causes violations. formed with speculative timing for the core, and then a fraction of

These smalf changes to prevent violations are callRdtun- a cycle later with safe timing for the checker. Since checker de-
ing Cycles(Figure 6). They daotinvolve re-running the fuzzy sign is not our contribution, we do not elaborate further, although
controller. Finally, every 2-3s, tHE; sensor is refreshed. we include its area and power cost in our overall computations.
4.3.4 Summary of Complexity FU Replication Technique. We replicate the integer ALU unit

and, inside the FP unit, replicate the set composed of adder and

We believe that the complexity of this technique is modest. They, ytiplier. To estimate the area, power, and timing of low-sloped
key part of the technique, namely the controller, is |mplementeq:US’ we use the data in [1]. Although their circuit is a small

in software, which reduces design complexity. The hardware asgeqyential circuit rather than an ALU, we consider that their mea-
pects include sensors, FU replication, issue-queue resizing,

; - 1Hs . Divayrements are an acceptable estimation of this optimization’s im-
checker, and fine-grain ABB/ASV. Note that this is notan “all-or- o op average, the low-sloped unit consumes 30% more area
nothing” system — different subsets of techniques can be us_e‘gnd power, and its path delay distribution changes such that the
Finally, fuzzy control has been shown to be a simple, effectivey,qan decreases by 25% and the variance doubles [1]. From this,

way to handle complicated control systems [39]. and the FU area shown in Figure 7(a), it follows that integer and

. . i i 0, 0, To

5 Evaluation Environment lljf; I;t.ld)r)epllcatlon adds 0.7% and 2.5% of processor area (Fig

We model a Chip Multiprocessor (CMP) at 45nm technology Since replication lengthens the wires that connect the regis-

with four 3-issue cores similar to the AMD Athlon 64. Each core ter file to the FUs, we conservatively add one additional pipeline
has two 64KB L1 caches, a private 1MB L2, and hyper-transportstage between the register file read and the execute stages. While

[[Environment | Explanation [[Environment | Explanation I

1: Baseline Plain processor with variation effects 5: TS+ASV+Q TS + ASV + issue-gqueue resizing (Sec 3.3.2)
2:TS Baseline + Diva checker for timing speculatign 6: TS+ASV+Q+FU | TS + ASV + Q + FU replication (Sec 3.3.1)

3: TS+ASV TS + adaptive supply voltage (Sec 3.3.3) 7 ALL TS+ASV+Q+FU+ABB

4: TS+ASV+ABB| TS + techniques of Sec 3.3.3 8: NoVar Plain processor with no variation effects

Table 1:Key environments considered.

this increases the load-misspeculation and branch-mispredictioreference values. For each of the four cores in the CMP, we set
loops by one cycle, it does not affect the execution of back-to-Pys4 x for the core to 30W.

back ALU instructions. As a result, the overall performance im- We use HotSpot [29] to estimaf®;,, for each of the subsys-
pact is modest and the scheduler complexity is largely unaffectedems. Once we have all the parameters in Equations 6-9, we solve
SRAM Resizing Technique.We resize the integer and FP issue the equations for any., Vi, f) operating point. Solution is by
queues (Figure 7(a)), so that each can operate at either fBMor iterating until convergence. We SBt; 4 x=85°C,Tx,, , x =70°C,
capacity [4]. This technique adds no extra area (Figure 7(d)). and as per Section 4.Pg,, ,,, = 10™* errfinst.

Dynamic Adaptation Technique. The fuzzy controller routines With this setup, we model the environments of Table 1, without
have~120 Kbytes of data footprint. For each Fuzzy Controller and with the high-dimensional dynamic adaptation technique.
(FC), we choose to have 25 rules and train them with 10,000 .

randomly-selected examples generated \Ethaustive— these 0 Evaluation

settings give good results. This data is stored in a reserved mem- \yss first show thaPs, power, and (or performance) are trade-
ory area. When the controller runs, it pollutes the deta cache, butple quantities. Next, we evaluate the relative performance and
since it runs only once per phase, its performance impact is neg;oer consumption of the environments in Table 1, without and
ligible. The code footprint is tiny because the code is only a few,yit, dynamic adaptation. Finally, we characterize the dynamic

tight loops. o adaptation technique in detail.
The hardware-based application phase detector uses basi

block execution frequencies to detect phases. It is the one de(%':L Error Rate, Power, and Frequency (or
scribed by Sherwooet al.[28]. Its parameters are shown in Fig- Performance) Are Tradeable
ure 7(a). Using CACTI [32], we estimate that it add8.3% of In our processorPg, power, and (or performance) are trade-
processor area (Figure 7(d)). The detector is designed to deteable quantities. To show it, we experiment with one application
T and power phases as in [13]. It uses similar stability criteria(swin) running on one sample chip. For tli&environment, Fig-
as [13], and obtains similar phases. The average length of a stabilge 8(a) shows th&g vs frequency curves of all the processor’s
phase in SPEC applicationsisl 20ms, so adapting at every phase subsystems. Th&g curves are labeled based on the type of sub-
boundary has minimal overhead. Such stable phases account feystem lpogic, memory or mixed, while the frequency fr) is
90-95% of the execution time. shown relative to thé&loVarenvironment (Table 1). In the figure,
Finally, there is a set of sensors as described in Section 4.3.2he slope of thePr curves depends primarily on the subsystem
We estimate their area overhead tob@.1% (Figure 7(d)). Con- type. Memory subsystems, with their homogeneous paths, have a
sequently, the total area overhead of our EVAL system is 10.6%.rapid error onset. Logic subsystems have a wide variety of paths
Process Variation. We modelV; and L.y, variation using and, therefore, produce a more gradual error onset. Mixed sub-
the model in [26]. Using the parameters recommended in thesystems fall between the two extremes.
model, we se¥;’s o/, t0 0.09 and use equal contributions of the Figure 8(b) shows the processor performance relatiiotear
systematic and random components. Consequemily,/u = (Perfr) as a function of frequency. As indicated in Section 3.1, as
Oran/b = /02/2/u = 0.064. Moreover, we set to 0.5, frequency increases, performance improves as lonBaé-ig-
andL.ss's o/ to 0.5 of Vi's o /. Consequently, foL. s, we ure 8(a)) is not prohibitively high. A®x increases past a critical
useo/p = 0.045 andosys /i = oran/p = 0.032 (Figure 7(a)). point, Perf falls off sharply. From Figure 8(b), we see that, with
Each individual experiment igpeated 100 timesising 100 chips TS the processor runs optimally gk ~ 0.91 (that is, slower
that have different systemati¢ and L.s; maps generated with thanNoVar) and delivers &erfr ~ 0.92 (again, lower thaMo-
the samer and¢. We find that using more than these 100 samplesVar). This is much better than undBaseline which cannot tol-
changes our results insignificantly. erate any error. Indee®aselinecan only run at thefr where

5.1 Performance, Power, and Temperature the leftmostPr curve in Figure 8(a) intersects theaxis (fr ~
’ ’ 84)

. . . 0.84).
We use the SESC [23] cycle-level execution-driven simulator To improvePerfr, we need to delay the exponentfak onset.

to model the performance of the chip running the SPECint andTO this end, Figures 8(c) and (d) repeat fhie andPerfs curves

SPECip 2000 codes. Each application is run on each of the ‘for an environment that has per-subsystem ASV and ABB — set

cores.of eaeh of 100 chips. The resylting average performance Ey the Exhaustivealgorithm of Section 4.3.1. For eagh, this
CO?ﬁ'”?d w||th that of the oth(zr aPE"dca“O”?'- 4. algorithm finds a configuration where the sum of Bl curves
e simulator is augmented with dynamic powE%,) moa- is ~ 10™* errs/inst, which isPg,, , . This is accomplished by

els from Wattch [3] and CACTI [32] to est'ir.naﬂéiyn at a refer- speeding up slow subsystems and saving power on fast ones. This
ence technology and frequency. In addition, we use HotLeak~IS why Figure 8(c) shows a convergence of lineat~ 10,

age [41] to estimate Stat'? powePSQa)_at the_sar_ne reference However, for highfr, it becomes increasingly power-costly to
technplogy. Then, we obtain ITRS scaling projections for the Per'keepPE < Pg,, .. Eventually, the power constraint is reached,
tran_S|stor dynamic pewer-delay product, and for the per-tran&stognd no further ASV/ABB can be applied to speed up subsystems
static power [12]. With these two factors, we can estm_i@;g;n and keepPs < Pg,, .. Then, as can be seen in Figure 8(c),
and P, for the scaled technology and frequency relative to thesomePE curves eséape up and, as shown in Figure Sdjfx

o S o
2 - o 2. _ y
[- [
:) : 4 @ | A
=S S = 2l o
3 o ERE s e
E 2 - © E = e © |
28 5° el|b S £
S {1- &« S ¢) &<
e = sl °
o’ S| 4 o o’ '? 1/ ,l - = logic o
2 ° 2 mem ©
© S © N) — — mixed e
07 08 09 10 11 07 08 09 10 11 407 08 09 10 11 07 08 09 10 11
fr fr fr fr
(a) Subsystem error (b) Processor perfor- (c) Subsystem (d) Performance
rates undemS mance undefrS error rates under of processor under
TS+ASV+ABB TS+ASV+ABB
Figure 8: Subsystem error ratas frequency, and processor performamnvsdrequency undeflS (a and b) and under

TS+ASV+ABHc and d).

plunges. However, by keepirf@: under control, as we went from
Figure 8(b) to Figure 8(d), we moved the peak of Hegfr curve
to the right and up (Poimd); the optimal fr is &~ 1.03 and the remains at zero and then suddenly increases very steeply to reach
optimalPerfr is ~ 1.00 — as high abloVars. one. Moreover, if we are willing to spend mokein this sub-

We gain further insight by focusing on one subsystem and exsystem via ASV/ABB (Ling2)), the subsystem supports a higher
tending itsPx vs fr graph with powerR) as a third axis. Fig- fr beforePr reaches a given level. We see, therefore, that power
ure 9(a) shows this for the integer ALU in the presence of per-and error rate are tradeable quantities. If the goal is to increase
subsystem ASV/ABB. The surface in the figure is constructed us-fr, we can either pay with a high& consumption for a given
ing theExhaustivalgorithm of Section 4.3.1 to find the minimum Pz, or with a higherPg for a constanP.
realizablePr for eachP and fr. PointA in the figure shows the Figure 9(b) replacegr with the Perfr of the processor and
conditions at the optimafr in Figures 8(c) and (d). shows the same Lin@) and pointA. As Pg increases along Line
(1), we obtain a familiar curvePerfz first increases slowly and
then drops abruptly. At the maximum poirRerfr can further
increase only at the cost of consuming mBre

6.2 Frequency, Performance and Power

Figure 10 shows the processor frequency for each of the en-
vironments in Table 1 normalized téoVar. The two horizontal
lines are the frequencies BlaselineandNoVar. Due to process
variation,Baselineonly reaches 78% of the frequency of an ideal-
ized no-variation processdifVar). To counter this variation, we
add error tolerance and mitigation techniques one at a time. For
each set of techniques, we consider three cases: no dynamic adap-
tation (Stati9, dynamic adaptation using our proposed fuzzy con-
troller (Fuzzy-Dy#, and dynamic adaptation using dexhaustive
search algorithmExh-Dyr).

The leftmost set of three bars shows the frequency impact of
Timing Speculation TS, which is a prerequisite for all subse-
quent schemesTSincreases frequency by12%. Since there
are no techniques to reshape the subsystem error curves, dynamic
adaptation does not offer much improvement dvttic

The next set of barSIG+ASY adds per-subsystem ASV. With-
out dynamic adaptation, the frequency reaches 97%@far.
However, because the maximum ASV level that a subsystem can
tolerate before exceeding constraints is application-dependent,
Staticmust be conservative. The dynamic environments are not
so restricted and apply ASV more aggressively. As a result, they
end up delivering a frequency 5-6% higher tiNaVar.

Continuing to the right TS+ASV+ABB, adding ABB to
TS+ASVproduces only modest gains under the dynamic schemes,
as it provides some additional flexibility in reshapiRg curves.
Overall, however, it does not offer much improvement over
TS+ASVor its added complexity. Therefore, we initially exclude
ABB as we begin to add microarchitecture techniques.

The next two sets of bars show the effect of adding microar-
chitecture techniques for error mitigation: issue queue resizing

In Figure 9(a), if we draw Ling1) at constanP throughA,
we obtain the familiarPr vs fr curve: Asfr grows, Pg first

(b)

Figure 9: Three-dimensional views of the powes error
ratevsfrequency surface (a) and of the powsrerror rate
vsperformance surface (b) for the ALU in Figure 8(c).

? o E Static O Fuzzy-Dyn B Exh-Dyn
g - NoVar
o
O |
L o -
Iy] Baseline
=
8 o
3]
T o
© TS TS+ASV TS+ASV+ABB TS+ASV+Q TS+ASV+Q+FU ALL

Figure 10:Processor frequency for each environment normalizebigar.

(TS+ASV+Q and FU replication TS+ASV+Q+FU. Although actual value depends on many variables. Wig+ASV+Q+FU
not shown in the figure, if we add them without any ABB or ASV and Fuzzy-Dyn the average processor power is almost exactly
capability, they deliver a disappointing 2% frequency increase30W. This shows that thEuzzy-Dyncontroller is making use of
This is because temperatures stay low enough that optimizing ththe available power to maximize performance without violating
two subsystems does not deliver, on average, a substantial freonstraints. We also see thath-Dynconsumes about the same
quency boost. However, applying ASV to aggressively re-shapgower ag-uzzy-Dyn
the Pg curves pushes the subsystem temperatures and powers
higher. Under these conditions, the FUs and issue queues rou-
tinely form hotspots and become frequency-limiters. By speeding \
up these critical subsystems, the microarchitectural techniques de< g Novar
liver good frequency gains. . ﬂ I] I] e
The TS+ASV+Q and TS+ASV+Q+FU environments show -
that, to take full advantage of the microarchitecture techniques, o' —— Toey Toensuenss Toeva Towmoviry | AL
dynamic adaptation is required. Not all applications or phases ex- .
ercise the issue queue or the FUs enough to make them critical. F19ure 12:Power per processor (core+L1+L2) for differ-
In these cases, statically enabling these techniques costs perfor- €Nt environments.
mance or power. Consequently, it makes sense to enable these op-,
timizations dynamically. With both microarchitecture techniquesé)'3 Characterizing Dynamic Adaptation
andFuzzy-Dynwe reach a frequency that is 21% higher tham Finally, we compare the output of the fuzzy controller to
Var (or 56% higher thamBaseling. Exhaustiveto show why fuzzy control provides nearly optimal
The difference between the two rightmost environmentspower and performance results. Table 2 shows the mean error in
TS+ASV+Q+FUandALL s small. This suggests that it is reason- the frequencyVaq, and Vi, values generated by the fuzzy con-
able to forgo the added complexity of ABB in an EVAL system. troller compared to the output dxhaustive We show results
Similarly, the difference between using a fuzzy adaptation schemér memory, mixed, and logic subsystems separately. The errors
(Fuzzy-Dyhinstead of exhaustive seardixh-Dyn) is practically ~ are shown in absolute units and as a percentage of the nominal
negligible in all environments. value (except fol,, where the nominal value is zero). The table
Figure 11 shows the performance of all these environment§hows that, in practically all cases, the fuzzy controller predicts
normalized toNoVar. The figure is organized as Figure 10. We frequencyVaq and, to a lesser exterity,, quite accurately.

@ Static O Fuzzy-Dyn B Exh-Dyn

Power (W)

see that performanc_e follows the same tre_nds as frequency, ex= Param. | Environment [[[Fuzzy Controller - Exhaustive(% of Nom.) |
cept that the magnitude of the changes is smaller. The pr [Memory | Mixed | Logic ||
ferred schemeTS+ASV+Q+FUwith Fuzzy-Dyi realizes a per- TS 168 (4.1%) | 146 (3.6%) | 170 (4.2%)
formance gain of 14% oveMoVar or, equivalently, 40% over the Freq. | TS+ABB 170 (4.2%) | 135(3.3%) | 149 (3.6%)
Basell (MHz) | TS+ASV 450 (11.0%) | 410 (10.0%) | 160 (3.9%)
aselineprocessor. TS+ABB+ASV || 176(4.3%) | 162 (4.0%) | 146 (3.6%)
g Vad TS+ASV 17 (1.7%) 24 (2.4%) 14 (1.4%)
€] @ sac O Fuzzy-Dyn @ Exh-Dyn (mV) | TS+ABB+ASV || 16 (1.6%) 22 (2.2%) 22 (2.2%)
E - NoVar Voo TS+ABB 720 690 76 ()
2 ® (mV) TS+ABB+ASV 115 (=) 129 (-) 124 (-)
o Baseline - -
Q « Table 2: Difference between the selections of the fuzzy
k) controller andExhaustiven absolute and relative terms.
o <
e TS TS+ASV TS+ASV+ABB TS+ASV+Q TS+ASV+Q+FU ALL

An important reason why the performance and powénazy-
Dyn and Exh-Dyn are largely the same despite any inaccura-
]) . cies shown in Table 2 is the presenceR#tuning CyclegSec-
Figure 12 shows the average power consumed, including botho 4 3 3). Specifically, when the fuzzy controller algorithm se-
Piyn and Psiq, in @ core and its L1 and L2 caches. Recall that, g5 4 configuration, any of the five outcomes shown in Figure 13
for each processor, we sBf; .4 x to 30W. We see that the average g hossible NoChanges the best case. Here, no constraint is vio-
power forNoVaris 25W — although some processors reach 30W4teq and the first attempt at increasifigails, signifying that the
at certain points of high activity and temperature — wiB@se- 1,y controller's output was near optimal. LowFreq no con-
line consumes 17W. The latter runs at lower frequency. As we addaint is violated, but retuning cycles are able to further increase

mitigation techniques, the power tends to increase, although its The third caseBrror) occurs when the configuration violates

Figure 11:Performance of different environments.

Pg,, ., and as a result, retuning cycles must redgiceSimi- tolerate variation-induced errors during normal operation. In this
larly, the TempandPowercases occur whefy, ax Or Parax iS environment, the paper made two main contributions. First, it in-
exceeded, again causing a reductiorf in troduced a framework called EVAL that gives insight into how
microarchitecture techniques can mitigate variation-induced er-
A:TS B:TS+ABB C:TS+ASV D: TS+ABB+ASV rors and trade-off error rate for power and processor frequency. It
O NoChange O LowFreq. O Error O Temp ® Power showed how they can tilt, shift, and reshape the errorvsifee-
= — — guency curve. Second, it presentdiyh-Dimensionaldynamic
adaptation, an effective microarchitecture technigue to maximize
processor performance and minimize power in the presence of
variation-induced timing errors. It also showed an efficient im-
plementation of this technique based on a machine-learning algo-
rithm.
P E e D ABCD ABcb AL Our results showed that, under variation-induced timing er-
No opt FU opt Queue opt FU-+Queue opt rors, high-dimensional dynamic adaptation is a feasible and ef-
. fective technique. With no support for handling variation, a pro-
Figure 13:Outcomes of the fuzzy controller system. cessor could only cycle at 78% of its no-variation frequency.
Figure 13 shows the fraction of times when each outcome ocHOWever, by dynamically adapting processor frequency, per-
curs in an environment with no microarchitecture technique (SUPSystem ASV, and two modest-cost microarchitecture schemes
opt), a single techniqueFU opt and Queue opt or both tech- (lSSUG-queUe resizing and FU repllcatlon)z the processor increased
niques FU+Queue opt We see thaNoChangedominates for its frequency by 56% on average — effectively cy_cllng 21% faster
TSand, together with.owFreq accounts for about 50% or more than under no variation. Processor pe_rformance_lncreased by_ 4(_)%
in all the bars Tempcases are infrequerfiuzzy-Dyrdoes so well on average (or 14% over the no-variation sgenarlo), always within
thanks to the correcting retuning cycles in four of the five cases. €7or-rate, power, and temperature constraints. The area overhead
of this technique was estimated to be only 10.6% of the processor
7 Related Work area.
o) o We believe that our high-dimensional dynamic adaptation
Process Variation Modeling and Mitigation. There are several scheme using fuzzy control techniques has wide applicability. It

models of WID process variation that can be used for microarchisg applicable to situations requiring dynamic adaptation of a large

tecture research (e.g., [11, 16, 18, 24, 26]). The EVAL framework,mper of inter-related variables. This includes many problems

can be used with any of them. S _ beyond WID variation or timing speculation.
A related approach to mitigate process variation is dynamic re-

timing of pipelines [16, 33, 34]. The EVAL framework is a more References

powerful way to handle process (and parameter) variation for [1] S. Augsburger and B. Nikolic. Combining dual-supply, dual-
three reasons. First, EVAL is designed for a challenging environ- threshold and transistor sizing for power reductionlniternational
. ’ i Conference on Computer Desigdeptember 2002.

ment with timing errors, where it trades-off error-rate for perfor- | K B s. buvall. and J. Meindl. | ¢ of die-to-di d
. : - . Bowman, S. Duvall, and J. Meindl. Impact of die-to-die an

mance and power; Dynamic retiming always clocks the processor" yitin-die parameter fllictuations on the maximum clock frequency

at a safe frequency. Second, EVAL controls the delay and power distribution for gigascale integrationEEE Journal of Solid State

of each pipeline stage through fine-grain ASV/ABB; Dynamic re- Circuits, 37(2):183-190, February 2002.

timing mostly redistributes slack among pipeline stages. Finally, [31 D- Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework

. . L for architectural-level power analysis and optimizationsnberna-
EVAL manages multiple techniques (ABB/ASV, FU replication, tional Symposium on Computer Architectufane 2000.
and issue-queue resizing) to get a better working point. As af4] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and

result, the performance gains from EVAL (40%) are larger than ~ D. }Albonesi. |'_An tfjldapl{livf issuecqueuet forsreduced power 2t high
T performance. Lecture Notes in Computer Science: Power Aware
from dynamic retiming (10-20%). Computer System2008:25-37, May 2001.

Errqr '!'olerance aqd Mitigation. There are many architectures [5] T.Chen and S. Naffziger. Comparison of adaptive body bias (ABB)
for timing speculation (e.g., [8, 9, 17, 20, 27, 37, 38, 40]). Some of and adaptive supply voltage (ASV) for improving delay and leakage
i ; under the presence of process variati®EE Transactions on VLSI

these works [9, 3_‘8] have been suggested f_or an environment with Systemsi 1(5)-885-899. October 2003,
parameter variation. Our EVAL framework is more powerful than .) i) i

. . L . 1[6] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration
these architectures. Timing speculation is just one technique that™™ hardware via dynamic working set analysis. Ifiternational Sym-
EVAL uses; it manages multiple techniques. Therefore, EVAL posium on Computer Architectyriglay 2002.
can deliver a better power/performance point. [7]1 S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. Albonesi,

; S ; ; S. Dwarkadas, G. Semeraro, G. Magklis, and M. Scott. Integrating
Dynamic Optimization. Many schemes for dynamic adaptation adaptive on-chip storage structures for reduced dynamic power. In

of parameters such as voltage, frequency, cache size, etc. have International Conference on Parallel Architectures and Compilation
been proposed (e.g., [4, 6, 7, 10]). This includes the application ~ TechniquesSeptember 2002.

-chi ine-arai i [8] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Zeisler,
of whole-chip ABB and DVFS [19], as well as fine-grain ABB in D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-

Outcomes(%)
20 40 60 80 100

0

conjunction with whole-chip DVFS [31]. However, compared to power pipeline based on circuit-level timing speculation.Iriter-

EVAL, these proposals did not try to optimize globally so many national Symposium on Microarchitectuecember 2003.

variables concurrently. [9] B. Greskamp and J. Torrellas. Paceline: Improving single-thread
performance in nanoscale CMPs through core overclockingn-In

8 Conclusions ternational Conference on Parallel Architectures and Compilation

TechniquesSeptember 2007.

This paper explored the environment where processors are n6t0l (’;"ésggg)g'&l “Rczfgi%lrlly t%”gnJérTOFE?gngtﬁ)%Sim‘rﬂ é’i\ig%gtlagioﬁq ch) Pro-
designed for worst-case parameter values and, therefore, need to gy, on'COprﬁputer Architecn%une 2003, ymp

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32

(33]

(34]

(35]

E. Humenay, D. Tarjan, and K. Skadron. Impact of process varia-[36] J. Tschanz, S. Narendra, A. Keshavarzi, and V. De. Adaptive circuit

tions on multicore performance symmetryQonference on Design, techniques to minimize variation impact on microprocessor perfor-
Automation and Test in EuropApril 2007. mance and power. limternational Symposium on Circuits and Sys-
International Technology Roadmap for Semiconductors (ITRS). tems May 2005.

Process integration, devices, and structures. 2007. [37] A. Uht. Achieving typical delays in synchronous systems via tim-

ing error toleration. Technical Report 032000-0100, University of

C. Isci, A Buyuktosunoglu, and M. Martonosi. Long-term work- Rhode Island Department of Electrical and Computer Engineering,

load phases: Duration predictions and applications to DMEEE

Micro, 25(5):39-51, September 2005. March 2000.

E. Karl, D. Sylvester, and D. Blaauw. Timing error correction tech- [38] X. Vera, J. Abella, O. Unsal, A. Gonzalez, and O. Ergin. Checker
nigues for voltage-scalable on-chip memoriednkernational Sym- backend for soft and timing error recovery. Workshop on Silicon
posium on Circuits and Systemgay 2005. Errors in Logic — System Effect&pril 2006.

W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis [39] L. Wang. Adaptive Fuzzy Systems and Control Design and Stability
of fast, per-core DVFS using on-chip switching regulatorsinter- Analysis Prentice Hall, 1994.

national Symposium on High-Performance Computer Architecture [40] C. Weaver and T. M. Austin. A fault tolerant approach to micropro-
February 2008. cessor design. Imternational Conference on Dependable Systems
X. Liang and D. Brooks. Mitigating the impact of process variations and NetworksJuly 2001.

on CPU register file and execution units. Iiternational Sympo- [41] V. Zhang, D. Parikh, K. Sankaranarayanan, and K. Skadron.
sium on MicroarchitectureDecember 2006. HotLeakage: A temperature-aware model of subthreshold and gate
T. Liu and S. Lu. Performance improvement with circuit-level spec- leakage for architects. Technical Report CS-2003-05, University of
ulation. Ininternational Symposium on Computer Architectbe- Virginia, March 2003.

cember 2000.

D. Marculescu and E. Talpes. Variability and energy awareness: AA Fuzzy Controller Basics

;nri((::ro%%rgtgccjgge-level perspective. resign Automation Confer- _ Fuzzy controllers have advantages over other machine-learning tech-
€) :) niques such as decision trees, perceptrons, and neural networks. First, a

S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dy- fuzzy rule has a physical interpretation, which can be manually extended

namic voltage scaling and adaptive body biasing for lower powerwith expert information. Moreover, unlike perceptrons, they support out-

microprocessors under dynamic workloads. Iternational Con- puts that are not a linear function of the inputs. Finally, they typically need

ference of Computer Aided Desidwovember 2002. fewer states and memory than decision trees, and fewer training inputs and

_ ; ; et _memory than neural networks.

E'e:\n/lecsgrév' Sgls?grf tahnrgulhRaerncahlijt'ec%lfJfrEz!aCI“E)/Eur?ﬁ]tlgmllattlgr?\g%glr(\%rl tan Deployment Phase.Given an input vectok, the estimated outputis

Symposium on Microarchitectyr®ecember 2007. _gen?rate_d tuhsmg trt\e strudcturlg off_ Fdlgttkjlre 5in lghre(?]_st$ps:t_(|) folg a given

S. Narendra et al. 1.1V 1GHz communications router with on chiplfnpulgg I?') oo torts?]n rut Zt Ifnth ehmlemul%r?Elp utnC I(ﬂ)(quda-

- =ndt - ! ! 1on- ion 10); (ii) compute the output of the whole r quation 11); an

body bias in 150 nm CMOS. Imternational Solid-State Circuits (jij) combine the outputs of all the rules to get the final output (Equa-

ConferenceFebruary 2002. tion 12).

J. RabaeyDigital Integrated Circuits: A Design PerspectivBren-

tice Hall, 1996. 9

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, Wi = exp|— <M> (10)

K. Strauss, S. R. Sarangi, P. Sack, and P. Montesinos. SESC Simu- Oij

lator, January 2005. http://sesc.sourceforge.net.

B. F. Romanescu, S. Ozev, and D. J. Sorin. Quantifying the impact W, = W,

of process variability on microprocessor behaviorWarkshop on

Architectural Reliability (WAR-2)2006.

T. Sakurai and R. Newton. Alpha-power law MOSFET model and

its applications to CMOS inverter delay and other formulisEE

Journal of Solid State Circuif®25(2):584-594, April 1990. i=1

S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,

and J. Torrellas. VARIUS: A model of process variation and re- Training Phase. The manufacturer-site training uses a large number of
sulting timing errors for microarchitects. IEEE Transactions on input vectors to generate tierules in an FC. With the firgt vectors, we

Semiconductor Manufacturingrebruary 2008. setu;; to x;;, which is the value of thg*" input in thei*" vector. We

T. Sato and I. Arita. Constructive timing violation for improving seto;; to random values smaller than 0.1 agpdto the output of the®”
energy efficiency. In L. Benini and M. Kandemir, edito@mmpilers ~ vector. Each of the remaining input vectors is used to train all the rules
and Operating Systems for Low Pow2003. as follows. In thek!” step, an input vector will update ruls 11,5, o;;,

T. Sherwood, S. Sair, and B. Calder. Phase tracking and predictionandy;. Let n(k) represent the value of any of these parameters before

In International Symposium on Computer Architecfukgne 2003. the update. Let* be the output estimated by the fuzzy controller for this
K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-input vector using the deployment algorithm, anithe error calculated as
narayanan, and D. Tarjan. Temperature-aware microarchitecture. Ip — (yi — d*)2. Let o be a small constant representing the learning rate

ij (11)

=t

[
M=

(Wi X 33) / S W (12)
=1

International Symposium on Computer Architecfuene 2003. (0.04'in our experiments). As shown in [39], the update rule is:

A. Srivastava, D. Sylvester, and D. BlaauStatistical Analysis and

Optimization for VLSI: Timing and PoweBpringer, 2005. de

R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas. Mitigating n(k+1) =n(k) —ax - (13)
parameter variation with dynamic fine-grain body biasinglnber- Mk

national Symposium on Microarchitectu@ecember 2007.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. Jouppi. CACTI
5.1. Technical Report HPL-2008-20, Hewlett Packard Labs, April
2008.

A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle: Pipeline adap-
tation to tolerate process variation. Iimternational Symposium on
Computer ArchitectureJune 2007.

A. Tiwari and J. Torrellas. An updated evaluation of ReCycle. In
Workshop on Duplicating, Deconstructing, and Debunkidgne
008.

J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De. Adaptive body bias for reducing impacts
of die-to-die and within-die parameter variations on microproces-
sor frequency and leakagdEEE Journal of Solid State Circuits
37(11):1396-1402, February 2002.

