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A novel diffraction data integration method is presented, EVAL15, based upon

ab initio calculation of three-dimensional (x, y, !) reflection profiles from a few

physical crystal and instrument parameters. Net intensities are obtained by least-

squares fitting the observed profile with the calculated standard using singular

value decomposition. This paper shows that profiles can be predicted

satisfactorily and that accurate intensities are obtained. The detailed profile

analysis has the additional advantage that specific physical properties of the

crystal are revealed. The EVAL15method is particularly useful in circumstances

where other programs fail, such as regions of reciprocal space with weak

scattering, crystals with anisotropic shape or anisotropic mosaicity, K�1/K�2
peak splitting, interference from close neighbours, twin lattices, or satellite

reflections of modulated structures, all of which may frustrate the customary

profile learning and fitting procedures. EVAL15 allows the deconvolution of

overlapping reflections.

1. Introduction

Several software packages have been developed for the inte-

gration of diffraction data from area detectors. Compared with

photon-counting point detectors some extra problems have to

be solved to obtain accurate intensities [see Zhurov et al.

(2008) for an error analysis of data from point detectors,

CCDs and image plates]. The advantages are faster data

collection and a complete picture of reciprocal space. A wide

range of phenomena related to specific crystal properties can

be visible at a glance, such as twinning, aperiodic structure,

disorder and thermal diffuse scattering, and also unwanted

effects such as the formation of ice at cryo-temperatures. The

developments in detector technology and integration software

have been triggered by macromolecular crystallography,

where a large number of reflections can be collected simul-

taneously, many of which usually have a low signal. In small-

molecule crystallography it was common practice to acquire

reflection data through summation–integration. However, for

weak reflections a better standard deviation can be achieved

by profile fitting (Diamond, 1969; Ford, 1974). This involves a

least-squares fit of the observed pixel intensities in a reflection

peak to a learnt standard profile. This standard profile can be

learnt from the underlying diffraction data. The profile

learning process relies on two main assumptions (Pflugrath,

1999). Profiles of strong reflections are superimposed to

construct an averaged standard profile. As the reflection

profile varies with the position on the detector as a result of

geometrical deformations, it is assumed that standard profiles

can be learnt from spatially nearby reflections. The second

assumption is that the reflection positions are predicted

accurately. Uncertainties in reflection centroids lead to artifi-

cially broad profiles and to incorrect profile fits. An alternative

method to profile learning has been developed by Ren &

Moffat (1995). These authors model the profiles by analytical

expressions that may vary slowly across the detector. Effects

such as streaking of spots or anisotropic spot shape can be

included.

Profile learning and fitting can be carried out in two

dimensions on a single image, as withDENZO/HKL-2000 and

MOSFLM (Otwinowski & Minor, 1997; Leslie, 1999), or in a

complete three-dimensional reflection box, as with XDS,

d*TREK, SAINT and CrysAlis (Kabsch, 1988; Pflugrath, 1999;

Bruker, 1998; Oxford Diffraction, 2008).

The need for yet another integration program lies in the fact

that each of the existing ones lacks one of the following

properties: (1) profile fitting in regions of reciprocal space

where all reflections are weak – profile learning needs high I/�

reflections, usually non-existent at high resolution; (2)

appropriate treatment of reflections with K�1/K�2 splitting,

which is a prerequisite for high-resolution studies; (3) use of

twin matrices; (4) deconvolution of overlapping reflections.

Kabsch (1988) developed an elegant procedure to obtain

uniform three-dimensional profiles for all reflections by

transformation to an undistorted reciprocal space, thereby

overcoming the need for strong nearby reflections in profile

learning. However, even then the results are better if the

standard profiles are learnt separately from different regions

on the detector, provided that suitable reflections are avail-

able. As reflection profiles are a convolution of broadening
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effects, such as crystal size and shape, mosaicity, the beam

focus dimensions and divergence, wavelength dispersion,

experimental geometry, lattice distortions and internal struc-

ture of the crystal, detector point spread, and spatial distor-

tion, an exact transformation to reciprocal space is impossible.

This insight led us to the point where we were able to predict

accurate reflection profiles, by taking into account all these

effects explicitly, and to apply this standard profile in a least-

squares fit.

EVAL15 is based on the concept of ‘general impacts’, as

introduced in EVAL14 (Duisenberg et al., 2003). In that

program an ab initio reflection boundary is calculated, within

which summation–integration is performed. The method is

widely used in chemical crystallography, in particular the

version implemented in COLLECT (Nonius, 1999). Building

on that experience, EVAL15 calculates a complete standard

reflection profile from general impacts, i.e. impacts originating

from different parts of the crystal, beam focus, wavelength

spectrum and crystal mosaic orientations. We will discuss the

methods and algorithms of EVAL15, the details of its imple-

mentation, and the quality of the profiles. The improvement of

the integration of weak reflections by using profile fitting with

EVAL15 data is demonstrated. In two separate papers, the

EVAL15 data quality for small-molecule and protein crystals

is further explored and integration of difficult cases as well as

overlap deconvolution will be addressed.

2. The EVAL15 method

In this section, all steps in the EVAL15 data integration

method are explained. General impacts are generated by

sampling from distributions of physical parameters. These

impacts have to be convoluted with a detector point-spread

function, in order to obtain a realistic predicted profile. For

each individual reflection such a profile is used in a least-

squares minimization using singular value decomposition

(SVD) to obtain the integrated intensity and its standard

deviation. Contributions to the standard deviations are

discussed.

2.1. The concept of general impacts

A method for tracing X-rays in the diffraction process is

explained in detail by Duisenberg et al. (2003); here we give

only the principles.

Consider a diffraction experiment with one rotation axis

and an area detector. The reflection normal S0 for reflection

hkl in the zero position of the goniometer is

S0 ¼

 

S0x
S0y
S0z

!

¼

 

a�x b�x c�x
a�y b�y c�y
a�z b�z c�z

! 

h

k

l

!

: ð1Þ

The matrix containing the reciprocal cell axes in the labora-

tory axis system is called the R matrix. If S0 can be rotated

over some angle ! to a position S! such that the angle between

S! and the primary beam equals 90� � � then and only then

hkl will reflect. The diffracted ray departs from the crystal

along a direction

r ¼ S! � X=�; ð2Þ

where X is a unit vector along the primary beam pointing to

the beam focus centre. Equation (2) follows from S! bisecting

/(X, r). We denote the ‘central impact’ coordinates by (x, y,

!), with x, y the impact position on the detector plane and !

the rotation angle at which hkl is brought to reflection. This

point in (x, y, !) space represents the complete reflection that

would be obtained from a point source, a point crystal with no

mosaicity and pure, nondiverging, monochromatic radiation.

In practice a reflection results from radiation of different

wavelengths, coming from different parts of the focus and

scattered by different parts of the crystal having different

orientations of the mosaic blocks. Each combination of these

parameters may yield a general impact, with coordinates (x, y,

!), as follows.

Consider one point K of the crystal, one mosaic vector Sm,

one possible focal point F and one wavelength �; this combi-

nation will reflect if, by ! rotation, the angle between Sm,! and

F�K! can be made to be 90� � �. The outgoing direction r for

a general impact is given by

r ¼ Sm;! � ½ðF� K!Þ=jF� K!j�=�: ð3Þ

The origin of r and Sm,! is not (0, 0, 0) but K!. The formula

follows from Sm,! being the bisector of /[(F � K!), r], the

incoming and reflected ray, respectively. The subscript !

denotes !-rotated vectors.

2.2. Modelling the profile

For each reflection, EVAL15 general impacts are calculated

for randomly selected (F, K, Sm, �) combinations, chosen from

the sets of all focal points, crystal points, mosaic vectors and

wavelengths, respectively. A sufficiently large number of

selections from realistic distributions will eventually generate

a true reflection profile. (See Appendix A for sampling

methods of the various distributions.) The simulated profile is

used as a standard profile in a least-squares fit. As the simu-

lation is carried out for each individual reflection, specific

reflection geometries are automatically accounted for.

The focus is modelled by a rectangular surface with realistic

dimensions (e.g. 0.3 � 0.3 mm) consisting of a grid of point

sources that scatter in all directions. It is assumed that from

each point source a ray can hit any point in the crystal. By

changing the distance of this virtual focus from the crystal, the

divergence of the beam can be changed. A small distance

corresponds to a larger divergence. The points on the focus are

sampled uniformly, although a Gaussian distribution of

intensities around the focal centre could be more realistic

when certain optical elements are used. This procedure deli-

vers a collection of vectors F.

The crystal shape can be described by face indexing, or,

alternatively, by one of five basic shapes built into the program

(a pie segment, a box, a sphere approximated by a dodeca-

hedron or an icosahedron, or a cylinder based on an octagon).

The crystal is treated as a fine cubic grid and each of the grid
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points inside the crystal can be selected, thus obtaining a

collection of vectors K defined relative to the origin.

Three distributions can be used to describe the mosaic

spread. Random polar angles are sampled according to a

block-shaped function within the range given by the mosaicity

�, or by a Gaussian or a Lorentzian distribution of width �m.

For the latter two, 3�m corresponds to the mosaicity �. Each

vector Sm is then obtained by rotating S0 over the sampled

polar and random azimuthal angles (see Appendix A for

details). Anisotropic mosaicity is defined as an additional

mosaicity �aniso around an anisotropic mosaic axisA. Both the

size and the direction are determined by inspection of

reflection profiles using the EVAL15 display window. The

graphical display of the orientation of the reciprocal axes of

reflection hkl in reflecting position (see x3.1) is instrumental in

finding the correct anisotropic mosaic axis.

The wavelength of the rays is described by a spectrum built

from several Gaussians or Lorentzians, each having a central �

value, width �� and a defined relative integrated ratio. Char-

acteristic radiation from a sealed tube is described by a pair

K�1, K�2 with an intensity ratio 2:1. Algorithms for sampling

the various distributions are explained in Appendix A. The

produced rays hit the detector at impact positions (x, y) and

will each be collected in one associated pixel.

Position-sensitive detectors convert X-ray photons into an

electronic signal. This process involves several steps, including

absorption of the photons by a phosphor layer, photon storage

or conversion to visible light photons, laser readout (in the

case of image plates) or light transportation through a fibre

optic taper to a CCD chip, and analogue-to-digital conversion

(Arndt, 1986). This cascade causes the X-ray signal to spread

out over several pixels, although it hits the detector at a single

point. The main source of the point spread is usually the

phosphor layer (Bourgeois et al., 1994), and its broadening

effect increases with layer thickness and with incidence angle

of the impact. We found that, when simulating impacts for

realistic dimensions of the crystal, focus and mosaic spread,

the resulting profiles were too narrow when the point spread

was neglected. We have introduced a two-dimensional

pseudo-Lorentzian as the point-spread function (PSF) and

took care that the integral over space to infinity, in terms of

polar coordinates measured from the centre, converges to 1.0.

A symmetric function is currently implemented in EVAL15

(Fig. 1),

PSFðx; yÞ ¼
�

4� x2 þ y2ð Þ þ �=2ð Þ
2

� �3=2
; ð4Þ

where � denotes the width of the function. See Appendix B for

details of the implementation. Every simulated impact is

spread out over neighbouring pixels using this PSF. We

determined, by comparing with many observed reflections,

that � = 0.6 pixels gave realistic profiles on our Nonius

KappaCCD detector. This corresponds to a full width at half-

maximum, at 1% and at 0.1% of the PSF of 50, 300 and

650 mm, respectively, where the size of one pixel is 110 mm.

Fig. 2 shows the effect of including the point spread for a

strong reflection.

Some detectors may need � values that depend on the

incidence angle or different � values for different parts of the

detector, for example, in the case of mosaic detectors. This

functionality is not yet implemented in EVAL15. Fig. 3

demonstrates the effect of a change in one of the parameters

determining the distributions (F, K, Sm, �) and the point-

spread width �. To predict a reflection profile, it is necessary to

find good parameters for each of the instrumental constants

and crystal properties. The number of reflections (observa-

tions) is large enough to allow optimization of all necessary

parameters. To that end a selection of reflections with varying

impact coordinates on the detector, � values and duration (see

x3.1 for the definition) is used, all with medium or large I/�

(see Xian et al., 2010b), for which the figures of merit of the

reflection boxes are minimized. Often the number of para-

meters that have to be determined is limited. The dimensions

of the focus and the wavelength spectrum (e.g. K�1, K�2 for a

home source or a monochromatic wavelength for synchrotron

radiation, each possessing a small dispersion) are more or less

known beforehand. The divergence of the primary beam

depends on the instrumental setup (Greenhough & Helliwell,

1982a,b). The focus distance and the point spread of the

detector have to be determined once for a particular instru-

ment. We often have a microscope image of the crystal or even

a face-indexed description, obtained with COLLECT

(Nonius, 1999), that we can use in EVAL15. This leaves only

the mosaicity of the crystal as the parameter to be established.

For protein crystals one would typically know only roughly the

size of the crystal and, in general, not how it is oriented in the

beam. EVAL15 has the ability to optimize relevant para-

meters in an automatic fashion on a selection of reflections

(some 10–50 in number). These may vary in resolution, posi-

tion on the detector, I/� or duration. The best procedure for

doing this is described by Xian et al. (2010b).

2.3. Parameter optimization

The predicted profile is taken as a normalized standard

profile, used in minimization of the residual:
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Figure 1
Two-dimensional pseudo-Lorentzian representing the point spread, here
corresponding to 2 � 2 pixels. This graphic was made using logarithmic
function values with Mathematica (Wolfram Research, 2005).
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	2 ¼
P

N

i¼1

wi 
i � JPi �
P

M

m

JmPim � axi � byi � c

� �2

; ð5Þ

whereN is the total number of pixels in the reflection box, 
i is

the observed photon count, Pi is the normalized predicted

profile value at pixel i, xi and yi are the horizontal and vertical

pixel coordinates, J is the scale factor between the standard

and the observed profile such that the integrated intensity I =
P

iJPi, and a, b and c define a plane describing the local

background. The weights wi are the inverse of �i
2 (Leslie,

1999). Assuming a Poisson distribution of counting errors, the

standard deviation of the pixel intensity �i = 
i
1/2. M neigh-

bouring reflections in the reflection box have their own profile

Pm and scale factor Jm; some of these reflections may be

significantly overlapping the main reflection. In this proce-

dure, overlapping neighbour reflections are automatically

deconvoluted from the main reflection. The parameters can be

found by solving an overdetermined set of normal equations

following from equation (5): ðAT
AÞ � c ¼ A

T � t, where A is an

N � (M + 4) matrix given by

A ¼

P1=�1 P11=�1 � � � x1=�1 y1=�1 1=�1
P2=�2 P21=�2

:

:

PN=�N PN1=�N � � �

0

B

B

B

B

@

1

C

C

C

C

A

; ð6Þ

c, a vector of dimension (M + 4), represents the fitting coef-

ficients and t, a vector of dimension N, contains the observa-

tions:

c ¼

J

J1
:

a

b

c

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

; t ¼


1=�1
:

:

:

:


N=�N

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: ð7Þ

N is the number of pixels in the three-dimensional reflection

box (see x3.1) and T denotes the transpose of the matrix.

The normal matrix A
T
A can become singular or almost

singular when the standard profiles P and Pm are almost

linearly dependent. A general approach to solve the numerical

instability and to choose a reasonable solution is SVD (Nash,

1990). In SVD the matrix A is decomposed into U�W�VT,

where W is a diagonal matrix made up of the square roots of

the eigenvalues of the normal matrix. The best solution to the

normal equations is c = V�[diag(1/Wj)]�U
T�t. It follows that the

coefficients cj are given by

cj ¼
P

M

i¼1

Ui � t=Wið ÞVji: ð8Þ

If the singular value Wi is (close to) zero, the normal matrix is

singular. The corresponding 1/Wi has to be set to zero (Press et
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Figure 2
Profiles in two consecutive frames. Frame 1: (a) observed profile, (b) simulated profile and (c) simulated profile + point spread. Frame 2: (d ) observed
profile, (e) simulated profile and ( f ) simulated profile + point spread. This graphic was made using logarithmic function values with Mathematica.
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Figure 3
Effect of parameter choice on reflection profiles. (a) Observed profile of a
reflection with I/� ’ 50; (b) position on the detector; (c) face-indexed
crystal model viewed from the direction of the X-ray beam; (d ) model
profile with optimal parameters: mosaicity � = 0.2�, point spread � = 0.5
pixels, focus distance = 150 mm, resulting in fompeak = 1.05; (e) difference
(a) � (d ); ( f ) � = 1.0� (fompeak = 1.43); (g) difference (a) � ( f ); (h) � =
1.0 pixels (fompeak = 1.20); (i) difference (a) � (h); ( j) focus distance =
50 mm (fompeak = 2.27); (k) difference (a)� ( j); (l ) crystal size multiplied
by a factor 2.0 (fompeak = 2.51); (m) difference (a) � (l ). The observed
and model profiles are shown on a grey scale using logarithmic intensities;
the difference profiles are coloured blue and red for positive and negative
differences on a linear scale by�/� units. For the definition of fompeak see
x2.3.

al., 1986). This algorithm also provides a variance–covariance

matrix with

�2ðcjÞ ¼
P

M

i¼1

Vji=Wi

� �2
; covðcj; ckÞ ¼

P

M

i¼1

VjiVki=W
2
i

� �

: ð9Þ

The variance of the main reflection is then given by

�2
I ¼ �2

J

P

N

i¼1

Pi

� �2

: ð10Þ

In this procedure, we automatically obtain the intensities and

variances of neighbouring (overlapping) reflections in the box

too. Even if the overlap with neighbouring reflections is

insignificant, the profiles of the neighbours are still important

to calculate an appropriate background. The covariance of the

main reflection and an overlapping neighbour tells us if we can

reliably split the two or if we can only determine the sum

intensity of the overlapping reflections. If the value of 	2 in

equation (5) is large then the standard profile does not give a

good fit. In EVAL15 we use the following figure-of-merit to

indicate the quality of the fit:
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fombox ¼

PN

i¼1 wið
i � 
calc
i Þ

2

N � Np

" #1=2

; ð11Þ

where Np is the number of fitting parameters, usually (M + 4),

and 
i
calc = JPi +

P

m JmPim + axi + byi + c. In a similar way we

calculate fompeak and fombg, where the summation runs over

the pixels in the peak and those in the background, respec-

tively. For this purpose the peak area is defined by those pixels

that receive at least 0.3% of the total number of calculated

impacts. We have chosen to optimize J, Jm, a, b and c simul-

taneously for the whole reflection box.

An approach to include neighbours in the least-squares fit

in the case of overlapping reflections, as described by equation

(5), was also followed by Bourgeois et al. (1998) and Ren &

Moffat (1995). However, the selection of pixels that are

included is different. Bourgeois et al. (1998) developed the

PROWalgorithm, which optimizes the profile fitting area such

that I/� is maximized. The background parameters are fitted

separately. Ren & Moffat (1995) created a dynamic mask

based on the relative profile value in a learnt analytical profile.

Both procedures included all pixels of a neighbour reflection if

it is predicted to overlap. In EVAL15, neighbouring reflec-

tions are taken into account if they produce impacts in a

significant number of pixels in the reflection box, but might

not be included entirely. We verified that the intensity and

standard deviation of a main reflection are not sensitive to the

number of pixels that are included for the neighbour, unless

they strongly overlap. However, in the latter case all pixels of

the neighbour are included automatically because it is also

positioned near the centre of the reflection box.

All papers describing profile-fitting algorithms conclude

that the reflection positions should be known accurately, both

for the learning and for the fitting procedure. EVAL15 will

optimize the position (horizontal, vertical and rotational

impact coordinates) of the reflection, by minimizing fombox

using the simplex method (Nelder & Mead, 1965; Press et al.,

1986). This can only be done reliably for reflections that are

strong enough. If shifts of the impact positions of a collection

of reflections with similar ! values are larger than is accep-

table, a post-refinement is carried out and the procedure is

started all over again. In practice the final shifts are typically

one-third to one-half of the size of a pixel and one-third of the

rotation range !. Since the profile is recalculated for each

position no extrapolation of the profiles has to be carried out.

2.4. Standard deviations and gain of the detector

Every detector converts X-ray photons into an electronic

signal that is read out and stored in an image file. The

detective quantum efficiency (DQE) is a measure of the effi-

ciency with which photons are detected and of the noise

performance of the detector. It is defined as the signal-to-noise

ratio of the output signal divided by that of the input signal.

For an ideal detector this ratio would be 1.0. In practice many

factors reduce this number, such as phosphor absorption

efficiency, window transmission, phosphor noise factor,

readout noise, dark current and detector gain (Phillips et al.,

2002). The DQE is a determinant factor for the data quality,

i.e. the output signal/noise ratio. For data integration our

concern is the correct estimation of I/�. The definition of gain

varies in the literature. In the rest of the paper we will use gain

as the number of ADUs (analogue-to-digital units) per X-ray

photon. In EVAL15 all pixel intensities are divided by the

gain, if this number is available from the header of the image

files; otherwise it can be input manually. A whole cascade of

processes is responsible for the gain value. In the ideal case,

the manufacturer determines this number such that, after

dividing by gain, an estimate of the standard deviation for

each pixel intensity can be obtained using Poisson statistics. It

is specific for the wavelength used. The background intensity

of a reflection box is represented by a plane with parameters a,

b and c (see above). Noise causes deviations between fitted

and observed background pixel intensities that are measured

by fombg. These deviations are expected to follow a Gaussian

distribution such that fombg should be near 1.0 provided the

correct value for gain is used. This reasoning assumes that

analog-to-digital converter noise and/or dark current are

effectively removed from the background so that it only

consists of X-ray scattering. A large deviation of fombg from

1.0, in the various reflection boxes, indicates an incorrect gain

value. The value of gain can then be adapted. However, in x3.3

we show that the use of the correct gain value is not all that

important, when the standard deviations are multiplied by

fompeak.

Popov & Bourenkov (2003) elaborate on the various

contributions to standard deviations from summation–inte-

gration. These can be described by a second-order polynomial
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Figure 4
The EVAL15 graphical display.
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in I. The zeroth-order coefficient is related to the incoherent

background scattering, dark current and readout noise. In

EVAL15 the noise originating from dark current and readout

is included via the parameter bgnoise, which is estimated from

the dark images. The first-order term in Popov & Bourenkov’s

approach is the standard deviation due to Poisson counting

statistics of the integrated intensity. Both effects are intro-

duced as weights in the least-squares fit by using �i = (
i +

bgnoise2)1/2, resulting in the standard deviation �I [equation

(10)] of the integrated intensity I. The second-order term is the

contribution of instrument errors. Both systematic measure-

ment errors and errors in the profile will unavoidably lead to

misfits of profiles, especially at large I/�. If the fompeak value is

larger than 1.0 the deviation between model and observation

is larger than expected and obviously the model is not

completely correct; somehow this should be expressed in the

estimated standard deviation of the intensity. Two approaches

seem justified to adapt the standard deviations �I of the

integrated intensities. (1) Multiply �I by fompeak. A similar

approach is followed by Leslie (1999). This approach accounts

for both the profile and the instrument errors. (2) Leave it to

the scaling program, in our case SADABS (Sheldrick, 1996),

to find an error model for the standard deviations from the

internal r.m.s. deviations �int = [
P

i(Ii � hIi)2/(N � 1)]1/2 of

equivalent reflections. In this case EVAL15 only outputs �I
(Poisson + bgnoise) and SADABS provides the second-order

term representing instrument errors.

3. Results and discussion

3.1. The EVAL15 graphical display

After finding the R matrix with DIRAX (Duisenberg, 1992)

and refinement of variables determining the reflection posi-

tions with PEAKREF (Schreurs, 1999), integration boxes are

extracted, one for each separate reflection (of typically

27 pixels � 27 pixels � 5 frames), from the images using the

‘datcol’ procedure in VIEW (Schreurs, 1998). The size of the

boxes is chosen by visual inspection and should normally be

sufficiently large to contain the complete reflection and a fair

portion of background, though this is less critical in EVAL15,

as it can also integrate incomplete reflections. Fig. 4 shows the

graphical display of EVAL15 for one reflection. The top-left

panel shows successive observed ! slices. In the second row,

the resulting profile from a sample of 10 000 impacts calcu-

lated using equation (3) is shown. In the third row, the point-

spread function is applied; then the scale factor for the profile

and the background parameters are determined and in the

fourth row the resulting model is displayed. Finally, the

difference between observation and model is shown in a red/

blue colour scale. The least-squares procedure is applied to all

slices simultaneously. The right side of the window contains

information on the position of the reflection: the resolution, �

and relative duration (i.e. the rotation range compared with a

reflection with the same 2sin� passing through the Ewald

sphere at the equator) as well as the central horizontal,

vertical and rotational impact coordinates. The difference

between the original and final impact is also shown on the

right panel (impact versus finalimp). The type of distribu-

tions (Lorentzian, Gaussian or block) and the numerical

values for relevant parameters are shown as well. The values I,

� and I/� corrected for the Lorentz (Milch &Minor, 1974) and

polarization factors and the figures of merit can be found a few

lines lower. As mentioned in x2.4, a (local) planar background

in the reflection box is assumed. Occasionally, zingers may

occur in the peak or background. In EVAL15 a pixel rejection

procedure is implemented, based on (
i
obs � 
i

calc)/�i > 5–10.

The user can decide to avoid areas with ice rings through the

peak or in the background in the VIEW datcol procedure. The

lower-left part of the window shows EVAL14 contours. In the

case shown, the shape of the crystal was obtained through face

indexing and it is shown by default in the orientation at the

diffracting position seen from the X-ray source

3.2. Predicted profiles for standard and notoriously difficult

cases

In this section, we demonstrate the performance of

EVAL15 for a high-resolution data set of sucrose. Next we will

show examples of profile predictions for cases that present

most integration software packages with significant difficulties.

In the two following papers such cases will be treated exten-

sively (Xian et al., 2010a,b).

3.2.1. Comparison of EVAL14 and EVAL15 for high-

resolution data with Ka1/Ka2 splitting. Crystal data for

sucrose are listed in Table 1. The performance of EVAL14 and

EVAL15 for data of a sucrose crystal is compared in Table 2.

The crystal was face indexed using COLLECT (Nonius, 1999)

and the description was used in SADABS for absorption

correction. Refinement was carried out with SHELXL

(Sheldrick, 2008). Data were integrated to a resolution of

0.46 Å, at which resolution reflections are clearly split owing

to the use of K�1/K�2 radiation. The basic difference between

EVAL14 and EVAL15 is the use of summation–integration

versus profile fitting. In EVAL14 the pixel intensities within a

reflection contour are summed while subtracting the average

background intensity determined from an area surrounding

the reflection. We noticed, while studying the point-spread

function of a detector, that reflection intensity is spread over

the complete area of the integration box. Thus there is in fact

no way to determine the true background scattering close to
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Table 1
Data collection for sucrose.

Crystal data
2C12H22O11 V = 715.47 (9) Å3

Mr = 342.30 Z = 2
Monoclinic, P21 Mo K� radiation
a = 7.7613 (7) Å � = 0.144 mm�1

b = 8.7061 (7) Å T = 298 K
c = 10.8652 (4) Å 0.24 � 0.12 � 0.21 mm
� = 102.960 (4)�

Data collection
Nonius KappaCCD diffractometer Absorption correction: face indexed

(SADABS)
Detector distance: 40 mm ’ and ! scans with 1� increments
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the reflection in a summation–integration procedure. In

EVAL15 the intensity and background parameters are

determined in one single least-squares fit and we believe

therefore that the background is appropriately determined.

We have implemented an EVAL14-like summation–integra-

tion in the EVAL15 software, where the pixel intensities are

summed within the area confined by 0.3% of the maximum of

the model profile and the background is obtained from the

EVAL15 least-squares fit. We found that on average the

integrated intensities in EVAL15 are 7% larger than in the

EVAL14-like procedure. This is caused by the fact that,

because of the point spread, some reflection intensity is

outside of the contour and by applying a reflection boundary

some 7% of the intensity is lost (bold hatched area in Fig. 5).

The EVAL14-like intensities approach those of EVAL15

when the contour size (boundary) is increased. In the normal

EVAL14 method summation–integration is also performed

within a predicted contour, while the background plane is

determined separately from pixels in the background area.

Since in fact all pixels in the reflection box are affected by

reflection intensity spread through the point-spread function,

the background level becomes too high and the net intensity

becomes too small. Therefore, in EVAL14 an additional 1% of

the intensity is lost.

After post-refinement it was no longer necessary to shift the

positions of reflections. The results of a complete integration

with and without applying shifts are indistinguishable. The

average accuracy of the reflection positions is one-third of the

pixel size and 0.1� in the rotation direction.

The refinement results for the lower-resolution data sets are

similar for all three methods, although EVAL15 data have

larger average I/� values. The difference between the methods

becomes visible at high resolution (0.46 Å). EVAL15 clearly

performs better for low-intensity reflections. It has fewer weak

data points (I < 2�) and I/� is larger over the whole resolution

range.

The R values in the refinement are significantly lower, as are

the residual densities. The estimated standard deviations for

the coordinates, expressed in terms of C—C covalent bond

distance standard deviations, and of the ADUs, expressed as

the s.u. values of Ueq, are notably smaller than for EVAL14.

Integration of high-resolution reflections with home X-ray

sources requires appropriate treatment of K�1/K�2 splitting.

EVAL14 proved over the years to predict the corresponding

contours correctly and delivered good data. However, we have

now shown that EVAL15 performs even better in the case of

weak data.
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Figure 5
Difference in background and reflection intensities for the two methods.
The grey box indicates the true background as determined by EVAL15.
The EVAL14-like integration, while using the EVAL15 background, fails
to include the hatched area as a result of a boundary cut-off (boundary
indicated by the arrow heads). The normal EVAL14 method has a higher
background (dotted line) because that includes reflection intensity due to
point spread.

Table 2
Data for sucrose after scaling and absorption correction with SADABS, and refinement with SHELXL.

No. measured Weights:
No. unique R1(strong) Kmin �
max a

Max. resolution† No. > 2� I/�‡ R1(all) wR2 S Kmax �
min b hs.u.i C—C§ hs.u.i Ueq(C)§

EVAL14 0.77 13157 30.9 (12.5) 0.0266 0.0665 1.062 0.959 0.27 0.0389 0.0019 0.00027
3281 0.0291 1.067 �0.21 0.1161
3107

0.46 36170 16.0 (0.6) 0.0567 0.1238 1.019 0.970 0.47 0.0549 0.0013 0.00015
14400 0.1221 1.253 �0.38 0.0
8362

EVAL14-like 0.77 13344 33.7 (13.6) 0.0269 0.0683 1.072 0.958 0.28 0.0395 0.0019 0.00027
3280 0.0285 1.068 �0.20 0.1210
3164

0.46 35874 20.3 (1.0) 0.0578 0.1325 1.116 0.970 0.45 0.0508 0.0013 0.00014
14335 0.1062 1.184 �0.33 0.0292
9381

EVAL15 0.77 13605 35.6 (19.7) 0.0256 0.0667 1.055 0.956 0.28 0.0429 0.0018 0.00023
3284 0.0261 1.056 �0.19 0.1061
3229

0.46 37850 24.4 (1.4) 0.0420 0.1072 0.998 0.976 0.38 0.0573 0.0009 0.00010
14421 0.0690 1.029 �0.26 0.0
10521

† Maximum resolution in Å. ‡ Number in parentheses for highest-resolution shell. § s.u. for distances in Å and atomic displacement parameters in Å2. K = minimum and
maximum resolution-dependent scale factor K for F2

obs versus F
2
calc; R1 ¼

P

jjFobsj � jFcalcjj=
P

jFobsj for Fobs > 4�ðFobsÞ, and for all structure factors; wR2 ¼ f
P

½wðF2
obs � F2

calcÞ
2
�=

P

½wðF2
obsÞ

2
�g1=2; S ¼ f

P

½wðF2
obs � F2

calcÞ
2
�=ðn� pÞ�g1=2 , where n = number of reflections, p = number of refined parameters; �
max,min = maximum and minimum difference density

(e Å�3); weights w ¼ 1=½�2ðF2
obsÞ þ ðaPÞ

2
þ bP�, where P ¼ ðF2

obs þ 2F2
calcÞ=3.
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Reflections are notably split at higher resolution as a result

of the use of K�1, K�2 radiation from sealed tubes or rotating

anode sources. Since EVAL15 uses both wavelengths in the

simulation, with a ratio of 2:1, accurate profiles are obtained,

as can be seen in Fig. 6.

3.2.2. Fine slicing. Pflugrath (1999) discusses the possible

advantages of fine slicing, i.e. images recorded over a rotation-

angle range significantly smaller than the effective mosaic

spread.1 The advantages could be a lower X-ray background

per image, fewer saturated pixels, fewer spatial overlaps and

better positional accuracy of the reflection after post-refine-

ment. Inherent disadvantages are that the intensity of a

reflection is spread over a larger number of pixels (reducing

the signal/noise), readout noise is accumulated over several

images, and the process is more demanding in terms of disk

space, goniometer hardware, shutter synchronization and the

scaling procedure. As EVAL15 integrates three-dimensional

reflection boxes the treatment of fine sliced data is straight-

forward. Fig. 7 shows that the shape of partial reflections can

be different from frame to frame; similar behaviour was

observed by Pflugrath (1999). The profile-fitting algorithm in

EVAL15 is in no way hampered by these differing shapes; in

fact the profiles are predicted accordingly.

3.2.3. Overlapping reflections. Overlapping reflections due

to long cell axes or twin lattices can be deconvoluted even if up

to 90% of their pixels overlap (Xian et al., 2010a). The

intensity and standard deviation for all reflections in the

reflection box are estimated, though we only use that of the

main reflection for which the box is made. The neighbour’s

intensity will be integrated in a separate neighbour reflection

box. The profile of the neighbour is obtained using the same

sets of sampled rays that impact on the pixels centred near the

predicted position of the neighbour (Fig. 8). The indexing

programs DIRAX (Duisenberg, 1992) or CELL_NOW
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Figure 6
K�1/K�2 splitting for reflection 12 0 0, as occurring at an example
resolution 0.63 Å in the data of sucrose. (a) Observed and (b) simulated
profiles.

Figure 8
Overlapping reflections from twin lattices can be simulated and their
relative intensities are obtained through the SVD algorithm. (a), (b) Two
consecutive frames of the observed reflection box are shown. (c), (d ) The
model profiles are made using the fitted relative intensities (I/� = 77.6 for
hkl main = 147 and I/� = 67.9 for hkl neighbour = 147).

Figure 7
(a), (b) Observed and (c), (d ) simulated profiles of a reflection on two
successive frames.

1 The rotation range of a reflection is determined by the size and mosaic
spread of the crystal, the wavelength dispersion, the beam divergence, and the
Lorentz factor (Helliwell et al., 1993). The relative duration used in EVAL15 is
defined as the Lorentz factor divided by 2 sin� and thus is the duration relative
to a reflection passing through the Ewald sphere in the equatorial plane when
the rotation axis is perpendicular to the primary beam.
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(Sheldrick, 2005) are particularly suited to find interfering

lattices.

3.3. Standard deviations

The error model used in SADABS for the standard devia-

tions is �c = K[�I
2 + (ghIi)2]1/2, where g (typically 	0.02 for

KappaCCD/EVAL data) accounts for (systematic) instrument

errors (McCandlish et al., 1975). Using this expression and the

fact that we expect �true to be equal to fompeak�I we can write

fompeak = �true/�I ’ K[1 + (gI/�I)
2]1/2. Fig. 9 shows that the

EVAL15 fompeak values and the standard deviation multi-

plication factor of SADABS are strongly correlated for a test

data set (for details see Xian et al., 2010b) and that fompeak

accounts for a large portion of the instrument errors indicated

by SADABS. Minimization of fompeak for a selected set of

strong reflections (I/� > 20) turns out to be a good guide in

finding the optimal profile prediction parameters and reduces

the contribution of the profile part to the value of g in

SADABS [see a separate paper (Xian et al., 2010b) for a recipe

to find the best profile prediction parameters].

The values of gain and bgnoise may not be known exactly.

We have examined the consequence of the choice of these

values on the estimation of the standard deviations � and on

the refinement. KappaCCD test data of a crystal of an organo-

metallic compound were integrated and the gain was initially

set to 1.5, the value given in the header. However, from the

average fombg we estimated it to be 1.2. Table 3 shows that the

SADABS error model parameters change on changing either

gain or bgnoise, but the SHELXL refinement results were not

significantly different except for the weighting scheme. This

implies, that although the estimation of standard deviations

varies even after going through SADABS, the refinement

results are similar after applying the weighting scheme.

We also investigated the effect of multiplying the standard

deviations with fompeak. Since every reflection has its own

fompeak, the I/� values are sometimes changed considerably

(Fig. 10). This has little consequence on the refinement.

However, the error model parameters and the weights in the

refinement become similar for the different gain and bgnoise

values (Table 3) and the value for g is near 0.0. It can be

concluded that multiplying the standard deviation with

fompeak reduces the sensitivity to the values of gain and

bgnoise and gives better estimates of the true standard

deviations.

The choice of the profile model clearly matters for the fom

values and the refinement residuals as is seen in Table 3. If the

mosaic spread is chosen too small (0.2�), the results are

significantly worse.

Most refinement programs [e.g. SHELXL (Sheldrick, 2008)

and Crystals (Betteridge et al., 2003)] establish a weighting

scheme for the intensities or structure factors, to account not

only for additional experimental errors but also for model

errors. Normal probability plots (Abrahams & Keve, 1971;

Fig. 11) indicate that the standard deviations are under-
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Figure 10
After applying SADABS the I/� values are changed considerably by
multiplying the initial � with fompeak.

Figure 9
Linear relationship between fompeak and the correction factor for
standard deviations obtained with SADABS. Graphics produced using
ANY (Schreurs, 2007).

Figure 11
Normal probability plots for (Fobs

2 � Fcalc
2 )/� (solid line) and w1/2 (Fobs

2 �
Fcalc
2 ) (broken line). The standard deviations were estimated using

�I fompeak.
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estimated for area-detector data, as was shown earlier by

Zhurov et al. (2008). In refinement of data up to a resolution of

0.77 Å, usually the model errors are substantial so that a

weighting scheme is essential. Using the square root of the

refinement weights instead of the � values, the normal prob-

ability plots behave much better. It follows that the estimated

standard deviations of EVAL15 as such contribute little to the

weights. However, large values of the parameters in the

weighting scheme are an indication that errors in the inte-

grated intensities are substantially larger than what is

expected from the � values. The weights in the refinement for

high-resolution structures in programs like JANA (Petricek et

al., 2000) and XD (Koritsanszky et al., 2003), where the model

errors are small, are taken to be 1/�2. A correct estimation of

the standard deviations would be profitable in such cases. We

believe that the use of fompeak in combination with a scaling

program like SADABS will give reliable standard deviations.

Note that fompeak can be lower than one, meaning that the �

values are overestimated. This is caused by the use of too large

a gain value. This can be corrected for by multiplying � with

fompeak or by applying the error model in SADABS.

4. Conclusions

In this paper, we show that it is possible to make an ab initio

prediction of reflection profiles as found in X-ray diffraction

area-detector data. The EVAL15

profile prediction method needs only

a modest number of physically

realistic parameters to simulate

reflection profiles. We have shown

that high-quality profiles are

obtained, even in more demanding

cases such as fine sliced data, K�1/

K�2 splitting and overlapping

reflections. Moreover, deviation of

the profiles from what is expected on

the basis of the physical parameters

gives insight into unusual crystal

properties or instrumental peculia-

rities. The simulated profiles are

successfully applied in a profile

fitting analysis to obtain accurate

integrated intensities. It is relatively

easy to include additional properties

of the crystal (like anisotropic

mosaic spread and lattice distortion)

or of the instrument (like focusing

mirrors or newly developed detec-

tors) into the ray tracing simulation.

This fully flexible approach has the

potential to solve many difficult

diffraction problems. EVAL15 has

the ability to work with multiple

lattices (several R matrices) and can

include overlapping neighbour

reflections (from the same or from

different lattices) in the least-squares procedure.

APPENDIX A

Distributions

When certain parameters are required to have specific non-

uniform distributions care has to be taken to ensure unbiased

sampling. This applies, for example, to the wavelength distri-

bution within the spectrum or to the distribution of mosaic

orientations. If

pðyÞ ¼
dx

dy
pðxÞ ð12Þ

is the required distribution and p(x) represents a uniform

distribution of deviate x, it follows that

FðyÞ ¼
R

pðyÞ dy ¼ x: ð13Þ

The transformed deviate y(x) = F�1(x) has the required

distribution (Press et al., 1986). For instance, a one-dimen-

sional Gaussian distribution can be obtained from y = erf�1(x).

Press et al. also describe how a two-dimensional Gaussian

distribution can be obtained. Random points with Cartesian

coordinates (v1, v2) are selected inside a circle with square

radius R = v1
2 + v2

2 and transformed to normal deviates

y1 ¼ ½�2 lnðRÞ=R�1=2v1 and y2 ¼ ½�2 lnðRÞ=R�1=2v2, which are
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Table 3
SHELXL refinement of data of �-tris(2,4-pentanedionato-�2-O,O0)cobalt(III) (von Chrzanowski et al.,
2007) using different estimations of �.

Gain R1(strong) �
max Weights: a
Mosaic spread bgnoise hfompeaki hfombgi �EVAL15 K g R1(all) wR2 S �
min b

0.7 1.0 1.756 1.094 �p 1.63 0.0201 0.0344 0.0806 1.062 0.35 0.0253
0.83 0.0512 �0.59 1.52

0.7 1.2 1.599 0.994 �p 1.54 0.0205 0.0342 0.0803 1.049 0.33 0.0261
0.83 0.0511 �0.57 1.51

0.7 1.5 1.425 0.884 �p 1.42 0.0213 0.0329 0.0802 1.038 0.35 0.0294
0.83 0.0506 �0.58 1.28

0.7 1.5 1.434 0.894 �p 1.43 0.0214 0.0335 0.0800 1.040 0.35 0.0271
0.67 0.0507 �0.59 1.44

0.7 1.5 1.3418 0.7962 �p 1.32 0.0246 0.0318 0.0785 1.028 0.36 0.0299
1.87 0.0503 �0.59 1.13

0.7 1.5 1.2319 0.6860 �p 1.18 0.0318 0.0316 0.0787 1.041 0.33 0.0315
3.0 0.0506 �0.60 0.87

0.7 1.5 �p* 1.43 0.0003 0.0330 0.0803 1.051 0.34 0.0265
0.67 fompeak 0.0503 �0.58 1.32

0.7 1.5 �p* 1.44 0.0003 0.0327 0.0796 1.044 0.33 0.0263
0.83 fompeak 0.0504 �0.58 1.33

0.7 1.5 �p* 1.45 0.0003 0.0324 0.0804 1.032 0.34 0.0286
1.87 fompeak 0.0503 �0.60 1.30

0.7 1.5 �p* 1.50 0.0003 0.0328 0.0813 1.032 0.32 0.0292
3.0 fompeak 0.0510 �0.62 1.29

0.7 1.2 �p* 1.43 0.0003 0.0331 0.0795 1.050 0.31 0.0251
0.83 fompeak 0.0504 �0.56 1.39

0.2 1.2 1.778 1.008 �p 1.53 0.0307 0.0391 0.0982 1.046 0.64 0.0353
0.83 0.0562 �0.66 1.79

R1 ¼
P

jjFobsj � jFcalcjj=
P

jFobsj; wR2 ¼ f
P

½wðF2
obs � F2

calcÞ
2
�=
P

½wðF2
obsÞ

2
�g1=2 ; S ¼ f

P

½wðF2
obs � F2

calcÞ
2
�=ðn� pÞ�g1=2 , where

n = number of reflections, p = number of refined parameters; �
max,min = maximum and minimum difference density (e Å�3);
weights w ¼ 1=½�2ðF2

obsÞ þ ðaPÞ
2
þ bP�, where P ¼ ðF2

obs þ 2F2
calcÞ=3.
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distributed according to a Gaussian and represent a radial

coordinate along a one-dimensional section through a two-

dimensional Gaussian distribution. For obtaining mosaic

distributions the coordinates y1 and y2 are transformed to

spherical coordinates giving the polar and azimuthal angles

over which the central S0 has to be rotated to arrive at Sm. In

the case of anisotropic mosaic spread, the y1 coordinate is

multiplied by (� + �anisosin), where  is the angle between S0

and A. A is the anisotropic mosaic axis and �aniso is the

anisotropic mosaic spread. Subsequently, y1 and y2 are rotated

around S0 such that y1 lies along the normal S0 �A. The result

is that the mosaic distribution is stretched in the direction

perpendicular to the anisotropic mosaic axis.

In a similar way a two-dimensional Lorentzian distribution

can be obtained. In this case taking

y1 ¼
1

2R1=2

� �2

�
1

4

�

�

�

�

�

�

�

�

�

�

1=2

v1

R1=2
ð14Þ

and proceeding in a similar way gives a two-dimensional

Lorentzian distribution (Fig. 12).

APPENDIX B

Point-spread function

The point spread of a detector can be conveniently described

by a pseudo-two-dimensional Lorentzian. It is based on a

normal one-dimensional Lorentzian where the variable is

replaced by two Cartesian variables. Integration of this func-

tion to infinity only converges when the determinant of the

Jacobian matrix for transformation of the Cartesian to polar

coordinates is included, which is 1=ðx2 þ y2Þ
1=2
. In addition, we

have included a factor (�/2)2 to prevent the denominator from

becoming zero. The resulting point-spread function is

PSFðx; yÞ ¼
�

4� x2 þ y2ð Þ þ �=2ð Þ
2

� �3=2
: ð15Þ

x and y are the distances in the horizontal and vertical

directions measured from the centre of the impacted pixel.

The intensity accumulated in a pixel is thus spread over

neighbouring pixels at a point (x, y) away from its centre. It is

wrong to assume that the contribution to a target pixel

depends only on the distance from its centre to the centre of

the source pixel. In fact, this function has to be evaluated as an

integral over the surface of the whole target pixel. The integral

is given by

1

2�
tan�1 ð2=�Þ xy

�=2ð Þ
2
þx2 þ y2

� �1=2

( )

ð16Þ

and the four corners of the pixel are taken as the integration

limits.
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corresponding coordinates (y1, y2.) A histogram of (y1, y2) is plotted.
The standard deviation � was chosen to be 1.0. Graphics produced using
Mathematica.
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