
Evaluated Crop Evapotranspiration over a Region of
Irrigated Orchards with the Improved ACASA–WRF Model

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Falk, Matthias, R. D. Pyles, S. L. Ustin, K. T. Paw U, L. Xu, M.
L. Whiting, B. L. Sanden, and P. H. Brown. “Evaluated Crop
Evapotranspiration over a Region of Irrigated Orchards with the
Improved ACASA–WRF Model.” Journal of Hydrometeorology 15, no.
2 (April 2014): 744–758. © 2014 American Meteorological Society

As Published http://dx.doi.org/10.1175/JHM-D-12-0183.1

Publisher American Meteorological Society

Version Final published version

Citable link http://hdl.handle.net/1721.1/91282

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/91282


Evaluated Crop Evapotranspiration over a Region of Irrigated Orchards with the
Improved ACASA–WRF Model

MATTHIAS FALK, R. D. PYLES, S. L. USTIN, AND K. T. PAW U

Department of Land, Air and Water Resources, University of California, Davis, Davis, California

L. XU

Department of Land, Air and Water Resources, University of California, Davis, Davis, California, and Center for Global

Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

M. L. WHITING

Department of Land, Air and Water Resources, University of California, Davis, Davis, California

B. L. SANDEN

University of California Cooperative Extension, Bakersfield, California

P. H. BROWN

Department of Plant Sciences, University of California, Davis, Davis, California

(Manuscript received 3 December 2012, in final form 15 November 2013)

ABSTRACT

Among the uncertain consequences of climate change on agriculture are changes in timing and quantity
of precipitation together with predicted higher temperatures and changes in length of growing season. The
understanding of how these uncertainties will affect water use in semiarid irrigated agricultural regions
depends on accurate simulations of the terrestrial water cycle and, especially, evapotranspiration. The
authors test the hypothesis that the vertical canopy structure, coupled with horizontal variation in this
vertical structure, which is associated with ecosystem type, has a strong impact on landscape evapotrans-
piration. The practical result of this hypothesis, if true, is validation that coupling the Advanced Canopy–
Atmosphere–Soil Algorithm (ACASA) and the Weather Research and Forecasting (WRF) models provides
a method for increased accuracy of regional evapotranspiration estimates.
ACASA–WRF was used to simulate regional evapotranspiration from irrigated almond orchards over an

entire growing season. The ACASA model handles all surface and vegetation interactions within WRF.
ACASA is a multilayer soil–vegetation–atmosphere transfer model that calculates energy fluxes, including
evapotranspiration, within the atmospheric surface layer.
The model output was evaluated against independent evapotranspiration estimates based on eddy co-

variance. Results indicate the model accurately predicts evapotranspiration at the tower site while producing
consistent regional maps of evapotranspiration (900–1100mm) over a large area (1600km2) at high spatial
resolution (Dx 5 0.5km).
Modeled results were within observational uncertainties for hourly, daily, and seasonal estimates. These

results further show the robustness of ACASA’s ability to simulate surface exchange processes accurately in
a complex numerical atmospheric forecast model such as WRF.

1. Introduction

Accurate spatial estimates of water use in irrigated

orchards are crucial in California, where agriculture

relies on irrigation water, either from groundwater
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sources or via surface water supplies. Agriculture is the

largest water consumer in the state, consuming as much

as 75% of the water supply in themid-1990s (Vaux 1999).

There are strong correlations between water availability

and agricultural productivity and significant penalties for

underirrigation. The combination of projected climate

change for California and long-term competition for

water resources, for example, from population growth,

other industries, and demand from natural ecosystems,

could lead to large overall reductions of water available

to agricultural producers (Kiparsky and Gleick 2003).

Among the uncertain consequences of climate change

on agriculture are changes in timing and quantity of

precipitation, including less predictable and more vari-

able interannual rainfall (Downing and Parry 1994;

Houghton et al. 2001). On average, increasing CO2

concentrations have been shown to improve C3 crop net

primary production (NPP) by 33% for a doubling of

atmospheric CO2 (Koch and Mooney 1996). Grassland

and crop studies combined show an average biomass

increase of 14%, with a wide range of responses among

individual studies (Mooney et al. 1999). Field experi-

ments suggest a more complex picture, with C4 plants

sometimes doing better than C3 under elevated CO2

because of improved water use efficiency at the eco-

system level (Owensby et al. 1993). Thus, other climate-

related changes can outweigh the improved productivity

due to increasing CO2, particularly moving further into

the future climate. Changes in water availability, com-

bined with predicted higher temperatures and changes

in length of growing season, will adversely impact food

security. Water shortages are already common in semi-

arid regions, and climate predictions indicate increased

frequency and intensity of droughts, leading to concerns

about future security of food production. About 40% of

the global land surface is considered semiarid, experi-

encing 500–1000mm of precipitation annually and with

at least one dry month, which is present on all continents

except Antarctica. One-sixth of the world’s population

(;1.2 billion people) lives in and relies on food re-

sources from these environments. These transition

ecosystems experience exceedingly variable patterns of

rainfall, often in just a few large storms, where water is

lost to runoff and high rates of evapotranspiration (ET).

Despite its semiarid Mediterranean climate and highly

variable interannual winter-dominated precipitation, Cal-

ifornia is the largest agricultural producer in the United

States, with an economy of $43.5 billion in 2012 (www.cdfa.

ca.gov/statistics/) and more than 200 crops producing more

than half of the nation’s fruits and vegetables. Of these

crops, almonds have the highest economic base ($3.87 bil-

lion in 2011) and the most acreage planted (870000 acres

in 2012; www.nass.usda.gov/Statistics_by_State/California/

Publications/Fruits_and_Nuts/201305almac.pdf).Water use

is reported to range between 1020 and 1170mmyr21

(Sanden 2007). Thus, there is a significant and urgent

need to reliably maintain current almond production

while using less water. During periods of drought, such

as in the droughts of 2007, 2008, and 2009, surface water

allotments were significantly reduced to accommodate

other uses (Fereres and Soriano 2006; DWR 2009).

Agricultural production in California is possible be-

cause of the vast water infrastructure network of reser-

voirs, groundwater basins, and local and regional water

conveyance systems. Nonetheless, California’s agricul-

ture is especially vulnerable to water shortages because

of its dependence on the winter snowpack, which varies

by orders of magnitude between years. Hayhoe et al.

(2004) predicted a 60%–90% decrease in the winter

‘‘snowwater equivalent’’ snowpack in the SierraNevada

by 2090 because of global warming, which will pro-

foundly change the timing and intensity of winter and

summer surface water flows (Knowles and Cayan 2002;

Pimentel et al. 2004).

We address the question of agricultural vulnerability

by examining the spatial and temporal patterns of water

demand in relation to cropping patterns. Currently, ad-

ditional knowledge is needed for most crops regarding

the timing and magnitude of statewide water demand.

Also, knowledge is limited on how timing and insufficient

water application affects yield, especially in perennial

crops, where past management significantly alters pro-

duction in subsequent years. Although water deliveries

are known, the amount lost to evaporation and leaching

beyond the root zone is not fully understood. Without

meteredwell pumps, the amount of additional water used

is poorly understood. Various methods have been em-

ployed to estimate actual evapotranspiration, the primary

force in agricultural water consumption. The California

Resource Agency’s Department of Water Resources

developed crop coefficients to convert ‘‘potential evapo-

transpiration’’ to actual evapotranspiration (ETa) during

the 1970s through 1990s for most crops in California

(Allen et al. 1998). The concerns now are that the co-

efficients do not adequately represent the evapotrans-

piration rates for today’s genotypes.

To provide spatial estimates of ET, the use of remote

sensing data products in combination with modeling

approaches has been developed bymany researchers for

more than 30 yr (Jackson et al. 1977; Jackson et al. 1987;

Seguin 1989). ET algorithms based on remote sensing

data products are comprehensively reviewed and dis-

cussed by Gowda et al. (2007), including a summary of

the benefits and drawbacks of each algorithm. Kalma

et al. (2008) review approaches that use remotely sensed

temperature and discuss why certain models are best
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applied over specific land cover types or specific disci-

plines, such as hydrology, for example.

As in most ET-related energy balance models, ET is

determined from the residual latent energy (LE) of the

surface energy balance budget. Recent approaches to

ET modeling include 1) Mapping Evapotranspiration at

High Resolution with Internal Calibration (METRIC;

Trezza 2002; Allen et al. 2005, 2007), 2) Surface Energy

Balance for Land (SEBAL; Bastiaanssen et al. 1998),

3) a two-source energy balance model (TSM; Norman

et al. 1995), 4) an aerodynamic temperature-basedmodel

(Ch�avez et al. 2005), 5) an analytical land atmospheric

radiometer model (ALARM; Suleiman and Crago

2002), and 6) the Atmosphere–Land Exchange Inverse

(ALEXI) model (Anderson et al. 1997, 2007). Allen

et al. (2005, 2007) developed the METRIC model, fun-

damentally rooted in SEBAL (Bastiaanssen et al. 1998),

where both models use a near-surface temperature

gradient. While models like METRIC and SEBAL are

attractive because of their large spatial detail appropri-

ate for subfield mapping, these models are subject to

error from selecting inappropriate pixels used for scaling

temperature data. Van der Tol and Parodi (2012), for ex-

ample, state that the remote estimation of ET is still very

much custom-made and that it requires specific skills,

with the result that the operational dissemination of re-

mote sensing evapotranspiration products still lags behind

that of other widely available water cycle components.

Actual ET is the last remaining component of the ter-

restrial water cycle not directly measured from space.

This study introduces a model framework for pre-

dicting current and future water and energy fluxes within

spatial scales usable by growers and land managers.

Many investigations conducted over the past decades

established empirical relationships from ground-based

observations, such as eddy covariance surface flux

studies. These relationships were widely used to develop

and improve surface–vegetation–atmosphere transfer

(SVAT)models. However, to extend any type of surface

measurement, such as eddy covariance, to these high-

resolution spatial scales, observations should be coupled

to a sophisticated model. This modeling framework

demonstrates that an extension of local regression is

possible using a state-of-the-art land surface scheme

based on micrometeorological theory and observations.

Measurements of surface energy exchange are too

complex and costly to be deployed with sufficient spatial

coverage necessary for irrigation management. There-

fore, it is unlikely that in the near future, this mismatch

in spatial scales will be resolved by using more in situ

micrometeorological measurements. Spatial maps of crop

evaporation (ETo) based on interpolation of meteoro-

logical data from stations in combination with remotely

sensed incoming solar radiation (Hart et al. 2009) increase

the spatial resolution but still suffer from shortcomings

intrinsic to interpolated meteorological fields.

While the ability of SVAT schemes to predict ET has

made significant progress from the first-generationmodels,

such as simple biosphere (SiB; Sellers et al. 1986) and

biosphere–atmosphere transfer scheme (BATS; Dickinson

et al. 1986), to the inclusion of snow physics and hy-

drology in second-generation models, such as the Noah

land surface model (LSM; Ek et al. 2003; Barlage et al.

2010; Livneh et al. 2010), and the inclusion of dynamic

phenology in third-generation models, such as the Com-

munity Land Model (CLM) scheme (Bonan et al. 2002;

Dai et al. 2003; Lawrence et al. 2011), we still find large

differences between models when these schemes of

varying degrees of complexity and surface parameteri-

zation are applied across different land use types and,

ultimately, to continental and global scales (Jim�enez et al.

2011; Mueller et al. 2011). Vinukollu et al. (2011) state

that despite the critical role that evaporative processes

play in the climate system, including coupling the sur-

face with the atmosphere and links in the water, energy,

and carbon cycles, a long-term, high-fidelity reference

dataset for ET consistent with other surface data prod-

ucts [such as Global Energy and Water Cycle Experi-

ment (GEWEX)] is still lacking.

Landscapes are heterogeneous on many spatial scales

and are rarely uniform within multikilometer grid scales

used to assess regional and global surface fluxes. The

dominant scales for spatial variability in surface energy

fluxes cannot be found by simply scaling up input fields

that characterize the landscape, such as soil moisture,

albedo, and canopy height. This is due to the inherent

nonlinearity of the surface energy balance to surface

characteristics (Raupach and Finnigan 1995) and the

interlayer within-canopy plant interactions.

Similarity theory, like the Monin–Obukhov similarity

theory (MOS), predicts flux variables based on repeat-

able characteristics in the boundary layer and generally

assumes flat, homogeneous surfaces with no vertical ex-

tent. MOS is widely used to parameterize surface layer

models and is fundamental to our understanding of surface

layer processes. However, the impacts of real-world het-

erogeneity, especially within the vertically diverse rough-

ness layers, on similarity theory predictions remain poorly

understood because of the complexity of the problem.

This fundamental question regarding spatial variation

in biospheric evapotranspiration has immense practical

implications on irrigation practices in times of water

scarcity. Although both remote sensing and numerical

models are commonly used, traditional simple surface

layer schemes in regional and global models are likely to

amplify errors in partitioned surface energy budgets.
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These errors are due to the nonlinear scaling relation-

ships and significantly impact the simulations of regional

energy budgets and atmospheric conditions.

We test the hypothesis that the vertical canopy structure,

coupled with horizontal variation in the vertical structure

that is associated with ecosystem type, has a strong impact

on landscape evapotranspiration. The practical result of

testing this hypothesis with the linked Advanced Canopy–

Atmosphere–Soil Algorithm (ACASA)–Weather Re-

search Forecast (WRF) model, if demonstrated true, is

a new method to obtain increased accuracy of regional

evapotranspiration estimates. To test this hypothesis, we

applied the ACASA–WRF model at high spatial reso-

lution to a region of almond orchards in the southern

San Joaquin Valley of California, north of the city of

Bakersfield. ET estimates over agricultural crops are

generally referred to as crop evapotranspiration (ETc).

Almonds are the top agricultural export for the state of

California, with a 2010 yield of 740 000 t, accounting for

roughly 95% of U.S. production and 80% of the total

worldwide production throughout the last decade (Almond

Board of California 2012). Steady improvements in cul-

tural practices, including nutrients and irrigation, has

increased almond yields over the past decade by about

80kgha21yr21 (USDA 2010). At the same time, the over-

all bearing acreage of almonds has steadily increased to

become the most widely planted crop in California, with

approximately 330000ha in 2010 (USDA 2011). Assum-

ing orchards require irrigation of 1370mm, this equals

approximately 4.5 km3 of irrigation applied water per

growing season. Given periodic water shortages, better

management of limited water resources by more efficient

crop monitoring could become increasingly important.

Improving water use efficiency is one of several an-

swers to water issues facing California. Availability of

water from surface sources fluctuates with recurring

droughts associated with quasiperiodic weather cycles

like the El Ni~no–Southern Oscillation (ENSO) and the

Pacific decadal oscillation (PDO), which may intensify

given climate change projections for California (Gutowski

et al. 2008; Kunkel et al. 2008). During drought periods,

water allotments to agricultural irrigation districts are

already severely curtailed because preference is given to

other water use demands (Fereres and Soriano 2006).

The most recent droughts in 2007, 2008, 2009, and 2010

reduced water allocations by 70% from the State Water

Project (DWR 2009).

This study applied the fully coupled version of

ACASA–WRFmodel to simulate ET over the southern

San Joaquin Valley at the regional scale. Motivation for

couplingWRFwithACASAwas to simulate reproducible

generalizations of ET at varying spatial and temporal

scales. This high-resolution predictive weathermodeling

will lead to new tools for growers and other stakeholders

to improve irrigation efficiencies.

2. Model description

a. The ACASA model

Current research has coupled the WRF model with

the University of California, Davis, ACASA model.

ACASA is a multilayer micrometeorological ‘‘column

physics’’ numerical scheme that describes the surface

layer, including aspects representing terrestrial bio-

sphere; turbulent microenvironment; and associated

heat, water vapor, momentum, and carbon dioxide ex-

changes (Meyers 1985; Meyers and Paw U 1986; Pyles

2000; Pyles et al. 2003; Xu 2012; Ble�ci�c et al. 2013).

A surface layer scheme is included in WRF that is

similar to the National Centers for Environmental Pre-

diction (NCEP) community Noah LSM. The ACASA

surface layer model is applicable at spatiotemporal

scales roughly equivalent to typical WRF surface pixels

and AmeriFlux–EUROFLUXmicrometeorological mea-

suring towers. ACASA differs from Noah LSM by being

a multilayer, higher-order closure turbulence and energy

exchange model that includes carbon dioxide exchanges

within plant canopies and urban environments. Addi-

tional features include soil thermal and hydrological ex-

change modeling applied to 10 soil layers and as many as

10 subcanopy snow layers, using strategies similar to

Noah LSM. Calculations of plant canopy and urban heat

cycling include transient diffusion into large stems and

trunks and building materials using the same basic dif-

fusion methods used for soil.

Since its original release as a generalized surface layer

model (Pyles 2000; Pyles et al. 2000), ACASA has con-

tinued to improve with increased reliability and accuracy.

The governing equations for ACASA are available in

Meyers and Paw U (1987), Paw U and Gao (1988), Paw

U (1997), and Pyles (2000); some of these papers present

comparisons that establish improved accuracy of this

model over simpler models. Recent changes to ACASA

are summarized inMarras et al. (2011), Staudt et al. (2010),

and Xu (2012), who describe the ability of ACASA to

simulate vastly different ecosystem types.

b. The WRF model

WRF is a next-generation community mesoscale me-

teorologymodel with support by theNational Center for

Atmospheric Research (NCAR). It is widely used for

both operational air quality and weather forecasting

and climate change research (http://wrf-model.org/index.

php). In this study the Advanced ResearchWRF (ARW)

core, version 3.1.1 (Skamarock et al. 2008), was used.

WRF is a fully compressible, nonhydrostatic model with
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terrain-following vertical sigma-level coordinates. The

ACASA–WRF simulations ran with 28 sigma vertical

levels, four soil levels, and four-dimensional data assimi-

lation (FDDA) nudging.

c. ACASA–WRF coupling

ACASA was driven with the following set of input

variables, mainly surface morphology data and WRF

meteorological conditions at the lowest terrain-following

sigma level, which are provided by WRF for each

ACASA time step. These include air temperature, pres-

sure, specific humidity, precipitation rate and phase,

downwelling solar [photosynthetically active radiation

(PAR) 1 near-infrared radiation (NIR)] and terrestrial

[thermal infrared radiation (TIR)] radiation flux den-

sity, and bulk air CO2 concentration (here assumed

constant at 392 ppm for 2008) at the first WRF sigma

layer. In addition to WRF meteorological data, most

morphological parameters needed to describe each point

were also provided byWRF and varied by land use type

(Xu 2012; R. D. Pyles et al. 2014, unpublished manu-

script; Table 1).

ACASA is coupled to WRF using the same sur-

rounding architecture used for Noah LSM. In WRF, the

planetary boundary layer (PBL) and surface calcula-

tions are divided into three computational regimes:

1) the PBL proper, extending above the surface sublayer

(SSL) to any arbitrary height, depending on accompa-

nying dynamics, with the PBL height changing spatio-

temporally; 2) the SSL; and 3) the surface itself, including

soil, water, and/or snow. Regimes 2 and 3 are considered

active ‘‘beneath’’ WRF sigma layer 1with surface layer

exchanges (fluxes) occurring between each. The Noah

LSM regime includes both the surface and the SSL

TABLE 1. WRF–ACASA coupling variables.

WRF variable name Description (units) Source

WRF/ACASA forcing meteorology
T3D Air temperature (K) WRF, lowest layer
QV3D Specific humidity (kg kg21) WRF, lowest layer
GSW Downwelling shortwave radiation (Wm22) WRF, lowest layer
GLW Downwelling longwave radiation (Wm22) WRF, lowest layer
(U_PHY2

1 V_PHY2)1/2 Wind speed (m s21) WRF, lowest layer
P8W3D Barometric pressure (Pa) WRF, lowest layer
RAINBL Precipitation rate (kgm22 PBL_timestep21) WRF, lowest layer
WRF/ACASA surface morphology
LAI Leaf area index (green; m2m22) WRF/MODIS
VCMAX_CLM Photosynthetic potential (mmolm22 s21) CLM lookup table
100*Z0BRD Canopy height (90th percentile; m) WRF
ALBBCK Subscale (leaf) visible reflectance (–) WRF
ALBBCK 1 0.1 Subscale (leaf) near-infrared reflectance (–) WRF
ALBBCK Ground surface visible reflectance (–) WRF
ALBBCK 1 0.1 Ground surface near-infrared reflectance (–) WRF
ISLTYP Soil type and diffusion parameters (–) WRF
SMCDRY Air-dry value of soil moisture (volumetric) WRF
SMCREF Wilting point soil moisture (volumetric) WRF
ACASA/WRF forcings (direct and indirect feedbacks that influence WRF meteorology)
HFX Sensible (convective) heat flux density (Wm22) ACASA
QFX Water vapor flux density (kgm22 s21) ACASA
USTAR Friction velocity (m s21) ACASA
TKE_MYJ Turbulent kinetic energy from Mellor–Yamada–Janji�c scheme (Jm22) ACASA
ALB Shortwave albedo (–) ACASA
EMISS Thermal emissivity (–) ACASA
TSK Surface (skin) temperature (K) ACASA
Q1 Surface specific humidity (kg kg21) ACASA
TSLB Soil temperature (K) WRF (initial), ACASA
SMOIS Soil moisture (volumetric) WRF (initial), ACASA
SNOW Snowpack water content (kgm22) WRF (initial), ACASA
T_SSL_SNOWPACK* Snowpack temperature (K) WRF (initial), ACASA
T_SSL_STEMS2* Canopy temperatures–leaves and small stems WRF (initial), ACASA
T_SSL_STEMS1* Canopy temperatures–large stems WRF (initial), ACASA
T_SSL_BLDGS* Canopy temperatures–buildings WRF (initial), ACASA
CANWAT Total canopy water content 0 (initial), ACASA

*Mean values of several ACASAmorphological parameters: leaf diameter, leaf drag coefficient, and shortwave radiative transmissivities
were set to constant values for all vegetation types because of a lack of WRF values and a relatively low ACASA sensitivity to each.
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abstracted to one imaginary flat plane, with heat, mois-

ture, and momentum fluxes contributing to changes in

the time tendencies of temperature, water vapor, and

wind velocities at lower atmospheric layer (sigma-1).

WRF sigma-1 meteorological values drive Noah LSM,

which then provides the fluxes (feedbacks) to the WRF

PBL and radiation routines at sigma layer 1.

The surrounding Noah LSM coupling architecture

mentioned above is also used for ACASA. The set of

driving meteorological variables and associated fluxes

between the SSL and WRF proper are summarized in

Table 1. However, in contrast to Noah LSM and similar

models, ACASA resolves vertical variations within the

canopy (subscale effect) that each contributes through

process-based physiological and turbulent transport

dynamics to the total set of fluxes and conditions needed

to drive WRF in nonlinear ways. The logic behind using

this methodology is illustrated by the following: thermal

emissions are proportional to the fourth power of tem-

perature. Therefore, using a single, average temperature

value to calculate the total (radiative) thermal emission

flux for each pixel can yield much different results than

would occur using explicitmethods of integration involving

resolved subscale component temperature estimates. The

same is true for the set of SSL water vapor, momentum,

and sensible heat transports, as well as ‘‘bulk’’ surface

temperature and humidity values that are also required by

WRF to function properly. Furthermore, by representing

surface physics and physiology using multiple vertical

layers, ACASA provides a distinct advantage over most

simplermodels, which often represent the whole system as

one layer. This can be illustrated by considering a snow-

pack shaded by a forest canopy, where the leaf tempera-

tures can be tens of degrees warmer than the snowpack.

3. Experimental method

a. Input data

1) NCEP–NCAR REANALYSIS PRODUCT

This study used the NCEP North American Regional

Reanalysis (NARR) data to provide initial conditions

for all domains and boundary conditions for the mother

domain in the ACASA–WRF simulations. The data for

this study are from the Research Data Archive (RDA),

which is maintained by the Computational and In-

formation Systems Laboratory (CISL) at NCAR. NCAR

is sponsored by the National Science Foundation (NSF).

The original data are available from the RDA (http://rda.

ucar.edu) in dataset number ds608.0 (NCEP 2012).

NARR results were interpolated to NCEP grid 221

with 32-km resolution and 29 pressure levels before the

data were archived. The reanalysis was produced using

the NCEP Eta Model with a resolution of 32 km and

45 vertical layers. The input data included all observations

used in the NCEP–NCARGlobal Reanalysis project with

additional data on precipitation, Television Infrared Ob-

servation Satellite (TIROS)Operational Vertical Sounder

(TOVS) 1B radiances, atmospheric profiles, and land

surface and moisture data. The NARR output analyses

data are available in 3-h intervals.

2) LEAF AREA INDEX

In coupling ACASA to WRF, we also added the

ability to input leaf area index (LAI) grid point values

either from observed data or the previous method of

assigning values according to vegetation type in a look-

up table (http://igoroliveira.org/wrf/wrf_lai/WRF_Model.

html). We utilized the improved Moderate Resolution

Imaging Spectroradiometer (MODIS) LAI product (Yuan

et al. 2011) based on the MODIS 8-day LAI composites

from 2000 to 2009 with spatial resolution of 1 km2. For

this study, we resampled the data to cover California for

2008. The WRF Preprocessing System (WPS) converts

the MODIS LAI time series to a monthly LAI value

passed by WRF to the ACASA land surface scheme

during simulation.

3) CALIFORNIA AUGMENTED MULTISOURCE

LAND COVER DATA

This study usedCaliforniaAugmentedMultisource Land

Cover (CAML) data for 2006 (http://atlas.resources.ca.gov/

ArcGIS/rest/services/Environment/CAML/MapServer) to

produceWRF land use index values for the high-spatial-

resolution domains. CAML data cover all of California

and are available as a 100-m-resolution raster dataset.

The CAML data include categories for agricultural land

cover types as well as urban boundaries complete to

2006. The agricultural cover mapping was developed

from the type categories within the California Wildlife

HabitatRelationships system (www.dfg.ca.gov/biogeodata/

cwhr/wildlife_habitats.asp), Department of Water Re-

sources (DWR) Land and Water Use (www.water.ca.

gov/landwateruse/lusrvymain.cfm) and the Department

of Pesticide Regulation pesticide-use crop informa-

tion. Urban land use was identified by combining the

2002 map urban boundaries in the Department of Con-

servationFarmlandMappingProgram (www.conservation.

ca.gov/DLRP/fmmp/Pages/Index.aspx) and the 2001 Na-

tional Land Cover Dataset (Homer et al. 2007; www.

mrlc.gov/nlcd2001.php). We translated the CAML land

cover classes to the U.S. Geological Survey (USGS)

33 scheme specified for WRF input structure (www.

mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_

guide_chap3.htm#_Land_Use_and).

APRIL 2014 FALK ET AL . 749

http://rda.ucar.edu
http://rda.ucar.edu
http://igoroliveira.org/wrf/wrf_lai/WRF_Model.html
http://igoroliveira.org/wrf/wrf_lai/WRF_Model.html
http://atlas.resources.ca.gov/ArcGIS/rest/services/Environment/CAML/MapServer
http://atlas.resources.ca.gov/ArcGIS/rest/services/Environment/CAML/MapServer
http://www.dfg.ca.gov/biogeodata/cwhr/wildlife_habitats.asp
http://www.dfg.ca.gov/biogeodata/cwhr/wildlife_habitats.asp
http://www.water.ca.gov/landwateruse/lusrvymain.cfm
http://www.water.ca.gov/landwateruse/lusrvymain.cfm
http://www.conservation.ca.gov/DLRP/fmmp/Pages/Index.aspx
http://www.conservation.ca.gov/DLRP/fmmp/Pages/Index.aspx
http://www.mrlc.gov/nlcd2001.php
http://www.mrlc.gov/nlcd2001.php
http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm#_Land_Use_and
http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm#_Land_Use_and
http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm#_Land_Use_and


b. Model domains

This study covered the portion of the almond growing

season from 20March through 30 September 2008 using

a sequence of three nested, fully coupled spatial do-

mains centered on the Belridge orchard eddy covariance

(EC) tower (35.68N, 119.38W; see Fig. 1). The horizontal

grid spacing of the largest domain (d01) was 8 km 3

8 km. The spacing of the subsequent nested domains were

2 km 3 2 km (d02) and 0.5 km 3 0.5 km (d03). The

horizontal resolution ratio between each nested domain

to its parent was 1:4. The ratio from NARR data to the

ACASA–WRF parent domain was also 1:4. Domain 3 is

presented here (Fig. 1). We conducted a sequence of

monthly simulations using ACASA–WRF to accommo-

date the finescale simulations with a spinup time of 2 days.

Domain d03 extended 40 km 3 40 km (80 3 80 grid

cells) to encompass irrigated orchards and open dry

FIG. 1. (top) Location of the three ACASA–WRF domains d01, d02, and d03 (8-, 2-, and 0.5-km grid size, re-
spectively) within California. (bottom right) A Landsat scene showing d03 (40 3 40 km extent) illustrates the
patchwork of irrigated crop land (dark) surrounded by dry land (light) areas. (bottom left) The high-resolution scene
shows the orchard blocks in the center of the domain.
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grasslands on the west side of the southern San Joaquin

Valley. Distribution of land use, LAI, and land use type

(LUINDEX parameter) in ACASA–WRF are shown in

Fig. 2. The NARRdata provides initial conditions for all

three nested domains in this experiment, while bound-

ary conditions from NARR are provided only for do-

main 1 throughout the simulation. The nested domains

(d02 and d03) receive their boundary conditions from

the mother domain (d01 and d02, respectively).

c. Ground observation dataset description

1) BELRIDGE ALMOND ORCHARD SITE

Ground observation data were collected at an almond

orchard located south of the town of Lost Hills, Cal-

ifornia (35.518N, 119.678W). The orchard is owned and

operated by Paramount Farming Company (PFC), Ba-

kersfield, California, which has cooperated for many

years with the University of California in conducting

intensive nutrient and water experiments in deciduous

nut tree crops. The mature orchard block consisted of

almond [Prunus dulcis (Mill.) D. A. Webb] production

variety Nonpareil (50%) and pollination variety Mon-

terey (50%) planted 9 yr (1999) before this study. In this

region, almond trees typically flower in early to mid-

February, leaves appear in early March, and they are

ready for harvest in late August for Nonpareil and late

October for Monterey (Almond Board of California

2012).

The climate in the San Joaquin Valley is hot, semiarid

Mediterranean type, characterized by hot dry sum-

mers and mild winters. Annual average temperature is

17.38C, with an average annual precipitation of 134mm,

almost entirely during the winter months, November–

April. The average annual reference ETo is 1496mm.

Climate data were obtained from the California Ir-

rigation Management Information System (CIMIS)

Belridge Station (No. 146) (www.cimis.water.ca.gov/

cimis/frontStationDetailInfo.do?stationId5146).

2) EDDY COVARIANCE

Eddy covariancemeasurements of evapotranspiration

provide a direct measurement of surface energy budget

fluxes into and out of a plant canopy and are currently

considered the most reliable method for measuring ET

over areas of hundreds of square meters (Drexler et al.

2004). While we cannot calibrate eddy covariance sys-

tems as a whole to get absolute overall accuracy, the

general accuracy of ECmeasurements is estimated to be

in the range of 5%–30% (Hollinger and Richardson

2005; Baldocchi 2003). Possible error sources for ET

include factors such as the surface energy balance clo-

sure error (Foken 2008; Mahrt 2010).

We evaluated the ACASA–WRFmodel estimates of

ETc against measurements of LE converted to ETc at

the EC tower located in the center of the ACASA–

WRF d03 domain. The tower pixel x–y location within

the domain grid was 33, 47 in the 80 3 80 cell domain.

The EC tower system (McElrone et al. 2013) was

established in early 2008 within the Belridge almond

orchard. The EC system is part of an ongoing program

by the DWR to reevaluate existing recommended es-

timates for crop ETc coefficients (Kc) used to calculate

ETc from CIMIS ETo measurements. Each tower EC

system consists of two fine wire chrome-constant

thermocouples (FW3 with 76.2-mm diameter; Camp-

bell Scientific, Inc., Logan, Utah), Young Model 81000

Ultrasonic Anemometer (R. M. Young, Traverse City,

Michigan), REBS Q7 net radiometer (REBS, Inc.,

Seattle, Washington), several REBS HFT3 soil heat

flux plates (REBS, Inc.), and several soil temperature

probes (Campbell Scientific). Setup and data acquisition

methods are described by Snyder et al. (2007). EC data

preprocessing and quality control was done via validated

software developed by Snyder (R. L. Snyder 2011, per-

sonal communication).

The EC system used at the Belridge site was developed

byR.L. Snyder and colleagues andwas extensively tested

FIG. 2. (left) Irrigated crop cover type (dark gray) in d03 and (right) MODIS LAI for June 2008 shown as static input
fields from the ACASA–WRF model output.
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for application in agricultural systems of California

(Snyder et al. 2008; Castellv�ı and Snyder 2010). For ex-

ample, Castellv�ı and Snyder (2010) evaluated the per-

formance of the EC system over an irrigated grass

canopy against a weighting lysimeter at Five Points,

California, located close to the site of this study. For LE

derived from eddy covariance, Castellv�ı and Snyder

(2010) found thatLEEC5 0.973LElysimeter2 2.0 (Wm22)

and R2
5 0.98.

4. Results and discussion

a. Comparison of model estimates of LE and ET

with observations

Shown in Fig. 3 are the time series of daily ET at

Belridge tower pixel for both ACASA–WRF model

estimates (filled symbols) and EC observation (open

symbols) from the start of EC data collection on day of

year (DOY) 82 through the season,DOY273, 2008. This

spans the main growth and irrigation period to the har-

vest when irrigation is stopped for several weeks. Gen-

erally, the modeled ET results and observations follow

the same seasonal pattern, with maximumET during the

summer. More illustrative of the sensitivity of the model

is the parallel tracking of observations with a pro-

nounced peak and dip in ET before and after DOY 150.

A slight low bias (less than 15% of observed) is seen in

the summer pattern after DOY 180 by the model ET

estimates. However, Fig. 4 plots the hourly LE obser-

vations (measured by EC) against ACASA–WRF LE

estimates and shows good agreement across the entire

range of LE values. Linear regression of the model LE

estimates versus observed LE produces a slope of 0.87

with an R2
5 0.93; the model explains greater than 90%

of observed variation in LE. Generally, the model esti-

mates follow the 1:1 line to the observed, but the un-

derestimation of LE (lower slope coefficient) might be

due to decreasing MODIS LAI during the midseason

while observed LE continued to increase in the range of

high values.

Average daily ET based on an 8-day running mean

improved the correlation between modeled and ob-

served ET at the tower pixel (shown in Fig. 5, top) with

significantly reduced scatter. Linear regression of mod-

eled versus observed 8-day average ET yielded a com-

parable slope of 0.82 (R2
5 0.93).

b. The impact of LAI on the seasonal course of ET

The inclusion of MODIS LAI as an ACASA–WRF

input field greatly improved the ability of ACASA–

WRF to simulate the seasonal course of ET. However,

there are limitations to the accuracy of LAI produced

with MODIS data. Spatial errors are the greatest source

of errors in highly heterogeneous areas. The orchard

area is homogenous, with a long fetch of similar canopy,

greater than 7 km to a dramatic change at the boundary

with the dry grassland. Within grasslands, the LAI was

again consistent for greater than 10–15 km. There are

minor but additional LAI errors generated when data

pass through the WRF WPS to ACASA–WRF. The

WPS process reprojects MODIS LAI values to the

model grid and averages over all neighboring points

contained in each model pixel.

The approximate seasonal course of LAI for the

ACASAmodel at the tower pixel is shown in Fig. 6. The

peak of the MODIS LAI in the main growing season

(1.2) is within the observational uncertainty of field

FIG. 3. Daily ET for the ACASA–WRF simulation for the tower
pixel (solid circles) and observations from the Belridge EC (open
circles).

FIG. 4. Hourly fluxes of LE: ACASA–WRF plotted against observa-
tions from the Belridge EC tower with the linear regression shown.
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measurements at the Belridge site (1.56 0.4). However,

the MODIS LAI value is on the low side of the ground-

based estimate. This overall low bias of MODIS LAI

compared to field measurements will contribute to the

observed low bias in the ACASA–WRF ET estimates.

The spatial distribution of LAI in Fig. 3 for June 2008

shows significant variation both between crop and non-

crop lands and within similar crop lands. The overall

range of LAI in d03 is 0.0–2.0. Furthermore, MODIS

LAI shows a steady reduction in LAI between peak

(;DOY 165) and harvest (;DOY 240) that is not ob-

served on the ground. This systematic decrease likely

introduced an additional reduction in modeled ET for

that period. To evaluate the impact of this midseason

decline in LAI, we divided the 8-day ET data into two

subsets, all data before and after DOY 165. In Fig. 5

(bottom), linear regression of model results versus ob-

served data from before DOY 165 (filled triangles) im-

proved themodel estimation slope to 0.986 0.08 with an

R2 of 0.94, while linear regression for the period after

DOY 165 (open circles) yielded an improvement of the

fitted slope to 0.886 0.10, with a slight decrease in R2 to

0.86. These results indicate the model performed better

during the first half of the simulation period, with a slope

not significantly different from 1.0, while explaining

94% of variation in the 8-day ET observations. After

DOY 165, the MODIS LAI decreases steadily (Fig. 6)

from 1.20 to 0.87 by the end of August, representing

a significant increase in soil background. Field obser-

vations do not support any significant leaf loss by the

almond trees before harvest near September. However,

one explanation for the apparent decline in LAI is that

the increasing weight of nuts through the season bends

the branches downward, opening the crown geometry

and likely reducing the calculated MODIS LAI. In

California, almonds retain their leaves well intoOctober

or until the start of cooler winter temperatures. This

indicates that the same number of leaves are mixed in

the pixel but were spread over a greater ground area.

This apparent decline demonstrates a nonlinear effect

due to increased exposure of soil background on the

calculation of LAI. Since WRF–WPS contributes the

MODISLAI toACASA, this apparent seasonal reduction

in LAI caused a small decrease in model-estimated ET

after DOY 165, increasing the ET low bias as shown in

Fig. 5 (bottom). Adjusting the MODIS LAI in theWRF

FIG. 5. Average 8-day values of daily ET:ACASA–WRF plotted
against observations from the Belridge EC tower. (top) All data
and (bottom) data separated into two populations (before and after
DOY 165) with the linear regressions for all three cases shown.

FIG. 6. Monthly LAI used in the WRF simulations at the pixel
containing the flux tower site (circles) and ground-based maximum
growing season LAI (1.5 6 0.4) shown as the solid horizontal line
with error bars shown as dashed horizontal lines for the Belridge
almond orchard.
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WPS input data to correct for this apparent seasonal

decline and the overall low bias in LAI is expected to

improve the performance of ACASA as a land surface

model within WRF.

c. Seasonal total ET for the tower pixel

Over the entire season, the performance of the new

ACASA–WRFmodel was well correlated to LE and ET

measurements. The coupling of ACASA–WRF reduced

ACASA accuracy to simulate ET at the Belridge site

only slightly compared to the uncoupled ACASA pre-

dictions while providing ET estimates over an area of

1600 km2 at 0.5-km resolution. The seasonal ET esti-

mate of the stand-alone version of the ACASA model

(1180mm) when driven solely with local meteorology,

site-specific LAI, and other model parameters was pre-

viously shown to be within 2% of observed seasonal EC

ET (1157mm). A direct comparison of half-hourly LE

estimates between the ACASA–WRF model and the

ACASA stand-alone model produced a linear regression

with a slope of 0.91 andR2 of 0.93 (Fig. 7). TheACASA–

WRFmodel estimate for growing season ET (1028mm)

was within 11% of the measured ET for the same period

(20 March through 30 September).

d. Spatial variability of ET

The nested simulations of ACASA–WRF also pro-

duced hourly LE estimates for the 1600 km2 area (6400

separate model grid points in domain d03). Within the

mixed land covers, the simulation domain contained ir-

rigated orchards, dry grassland, small towns, and oil

production areas classified in WRF as urban. Figure 8

shows the seasonal course of ET across the landscape in

the form of maps for total monthly ET for the period of

April–August 2008 in the first five panels. Clearly visible

is the stark contrast of very high values of ET over ir-

rigated croplands with high LAI against the dry sur-

rounding landscape. At this interface, we observed

significant shift of 620% of ET along orchard pixels

adjacent to grassland. This can be explained by the

‘‘clothesline effect,’’ where hot dry air advects into

a well-watered crop canopy and drives ET increase.

Some of the variation can also be explained by varia-

tions in LAI; that is, irrigated crop areas with lower LAI

contribute less ET than areas with higher LAI (Fig. 2).

The map of seasonal total ET shown in the last panel

of Fig. 8 is composed of the monthly ET shown in first

panels of Fig. 8 plus the 10 days of March 2008. Model

estimates for seasonal ET for the central orchard area

range from 900 to 1100mm (shown in blue in the last

panel of Fig. 8). As reported above, this total compares

well to the Belridge EC tower ET of 1036mm while

providing detailed pixel variation and expected vari-

ability of seasonal ET over the area of interest.

5. Conclusions

Here we presented an application of a fully coupled

version of ACASA with the WRF model to simulate

spatially distributed ET over regional scales. The com-

bination of additional remotely sensed data such as

MODIS LAI and CAML data as input for the ACASA–

WRF simulations is a crucial step toward better spatial

modeling of land surface fluxes. The motivation for

couplingWRFwithACASAwas to simulate reproducible

generalizations for ET on varying spatial and temporal

scales. The study area and focus of this study contains

irrigated agricultural crops, specifically irrigated almond

orchards. While 2008 was a drought year in California

overall, the crops were irrigated to full ETc potential.

The EC tower at the site did not find differences in ETc

between 2008 and 2009, for example. Over 90% of

available water at the site is provided via surface water

irrigation. Less than 10% of water is typically provided

by precipitation, which falls during the dormant period

of the orchard growth cycle. Analysis of longer-term

monthly ETo data from the CIMIS Belridge station

gives the 11-yr average from 2000 to 2010 for the period

of April–August as 960mm (950mm for 2008 only).

Thus, 2008 was not an unusual year for the irrigated

orchard but a typical one for expected water demand

and irrigation at the site.

When compared to observed eddy covariance ET, the

model performed well over the course of a growing

season. Themodel performance tracking ET throughout

the seasonwas good, butmodeledETvalueswere slightly

FIG. 7. Hourly fluxes of LE: ACASA–WRF plotted against
a simulation of the stand-alone version of ACASA for the Belridge
almond orchard (data from Falk et al. 2012, manuscript submitted
to Hydrol. Processes) with the linear regression shown.
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lower than observed estimates. This difference was

likely due toMODIS LAI values (1.2) being in the lower

range of the observational uncertainty of ground-based

LAI (1.5 6 0.4). This low bias increased when MODIS

LAI significantly declined after it peaked around DOY

165. However, the change in MODIS LAI also illus-

trates the sensitivity of ACASA to varying LAI. Despite

the problem with declining LAI near the end of the

FIG. 8. Monthly and seasonal total maps of ETc for d03 centered on the Belridge orchards. Shown are complete
months from the ACASA–WRF simulations for the period April–August 2008 (scale at bottom left) and seasonal
total ET (in the bottom-right panel).
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growing season, the seasonal total ET estimated by

ACASA–WRF was still within 11% of the measured

total. This result was well within the assumed uncertainty

of EC measurements of 15%–30%. Within the experi-

mental domain, ACASA–WRF predicted variation in

ET from orchard to orchard, driven by both variation in

LAI and local microclimate. We observed a clothes line

effect of higher ET when the landscape abruptly tran-

sitioned from dry land to irrigated crop land.

Our study introduced a very detailed, physically based

LSM coupled to WRF for agricultural irrigated systems

that allowed us to address some of the crucial issues that

water-resource managers and growers in California will

face in the future. ACASA–WRF in this study clearly

shows its validity and utility as an advanced tool to

provide high-resolution spatial estimates of ET over

long periods with a high degree of accuracy and mini-

mum external inputs.

In the future, the WRF–ACASA model system will

benefit from better overall parameterization of land

surface characteristics and vegetation parameters such

as reflectance, canopy structure, and leaf physiology.

For example, if we can improve upon the estimates of

MODIS LAI, we can provide a better representation of

the seasonal changes in phenology within the regional

model. Improvements in LAI estimates are likely to be

reached by combining ground-basedmeasurements with

weather satellite data or from higher-spatial-resolution

satellite imagery such as Landsat (Zarate-Valdez et al.

2012). Other parameters of canopy structure (such as

canopy height and LAI distribution with throughout the

canopy) can be obtained from airborne and satellite-

based instruments, such as radar and lidar (Simard et al.

2011). An increased number and accuracy of land use

classifications will improve the ACASA–WRF model

scheme by differentiating between different crops and will

recognize additional natural ecosystems. Once these data-

sets become routinely available over large spatial areas,

they can be incorporated in the input data fields of the

ACASA–WRFmodel and can replace lookup table values.

Climate change simulations for the West Coast re-

gion, including California, generally predict higher

temperatures and shifts in precipitation timing, phase,

and perhaps magnitude. While evapotranspiration gen-

erally goes up with temperature, other factors such as

higher yield due to increased atmospheric CO2 con-

centrations might reduce overall water consumption

(K€orner 2000). Thus, it is imperative to develop and

deploy state-of-the-art micrometeorological models like

ACASA as an integral part of models like WRF so that

regional models can accurately simulate water use under

changing climate and site conditions for a variety of crop

types. These models need to supplement existing climate

change simulations with global and regional climatemodel

schemes to accurately assess impacts of climate change

at a scale relevant to growers, water resource managers,

and the public at large.
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