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Featured Application: Mobile 3D motion capture frameworks can be integrated into a variety
of mobile applications. Of particular interest are applications in the sports, health, and medical
sector, where they enable use cases such as tracking of specific exercises in sports or rehabilitation,
or initial health assessments before medical appointments.

Abstract: Computer-vision-based frameworks enable markerless human motion capture on consumer-
grade devices in real-time. They open up new possibilities for application, such as in the health and
medical sector. So far, research on mobile solutions has been focused on 2-dimensional motion capture
frameworks. 2D motion analysis is limited by the viewing angle of the positioned camera. New
frameworks enable 3-dimensional human motion capture and can be supported through additional
smartphone sensors such as LiDAR. 3D motion capture promises to overcome the limitations of 2D
frameworks by considering all three movement planes independent of the camera angle. In this study,
we performed a laboratory experiment with ten subjects, comparing the joint angles in eight different
body-weight exercises tracked by Apple ARKit, a mobile 3D motion capture framework, against a
gold-standard system for motion capture: the Vicon system. The 3D motion capture framework ex-
posed a weighted Mean Absolute Error of 18.80◦± 12.12◦ (ranging from 3.75◦± 0.99◦ to 47.06◦± 5.11◦

per tracked joint angle and exercise) and a Mean Spearman Rank Correlation Coefficient of 0.76 for
the whole data set. The data set shows a high variance of those two metrics between the observed
angles and performed exercises. The observed accuracy is influenced by the visibility of the joints
and the observed motion. While the 3D motion capture framework is a promising technology that
could enable several use cases in the entertainment, health, and medical area, its limitations should
be considered for each potential application area.

Keywords: human motion capture; mobile motion capture; optical motion capture; consumer
electronics; mHealth; dHealth

1. Introduction

Human Motion Capture (HMC) is a highly researched field and covers the detection
of all kinds of human motion, including movements of the whole body or smaller parts
such as the face or hands [1]. In their publications from 2001 and 2006, Moesland et al.
found more than 450 publications researching vision-based HMC and analysis [1,2], not
considering HMC using different technologies such as inertial or magnetic sensors.

Traditional HMC systems are bound to an off-field setting [3,4] and are expensive
in installation and operation [5,6], limiting their application to professional use cases. In
their review of motion capture systems in 2018, van der Kruk and Reijne identified five
types of motion capture systems: Optoelectronic Measurement Systems (OMS), Inertial
Sensor Measurement Systems, Electromagnetic Measurement Systems (EMS), Ultrasonic
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Localization Systems (ULS), and Image Processing Systems (IPS) [7]. They introduce
OMS as the gold standard for motion capture [7]. Indeed, many studies [8–13] used OMS
such as the Vicon motion capture system (Vicon, Oxford, UK) [14] or the Qualisys motion
capture system (Qualisys AB, Göteborg, Sweden) [15] as reference measurement systems
in their studies. OMS require multiple cameras or sensors around a subject and reflection
markers on the subject’s anatomical landmarks, which are then captured by the cameras
or sensors. The Inertial Measurement Sensor Systems rely on Inertial Measurement Units
(IMU), which are placed on the subject’s body to capture motion and mapped onto a rigid-
body model. Examples for IMU-based systems are the Xsens systems (Xsens Technologies
B.V., Enschede, The Netherlands) [16] or Perception Neuron (Noitom Ltd., Miami, FL,
USA) [17]. Through the traveling time of electromagnetic or ultrasonic waves between a
tagged person and a base station, EMS and ULS track the position of the subject [7,18]. In
contrast to the other systems, these systems allow tracking one or more subjects’ positions,
but do not capture joint kinematics [7]. While the described systems are well-validated
systems for HMC, their complex setup and costs prevent them from application in mHealth
applications. With the advancements in technology and machine learning, IPS became
more relevant in human motion capture. IPS rely on video input and different machine
learning approaches to detect specific body landmarks and capture human motion. Among
the most researched systems is Kinect (Microsoft Corp., Redmond, WA, USA), which
uses a combination of an RBG-camera and infrared sensors and can capture motion in
3-dimensional space [10,11]. However, the Kinect still requires a specialized setup for
motion capture. The offer of IPS has been extended by recent advances in technology, such
as enhanced sensors and processing units. These advances enable computer-vision-based
motion capture on smartphones and tablets. These IPS systems offer new possibilities for
HMC in mobile scenarios such as in mHealth applications. Examples for IPS software
which can run on mobile devices are OpenPose (CMU, Pittsburgh, PA, USA) [19], ARKit
(Apple Inc., Cupertino, CA, USA) [20], Vision (Apple Inc., Cupertino, CA, USA) [21], and
TensorFlow Pose Estimate (Google, Mountain View, CA, USA) [22]. All of these IPS can be
integrated into custom applications by developers. The detection of the human body and
its position is realized through computer-vision algorithms, which can use Convolutional
Neural Networks (CNNs) or Part Affinity Fields (PAFs) [23]. In most systems, a predefined
humanoid model is then applied to estimate the shape and kinematic structure of the
tracked person [2]. The algorithms deliver the joint coordinates in two or three dimensions
for every video frame.

Moeslund et al. identified three main use cases for HMC: (1) surveillance of crowds
and their behavior, (2) controlling software through specific movements or gestures or con-
trolling virtual characters in the entertainment industry such as in movies, and (3) analysis
of motion for diagnostics, for example in orthopedic patients or performance improvements
in athletes [2]. While use case (1) focuses on tracking multiple subjects, (2) and (3) focus on
capturing body motion of a single subject and thus require tracking of several parts of the
human body. Especially use case (3) offers several applications of HMC, which are often
limited to professional use cases such as gait analysis [24] or sports applications [7] due to
the lack of a reliable, accessible, and low-priced solution in on-field settings.

In the sports and health sector, the usage of mobile applications has significantly in-
creased in the past years [25,26]. Research has shown that such apps can positively impact
their user’s health and lifestyle [27]. However, most fitness and health apps only allow
limited tracking and analysis of motion [28]. While smartphone-based motion capture
promises a lightweight and consumer-friendly motion capture and analysis, the software
systems have only been evaluated to a limited extent. Moreover, research has been focused
on 2D systems. Several studies have shown that in 2D-motion analysis, the reliability
and validity of the kinematic measurements are dependent on the performed task, which
reliability is measured, video quality, and position of the recording device [8,13,29,30].
Especially the camera position influences the accuracy of tracked joint angles. A slightly
different viewing angle already distorts the result of the joint angle, which is why triangu-
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lation with multiple devices is often performed to overcome the limitations of monocular
camera setups [31]. Among mobile 2D motion capture systems, the OpenPose software
is widely used and evaluated in several studies [19,23,30,32–37]. The results show that
OpenPose delivers accurate biomechanical measurements, especially when tracking the
joint trajectories. However, the compared joint angles differed significantly from the gold
standard systems. D’Antonio et al. measured up to 9.9 degrees difference in the minima
and maxima of the tracked joint angles during gait analysis [35], Nakano et al. experi-
enced deviations of more than 40 mm in their study [37]. The measuerements can by
improved by using multiple devices to calculate the body position in 3D as in the study
by Zago et al. [30]. Mobile 2D motion capture systems have been recently complemented
by 3D motion capture algorithms, which estimate the 3D joint positions based on 2D
monocular video data [20,38–42]. They detect and calculate the body’s joint coordinates in
all three movement planes, making the motion capture more robust against the camera’s
viewing angle. Mobile 3D motion capture frameworks could overcome the limitations of
2D motion capture systems. Some of the 3D motion capture frameworks use additional
smartphone sensors such as integrated accelerometers to determine the smartphone’s posi-
tion or depth sensors such as the integrated Light Detection and Ranging (LiDAR) depth
sensor to additionally enhance the position detection of the human body [20,38,39]. The
LiDAR data can be used to create a dense depth map from an RGB image through depth
completion [43]. Among the most well-known mobile 3D motion capture systems is Apple
ARKit, which released a body-tracking feature as part of their Software Development Kit
(SDK) for developers in 2019 [20]. In contrast to other 3D motion capture frameworks,
ARKit is free and easy to use, and widely accessible. On the latest devices, it uses the
smartphone’s IMUs and integrated LiDAR sensor to improve the measurements, promising
enhanced mobile motion capture. However, only a few scientific studies have evaluated
the accuracy of mobile 3D motion capture frameworks and ARKit in particular. Studies
mostly focused on evaluating the lower extremity tracking of ARKit [44,45].

Due to the 3D calculations, ARKit is a promising IPS software that has the potential
to enable new use cases for mobile HMC previously limited to traditional HMC systems.
This research evaluated ARKit’s performance against the Vicon system in a laboratory
experiment in eight exercises targeting the whole body. We investigate the following two
research questions:

• RQ 1: How accurate is ARKit’s human motion capture compared to the Vicon system?
• RQ 2: Which factors influence ARKit’s motion capture results?

2. Materials and Methods
2.1. Study Overview

To evaluate Apple ARKit’s body tracking accuracy, we performed a laboratory ex-
periment in which we compared the joint angles detected ARKit against the joint angles
detected by the Vicon System for marker-based, optical motion tracking. In the experiment,
ten subjects were instructed to perform eight different body-weight exercises with ten
repetitions each, resulting in 80 recorded exercises.

During the exercises, the complete body of the subjects was recorded using the Vicon
system and two iPads running ARKit from two different perspectives. All exercises were
recorded simultaneously with the Vicon system and the two iPads. The study focused
on comparing the motion capture data of each iPad against the data of Vicon to answer
the underlying research questions. We calculated the weighted Mean Absolute Error
(wMAE) and Spearman Rank Correlation Coefficient (SRCC) between the two systems
in our data analysis. In addition, we performed factor analysis using ANOVA, t-tests,
and logistic regression to quantify the impact of specific factors on the accuracy of the
ARKit performance.
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2.2. Participants

We included ten subjects (n = 10) in the study, six males and four females. Their age
ranged from 22 to 31 years, with an average of 25.7 years. The subjects’ height ranged
between 156 cm and 198 cm with an average of 176 cm, and their weight was between
53 kg and 90 kg, with an average of 69.5 kg. All subjects had a normal body mass index
between 20.4 and 25.5 (average: 22.7) and light skin color. All subjects were in good physical
condition and did not have any orthopedic or neurological impairments.

2.3. Ethical Approval and Consent to Participate

The study was conducted according to the guidelines of the Declaration of Helsinki.
The ethics proposal was submitted to and approved by the Ethics Committee of the Tech-
nical University of Munich on 19 August 2021—Proposal 515/21 S. All participants were
informed about the process of the study upfront, and informed written consent was ob-
tained from all subjects involved in the study. Due to the non-interventional character of
this study, the risks involved for the study participants were low. We further minimized
the risk through a sports scientist who supervised the physiologically correct execution
of all exercises during the study, preventing the participants from performing potentially
harmful movements.

2.4. Exercise Selection

Eight exercises were selected: Squat, Front Lunge, Side Squat, Single Leg Deadlift,
Lateral Arm Raise, Reverse Fly, Jumping Jacks, and Leg Extension Crunch. The main
objective of the exercise selection was to create a full-body workout to track all selected
joints from different angles.

All exercises were tested for the suitability of tracking in both systems to ensure stable
tracking of the angles. Both ARKit and the Vicon system exposed problems with the
correct detection of exercises, where more extensive parts of the body were hidden from
the cameras, for example, push-ups, and were therefore excluded. The testing was done in
two steps: (1) We manually inspected the screen recording to see if the ARKit app model
recognized the subject. (2) We checked the screen recording to whether the ARKit model
overlayed with the subject’s body parts during all parts of the exercise and whether the
Vicon system could track all markers in the majority of recorded frames so that the full joint
trajectory could be calculated.

Only if both requirements were fulfilled, we selected the exercise for the study. The
final exercise selection included eight exercises. Their execution (E, see Figure 1) and
targeting muscle groups (TMG) are explained in the following, and tracked joint angles
(TJA) are explained in the following.

(I) Squat: (E:) The subject starts this exercise in an upright standing position. The
subject squats down from the starting position by flexing the ankle, knee, and hip without
movement compensations such as flexing the trunk and raising the heel. Each subject was
asked to hold their arms stretched in front of the body. (TMG:) This exercise targets the
lower body, especially the gluteus, quadriceps, hamstrings, and calves. (TJA:) The tracked
joint angles include the left and right hip, and left and right knee.

(II) Front Lunge: (E:) The starting position of the exercise is an upright standing with
spreading legs front and back. The arms’ position is the same as the squat. From the
starting position, the subject goes down by flexing the ankle, knee, and hip in the front leg,
flexing the knee and hip, and raising the heel in the back leg. (TMG:) This exercise targets
lower body muscles, especially the gluteus, quadriceps, hamstrings, and calves. (TJA:) The
tracked joint angles include the left and right hip, and left and right knee.
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Figure 1. The execution of all eight exercises as seen from the frontally positioned iPad. The body
orientation was chosen to maximize the visible parts of the body.
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(III) Side Squat: (E:) The starting position of the exercise is an upright standing with
spreading legs laterally. The arms’ position is the same as the squat. From the starting point,
the subject squats down with either side with either leg while the other leg is kept straight.
(TMG:) This exercise targets similar muscle groups to squats, focusing on adductor muscles.
(TJA:) The tracked joint angles include the left and right hip, and left and right knee.

(IV) Single Leg Deadlift: (E:) The starting position of the exercise is an upright standing
with a single leg. The arms’ initial position is the same as in the Squat. Th subject leans
forward from the starting position by flexing the hip with minimum knee flexion. As the
subject leans forward, the arms should be hung in the air. The other side of the leg in the
air should be extended backward to maintain balance as the subject leans forward. (TMG:)
The exercise targets lower body muscles, especially the hamstring and gluteal muscles.
(TJA:) The tracked joint angles include the left and right hip, and left and right knee.

(V) Lateral Arm Raise: (E:) The subject starts the exercise in an upright standing
position. Then, the subject laterally abducts the arms. (TMG:) The exercise targets upper
body muscles, especially the deltoid muscles. (TJA:) The tracked joint angles include the
left and right shoulder, and left and right elbow.

(VI) Reverse Fly: (E:) The subject leans forward with slight knee flexion and hangs the
arms in the air in a starting position. The subject horizontally abducts the arms from the
position without raising the upper body. (TMG:) The exercise targets upper body muscles
such as the rhomboid, posterior deltoid, posterior rotator cuff, and trapezius muscles. (TJA:)
The tracked joint angles include the left and right shoulder, and left and right elbow.

(VII) Jumping Jack: (E:) This exercise starts from an upright standing position. Then,
the subject abducts both sides of the legs and arms simultaneously with a hop. (TMG:) This
exercise targets lower body and upper body muscles, especially the gluteal and deltoid
muscles. (TJA:) The tracked joint angles include the left and right shoulder, left and right
elbow, left and right hip, and left and right knee.

(VIII) Leg Extension Crunch: (E:) The subject starts this exercise by sitting down on
the ground with a backward lean of the upper body. The subject should place the hands
on the ground to support the upper body as leaning backward. Then, the subject brings
the legs in the air with knee and hip flexion. From the position, the subject extends the
knee and hip horizontally on both sides together. (TMG:) This exercise targets core muscles,
especially abdominal muscles. (TJA:) The tracked joint angles include the left and right hip,
and left and right knee.

2.5. Data Collection

We prepared the laboratory before the subjects arrived to ensure similar conditions
for all recordings. Four tripods were positioned, each of them approximately three meters
away from the area of the subjects’ position to enable tracking of the entire body. Two
tripods held an iPad Pro 11′′ (2021 Model; Apple Inc., Cupertino, CA, USA), which were
used to run the ARKit motion capture. Two other tripods were equipped with regular
cameras to record videos of the experiment. One iPad and one camera were placed facing
the subject’s position frontally, the other iPad and camera were placed at an approximate
angle of 30° facing the subject, as shown in Figure 2. The Vicon system (Nexus 2.8.2, Version
2.0; Vicon Motion Systems Ltd., Oxford, UK) was installed on the lab ceiling and configured
to track the subjects’ whole body.

We developed a protocol to guarantee a similar experiment execution for all partici-
pants. The experiment consisted of three phases: (1) the onboarding, (2) the explanation of
the exercises, and (3) performing the exercises. During phase (1), the participants entered
the lab. We explained the setup, and the participants signed the consent forms. In phase (2),
a sports scientist explained each of the eight exercises and showed the participants how
they are performed. The participants were asked to perform the exercises once under the
supervision of the sports scientist to guarantee correct execution. The actual experiment
was performed in phase (3). The participants performed ten repetitions of each exercise.
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Figure 2. The experiment setup, showing the positioning of the recording devices and the subject.

2.5.1. Vicon Setup

The Vicon setup consisted of 14 infrared cameras. The setup included eight MX-T10-S
cameras, four Vero v2.2 cameras, and two Bonita 10 cameras. All cameras were set to a
sampling frequency of 250 Hz. We used the Nexus software (version 2.8.2) with the Full-
Body Plug-in Gait marker placement model provided by Vicon Motion Systems, Ltd. [46] to
capture the motion. A Vicon calibration wand was used to calibrate all the Vicon cameras
and determine the coordinate system. Static calibration was done by capturing a subject
performing a T-pose.

2.5.2. ARKit Setup

The ARKit setup included two iPad Pro 11′′ 2021 with an M1 processor and an
additional LiDAR sensor for depth information. Both iPads ran a custom-developed
software based on the ARKit 5 framework provided by Apple Inc., which was used for
extracting the motion capture information from the iPads’ sensors. Both iPads recorded the
motion capture data independently and were not synchronized. The motion capture data
included the timestamp of the detection, the performed exercise, and the three-dimensional,
positional information of 14 body joints. These data were later used to calculate the joint
angles. All joint coordinates are given relatively to the pelvis center, which serves as the
origin of ARKit’s coordinate system. ARKit differentiates between bigger joints, which
are actively tracked, and calculated joints, which are smaller joints such as the toes and
fingers. We decided only to include actively tracked joints in our comparison, as previous
tests showed that the calculated position of the smaller joints and their related angles
rarely change. The ARKit data were recorded with a default sampling frequency of 60 Hz.
However, the sampling frequency of ARKit is variable, as ARKit internally only updates
the joint positions when a change is detected. This means that if a subject is standing still,
fewer data points are received from ARKit and more when the subject is moving fast. As
the toe and finger joints are calculated by ARKit and not actively recognized, we limited
the comparison to the actively tracked joints: shoulders, elbows, hips, and knees.
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2.5.3. Data Export

After each recorded subject, the collected motion data were exported from the three
systems: the frontally positioned iPad (iPad Frontal), the iPad set in a 30° Side Angle
(iPad Side) (Figure 2), and the Vicon system. The motion data were stored in CSV files
and included the joint center coordinates for each detected frame for the three systems
separately. The ARKit data were exported in one file per iPad, resulting in two CSV files per
subject. For the Vicon system, each exercise was stored in a separate CSV file. In addition,
an XCP file was exported from the Vicon system, which contained meta-information about
the cameras, including the start and end timestamps of each recording.

Due to export problems, the upper body joint coordinates of the iPad Side were only
included for three of the ten subjects. The Vicon system could not track each joint coordinate
throughout the whole exercise due to hidden markers, leading to gaps in the exported data.
Smaller gaps were compensated during the Data Analysis, whereas more significant gaps
led to the exclusion of the respective angle.

2.6. Preprocessing & Data Analysis

The basis for the data analysis part is 220 files, 22 for each subject. It contains two
comma-separated value (CSV) files from the respective ARKit systems (frontal and side
view) and ten CSV files from the Vicon system, which records each exercise in a separate file.
The remaining ten files are given in the XCP format, which contains the relevant metadata
of the Vicon system, such as camera position, the start time, and the end time of the data
acquisition process. The following preprocessing steps are performed for each subject to
merge all files into a data frame for further analysis.

The Vicon and ARKit data are modified to fit a matrix-like structure in which the rows
represent time and columns the joints. Augmentation enhances the data with information
such as the timestamp, subject, exercise, and in the case of ARKit, whether the values were
recorded frontal or lateral.

The Sections 2.5.1 and 2.5.2 explain different sampling rates for the systems and the
non-equidistant sampling rate of ARKit (57 Hz on average). It motivates to evaluate
strategies to merge the system’s data based on the timestamp. Vicon samples the data at
a frequency of 250 Hz and implies a maximum of 2 ms distance for a randomly chosen
timestamp. Due to this maximal possible deviation, the nearest timestamp is the criterion
for merging the Vicon data onto the ARKit data.

The Vicon system records absolute coordinates, while the ARKit system provides
normalized coordinates relative to the center of the hip. It still allows for comparing angles
since they are invariant under scaling, rotating, translating, and reflecting the coordinate
system. Accordingly, the adjacent three-dimensional joint coordinates extraction calculates
the angles of interest (AOI). An angle θ is determined by three joints A, B, C ∈ R3 or
associated vectors ~v1 = A− B and ~v2 = C− B given the formula

θ = arccos
v1 · v2

‖v1‖2‖v2‖2

The data reveal a time lag which leads to a misalignment between the Vicon and
ARKit angles along the time axis. Accordingly, the related time series require shifting with
the objective to maximize the mutual Pearson correlation coefficient. The shift operation is
subjected to a maximum of 60 frames to each side. It includes the assumption that the time
series of the two systems match best if they exhibit similar behavior in their linear trends.
Figure 3 shows two examples of misaligned time series on the left and the result of the shift
on the right. The time series alignment is performed brute force and individually for any
combination of view, subject, exercise, and AOI. The procedure outputs 1048 ARKit-Vicon
time series pairs, 634 for the comparison Vicon—iPad Frontal, and 414 for the comparison
Vicon—iPad Side. The number does not correspond to 2 × 10 × 8 × 8 = 1280 pairs due to
the missing ARKit recordings of the upper body joints for lateral recording.
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Figure 3. Shift of the data.

Computing two metrics validates the angle similarity of the systems for each pair
of time series, the mean absolute error (MAE) and the non-parametric Spearman’s rank
correlation coefficient (SRCC). The obtained MAE and SRCC values of the 1048 time
series are aggregated according to predefined grouping criteria, such as exercise, angle, or
view. Calculating the sample size’s weighted mean and standard deviation (std) defines a
grouping operation for the MAE (Table 1). SRCC values require first a transformation to a
normally distributed random variable using the Fisher z-transformation

z =
1
2

ln
(

1 + r
1− r

)
(1)

where r is the SRCC. It constitutes the prerequisite to applying the averaging operation
along with the variables. The result is again a normally distributed variable that needs back
transformation into the correlation space using the inverse of (1).

Table 1. The aggregated wMAE values for all joint angles.

Angle wMAE

leftElbow 24.0◦ ± 17.43◦

leftHip 16.91◦ ± 10.67◦

leftKnee 16.61◦ ± 7.47◦

leftShoulder 20.01◦ ± 14.89◦

rightElbow 20.0◦ ± 15.32◦

rightHip 20.17◦ ± 11.25◦

rightKnee 17.57◦ ± 7.25◦

rightShoulder 17.39◦ ± 12.18◦

A drawback of the MAE is the lack of interpretation regarding systematic over- or
underestimation of the angles. The mean error (ME), which is the average of the time series
pair’s difference, can conclude the occurrence of bias but at a granular level, for example
segments of the exercise. However, aggregation of the ME is prone to involve effects such

as error cancellation. The ratio of ME and MAE, for instance
ME

MAE
, draws insights into

the occurrence of systematic bias (Figure A4). A value close to ±1 implies less tendency of
ARKit to fluctuate around the Vicon’s angle estimation, for example either under-, perfect-
or overestimation takes place. Values nearby zero indicate the ME’s cancellation effect
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(over- and underestimation) but require further analysis, such as the difference between
MAE and ME, for conclusions.

One-way analysis of variance (ANOVA) is performed to quantify the effects of the
categorical metadata such as angle (fixed effect), exercise (fixed effect), and subject (random
effect), on the continuous variable MAE. The random effect was taken into account per-
forming one-way ANOVA using a random effects model. The distribution of MAE shows a
divergence towards the normal distribution, which is one of the requirements in ANOVA.
However, research verified robustness in violating this assumption in certain bounds [47].
A logarithm (basis 10) transform on the MAE variable ensures stronger normalization
(Appendix A, Figure A1). In particular, it makes the model multiplicative and more ro-
bust to dispersion. The visual inspection of histograms reveals a lack of homogeneous
intergroup variance and motivates to apply Welch’s ANOVA. Finally, the Games-Howell
post-hoc test [48] compares the individual categorical factors for significant results (here
defined as an effect size larger than 0.1).

Besides view (frontal or side), the binary independent variables are the body segment
of the angle (lower or upper) and information on the movement of the pelvis. The latter is
declared as the variable center moved and indicates whether the proper execution of the
exercise involves the movement of the pelvic’s center, the origin of the ARKit coordinate
system. To quantify the binary variables’ effect, we fitted a logistic regression model based
on the MAE and applied Welch’s t-test. The results, including β coefficient, R2 p-value, and
confidence interval, are compiled in a table.

Assumptions about the data are made and can restrict the interpretation of the results.
A more detailed outline of this topic is given in the limitations section (Section 5.8).

3. Results
3.1. Weighted Mean Absolute Error
3.1.1. Aggregated Results

The data analysis exposed a wMAE of 18.80◦ ± 12.12◦ degrees for all angles in the
whole data set. The wMAE across all exercises, views, and angles is visualized in Figure 4
to enable more profound insights into the performance based on exercises and joint angles.

The data exposed high differences in the detected error rates with the wMAE ranging
between 3.75◦ ± 0.99◦ (Lateral Arm Raise, Left Elbow, Side) and 47.06◦ ± 5.11◦ (Side Squat,
Left Elbow, Side), depending on the performed exercise and observed joint. To generate
better insights into the different factors, we aggregated the wMAE by angle, performed
exercise, view, and subject.

Considering the aggregated wMAE for the individual joints (Table 1), the mean value
ranged between 16.61◦ ± 7.47◦ for the left knee up to 24.00◦ ± 17.43◦ for the left elbow. The
left hip exposed a wMAE of 16.91◦ ± 10.67◦, followed by the right shoulder with a wMAE
of 17.39◦ ± 12.18◦ and the right knee with a value of 17.57◦ ± 7.25◦. The right elbow had a
wMAE of 20.00◦± 15.32◦, the left shoulder 20.01◦± 14.89◦ and the right hip 20.17◦± 11.25◦.

The observed wMAE differed between the exercises, with the Lateral Arm Raise
(9.56◦ ± 6.13◦), Jumping Jacks (10.09◦ ± 3.81◦), Single Leg Deadlift (11.35◦ ± 5.04◦), Reverse
Fly (15.80◦ ± 8.5◦), Leg Extension Crunch (18.15◦ ± 8.21◦), and Front Lunge (18.19◦ ± 8.98◦)
exposing significantly lower error rates than the Side Squat (30.49◦ ± 12.73◦) and the Squat
(33.79◦ ± 10.25◦) (Table 2).

When only considering the targeted joints, the wMAE ranged between 3.75◦ ± 0.99◦

(Lateral Arm Raise, Left Elbow, Side View) and 38.41◦ ± 6.66◦ (Squat, Right Hip, Frontal
View). The exercises Lateral Arm Raise, Reverse Fly, and Single Leg Deadlift performed
best with wMAE values below 15.00◦ in the relevant joints for the respective exercises. The
wMAE of Jumping Jacks, Front Lunge, and Leg Extension Crunch remained below 25.00◦

across the targeted joints. The Squat and Side Squat Exercises exposed error rates of up to
38.41◦ in the targeted joints and thus performed worst in the experiment.
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Angle
Exercise View

Frontal 35.26 ± 8.06 23.75 ± 7.44 8.39 ± 4.46 12.36 ± 3.23 10.83 ± 4.12 20.14 ± 6.82 13.99 ± 2.76 13.97 ± 3.90

Side 36.66 ± 2.49 33.68 ± 4.20 14.7 ± 0.62 17.6 ± 2.51 12.54 ± 3.12 22.26 ± 3.19 17.57 ± 4.07 17.96 ± 2.93

Frontal 7.66 ± 3.01 7.02 ± 2.50 6.60 ± 1.27 7.58 ± 1.50 8.4 ± 1.57 8.33 ± 1.86 15.15 ± 2.56 15.02 ± 2.00

Side 9.14 ± 1.07 9.32 ± 0.30 6.49 ± 1.18 7.77 ± 0.42 9.39 ± 1.97 9.93 ± 2.58 14.9 ± 2.12 13.94 ± 1.80

Frontal 7.51 ± 3.35 7.36 ± 2.67 6.65 ± 1.34 6.81 ± 1.97 5.01 ± 2.67 4.80 ± 2.7 17.67 ± 4.17 17.61 ± 3.32

Side 3.75 ± 0.99 5.43 ± 1.36 5.5 ± 0.39 5.69 ± 0.42 4.93 ± 2.14 6.84 ± 3.28 17.76 ± 4.39 17.44 ± 3.86

Frontal 18.94 ± 6.77 19.49 ± 5.99 31.98 ± 10.20 17.39 ± 5.80 10.86 ± 2.96 11.49 ± 3.86 14.81 ± 4.18 16.67 ± 3.07

Side 19.78 ± 6.42 26.07 ± 10.73 36.33 ± 4.94 21.29 ± 4.66 14.0 ± 4.81 16.44 ± 6.24 17.18 ± 3.88 20.17 ± 6.00

Frontal 8.90 ± 3.91 10.27 ± 3.98 11.84 ± 4.02 10.63 ± 3.80 25.08 ± 6.27 27.73 ± 6.31 15.54 ± 7.54 15.01 ± 7.23

Side 7.89 ± 2.10 14.85 ± 5.22 14.72 ± 3.68 8.69 ± 2.99 22.32 ± 7.14 20.98 ± 7.48 15.37 ± 8.10 11.98 ± 7.05

Frontal 46.73 ± 14.20 42.48 ± 14.29 41.82 ± 9.72 36.21 ± 8.84 22.62 ± 7.63 36.41 ± 5.21 16.50 ± 6.13 26.48 ± 4.13

Side 47.06 ± 5.11 27.74 ± 4.13 30.04 ± 2.17 23.67 ± 1.60 26.19 ± 8.28 30.25 ± 3.95 16.17 ± 5.88 21.54 ± 2.76

Frontal 21.07 ± 4.82 8.59 ± 4.60 11.78 ± 2.77 10.82 ± 2.96 10.57 ± 3.33 14.37 ± 4.20 8.66 ± 2.47 9.25 ± 3.49

Side 13.26 ± 1.06 6.11 ± 0.98 9.39 ± 1.36 7.13 ± 1.59 12.28 ± 4.96 14.91 ± 4.61 8.17 ± 2.85 10.0 ± 3.40

Frontal 44.35 ± 17.93 37.85 ± 16.51 39.23 ± 9.04 37.49 ± 8.70 35.37 ± 6.46 37.41 ± 6.66 29.94 ± 4.42 30.36 ± 3.72

Side 45.40 ± 10.51 31.86 ± 9.57 36.56 ± 5.05 27.77 ± 3.06 32.04 ± 4.63 30.05 ± 4.84 27.98 ± 3.31 23.73 ± 2.00

Side Squat

Single Leg Deadlift

Squat

leftElbow rightElbow

Front Lunge

Jumping Jacks

Lateral Arm Raise

Leg Extension Crunch

Reverse Fly

rightKneeleftShoulder rightShoulder leftHip rightHip leftKnee

Figure 4. Pivot Table of the weighted Mean Absolute Error (wMAE) in degrees distributed over the
eight exercises and the eight tracked angles, each measured from the two iPad perspectives Frontal
and Side. The dashed boxes indicate which joints were specifically targeted by the respective exercise.
The heatmap visualizes the performance of the individual joints per exercise, with darker green color
referring to a lower error rate and darker orange color referring to higher error rates.

When only considering the targeted joints per exercise, the wMAE was reduced for all
exercises except the Jumping Jacks, where the wMAE remained the same (Table 2).

Table 2. The wMAE values for all exercises when considering all angles and only the targeted angles
per exercise.

All Angles Targeted Angles

Front Lunge 18.19◦ ± 8.98◦ 16.17◦ ± 5.48◦

Jumping Jacks 10.09◦ ± 3.81◦ 10.09◦ ± 3.81◦

Lateral Arm Raise 9.56◦ ± 6.13◦ 6.66◦ ± 2.41◦

Leg Extension Crunch 18.15◦ ± 8.21◦ 15.14◦ ± 5.34◦

Reverse Fly 15.80◦ ± 8.5◦ 10.67◦ ± 4.31◦

Side Squat 30.49◦ ± 12.73◦ 24.56◦ ± 8.63◦

Single Leg Deadlift 11.35◦ ± 5.04◦ 10.91◦ ± 4.41◦

Squat 33.79◦ ± 10.25◦ 30.93◦ ± 6.19◦

The difference between the view of the recording device was smaller than the observed
differences between the exercises, with an wMAE of 17.91◦ ± 9.68◦ for the side view and
19.35◦ ± 13.38◦ for the frontal view.

When considering the different subjects, the observed wMAE was relatively consistent
among the individuals, with mean values ranging from 16.20◦ ± 9.44◦ to 22.32◦ ± 17.08◦.

3.1.2. Bias of the ARKit System

For detecting a possible bias of over- and underestimation of the ARKit data, we
investigated the ME and the ratio of ME/MAE. The aggregated results of the ME/MAE
ratio exhibits only seven values below 0.1 for the exercise—angle—view configurations
(Appendix B Figure A3 for the ME, Appendix B Figure A4 for ratio ME/MAE). In 4 of
these cases, the wMAE is above 10◦: Front Lunge—left hip—Frontal, Jumping Jacks—
left knee—Frontal, Jumping Jacks—right knee—Frontal, and Leg Extension Crunch—left
elbow—Frontal. Most other values remain relatively close to 1 or −1.
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3.2. Spearman Rank Correlation

The whole dataset exposed a mean Spearman Rank Correlation Coefficient of 0.76. The
p-value was below 0.01 for 1019 of the 1048 exercises. A detailed overview of the individual
SRCCs, including the standard deviation for the exercises, is visualized in Figure 5.

Angle
Exercise View

Frontal 0.22 0.16 0.67 0.65 0.49 0.93 0.91 0.95

Side -0.13 -0.20 0.59 0.62 0.63 0.97 0.92 0.97

Frontal 0.36 0.25 0.91 0.90 0.43 0.42 0.32 0.40

Side 0.63 0.47 0.93 0.91 0.32 0.66 0.43 0.70

Frontal 0.79 0.82 0.96 0.96 0.54 0.25 0.22 0.13

Side 0.78 0.68 0.99 0.96 0.61 0.45 0.26 0.17

Frontal 0.55 0.69 0.44 0.85 0.94 0.92 0.92 0.90

Side 0.26 0.68 0.32 0.81 0.90 0.85 0.93 0.89

Frontal 0.45 0.47 0.87 0.84 0.80 0.79 0.50 0.53

Side 0.45 0.33 0.80 0.84 0.74 0.76 0.43 0.49

Frontal -0.05 -0.08 0.56 0.65 0.90 0.90 0.63 0.93

Side 0.13 -0.03 0.25 0.52 0.91 0.98 0.63 0.97

Frontal 0.33 0.69 0.86 0.89 0.95 0.77 0.74 0.51

Side 0.55 0.63 0.97 0.97 0.94 0.70 0.78 0.49

Frontal -0.06 -0.15 0.71 0.70 0.75 0.79 0.84 0.89

Side -0.27 0.05 0.77 0.60 0.88 0.95 0.90 0.97

rightKneeleftShoulder rightShoulder leftHip rightHip leftKnee

Side Squat

Single Leg Deadlift

Squat

leftElbow rightElbow

Front Lunge

Jumping Jacks

Lateral Arm Raise

Leg Extension Crunch

Reverse Fly

Figure 5. Pivot Table of the average Spearman Rank Correlation Coefficients (SRCC) distributed
over the eight exercises and the eight tracked angles, each measured from the two iPad perspectives
Frontal and Side. The dashed boxes indicate which joints were specifically targeted by the respective
exercise. The heatmap visualizes the performance of the individual joints per exercise, with darker
green color referring to a higher positive correlation and darker orange color referring to a higher
negative correlation.

The SRCC varied between the tracked angles with a range of −0.27 to 0.99 as mean
values per exercise and angle as displayed in Figure 5. When considering the results
aggregated per joint angles (Table 3), all negative correlations were observed for the elbow
angles (left elbow 0.36, right elbow 0.42) in both iPad views, with the side view performing
worse than the frontal view. The shoulder angles exposed a mean SRCC of 0.81 for both
shoulders. Knee and hip joints were also tracked with moderate SRCC values (left hip: 0.82,
right hip: 0.84, left Knee: 0.75, right knee: 0.81).

Table 3. The aggregated SRCC values for all joint angles.

Angle SRCC

leftElbow 0.36
leftHip 0.82

leftKnee 0.75
leftShoulder 0.81
rightElbow 0.42

rightHip 0.84
rightKnee 0.81

rightShoulder 0.81

While the SRCCs differed between the exercises, all of them exposed moderate linear
correlations with values above 0.5 (Table 4). The Leg Extension Crunch showed a correlation
of 0.84. Front Lunge correlated with 0.80, followed by the Single Leg Deadlift with an SRCC
of 0.79. The Squat and Side Squat exercises showed a correlation of 0.78. The SRCC of the
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Lateral Arm Raise was 0.68, and the SRCC of the Reverse Fly was 0.67. The Jumping Jacks
performed worst with a correlation of 0.60.

Similar to the wMAE, considering only the relevant joints for the specific exercises
positively influenced the SRCCs of all exercises except for the Jumping Jacks, where it
remained the same, and the Single Leg Deadlift, where it was reduced by 0.01 (Table 4).

Table 4. The average SRCC values for all exercises when considering all angles and only the targeted
angles per exercise.

SRCC All Angles SRCC Targeted Angles Only

Front Lunge 0.80 0.91
Jumping Jacks 0.60 0.60

Lateral Arm Raise 0.68 0.91
Leg Extension Crunch 0.84 0.91

Reverse Fly 0.67 0.69
Side Squat 0.78 0.91

Single Leg Deadlift 0.79 0.78
Squat 0.78 0.89

Comparing the two positions of the iPads, the side view performed slightly better
than the frontal view, with SRCCs of 0.80 and 0.73, respectively.

Similar to the wMAE, the SRCC is relatively consistent across the recorded subject,
with values between 0.72 and 0.82.

3.3. Factor Analysis
3.3.1. ANOVA Analysis

To further investigate the influence of the observed exercise, angle, and subject on
the performance of ARKit, we performed a Welch ANOVA factor analysis on the Mean
Absolute Error for the factors Exercise and Angle and a random effects model for the factor
Subject. The MAE exhibited a high dependency on the observed exercise with an effect size
of η2 = 0.51 (p = 0.00). It did not expose a dependency on the observed angle (η2 = 0.03,
p = 0.00). The random effects model analysis did not exhibit an influence of the subject,
with 0.29% of the variance explained by the subject (Table 5).

Table 5. The results of the Random Effects ANOVA.

Random Effects

Groups Name Variance Std. Dev.

Subject (Intercept) 0.001312 0.03622
Residual 0.458310 0.67699

Fixed Effects

Estimate Std. Error t value

(Intercept) 2.70803 0.02389 113.4

To further investigate the influencing factors of the performed exercise in the MAE,
we performed a Post-hoc analysis using the Games-Howell test (Appendix C, Table A1).
The exercise analysis exhibits significant differences between 20 of the 28 exercise pairs.

3.3.2. Welch t-Test Analysis

All binary influencing factors of the MAE were analyzed using Welch’s t-test (Table 6).
The results of the t-test showed a dependency on the pelvic center movement (cohen− d = 0.82,
power = 1.00, p = 0.00). No dependency was measured for the view (cohen− d = 0.01,
power = 0.06, p = 0.82), and whether the measured angle is a lower body angle (cohen− d =
0.01, power = 0.05, p = 0.88).
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Table 6. The results of the Welch t-test Analysis.

T dof Alternative p-Value CI95% Cohen-d BF10 Power Response Categorical

−0.22 966.81 two-sided 0.82 [−0.09, 0.07] 0.01 0.073 0.06 LogMAE View
−0.15 725.74 two-sided 0.88 [−0.1, 0.08] 0.01 0.072 0.05 LogMAE LowerBody
−13.20 1045.97 two-sided 0.00 [−0.59, −0.44] 0.82 3.266 × 1033 1.00 LogMAE CenterMoved

3.3.3. Logistic Regression Analysis

In addition to the t-test, we applied logistic regression to the three variables View,
LowerBody, and CenterMoved (Table 7). The logistic regression model for the LowerBody
shows a slight effect with β− coe f = 0.0684 (p = 0.00). The model exposed a Pseudo− R2

of 0.165. While the View model exposed no significant effect (β− coe f = 0.0141, p = 0.00),
the fitness of the model is low (Pseudo− R2 = −0.019). The CenterMoved variable showed
no effect (β− coe f = 0.0018, p = 0.575). Similar to the View variable, the Pseudo− R2 of
0.000 indicated bad fitness of the model to explain the data.

Table 7. The results of the logistic regression.

Variable β-coe f std z P > |z| [0.025 0.975] Pseudo-R2

View 0.0141 0.003 4.329 0.000 0.008 0.020 −0.019
Lower Body 0.0684 0.005 13.374 0.000 0.058 0.078 0.165
Center Moved 0.0018 0.003 0.561 0.575 −0.004 0.008 0.000

4. Findings

While the results showed that ARKit is generally capable of tracking human body
motion, the accuracy of the joint angles is highly variable and dependent on several factors,
especially the performed exercise.

4.1. RQ 1: How Accurate Is ARKit’s Human Motion Capture Compared to the Vicon System?

To answer RQ 1, we investigated both the wMAE and the SRCC of the experiment
data. A wMAE of 0° and an SRCC of 1.0 would represent a perfect accuracy of ARKit’s
human motion capture. The ARKit data showed a MAE of 18.80° and an average SRCC of
0.76 for the whole data set, with variations when examining different joints and exercises.
Based on the results of the ANOVA analysis, the accuracy mainly depends on the observed
angle and exercise. However, the accuracy could be influenced by other additional factors
which were not specifically targeted by the performed experiment. Remarkably, ARKit was
able to achieve an almost perfect correlation and accuracy for some exercise executions
in specific angles (Figure 6). In many cases, the movement pattern is recognizable in the
ARKit data. Still, the amplitude is reduced, or a baseline drift on the y-axis is observable
(Figure 7, which explains the good correlation but relatively high wMAE values. In some
cases, the ARKit data exhibits high wMAE values and no or even a negative SRCC. These
effects often occurred in the elbow joints, especially when the lower body joints moved and
the upper body joints were held straight, such as in the Squat or Side Squat exercises. In
this situation, ARKit often failed at detecting the movement correctly (Figure 8), which is
visible both in the high wMAE and the low to negative correlation values for the elbow
angles. In general, the accuracy was lower in those exercises where the root position did
not remain stable, including the Front Lunge, Side Squat, and Squat exercises. The results
of the factor analysis further confirmed these results.

To investigate whether a systematic baseline drift can be observed in the ARKit data,
we aligned the ARKit and Vicon data via cross-correlation. We measured the y-axis offset
(Figure 9). As the offset was normally distributed around 0, no systematic baseline drift
was present in the recorded data set, indicating that other factors cause shifts.
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Figure 6. Left hip angle of one of the subjects in the Single Leg Deadlift exercise in degrees, which
shows a nearly perfectly overlapping curves of the ARKit and Vicon data.

Figure 7. Left hip angle of one of the subjects in the Side Squat exercise in degrees. The plot shows
that while the motion pattern is visible in both recordings, ARKit exposes a reduced amplitude and a
shift on the y-axis.

Figure 8. Right elbow angle of one of the subjects in the Squat exercise in degrees, which shows bad
tracking quality with a lot of noise compared to the Vicon data.

Finding 1: ARKit is able to track the general progression of a movement with good
accuracy but with significant deviations from the actual values measured by the Vicon
system. The performance is influenced by external factors such as the performed motion.
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Figure 9. Results of the baseline drift analysis of the ARKit data. This is computed by minimizing the
MAE by shifting the ARKit data vertically. The results show a normal distribution around 0, thus
indicating no systematic baseline drift of the ARKit results.

4.2. RQ 2: Which Factors Influence ARKit’s Motion Capture Results?

We performed factor analysis using Welch ANOVA, t-test analysis, and logistic regres-
sion on the dependent variable MAE to answer RQ2.

The MAE depended on the performed exercise. This dependency is visible when
inspecting the respective boxplots of the MAE (Figure 10). Especially both Squat exercises
(Squat, Side Squat) show significantly higher mean values than the other exercises. This
observation is supported by the post-hoc analysis results of the ANOVA results. The logistic
regression indicated an additional small influence of whether upper or lower body angles
are considered. While the t-test showed an additional effect on whether the pelvic’s center
was moved during an exercise, this effect was not visible in the logistic regression. The
impact of this factor remains inconclusive.

Finding 2: The factor analysis results show that the accuracy of ARKit’s human motion
capture mainly depends on the performed exercise.

While there is a slight difference between the frontal and side view data for both the
wMAE and the SRCC, this difference is comparably small. The results of the side view
show a 1.44◦ difference of the wMAE and a difference in the SRCC of 0.07, with the side
view performing slightly better than the frontal view. These findings are supported by the
factor analysis results, where no dependency of the view was measured. It also needs to
be considered that the upper body angles in the side view only contained data of three
subjects due to export problems, limiting the comparison’s explanatory power.

Another aspect of the device’s position influence is the visibility of specific body parts.
Limited visibility of body joints, such as the left side of the body in the Front Lunge, Single
Leg Deadlift, and Leg Extension Crunch, or the elbow joints in the Side Squat and Squat,
is associated with a higher wMAE and worse correlation results, especially in the left
elbow joint. Hidden joints often led to ARKit confusing the left and right body side for the
respective joints, which caused unexpected peaks in the recorded data (Figure 11). The
tracking of the upper body joints worked significantly better when other body parts did
not hide them, as in the remaining three exercises Jumping Jacks, Lateral Arm Raise, and
Reverse Fly.

Finding 3: When positioning the device, ensuring good visibility of the targeted joints
improves the accuracy of the results.
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Figure 10. Boxplots representing the MAE in degrees on the logarithmic scale across all performed
exercises and the pelvic center moved variable in the experiments. Both boxplots show significant
differences in the mean and variance across the variables.

Figure 11. Left elbow angle of one of the subjects in the Single Leg Deadlift exercise, which shows
several unexpected spikes during the execution. The spikes originate from ARKit incorrectly detecting
the joint’s position, most probably because of bad visibility of the elbow joint during the exercise.

5. Discussion
5.1. Factors Influencing ARKit’s Performance

Based on the findings presented in Section 4, we identified several factors that influence
the accuracy of ARKit’s motion capture. The main requirement for good tracking is ensuring
that the joints of interest are well visible to the camera and not hidden by other parts of
the body during the movement. The exercise or motion itself is also of relevance. The
results of the t-test hinted at a relevance of the coordinate system’s stability during the
exercise. However, this was not supported by the results of the logistic regression, so that
the interpretation is unclear and requires further investigation.

The results of capturing human motion using ARKit could be influenced by several
other factors, which were not further investigated within this research. This includes
technical factors such as the device’s processing power and additional sensors to improve
the motion capture, the tracking environment such as lighting conditions or the background,
or factors regarding the captured person, such as their clothing, body mass index, or
skin color.

5.2. Bias of the Motion Capture Results

The upper body angles exposed a tendency of underestimation, and the results of the
hips hinted at systematic overestimation as described in Section 3.1.2. Several values were
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located close to −1 or 1, which hints at a tendency to either systematic rather than cyclically
occurring over- or underestimation. When aggregating the values for the different joints
(Table 8), the results suggest that the upper body angles are underestimated, while the hip
gets overestimated. The knee angles remain inconclusive with values relatively close to
zero. They could hint at the mentioned cyclically occurring over- and underestimations or
over- and underestimation based on the executed movement.

Table 8. The mean values of the ratio ME/MAE for the different joint angles.

Angle Ratio ME/MAE

leftElbow −0.46
rightElbow −0.30
leftShoulder −0.47

rightShoulder −0.31
leftHip 0.59

rightHip 0.75
leftKnee −0.19

rightKnee 0.01

5.3. Influence of the Tracked Joint Angle

The logistic regression results indicated a small, but significant effect of the lower body
variable. These impressions are supported when inspecting the boxplot of the angles in the
ME (Figure 12). The boxplot shows a tendency of underestimating the upper body angles,
overestimating the hip angles, and a difference in the mean between the knee and hip
angles. To investigate this effect, we performed the ANOVA analysis on the ME. We shifted
the ME to only include positive values and applied the logarithmic transformation similar
to our proceedings of the MAE as described in Section 2.6. The observed angles show
an influence on the result (η2 = 0.26, p = 0.00). Post-hoc analysis using Games-Howell
supports the suggestions that the differences lie between the upper body angles and lower
body angles and between the hip and knee angles (Appendix C, Table A2).

Interestingly, the exercise and movement of the hip center were the influencing factors
for the MAE in contrast to the results of the ME. In the MAE, the difference between the
angles is not observable anymore. The upper body error is mapped to a similar MAE as the
lower body joints by only considering the absolute error (Figure 12). The ME for the whole
dataset is −0.83°, meaning that overestimating the lower body joints and underestimating
the upper body joints could be subject to error cancellation when considering the entire
body. This effect could explain the MAE’s dependency on the selected exercise while no
dependency on the angle was observed.

The ANOVA results show an effect for the upper body variable and support the
respective tendency of over-and underestimation. However, as explained in Section 2.6, the
ME is prone to error cancellation effects. This unclear influence impacts the explanatory
power, so we did not include these thoughts in the results and findings.

5.4. Impact of Incorrect Hip Detection

A commonly observed issue with the ARKit data were a reduced amplitude, and a
baseline drift along the y-axis (see Figure 7), though the motion was tracked quite reliable.
This issue was particularly the case for the lower body joints and led to a higher wMAE in
those joints, but was also observed in other joints. In the screencasts of the recording, we
often noticed that the detection of the hip joints was incorrect (Figure 13) and even varied
during the execution of the exercise. Such shifts on the sagittal plane explain both the
baseline drift and the amplitude reduction in the hip, knee, and shoulder angles, as all of
them rely on the hip joints for their calculation. Especially from a side perspective, the hip
joints allow for the most considerable deviations along the sagittal plane due to the amount
or muscle and fat tissue around the pelvis. In the example of Figure 13, another issue
aggravates the correct detection of the hip joints: the camera perspective was optimized
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for tracking the legs’ position, which in this case means that the right joint hides the left
hip joint. This positioning implies that ARKit needs to rely on other body landmarks to
estimate its position. Finding an optimal camera position in which all joints are completely
visible might not be possible for all movements.

Figure 12. Boxplots representing the ME and MAE in degrees across all tracked angles in the
experiments. The boxplots for the ME show a significant difference in the means of the upper and
lower body angles, which is not visible for the MAE.

Figure 13. Exemplary screenshot of the frontal ARKit recording of one subject during the Single Leg
Deadlift exercise, showing a bad detection of the hip joints and confusion of the knee joints.

5.5. Improving the ARKit Data during Post-Processing

The good correlation results opened up the question of whether it is possible to
improve the ARKit motion capture data through post-processing to approximate the Vicon
data. A systematic error concerning detecting the hip joints in a position too far anterior is
a possible explanation and is subject to further investigation. If this is the case, both the
baseline shift and the amplitude reduction could be corrected by applying a scale factor and
shifting the data on the y-axis. Compensating the baseline shift would reduce the wMAE
results by 7.61◦ and lead to more reliable and accurate results. However, no systematic
error could be found when shifting the ARKit data along the y-axis by vertically shifting
the ARKit data (Figure 9). The observed shift instead seems to be caused by other factors
such as the incorrect detection of joints.
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During the data analysis, we used a sliding window approach to maximizing the
cross-correlation between the ARKit and Vicon data to compensate for possible time
lags, as no synchronization of the iPads and the Vicon system was possible during the
experiment. Possible reasons for lags are different hardware clocks and the delay of the body
detection algorithm of the ARKit framework. The sliding window was set to a maximum
of 120 frames, which equals approximately 2 s, only to allow reasonable shifts within the
exercises and compensate for the lag caused by technical limitations. The approach was
chosen to maximize the comparability between the results of the two systems. However, as
the sliding window approach was applied individually to each angle, exercise, subject, and
view, each configuration was shifted to its optimal result within the given time window.
This approach does not consider potential lags within ARKit’s motion capture, for example,
a slower recognition of changes for some parts of the recognized body.

5.6. Comparing the Results of 2D and 3D Motion Capture Systems

As stated in the analysis of Sarafianos et al. [31], monocular video-based motion
capture systems exhibit several limitations, which reduce their applicability to real-world
scenarios. Among the most significant limitations are the ambiguities of the detected poses
due to occlusion and distortion of the camera image caused by the camera’s viewing angle
and position [31], which is a relevant limitation in both 2D and 3D motion capture systems.
In this research, we were able to show that ARKit, as an example for 3D motion capture
systems supported by different smartphone sensors, is robust against a variation of 30°
regarding the positioning of the device. The factor analysis did not expose an influence
of the device position. However, poor visibility of joints still led to significant decreases
in the accuracy of the measured angles. Mobile 3D motion capture frameworks based on
monocular video data such as ARKit improve some of the limitations of 2D motion capture
systems but cannot overcome them completely.

5.7. Potential Use Cases for Mobile 3D Motion Capture-Based Applications

The findings of this research raise the question of possible application areas for hu-
man motion capture using mobile 3D motion capture frameworks such as Apple ARKit.
Referring to the three categories defined by Moeslund et al. [2], such frameworks could be
applied to use cases in categories (2) interacting with software or (3) motion analysis for
medical examinations or performance analysis, as it focuses on tracking single bodies rather
than observing crowds. The results suggest that ARKit can track a motion’s progression
reliably but with relatively high error rates, depending on the joint of interest. Human
motion capture using ARKit is further limited to a relatively small set of trackable joints.
For example, the hand and toe joints are not actively tracked but calculated based on the
angle and wrist joints, limiting the trackable joint angles to the shoulder, elbow, hip, and
knee. However, mobile 3D motion capture frameworks are a promising technology for
use cases that focus on tracking a specific motion of body parts rather than the exact joint
position. Such use cases can be seen in category (2), such as interacting with software
through gestures or other movements. Potential use cases in (3) include sports applications
for amateurs or physiotherapy applications, which could focus on counting repetitions of a
specific exercise. Depending on the motion and joint of interest, specific use cases relying
on the exact joint position and angle data might be possible if the two main requirements
for a good tracking presented at the beginning of this section can be met. For example,
such use cases could include measuring the possible range of motion of a joint before
and after a particular intervention and monitoring the progress in the medical field, or
correcting the execution of a specific exercise in sports and physiotherapy applications.
Using mobile 3D motion capture frameworks in these use cases would extend the usage of
human motion capture technologies beyond professional settings and allow day-to-day
usage at home, performed by consumers. ARKit and other mobile IPS systems enable new
use cases, especially in mHealth, which were not possible with previous HMC systems.
Our findings show how mobile 3D motion capture frameworks can be applied and how
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mHealth applications could leverage the software for future applications. However, the
limitations of 3D motion capture frameworks and ARKit’s boundaries, in particular, need to
be considered and should be evaluated before applying the technology to specific use cases.

5.8. Limitations

The design of this research includes several limitations. While the lab experiment
produced a data set of over 1000 exercise executions, the data were collected from ten study
participants only due to the restrictions caused by the ongoing COVID-19 pandemic. The
limited number of participants might limit the external validity of this research. The par-
ticipants’ traits further limit the external validity. While covering heights between 156 cm
and 198 cm, their body mass index was in a normal range. In addition, all participants
had a lighter skin tone. The experiment was conducted in a laboratory with controlled
background and lighting conditions.

Even though the study setup aimed at reducing possible influences on the study’s
internal validity which were not part of the observation, the impact of additional factors can-
not be eliminated. Possible factors include the influence of the specific performance of the
exercises by the subjects or the effect of the clothing worn. Furthermore, the subjects were
recruited from the social surroundings of the researchers. They might not be representative
of the whole population. The internal validity is further affected by the sliding window ap-
proach to compensate for the time lag due to missing clock synchronization and processing
time. While the approach is limited to a maximum window of approximately two seconds,
this shift could still have improved the results above the observable results. Additionally,
the data set contained a reduced amount of exercise data for the upper body joints due
to the export problems of the iPad on the side position. We applied the Welch ANOVA
test to identify dependencies of the MAE instead of the ANOVA test, as the variance of the
individual factors was not equally distributed. However, another prerequisite for (Welch)
ANOVA and Welch t-test, normally distributed data, was only partially given for the MAE,
even though the ANOVA analysis is said to be quite robust against this problem. We
applied a logarithmic transformation to the data before performing the ANOVA and t-tests
to overcome these limitations. Moreover, the observations used in (Welch) ANOVA should
be independent of each other. In our experiment setup, the recording of angle motion
happened simultaneously in all subjects and exercises. The observed angle deviations
of the systems are expected to be independent. However, a poorly tracked angle might
cause a higher risk to affect another angle’s accuracy in a real-world scenario. Thus, the
assumption of independent observations is hard to verify. Moreover, ARKit is only one
example of a mobile 3D motion capture framework. Other frameworks rely on different
technologies and algorithms and could exhibit different results and limitations.

6. Conclusions

This research evaluated mobile 3D motion capture based on the example of ARKit,
Apple’s framework for smartphone-based 3D motion capture. In contrast to existing
monocular motion capture software, ARKit detects the human body in a 3-dimensional
space instead of only two dimensions and augments its results by using smartphone
sensor data such as IMU or depth data from the integrated LiDAR sensor. Our laboratory
experiment, including ten participants, investigated ARKit’s accuracy and influencing
factors in eight body-weight exercises and compared it to the Vicon system, a gold standard
for human motion capture. Our results provide evidence that mobile 3D motion capture
frameworks can track the motion’s progression with reasonable accuracy but with relatively
high mean absolute error rates. The accuracy mainly depends on two factors: the visibility
of the joints of interest and the observed motion. In contrast to 2D systems, the 3D motion
capture framework exposed certain robustness against the positioning of the camera.
However, similar limitations regarding the tracking of poorly visible joints remain.

Mobile 3D motion capture frameworks are promising and lightweight mobile technolo-
gies which could enable new use cases for human-computer interaction through motion
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or application in health and medical fields. Their limitations, especially regarding the
relatively high error rates compared to the gold standard system, need to be considered for
each use case.
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ULS Ultrasonic Localization Systems
wMAE Weighted Mean Absolute Error

Appendix A. Distributions of the Factors Used in the Welch ANOVA Analysis

Figure A1. Distributions of the individual factors of the MAE on the logarithmic scale used in the
factor analysis. Due to the transformation on the logarithmic scale, all factors are sufficiently close to
a normal distribution, so that a factor analysis using Welch ANOVA/t-tests should be possible.
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Figure A2. Distributions of the individual factors of the ME on the logarithmic scale used in the
Welch ANOVA analysis. All of the factors show a distribution which is sufficiently close to a normal
distribution so that an ANOVA analysis should be possible.
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Appendix B. Bias

Angle
Exercise View

Frontal -27.98 ± 17.23 -20.72 ± 10.15 0.75 ± 3.59 -8.23 ± 5.2 -0.42 ± 8.77 19.84 ± 7.1 3.99 ± 8.63 9.04 ± 5.61

Side -28.08 ± 12.71 -30.91 ± 3.41 -10.38 ± 2.68 -14.8 ± 1.8 -3.52 ± 5.12 22.17 ± 3.25 10.16 ± 6.7 13.7 ± 4.29

Frontal 2.58 ± 4.94 3.19 ± 3.71 2.35 ± 2.03 2.79 ± 2.28 6.29 ± 2.86 7.13 ± 2.6 -1.08 ± 3.85 0.45 ± 4.0

Side 8.39 ± 1.52 6.48 ± 1.49 0.5 ± 2.51 5.6 ± 0.76 7.17 ± 3.32 9.58 ± 2.84 1.79 ± 4.62 2.77 ± 4.27

Frontal -5.46 ± 5.62 -6.03 ± 3.76 1.26 ± 3.42 3.04 ± 3.72 3.9 ± 4.11 3.88 ± 3.73 -17.53 ± 4.21 -17.57 ± 3.29

Side -2.48 ± 1.92 -3.48 ± 2.27 -0.88 ± 2.38 3.24 ± 1.98 1.59 ± 4.95 6.62 ± 3.62 -17.69 ± 4.48 -17.33 ± 3.83

Frontal -0.22 ± 11.99 16.22 ± 7.8 -28.58 ± 9.15 -14.62 ± 5.89 -3.52 ± 3.39 4.17 ± 4.25 -9.32 ± 4.61 -6.28 ± 5.0

Side 9.42 ± 16.08 24.91 ± 12.09 -35.27 ± 3.82 -19.19 ± 6.97 -4.8 ± 5.41 8.31 ± 5.88 -13.31 ± 4.26 -15.84 ± 7.75

Frontal -2.83 ± 7.09 3.87 ± 5.78 -5.45 ± 6.48 -3.01 ± 5.7 24.94 ± 6.35 27.43 ± 6.75 5.26 ± 12.58 5.78 ± 12.27

Side -0.65 ± 5.28 4.61 ± 2.58 -11.51 ± 2.06 -2.23 ± 4.3 22.11 ± 7.19 20.94 ± 7.54 6.77 ± 12.56 3.64 ± 10.85

Frontal -46.02 ± 14.64 -41.15 ± 15.21 -38.13 ± 11.12 -33.23 ± 9.59 22.55 ± 7.62 36.39 ± 5.22 -12.39 ± 9.89 15.85 ± 6.24

Side -46.08 ± 5.2 -27.6 ± 4.03 -28.62 ± 3.56 -20.89 ± 1.9 26.08 ± 8.27 30.22 ± 3.97 -11.36 ± 10.51 11.55 ± 4.1

Frontal -18.27 ± 9.06 -3.3 ± 8.26 -3.24 ± 5.66 -2.05 ± 5.62 9.28 ± 3.17 -3.04 ± 6.62 -3.36 ± 3.67 -4.29 ± 7.56

Side -12.78 ± 0.73 -4.96 ± 1.74 -1.72 ± 5.84 2.67 ± 4.01 11.4 ± 5.31 -4.16 ± 7.3 -4.21 ± 4.01 -5.72 ± 7.36

Frontal -43.14 ± 18.84 -36.95 ± 17.32 -34.59 ± 11.14 -32.9 ± 10.54 34.96 ± 6.65 37.05 ± 6.75 14.72 ± 6.47 15.85 ± 7.71

Side -44.0 ± 11.41 -31.72 ± 9.74 -30.3 ± 6.29 -23.41 ± 2.55 31.45 ± 5.14 29.88 ± 4.98 14.16 ± 5.0 9.89 ± 6.24

rightKneeleftShoulder rightShoulder leftHip rightHip leftKnee

Side Squat

Single Leg Deadlift

Squat

leftElbow rightElbow

Front Lunge

Jumping Jacks

Lateral Arm Raise

Leg Extension Crunch

Reverse Fly

Figure A3. Pivot Table of the average Mean Error (ME) distributed over the eight exercises and
the eight tracked angles, each measured from the two iPad perspectives Frontal and Side. The
dashed boxes indicate which joints were specifically targeted by the respective exercise. The heatmap
visualizes the performance of the individual joints per exercise, with darker purple color hinting
at underestimation and darker orange color hinting at overestimation. Values closer to zero either
indicate good performance or error cancellation.

Angle
Exercise View

Frontal -0.79 -0.87 0.09 -0.67 -0.04 0.98 0.29 0.65

Side -0.77 -0.92 -0.71 -0.84 -0.28 1.00 0.58 0.76

Frontal 0.34 0.45 0.36 0.37 0.75 0.86 -0.07 0.03

Side 0.92 0.70 0.08 0.72 0.76 0.96 0.12 0.20

Frontal -0.73 -0.82 0.19 0.45 0.78 0.81 -0.99 -1.00

Side -0.66 -0.64 -0.16 0.57 0.32 0.97 -1.00 -0.99

Frontal -0.01 0.83 -0.89 -0.84 -0.32 0.36 -0.63 -0.38

Side 0.48 0.96 -0.97 -0.90 -0.34 0.51 -0.78 -0.79

Frontal -0.32 0.38 -0.46 -0.28 0.99 0.99 0.34 0.39

Side -0.08 0.31 -0.78 -0.26 0.99 1.00 0.44 0.30

Frontal -0.98 -0.97 -0.91 -0.92 1.00 1.00 -0.75 0.60

Side -0.98 -0.99 -0.95 -0.88 1.00 1.00 -0.70 0.54

Frontal -0.87 -0.38 -0.28 -0.19 0.88 -0.21 -0.39 -0.46

Side -0.96 -0.81 -0.18 0.37 0.93 -0.28 -0.52 -0.57

Frontal -0.97 -0.98 -0.88 -0.88 0.99 0.99 0.49 0.52

Side -0.97 -1.00 -0.83 -0.84 0.98 0.99 0.51 0.42

Side Squat

Single Leg Deadlift

Squat

leftElbow rightElbow

Front Lunge

Jumping Jacks

Lateral Arm Raise

Leg Extension Crunch

Reverse Fly

rightKneeleftShoulder rightShoulder leftHip rightHip leftKnee

Figure A4. Pivot Table of the ratio of the ME divided by the MAE distributed over the eight exercises
and the eight tracked angles, each measured from the two iPad perspectives Frontal and Side. The
dashed boxes indicate which joints were specifically targeted by the respective exercise. The heatmap
visualizes the performance of the individual joints per exercise. Values close to zero indicate either
good performance of the tracking or over- and underestimation canceling each other out. Values
closer to −1 and 1 hint at systematic under- and overestimation in the specific configuration.
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Appendix C. ANOVA Post-Hoc Analysis

Appendix C.1. Mean Absolute Error

Table A1. The results of the ANOVA Post-hoc analysis of the MAE for the eight exercises Front Lunge
(FL), Jumping Jacks (JJ), Lateral Arm Raise (LAR), Leg Extension Crunch (LEC), Reverse Fly (RF),
Side Squat (SS), Single Leg Deadlift (SLD), and Squat (S).

A B Mean(A) Mean(B) Diff se T df p η2

FL JJ 2.78 2.25 0.53 0.06 9.69 242.95 0.00 0.26
FL LAR 2.78 2.04 0.74 0.07 10.05 240.85 0.00 0.28
FL LEC 2.78 2.81 −0.03 0.06 −0.49 254.87 1.00 0.00
FL RF 2.78 2.61 0.17 0.07 2.53 254.89 0.19 0.02
FL SS 2.78 3.32 −0.54 0.06 −9.35 257.60 0.00 0.25
FL SLD 2.78 2.33 0.45 0.06 7.51 253.76 0.00 0.18
FL S 2.78 3.49 −0.71 0.05 −14.17 204.84 0.00 0.43
JJ LAR 2.25 2.04 0.21 0.07 3.12 204.18 0.04 0.04
JJ LEC 2.25 2.81 −0.56 0.05 −11.29 258.38 0.00 0.33
JJ RF 2.25 2.61 −0.36 0.06 −5.85 221.58 0.00 0.12
JJ SS 2.25 3.32 −1.07 0.05 −21.28 255.86 0.00 0.63
JJ SLD 2.25 2.33 −0.08 0.05 −1.51 238.68 0.80 0.01
JJ S 2.25 3.49 −1.24 0.04 −30.34 241.51 0.00 0.78

LAR LEC 2.04 2.81 −0.77 0.07 −11.00 219.24 0.00 0.31
LAR RF 2.04 2.61 −0.57 0.08 −7.24 236.94 0.00 0.17
LAR SS 2.04 3.32 −1.28 0.07 −18.19 224.12 0.00 0.56
LAR SLD 2.04 2.33 −0.29 0.07 −4.03 230.32 0.00 0.06
LAR S 2.04 3.49 −1.45 0.06 −22.61 173.71 0.00 0.66
LEC RF 2.81 2.61 0.20 0.06 3.13 236.94 0.04 0.04
LEC SS 2.81 3.32 −0.52 0.05 −9.96 261.64 0.00 0.26
LEC SLD 2.81 2.33 0.48 0.06 8.66 249.27 0.00 0.23
LEC S 2.81 3.49 −0.68 0.04 −15.40 226.49 0.00 0.47
RF SS 2.61 3.32 −0.71 0.06 −11.10 241.49 0.00 0.32
RF SLD 2.61 2.33 0.28 0.07 4.22 244.66 0.00 0.07
RF S 2.61 3.49 −0.88 0.06 −15.39 186.05 0.00 0.47
SS SLD 3.32 2.33 0.99 0.06 17.69 251.45 0.00 0.55
SS S 3.32 3.49 −0.17 0.04 −3.63 221.60 0.01 0.05

SLD S 2.33 3.49 −1.16 0.05 −24.28 200.97 0.00 0.70

Appendix C.2. Mean Error

Table A2. The results of the ANOVA Post-hoc analysis of the ME for the eight angles left elbow (LE),
left hip (LH), left knee (LK), left shoulder (LS), right elbow (RE), right hip (RH), right knee (RK), and
right shoulder (RS).

A B Mean(A) Mean(B) Diff se T df p η2

LE LH 4.10 4.55 −0.45 0.06 −7–73 110.78 0.00 0.19
LE LK 4.10 4.40 −0.29 0.06 −5.03 111.83 0.00 0.09
LE LS 4.10 4.22 −0.11 0.06 −1.78 148.18 0.63 0.01
LE RE 4.10 4.25 −0.15 0.07 −2.14 177.59 0.39 0.02
LE RH 4.10 4.60 −0.50 0.06 −8.54 110.20 0.00 0.23
LE RK 4.10 4.44 −0.34 0.06 −5.74 111.85 0.00 0.12
LE RS 4.10 4.27 −0.17 0.06 −2.69 134.33 0.14 0.03
LH LK 4.55 4.40 0.16 0.02 9.12 315.23 0.00 0.21
LH LS 4.55 4.22 0.34 0.03 11.13 138.85 0.00 0.33
LH RE 4.55 4.25 0.30 0.04 7.63 121.90 0.00 0.19
LH RH 4.55 4.60 −0.05 0.02 −2.81 313.63 0.10 0.02
LH RK 4.55 4.44 0.12 0.02 6.71 315.19 0.00 0.12
LH RS 4.55 4.27 0.28 0.03 11.03 155.72 0.00 0.33
LK LS 4.40 4.22 0.18 0.03 5.92 143.19 0.00 0.12
LK RE 4.40 4.25 0.15 0.04 3.68 124.27 0.01 0.05
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Table A2. Cont.

A B Mean(A) Mean(B) Diff se T df p η2

LK RH 4.40 4.60 −0.20 0.02 −11.99 313.81 0.00 0.31
LK RK 4.40 4.44 −0.04 0.02 −2.34 318.00 0.28 0.02
LK RS 4.40 4.27 0.13 0.03 4.91 161.84 0.00 0.09
LS RE 4.22 4.25 −0.03 0.05 −0.72 187.27 1.00 0.00
LS RH 4.22 4.60 −0.38 0.03 −12.72 136.43 0.00 0.39
LS RK 4.22 4.44 −0.22 0.03 −7.26 143.28 0.00 0.17
LS RS 4.22 4.27 −0.05 0.04 −1.45 196.84 0.83 0.01
RE RH 4.25 4.60 −0.35 0.04 −8.82 120.58 0.00 0.24
RE RK 4.25 4.44 −0.19 0.04 −4.71 124.32 0.00 0.08
RE RS 4.25 4.27 −0.02 0.04 −0.41 167.96 1.00 0.00
RH RK 4.60 4.44 0.16 0.02 9.54 313.75 0.00 0.22
RH RS 4.60 4.27 0.33 0.03 12.90 152.29 0.00 0.40
RK RS 4.44 4.27 0.17 0.03 6.49 161.97 0.00 0.14
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