
Evaluating a Simulated Student using Real Students

Data for Training and Testing*

Noboru Matsuda
1
, William W. Cohen

2
, Jonathan Sewall

1
,

Gustavo Lacerda
2
, and Kenneth R. Koedinger

1

1Human-Computer Interaction Institute,
2Machine Learning Department,

Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA, 15217

[mazda, wcohen, sewall, gusl, koedinger]@cs.cmu.edu

Abstract: SimStudent is a machine-learning agent that learns cognitive skills by

demonstration. It was originally developed as a building block of the Cognitive

Tutor Authoring Tools (CTAT), so that the authors do not have to build a

cognitive model by hand, but instead simply demonstrate solutions for

SimStudent to automatically generate a cognitive model. The SimStudent

technology could then be used to model human students’ performance as well.

To evaluate the applicability of SimStudent as a tool for modeling real students,

we applied SimStudent to a genuine learning log gathered from classroom

experiments with the Algebra I Cognitive Tutor. Such data can be seen as the

human students’ “demonstrations” of how to solve problems. The results from

an empirical study show that SimStudent can indeed model human students’

performance. After training on 20 problems solved by a group of human

students, a cognitive model generated by SimStudent explained 82% of the

problem-solving steps performed correctly by another group of human students.

1 Introduction

Modeling students’ cognitive skills is one of the most important research issues for

Cognitive Tutors, a.k.a. Intelligent Tutoring Systems [1]. Such a model, often called a

cognitive model, is used to assess students’ performance and to provide feedback

(model-tracing), to monitor progress in students’ learning over the course of problem-

solving, to plan instructional strategies adaptively (knowledge tracing), or simply to

give a hint on what to do next [2]. Yet, developing a cognitive model is a labor-

intensive task that forces even a skilled expert to work for hundreds of hours.

We have developed a machine learning agent – called SimStudent – that learns

cognitive skills from demonstration. SimStudent is designed to be used as an

intelligent building block of a suite of authoring tools for Cognitive Tutors, called the

Cognitive Tutor Authoring Tools, or CTAT [3]. Using the SimStudent technology, an

author can simply demonstrate a few solutions. SimStudent generalizes those solutions

and generates a cognitive model that is sufficient to explain the solutions. This

* The research presented in this paper is supported by National Science Foundation Award No.

REC-0537198

In Proceeding of the International Conference on User Modeling,

Corfu, Greece, 2007 (in press)

2 N.Matsuda et al.

cognitive model is then plugged into a Cognitive Tutor as the knowledge base for

model-tracing. This way, the authors are relieved from the burden of building a

cognitive model by hand.

The goal of the SimStudent project is twofold: on the engineering side, we

investigate whether SimStudent facilitates the authoring of Cognitive Tutors. On the

user modeling side, we explore whether the SimStudent helps us advance studies in

human and machine learning.

As a step towards the first goal, we have tested SimStudent on several domains

including algebra equation solving, long division, multi-column multiplication,

fraction addition, Stoichiometry (chemistry), and Tic-Tac-Toe. So far, SimStudent

showed a reasonable and stable performance on those test domains [4].

The goal of this paper, as an attempt to address the second goal mentioned above,

is to see whether SimStudent actually models cognitive skills acquired by human

students during learning by solving problems. To address this issue, we apply

SimStudent to the student-tutor interaction log data (i.e., the record of activities

collected while human students were learning with a computer tutor) to see whether

SimStudent is able to learn the same cognitive skills that the human students learn. In

other words, we consider the human students’ learning log as the “demonstrations”

performed by individual human students. We then train SimStudent with these

demonstrations and have it learn cognitive skills. If SimStudent indeed learns

cognitive skills in this way, then we would further be able to use SimStudent to

investigate human students’ learning by analyzing cognitive models generated by

SimStudent as well as their learning processes.

The fundamental technology that supports SimStudent is inductive logic

programming [5] and programming by demonstration [6]. There are studies on using a

machine-learning technique for cognitive modeling and educational tools. Some

studies use a machine-learning agent to learn domain principles, e.g., [7]. Some

applied a machine-learning technique to model human students’ behavior [8, 9], or to

assess instructions [10]. Probably the most distinctive aspect of SimStudent developed

for the current study is that it generates human-readable (hence editable) production

rules that model cognitive skills performed by humans.

The outline of the paper is as follows. We first introduce the Cognitive Tutor that

the human students used in the classroom. This gives a flavor of how human students

“demonstrated” their skills to the Cognitive Tutor. We then explain how SimStudent

learns cognitive skills from such demonstrations. Finally, we show results from an

evaluation study on the applicability of SimStudent to the genuine student-tutor

interaction log data.

2 Algebra I Cognitive Tutor

The Algebra I Tutor is a Cognitive Tutor developed by Carnegie Learning Inc. This

tutor is used in real classroom situations for high school algebra at about 2000 schools

nationwide in the United States [11]. For the current study, we use human students’

log data collected from a study conducted in a high school in an urban area of

Pittsburgh. There were 81 students involved in the study. The students used the

Cognitive Tutor individually to learn algebra equation solving. There were 15 sections

taught by the tutor, which covered most of the skills necessary to solve linear

Evaluating a Simulated Student using Real Students Data 3

equations. In this paper, we only use the log data collected through the first four

sections. The equations in these introductory sections only contain one unknown and

the form of equation is A+B=C+D where A, B, C, and D are monomial terms (e.g., a

constant R or Rx where R is a rational number).

The tutor logged the students’ activities in great detail. For the current study,

however, we only focus on the problem-solving steps, which are slightly different from

equation-transformation steps. Explanations follow.

There are two types of problem-solving steps: (1) an action step is to select an

algebraic operation to transform an equation into another (e.g., “to declare to add 3x to

the both sides of the equation”), and (2) a type-in step is to do a real arithmetic

calculation (e.g., “to enter –4 as a result of adding 3x to –4–3x”). By performing these

problem-solving steps, a given equation is transformed as follows: a student first

selects an action and then applies it to both sides of the equation. For example, for an

equation shown in Fig. 1 (a), the student first selected “Add to both sides” from the

pull down menu (b), which in turn prompts the student to specify a value to add (c).

This completes the first problem-solving step, which by definition is an action step.

The student then enters the left- and right-hand sides separately. The Fig. 1 (d) shows a

moment at which the student had just typed-in the left-hand side. Thus, entering a new

equation is completed in two problem-solving steps, which are both type-in steps. In

sum, three problem-solving steps correspond to a single equation-transformation step

that transforms an equation into another. Sometimes, however, the tutor carries out the

type-in steps for the student, especially when new skills have just been introduced.

(a) A given equation (b)

(c) Entering a value to be added (d) Typing-in a left-hand side

Fig. 1. Screen shot from the Algebra I tutor

As mentioned above, when a student performs a problem-solving step, the tutor

provides immediate feedback on it. This is possible because the tutor has a cognitive

4 N.Matsuda et al.

model of the target cognitive skills, represented as a set of production rules. Since a

cognitive model usually contains production rules not only for correct steps, but also

for incorrect steps, the tutor can provide situated feedback on typical errors. The

student can also ask for a hint (by pressing the [?] button on the left side of the tutor

window) when he/she gets stuck.

Every time a student performs a step, the tutor logs it. The log contains, among

other things, (1) the equation on which the step was made, (2) the action taken (either

the name of the algebraic operation selected from the menu for an action step, or the

symbol “type-in” for a type-in step), (3) the value entered (e.g., the value specified to

be added to the both sides for the “add” action mentioned above, or the left- and right-

hand side entered for the type-in steps), and (4) the “correctness” of the step, which is

either “correct” (in case the student’s steps is correct), “error” (the student’s steps is

incorrect), or “hint” (when the student asked a hint).

3 Overview of SimStudent

This section is a brief overview of SimStudent. We first explain how SimStudent

learns cognitive skills from demonstration. The double meaning of “demonstration” in

the current context will then be explained – a demonstration by an author who is

building a Cognitive Tutor, and a “demonstration” in a learning log made by human

students. We then explain briefly how SimStudent learns a cognitive model. Due to the

space limitation, we do not provide details of the learning algorithms. See [12] for

more details.

3.1 Cognitive modeling with SimStudent

Fig. 2 shows a sample interface for a

Cognitive Tutor to teach algebra equation

solving. In this particular tutor, equation-

solving steps are represented in a simple

table with three columns. The first two

columns represent the left-hand side

(LHS) and the right-hand side (RHS) of

an equation (e.g., 41.72y + 87 = 34.57).

The third column represents the name of

a skill applied to transform an equation

into another. In this tutor, an equation is

transformed with three problem-solving steps that are (1) to specify a skill, e.g.,

“subtract 87” from both sides, (2) to enter LHS, e.g., “41.72y”, and (3) to enter RHS,

e.g., “34.57–87.”

A step is modeled with a tuple representing what was done where. The what-part

is further decomposed into an action taken and a value input by the action. The where

part is called selection because it is an element of the user interface that the

demonstrator selected to do some action on. In summary, a problem-solving step is

represented with a tuple <selection, action, input>. For example, when the

demonstrator inputs “41.72y” into the LHS on the 2nd row, the tuple reads <C1R2,

41.72y, Fill_in_cell> where C1R2 represents a cell at the 1st column in the 2nd row.

Fig. 2. A tutor interface for algebra equation

solving.

Evaluating a Simulated Student using Real Students Data 5

SimStudent learns a single production rule for each of the problem-solving steps

demonstrated. The demonstrator must specify two things when demonstrating a

problem-solving step; (1) the focus of attention, and (2) the skill name. The focus of

attention is a set of previous selections or the given equation. For example, in Fig. 2,

the first problem-solving step, which is to enter “subtract 87,” requires two elements,

“41.72y+87” and “34.57,” as the focus of attention. The skill name must be unique for

unique steps and consistent throughout the demonstration. In the above example, the

skill to enter “subtract 87” is called “subtract,” and the skill to enter “41.72y” and

“34.57-87” is “subtract-typein.” The actual value entered (e.g., “subtract 87”) is called

an “input.”

3.2 Learning algorithm

Production rules are represented in the Jess production rules description language [13].

A production rule used in the Cognitive Tutors consists of three major parts:

(1) WME-paths, (2) feature conditions, and (3) an operator sequence. The first two

components construct the left-hand side of a production rule, which specifies which

elements of the interface are involved in the production rule, and what conditions

should hold about those elements in order for the production rule to be fired. The

operator sequence constitutes the right-hand side actions of the production rule, which

specifies what should be done with the interface elements to make the “input” value of

the step (see the definition of the tuple in section 3.1).

SimStudent utilizes three different learning algorithms to learn three components

(the WME-path, the feature conditions, and the operator sequence) separately. An

example would best explain how. Suppose a step is demonstrated and named as N.

Also suppose that this is the k-th instance of demonstration for the skill N. Let’s denote

this as I(N,k). Let’s assume that the skill N requires two elements as focus of attention,

and we denote them as <F
N, k

1, F
N, k

2>, the elements of focus of attention for the k-th

instance of the skill N.

The WME-path is a straightforward generalization of the focus of attention. The

elements specified in the focus of attention are elements on the tutor interface. They

can thus be uniquely identified in terms of their “location” in the interface. Suppose,

for example, that the first element of focus of attention in the j-th instance of the skill

N, F
N, j

1 is “a cell in the 1st column on the 2nd row.” If the first element of focus of

attention in the (j+1)-th instance F
N, j+1

1 is “a cell in the 1st column on the 3rd row,”

then the WME-path for the 1st element of focus of attention for the skill N would be “a

cell in the 1st column at any row.”

SimStudent uses FOIL [14] to learn feature conditions. The target concept is the

“applicability” of the skill N given the focus of attention <F
N
1, F

N
2>, or in a prolog-like

form N(F
N
1, F

N
2). When a step I(N,k) is demonstrated, it serves as a positive example

for the skill N, and a negative example for all other skills. Basically, as the

demonstration proceeds, the skill N has all <F
N, k

1, F
N, k

2> as positive examples, and

<F
X, k

1, F
X, k

2> as negative examples, where X is all the other skills demonstrated. We

provide FOIL with a set of feature predicates as the background knowledge with

which to compose hypotheses for the target concept. Some examples of such feature

predicates are isPolynomial(A), isNumeratorOf(A,B), isConstant(A). Once a

hypothesis is found for the target concept, the body of the hypothesis becomes the

feature condition in the left-hand side of the production rule. Suppose, for example,

6 N.Matsuda et al.

that FOIL found a hypothesis N(F
N
1, F

N
2) :- isPolynomial(F

N
1), isConstant(F

N
2). The

left-hand side feature condition for this production rule would then say that “the value

of the first focus of attention must be a polynomial and the second value must be a

constant.”

SimStudent applies iterative-deepening depth-first search to learn an operator

sequence for the right-hand side of the production rules. When a new instance of

demonstration on skill N is provided, SimStudent searches for the shortest operator

sequence that derives the “input” from the focus of attention for the all instances

demonstrated. Those operators are provided prior to learning as background

knowledge.

4 Evaluation

To evaluate the applicability of the SimStudent technology to genuine real students’

learning log, we conducted an evaluation study to see (1) whether SimStudent can

generate cognitive models for the real students’ performance, and if so (2) how

accurate such models are.

The tutor interface shown in Fig. 2 is also used in the current study as a tutor

interface for SimStudent to be demonstrated. It is a simple but straightforward

realization of the human students’ performances in a SimStudent-readable form. There

is an issue on focus of attention to be mentioned here. When the human students were

using the Algebra I Tutor, they did not indicate their focus of attention, and hence no

information of focus of attention is stored in the log. We have presumed that both LHS

and RHS are used as the focus of attention for the action steps. Likewise, for the type-

in steps, we presume that the Skill Operand and the cell immediately above the cell to

be typed-in are the focus of attention. So, for example in Fig. 2, if “34.57-87” is

entered, which is a skill “subtract-typein”, the elements “34.57” and “subtract 87” are

used as the focus of attention.

4.1 Data

The students’ learning log was converted into problem files that SimStudent can

read. Each problem file contains the sequence of problem-solving steps made by a

single student to solve a single problem. There were 13451 problem-solving steps

performed by 81 human students. These problem-solving steps were converted into

989 problem files.

4.2 Method

We applied the following validation technique. The 81 students were randomly split

into 14 groups. Each of those 14 groups were used exactly once for training and once

for testing. More precisely, for the n-th validation, the n-th group is used for training

and the (n+1)-th group is used for testing. A total of 14 validation sessions were then

run.

During training, SimStudent learned cognitive skills only on those steps that were

correctly performed by the human students. In other words, SimStudent learned only

the correct skill applications “demonstrated” by the human students.

Evaluating a Simulated Student using Real Students Data 7

Because of memory limitations, we could use only as many as 20 training and 30

test problems in each of the validation sessions. To select those problems, a human

student was randomly selected in a given group. If the selected human student did not

have enough problem files, then more human students were selected randomly. A total

of 280 training and the 420 test problems were used across the 14 validation sessions.

In a validation session, the 30 test problems were tested. The validation took place

after each training problem on which SimStudent was trained. Since there were 20

training problems, a total of 600 tests were carried out for validation. There were 32

operators and 12 feature predicates used as the background knowledge.

4.3 Results

In two out of 14 validation sessions, we identified corrupted data and could not

complete runs on these. In one validation session, not all cognitive skills discussed

below appeared in the training problems. Hence there are 11 validation sessions (220

training and 330 test problems) used for the analysis discussed in the rest of the

section.

Table 1. Frequency of learning for each skill appearing in the training problems. The numbers

on the first row are the IDs for the validation sessions. The validation sessions and the skills are

sorted by the total number.

Skill 014 010 009 004 008 011 006 003 001 005 007 Total Ave.

divide 22 21 22 20 22 19 20 21 20 21 20 228 20.73

divide-typein 20 16 18 18 14 12 12 10 10 10 12 152 13.82

subtract 15 18 12 14 13 11 16 9 6 11 7 132 12.00

add 7 4 10 6 10 8 5 12 14 10 13 99 9.00

subtract-typein 14 16 8 12 10 6 10 4 2 4 6 92 8.36

multiply 9 10 9 6 8 11 9 10 8 6 6 92 8.36

add-typein 6 2 10 6 8 6 2 6 8 6 6 66 6.00

multiply-typein 6 8 4 6 2 6 4 4 6 6 2 54 4.91

Total 99 95 93 88 87 79 78 76 74 74 72 915 83.18

4.3.1 Learning opportunities

There were 12 skills involved in the training problems. Eight of them are action skills

and another four are type-in skills. Four out of the eight action skills were learned in

only a very few training problems and they did not appear in all validation sessions.

Therefore, we have excluded those skills from the analysis. In sum, there are four

action skills and four type-in skills included in the current analysis. Table 1 shows the

frequency of learning for each of those skills. The skills add, subtract, multiply, and

divide are action skills. The skill add, for example, is to add a term to both sides. The

skill add-typein is for a type-in step that follows the step “add.” Note that those eight

skills are the most basic skills used to solve simple equations.

4.3.2 Learning curve analysis

To analyze how SimStudent’s learning improved over the time, we measured the

“accuracy” of production rules on the test problems. Each time learning was completed

on a training problem, each of the steps in the 30 test problems were model-traced

using the production rules available at that moment. An attempt at model-tracing is

defined to be successful when there is a production rule with the LHS conditions that

hold and the RHS operator sequence generates an “input” that matches the step.

8 N.Matsuda et al.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Total

Average of Success

NumTrainingNumber of training problems

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Total

Average of Success

NumTrainingNumber of training problems

Fig. 3. Overall performance improvement in terms of the average ratio of successful model-

tracing aggregated across all validation sessions and the (eight) skills. The x-axis shows the

number of training problems.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add

add-typein

divide

divide-typein

multiply

multiply-typein

subtract

subtract-typein

Average of Success

NumTraining

ModelRule

Fig. 4. Learning curve on individual skills. The learning curve shown in Fig. 3 is decomposed

into individual skills.

Fig. 3 shows the learning curves aggregated across all eight skills and averaged

across the 11 validation sessions. Fig. 4 shows the learning curve for the individual

skills. Overall, SimStudent learned skills quite well. After training on 20 problems, the

ratio of successful model-tracing reached at least 73% on most of the skills. However,

some skills were not exactly learned as well as the other skills – it seems to be difficult

Evaluating a Simulated Student using Real Students Data 9

to learn the skill “multiply-typein.” It turned out that not all skills had the same

number of opportunities to be learned. Different training problems have different

solution steps, and hence contain a different number of instances for each of the skills

to be demonstrated.

Fig. 5 shows how the accuracy of model-tracing grew as SimStudent had more

and more opportunities to learn individual skills. The x-axis shows the frequency of

learning (in contrast to the number of problems demonstrated). The y-axis shows the

overall average of the average ratio of successful model-tracing aggregated from the

beginning when a certain number of instances of learning occurred. That is, this graph

shows how quickly (or slowly) the learning occurred. For example, even when two

skills ended up with having the same performance rate (e.g., the skills “add” and “add-

typein” shown in Fig. 4), it can be read from Fig. 5 that the skill “add-typein” reached

its final performance quickly within only 5 instances of demonstration.

The four action skills, add, subtract, multiply, and divide, were learned at the same

rate. Different type-in skills had different rates and the quality of the production rules

(i.e., the accuracy of model-tracing) varied significantly. We have yet to investigate

the reason for the variation in the learning rate of these skills.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20

Freq. learning

A
v
e
.
s
u
c
c
e
s
s

add

add-typein

divide

divide-typein

multiply

multiply-typein

subtract

subtract-typein

Fig. 5. Average of the average ratio of successful model-tracing in the first x opportunities for

learning. For example, for the skill “add,” the average success ratio for the first 3 learning

opportunities were .18, .50, and .64. Therefore, on the above graph, the value for the 3rd plot for

add is .44.

5 Conclusion

We have shown that SimStudent can indeed model human students’ performances

from their learning activity log. The accuracy of model-tracing based on the cognitive

model generated by SimStudent reached 83% after training on 20 problems performed

by human students.

As long as the human students exhibit correct performances (i.e., the

performances are consistent), even when they have variations in strategy and

10 N.Matsuda et al.

representations, SimStudent can generate a cognitive model that is consistent with the

human students’ (correct) performances. We have yet to improve the learning ability

of SimStudent so that the human students’ incorrect behaviors can be modeled. This is

one of the important issues to be addressed in the future.

The above finding on the ability of SimStudent to model real students’

performance suggests potential ways to expand the applicability of SimStudent. For

example, if we can model human students’ erroneous performances as well, then it

might be possible to predict human students’ performance on novel problems.

Technically speaking, modeling “incorrect” performances does not differ greatly from

modeling a “correct” performance, as long as the human student makes a systematic

error (based on a stable misconception). The real challenge would then be how to deal

with the inconsistent behaviors (e.g., guess, slip, or even gaming).

References:

1. Greer, J.E. and G. McCalla, Student modelling: the key to individualized knowledge-based

instruction. 1994, Berlin; New York: Springer-Verlag. x, 383.

2. Anderson, J.R., et al., Cognitive tutors: Lessons learned. Journal of the Learning Sciences,

1995. 4(2): p. 167-207.

3. Aleven, V., et al., The Cognitive Tutor Authoring Tools (CTAT): Preliminary evaluation of

efficiency gains, in Proceedings of the 8th International Conference on Intelligent Tutoring

Systems, M. Ikeda, K.D. Ashley, and T.W. Chan, Editors. 2006, Springer Verlag: Berlin. p.

61-70.

4. Matsuda, N., et al., Applying Machine Learning to Cognitive Modeling for Cognitive Tutors,

in Machine Learning Department Technical Report (CMU-ML-06-105). 2006, School of

Computer Science, Carnegie Mellon University: Pittsburgh, PA.

5. Muggleton, S. and L. de Raedt, Inductive Logic Programming: Theory and methods. Journal

of Logic Programming, 1994. 19-20(Supplement 1): p. 629-679.

6. Lau, T.A. and D.S. Weld, Programming by demonstration: an inductive learning

formulation, in Proceedings of the 4th international conference on Intelligent user

interfaces. 1998, ACM Press: New York, NY. p. 145-152.

7. Johnson, W.L., et al., Integrating pedagogical agents into virtual environments. Presence,

1998. 7(6): p. 523-546.

8. Baffes, P. and R. Mooney, Refinement-Based Student Modeling and Automated Bug Library

Construction. Journal of Artificial Intelligence in Education, 1996. 7(1): p. 75-116.

9. Merceron, A. and K. Yacef, A web-based tutoring tool with mining facilities to improve

learning and teaching, in Proceedings of the 11th International Conference on Artificial

Intelligence in Education, U. Hoppe, F. Verdejo, and J. Kay, Editors. 2003. p. 201-208.

10. Mertz, J.S., Using A Simulated Student for Instructional Design. International Journal of

Artificial Intelligence in Education, 1997. 8: p. 116-141.

11. Koedinger, K.R. and A. Corbett, Cognitive Tutors: Technology Bringing Learning Sciences

to the Classroom, in The Cambridge Handbook of the Learning Sciences, R.K. Sawyer,

Editor. 2006, Cambridge University Press: New York, NY. p. 61-78.

12. Matsuda, N., W.W. Cohen, and K.R. Koedinger, Applying Programming by Demonstration

in an Intelligent Authoring Tool for Cognitive Tutors, in AAAI Workshop on Human

Comprehensible Machine Learning (Technical Report WS-05-04). 2005, AAAI association:

Menlo Park, CA. p. 1-8.

13. Friedman-Hill, E., Jess in Action: Java Rule-based Systems. 2003, Greenwich, CT:

Manning.

14. Quinlan, J.R., Learning Logical Definitions from Relations. Machine Learning, 1990. 5(3):

p. 239-266.

