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Abstract: SimStudent is a machine-learning agent that learns cognitive skills by 

demonstration. It was originally developed as a building block of the Cognitive 

Tutor Authoring Tools (CTAT), so that the authors do not have to build a 

cognitive model by hand, but instead simply demonstrate solutions for 

SimStudent to automatically generate a cognitive model. The SimStudent 

technology could then be used to model human students’ performance as well. 

To evaluate the applicability of SimStudent as a tool for modeling real students, 

we applied SimStudent to a genuine learning log gathered from classroom 

experiments with the Algebra I Cognitive Tutor. Such data can be seen as the 

human students’ “demonstrations” of how to solve problems. The results from 

an empirical study show that SimStudent can indeed model human students’ 

performance. After training on 20 problems solved by a group of human 

students, a cognitive model generated by SimStudent explained 82% of the 

problem-solving steps performed correctly by another group of human students.  

1 Introduction 

Modeling students’ cognitive skills is one of the most important research issues for 

Cognitive Tutors, a.k.a. Intelligent Tutoring Systems [1]. Such a model, often called a 

cognitive model, is used to assess students’ performance and to provide feedback 

(model-tracing), to monitor progress in students’ learning over the course of problem-

solving, to plan instructional strategies adaptively (knowledge tracing), or simply to 

give a hint on what to do next [2]. Yet, developing a cognitive model is a labor-

intensive task that forces even a skilled expert to work for hundreds of hours.  

We have developed a machine learning agent – called SimStudent – that learns 

cognitive skills from demonstration. SimStudent is designed to be used as an 

intelligent building block of a suite of authoring tools for Cognitive Tutors, called the 

Cognitive Tutor Authoring Tools, or CTAT [3]. Using the SimStudent technology, an 

author can simply demonstrate a few solutions. SimStudent generalizes those solutions 

and generates a cognitive model that is sufficient to explain the solutions. This 
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cognitive model is then plugged into a Cognitive Tutor as the knowledge base for 

model-tracing. This way, the authors are relieved from the burden of building a 

cognitive model by hand.  

The goal of the SimStudent project is twofold: on the engineering side, we 

investigate whether SimStudent facilitates the authoring of Cognitive Tutors. On the 

user modeling side, we explore whether the SimStudent helps us advance studies in 

human and machine learning.  

As a step towards the first goal, we have tested SimStudent on several domains 

including algebra equation solving, long division, multi-column multiplication, 

fraction addition, Stoichiometry (chemistry), and Tic-Tac-Toe. So far, SimStudent 

showed a reasonable and stable performance on those test domains [4]. 

The goal of this paper, as an attempt to address the second goal mentioned above, 

is to see whether SimStudent actually models cognitive skills acquired by human 

students during learning by solving problems. To address this issue, we apply 

SimStudent to the student-tutor interaction log data (i.e., the record of activities 

collected while human students were learning with a computer tutor) to see whether 

SimStudent is able to learn the same cognitive skills that the human students learn. In 

other words, we consider the human students’ learning log as the “demonstrations” 

performed by individual human students. We then train SimStudent with these 

demonstrations and have it learn cognitive skills. If SimStudent indeed learns 

cognitive skills in this way, then we would further be able to use SimStudent to 

investigate human students’ learning by analyzing cognitive models generated by 

SimStudent as well as their learning processes.  

The fundamental technology that supports SimStudent is inductive logic 

programming [5] and programming by demonstration [6]. There are studies on using a 

machine-learning technique for cognitive modeling and educational tools. Some 

studies use a machine-learning agent to learn domain principles, e.g., [7]. Some 

applied a machine-learning technique to model human students’ behavior [8, 9], or to 

assess instructions [10]. Probably the most distinctive aspect of SimStudent developed 

for the current study is that it generates human-readable (hence editable) production 

rules that model cognitive skills performed by humans.  

The outline of the paper is as follows. We first introduce the Cognitive Tutor that 

the human students used in the classroom. This gives a flavor of how human students 

“demonstrated” their skills to the Cognitive Tutor. We then explain how SimStudent 

learns cognitive skills from such demonstrations. Finally, we show results from an 

evaluation study on the applicability of SimStudent to the genuine student-tutor 

interaction log data.  

2 Algebra I Cognitive Tutor 

The Algebra I Tutor is a Cognitive Tutor developed by Carnegie Learning Inc. This 

tutor is used in real classroom situations for high school algebra at about 2000 schools 

nationwide in the United States [11]. For the current study, we use human students’ 

log data collected from a study conducted in a high school in an urban area of 

Pittsburgh. There were 81 students involved in the study. The students used the 

Cognitive Tutor individually to learn algebra equation solving. There were 15 sections 

taught by the tutor, which covered most of the skills necessary to solve linear 
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equations. In this paper, we only use the log data collected through the first four 

sections. The equations in these introductory sections only contain one unknown and 

the form of equation is A+B=C+D where A, B, C, and D are monomial terms (e.g., a 

constant R or Rx where R is a rational number).  

The tutor logged the students’ activities in great detail. For the current study, 

however, we only focus on the problem-solving steps, which are slightly different from 

equation-transformation steps. Explanations follow.  

There are two types of problem-solving steps: (1) an action step is to select an 

algebraic operation to transform an equation into another (e.g., “to declare to add 3x to 

the both sides of the equation”), and (2) a type-in step is to do a real arithmetic 

calculation (e.g., “to enter –4 as a result of adding 3x to –4–3x”). By performing these 

problem-solving steps, a given equation is transformed as follows: a student first 

selects an action and then applies it to both sides of the equation. For example, for an 

equation shown in Fig. 1 (a), the student first selected “Add to both sides” from the 

pull down menu (b), which in turn prompts the student to specify a value to add (c). 

This completes the first problem-solving step, which by definition is an action step. 

The student then enters the left- and right-hand sides separately. The Fig. 1 (d) shows a 

moment at which the student had just typed-in the left-hand side. Thus, entering a new 

equation is completed in two problem-solving steps, which are both type-in steps. In 

sum, three problem-solving steps correspond to a single equation-transformation step 

that transforms an equation into another. Sometimes, however, the tutor carries out the 

type-in steps for the student, especially when new skills have just been introduced.  
 

(a) A given equation (b)  

  
(c) Entering a value to be added (d) Typing-in a left-hand side 

  

Fig. 1. Screen shot from the Algebra I tutor 

As mentioned above, when a student performs a problem-solving step, the tutor 

provides immediate feedback on it. This is possible because the tutor has a cognitive 
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model of the target cognitive skills, represented as a set of production rules. Since a 

cognitive model usually contains production rules not only for correct steps, but also 

for incorrect steps, the tutor can provide situated feedback on typical errors. The 

student can also ask for a hint (by pressing the [?] button on the left side of the tutor 

window) when he/she gets stuck.  

Every time a student performs a step, the tutor logs it. The log contains, among 

other things, (1) the equation on which the step was made, (2) the action taken (either 

the name of the algebraic operation selected from the menu for an action step, or the 

symbol “type-in” for a type-in step), (3) the value entered (e.g., the value specified to 

be added to the both sides for the “add” action mentioned above, or the left- and right-

hand side entered for the type-in steps), and (4) the “correctness” of the step, which is 

either “correct” (in case the student’s steps is correct), “error” (the student’s steps is 

incorrect), or “hint” (when the student asked a hint).  

3 Overview of SimStudent 

This section is a brief overview of SimStudent. We first explain how SimStudent 

learns cognitive skills from demonstration. The double meaning of “demonstration” in 

the current context will then be explained – a demonstration by an author who is 

building a Cognitive Tutor, and a “demonstration” in a learning log made by human 

students. We then explain briefly how SimStudent learns a cognitive model. Due to the 

space limitation, we do not provide details of the learning algorithms. See [12] for 

more details.  

3.1 Cognitive modeling with SimStudent 

Fig. 2 shows a sample interface for a 

Cognitive Tutor to teach algebra equation 

solving. In this particular tutor, equation-

solving steps are represented in a simple 

table with three columns. The first two 

columns represent the left-hand side 

(LHS) and the right-hand side (RHS) of 

an equation (e.g., 41.72y + 87 = 34.57). 

The third column represents the name of 

a skill applied to transform an equation 

into another. In this tutor, an equation is 

transformed with three problem-solving steps that are (1) to specify a skill, e.g., 

“subtract 87” from both sides, (2) to enter LHS, e.g., “41.72y”, and (3) to enter RHS, 

e.g., “34.57–87.”  

A step is modeled with a tuple representing what was done where. The what-part 

is further decomposed into an action taken and a value input by the action. The where 

part is called selection because it is an element of the user interface that the 

demonstrator selected to do some action on. In summary, a problem-solving step is 

represented with a tuple <selection, action, input>. For example, when the 

demonstrator inputs “41.72y” into the LHS on the 2nd row, the tuple reads <C1R2, 

41.72y, Fill_in_cell> where C1R2 represents a cell at the 1st column in the 2nd row. 

Fig. 2. A tutor interface for algebra equation 

solving. 
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SimStudent learns a single production rule for each of the problem-solving steps 

demonstrated. The demonstrator must specify two things when demonstrating a 

problem-solving step; (1) the focus of attention, and (2) the skill name. The focus of 

attention is a set of previous selections or the given equation. For example, in Fig. 2, 

the first problem-solving step, which is to enter “subtract 87,” requires two elements, 

“41.72y+87” and “34.57,” as the focus of attention. The skill name must be unique for 

unique steps and consistent throughout the demonstration. In the above example, the 

skill to enter “subtract 87” is called “subtract,” and the skill to enter “41.72y” and 

“34.57-87” is “subtract-typein.” The actual value entered (e.g., “subtract 87”) is called 

an “input.” 

3.2 Learning algorithm 

Production rules are represented in the Jess production rules description language [13]. 

A production rule used in the Cognitive Tutors consists of three major parts: 

(1) WME-paths, (2) feature conditions, and (3) an operator sequence. The first two 

components construct the left-hand side of a production rule, which specifies which 

elements of the interface are involved in the production rule, and what conditions 

should hold about those elements in order for the production rule to be fired. The 

operator sequence constitutes the right-hand side actions of the production rule, which 

specifies what should be done with the interface elements to make the “input” value of 

the step (see the definition of the tuple in section 3.1).  

SimStudent utilizes three different learning algorithms to learn three components 

(the WME-path, the feature conditions, and the operator sequence) separately. An 

example would best explain how. Suppose a step is demonstrated and named as N. 

Also suppose that this is the k-th instance of demonstration for the skill N. Let’s denote 

this as I(N,k). Let’s assume that the skill N requires two elements as focus of attention, 

and we denote them as <F
N, k

1, F
N, k

2>, the elements of focus of attention for the k-th 

instance of the skill N. 

The WME-path is a straightforward generalization of the focus of attention. The 

elements specified in the focus of attention are elements on the tutor interface. They 

can thus be uniquely identified in terms of their “location” in the interface. Suppose, 

for example, that the first element of focus of attention in the j-th instance of the skill 

N, F
N, j

1 is “a cell in the 1st column on the 2nd row.” If the first element of focus of 

attention in the (j+1)-th instance F
N, j+1

1 is “a cell in the 1st column on the 3rd row,” 

then the WME-path for the 1st element of focus of attention for the skill N would be “a 

cell in the 1st column at any row.” 

SimStudent uses FOIL [14] to learn feature conditions. The target concept is the 

“applicability” of the skill N given the focus of attention <F
N
1, F

N
2>, or in a prolog-like 

form N(F
N
1, F

N
2). When a step I(N,k) is demonstrated, it serves as a positive example 

for the skill N, and a negative example for all other skills. Basically, as the 

demonstration proceeds, the skill N has all <F
N, k

1, F
N, k

2> as positive examples, and 

<F
X, k

1, F
X, k

2> as negative examples, where X is all the other skills demonstrated. We 

provide FOIL with a set of feature predicates as the background knowledge with 

which to compose hypotheses for the target concept. Some examples of such feature 

predicates are isPolynomial(A), isNumeratorOf(A,B), isConstant(A). Once a 

hypothesis is found for the target concept, the body of the hypothesis becomes the 

feature condition in the left-hand side of the production rule. Suppose, for example, 
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that FOIL found a hypothesis N(F
N
1, F

N
2) :- isPolynomial(F

N
1), isConstant(F

N
2). The 

left-hand side feature condition for this production rule would then say that “the value 

of the first focus of attention must be a polynomial and the second value must be a 

constant.” 

SimStudent applies iterative-deepening depth-first search to learn an operator 

sequence for the right-hand side of the production rules. When a new instance of 

demonstration on skill N is provided, SimStudent searches for the shortest operator 

sequence that derives the “input” from the focus of attention for the all instances 

demonstrated. Those operators are provided prior to learning as background 

knowledge.  

4 Evaluation 

To evaluate the applicability of the SimStudent technology to genuine real students’ 

learning log, we conducted an evaluation study to see (1) whether SimStudent can 

generate cognitive models for the real students’ performance, and if so (2) how 

accurate such models are.  

The tutor interface shown in Fig. 2 is also used in the current study as a tutor 

interface for SimStudent to be demonstrated. It is a simple but straightforward 

realization of the human students’ performances in a SimStudent-readable form. There 

is an issue on focus of attention to be mentioned here. When the human students were 

using the Algebra I Tutor, they did not indicate their focus of attention, and hence no 

information of focus of attention is stored in the log. We have presumed that both LHS 

and RHS are used as the focus of attention for the action steps. Likewise, for the type-

in steps, we presume that the Skill Operand and the cell immediately above the cell to 

be typed-in are the focus of attention. So, for example in Fig. 2, if “34.57-87” is 

entered, which is a skill “subtract-typein”, the elements “34.57” and “subtract 87” are 

used as the focus of attention.  

4.1 Data 

The students’ learning log was converted into problem files that SimStudent can 

read. Each problem file contains the sequence of problem-solving steps made by a 

single student to solve a single problem. There were 13451 problem-solving steps 

performed by 81 human students. These problem-solving steps were converted into 

989 problem files.  

4.2 Method 

We applied the following validation technique. The 81 students were randomly split 

into 14 groups. Each of those 14 groups were used exactly once for training and once 

for testing. More precisely, for the n-th validation, the n-th group is used for training 

and the (n+1)-th group is used for testing. A total of 14 validation sessions were then 

run.  

During training, SimStudent learned cognitive skills only on those steps that were 

correctly performed by the human students. In other words, SimStudent learned only 

the correct skill applications “demonstrated” by the human students.  
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Because of memory limitations, we could use only as many as 20 training and 30 

test problems in each of the validation sessions. To select those problems, a human 

student was randomly selected in a given group. If the selected human student did not 

have enough problem files, then more human students were selected randomly. A total 

of 280 training and the 420 test problems were used across the 14 validation sessions.  

In a validation session, the 30 test problems were tested. The validation took place 

after each training problem on which SimStudent was trained. Since there were 20 

training problems, a total of 600 tests were carried out for validation. There were 32 

operators and 12 feature predicates used as the background knowledge.  

4.3 Results 

In two out of 14 validation sessions, we identified corrupted data and could not 

complete runs on these. In one validation session, not all cognitive skills discussed 

below appeared in the training problems. Hence there are 11 validation sessions (220 

training and 330 test problems) used for the analysis discussed in the rest of the 

section.  

Table 1. Frequency of learning for each skill appearing in the training problems. The numbers 

on the first row are the IDs for the validation sessions. The validation sessions and the skills are 

sorted by the total number.  

Skill 014 010 009 004 008 011 006 003 001 005 007 Total Ave.

divide 22 21 22 20 22 19 20 21 20 21 20 228 20.73

divide-typein 20 16 18 18 14 12 12 10 10 10 12 152 13.82

subtract 15 18 12 14 13 11 16 9 6 11 7 132 12.00

add 7 4 10 6 10 8 5 12 14 10 13 99 9.00

subtract-typein 14 16 8 12 10 6 10 4 2 4 6 92 8.36

multiply 9 10 9 6 8 11 9 10 8 6 6 92 8.36

add-typein 6 2 10 6 8 6 2 6 8 6 6 66 6.00

multiply-typein 6 8 4 6 2 6 4 4 6 6 2 54 4.91

Total 99 95 93 88 87 79 78 76 74 74 72 915 83.18  

4.3.1 Learning opportunities 

There were 12 skills involved in the training problems. Eight of them are action skills 

and another four are type-in skills. Four out of the eight action skills were learned in 

only a very few training problems and they did not appear in all validation sessions. 

Therefore, we have excluded those skills from the analysis. In sum, there are four 

action skills and four type-in skills included in the current analysis. Table 1 shows the 

frequency of learning for each of those skills. The skills add, subtract, multiply, and 

divide are action skills. The skill add, for example, is to add a term to both sides. The 

skill add-typein is for a type-in step that follows the step “add.” Note that those eight 

skills are the most basic skills used to solve simple equations.  

4.3.2 Learning curve analysis 

To analyze how SimStudent’s learning improved over the time, we measured the 

“accuracy” of production rules on the test problems. Each time learning was completed 

on a training problem, each of the steps in the 30 test problems were model-traced 

using the production rules available at that moment. An attempt at model-tracing is 

defined to be successful when there is a production rule with the LHS conditions that 

hold and the RHS operator sequence generates an “input” that matches the step.  
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Fig. 3. Overall performance improvement in terms of the average ratio of successful model-

tracing aggregated across all validation sessions and the (eight) skills. The x-axis shows the 

number of training problems.  
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Fig. 4. Learning curve on individual skills. The learning curve shown in Fig. 3 is decomposed 

into individual skills.  

Fig. 3 shows the learning curves aggregated across all eight skills and averaged 

across the 11 validation sessions. Fig. 4 shows the learning curve for the individual 

skills. Overall, SimStudent learned skills quite well. After training on 20 problems, the 

ratio of successful model-tracing reached at least 73% on most of the skills. However, 

some skills were not exactly learned as well as the other skills – it seems to be difficult 
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to learn the skill “multiply-typein.” It turned out that not all skills had the same 

number of opportunities to be learned. Different training problems have different 

solution steps, and hence contain a different number of instances for each of the skills 

to be demonstrated.  

Fig. 5 shows how the accuracy of model-tracing grew as SimStudent had more 

and more opportunities to learn individual skills. The x-axis shows the frequency of 

learning (in contrast to the number of problems demonstrated). The y-axis shows the 

overall average of the average ratio of successful model-tracing aggregated from the 

beginning when a certain number of instances of learning occurred. That is, this graph 

shows how quickly (or slowly) the learning occurred. For example, even when two 

skills ended up with having the same performance rate (e.g., the skills “add” and “add-

typein” shown in Fig. 4), it can be read from Fig. 5 that the skill “add-typein” reached 

its final performance quickly within only 5 instances of demonstration.  

The four action skills, add, subtract, multiply, and divide, were learned at the same 

rate. Different type-in skills had different rates and the quality of the production rules 

(i.e., the accuracy of model-tracing) varied significantly. We have yet to investigate 

the reason for the variation in the learning rate of these skills. 
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Fig. 5. Average of the average ratio of successful model-tracing in the first x opportunities for 

learning. For example, for the skill “add,” the average success ratio for the first 3 learning 

opportunities were .18, .50, and .64. Therefore, on the above graph, the value for the 3rd plot for 

add is .44. 

5 Conclusion 

We have shown that SimStudent can indeed model human students’ performances 

from their learning activity log. The accuracy of model-tracing based on the cognitive 

model generated by SimStudent reached 83% after training on 20 problems performed 

by human students.  

As long as the human students exhibit correct performances (i.e., the 

performances are consistent), even when they have variations in strategy and 
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representations, SimStudent can generate a cognitive model that is consistent with the 

human students’ (correct) performances. We have yet to improve the learning ability 

of SimStudent so that the human students’ incorrect behaviors can be modeled. This is 

one of the important issues to be addressed in the future.  

The above finding on the ability of SimStudent to model real students’ 

performance suggests potential ways to expand the applicability of SimStudent. For 

example, if we can model human students’ erroneous performances as well, then it 

might be possible to predict human students’ performance on novel problems. 

Technically speaking, modeling “incorrect” performances does not differ greatly from 

modeling a “correct” performance, as long as the human student makes a systematic 

error (based on a stable misconception). The real challenge would then be how to deal 

with the inconsistent behaviors (e.g., guess, slip, or even gaming).  
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