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Abstract—Prognostics has taken a center stage in Condition
Based Maintenance (CBM) where it is desired to estimate
Remaining Useful Life (RUL) of the system so that
remedial measures may be taken in advance to avoid
catastrophic events or unwanted downtimes. Validation of
such predictions is an important but difficult proposition
and a lack of appropriate evaluation methods renders
prognostics meaningless. Evaluation methods currently used
in the research community are not standardized and in many
cases do not sufficiently assess key performance aspects
expected out of a prognostics algorithm. In this paper we
introduce several new evaluation metrics tailored for
prognostics and show that they can effectively evaluate
various algorithms as compared to other conventional
metrics. Specifically four algorithms namely; Relevance
Vector Machine (RVM), Gaussian Process Regression
(GPR), Artificial Neural Network (ANN), and Polynomial
Regression (PR) are compared. These algorithms vary in
complexity and their ability to manage uncertainty around
predicted estimates. Results show that the new metrics rank
these algorithms in different manner and depending on the
requirements and constraints suitable metrics may be
chosen. Beyond these results, these metrics offer ideas
about how metrics suitable to prognostics may be designed
so that the evaluation procedure can be standardized. 1 2
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1. INTRODUCTION

Prognostics is an emerging concept in condition based
maintenance (CBM) of critical systems. Along with
developing the fundamentals of being able to confidently
predict Remaining Useful Life (RUL), the technology calls
for fielded applications as it inches towards maturation.
This requires a stringent performance evaluation so that the
significance of the concept can be fully exploited.
Currently, prognostics concepts lack standard definitions
and suffer from ambiguous and inconsistent interpretations.
This lack of standards is in part due to the varied end-user
requirements for different applications, a wide range of time
scales involved, available domain information, domain
dynamics, etc. to name a few issues. Instead, the research
community has used a variety of metrics based largely on
convenience with respect to their respective requirements.
Very little attention has been focused on establishing a
common ground to compare different efforts.

This paper builds upon previous work that surveyed metrics
in use for prognostics in a variety of domains including
medicine, nuclear, automotive, aerospace, and electronics.
[1]. The effort suggested a list of metrics to assess critical
aspects of RUL predictions. This paper will show how such
metrics can be used to assess the performance of a
prognostics algorithm. Furthermore, it will assess whether
these metrics capture the performance criteria they were
designed for. The paper will focus on metrics that are
specifically designed for prognostics beyond conventional
metrics currently being used for diagnostics and other
forecasting applications. These metrics in general address
the issue of how well the RUL prediction estimates improve



over time as more measurement data become available. A
good prognostic algorithm should not only improve in RUL
estimation but also ensure a reasonable prediction horizon
and confidence levels on the predictions.

compare different algorithms. With these ideas we hope to
provide some starting points for future discussions.

Overall the paper is expected to enhance a general
understanding behind these metrics so that they can be
further refined and be accepted by the research community
as standard metrics for the performance assessment of
prognostics algorithms.

2. MOTIVATION

Prognostics technology is reaching a point where it must be
evaluated in real world environments in a truly integrated
fashion. This, however, requires rigorous testing and
evaluation on a variety of performance measures before
they can be certified for critical systems. For end-of-life
predictions of critical systems, it becomes imperative to
establish a fair amount of faith in the prognostic systems
before incorporating their predictions into the decision-
making process. Furthermore, performance metrics help
establish design requirements that must be met. In the
absence of standardized metrics it has been difficult to
quantify acceptable performance limits and specify crisp
and unambiguous requirements to the designers.
Performance evaluation allows comparing different
algorithms and also yields constructive feedback to further
improve these algorithms.

Performance evaluation is usually the foremost step once a
new technique is developed. In many cases benchmark
datasets or models are used to evaluate such techniques on a
common ground so they can be fairly compared. Prognostic
systems, in most cases, have neither of these options.
Different researchers have used different metrics to evaluate
their algorithms that makes it rather difficult to compare
various algorithms even if they have been declared
successful based on their respective evaluations. It is
accepted that prognostics methods must be tailored for
specific applications, which makes it difficult to develop a
generic algorithm useful for every situation. In such cases
customized metrics may be used but there are characteristics
of prognostics applications that remain unchanged and
corresponding performance evaluation can lay a common
ground for comparisons. So far very little has been done to
identify a common ground when it comes to testing and
comparing different algorithms. In two surveys of methods
for prognostics (one of data-driven methods and one of
artificial-intelligence-based methods) [2, 3], it can be seen
that there is a lack of standardized methodology for
performance evaluation and in many cases performance
evaluation is not even formally addressed. Even the ISO
standard [4] for prognostics in condition monitoring and
diagnostics of machines lacks a firm definition of such
metrics. Therefore, in this paper we present several new
metrics and show how they can be effectively used to

3. PREVIOUS WORK

In a recent effort a thorough survey of various application
domains that employ prediction related tasks was conducted
[1]. The central idea, there, was to identify established
methods of performance evaluation in the domains that can
be considered mature and already have fielded applications.
Specifically, domains like medicine, weather, nuclear,
finance and economics, automotive, aerospace, electronics,
etc. were considered. The survey revealed that although
each domain employs a variety of custom metrics, metrics
based on accuracy and precision dominated the landscape.
However, these metrics were often used in different
contexts depending on the type of data available and the
kind of information derived out of them. This suggests that
one must interpret the usage very carefully before
borrowing any concepts from other domains. A brief
summary of the findings is presented here for reference.

Domains like medicine and finance heavily utilize statistical
measures. These domains benefit from availability of large
datasets under different conditions. Predictions in medicine
are based on hypothesis testing methodologies and metrics
like accuracy, precision, interseparability, and resamblance
are computed on test outcomes. In finance statistical
measures are computed on errors computed based on
reference prediction models. Metrics like MSE (mean
squared error), MAD (mean absolute), MdAD (median
absolute deviation), MAPE (mean absolute percentage
error), and their several variations are widely used. These
metrics represent different ways of expressing accuracy and
precision measures. The domain of weather predictions
mainly uses two classes of evaluation methods, error based
statistics and measures of resolution between two outcomes.
A related domain of wind mill power prediction uses
statistical measures already listed above. Other domains like
aerospace, electronics, and nuclear are relatively immature
as far as fielded prognostics applications are concerned. In
addition to conventional accuracy and precision measures a
significant focus has been on metrics that assess business
merits like ROI (return on investment), TV (technical
value), life cycle cost other than reliability based metrics
like MTBF (mean time between failure) or the ratio
MTBF/MTBUR (mean time between unit replacements).

Several classifications of these metrics have been presented
in [1] that are derived from the end use of the prognostics
information. It has been argued that depending on the end
user requirements one must choose appropriate set of these
metrics or their variants to appropriately evaluate the
performance of the algorithms.
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4. APPLICATION DOMAIN

In this section we describe the application domain we used
to show how these new prognostics metrics may be applied
and can be used to compare various different algorithms.

INL Battery Dataset

In 1998 the Office of Vehicle Technologies at the U.S.
Department of Energy initiated the Advanced Technology
Development (ATD) program in order to find solutions to
the barriers limiting commercialization of high-power
Lithium-ion batteries for hybrid-electric and plug-in electric
vehicles. Under this program, a set of second-generation
18650-size Lithium-ion cells were cycle-life tested at the
Idaho National Laboratory (INL).

The cells were aged under different experimental settings
like temperature, State-of-Charge (SOC), current load, etc.
Regular characterization tests were performed to measure
behavioral changes from the baseline under different aging
conditions. The test matrix consisted of three SOCs (60, 80,
and 100%), four temperatures (25, 35, 45, and 55°C), and
three different life tests (calendar-life, cycle-life, and
accelerated-life) [5]. Electrode Impedance Spectroscopy
(EIS) measurements were recorded every four weeks to
estimate battery health. EIS measurements were then used
to extract internal resistance parameters (RE and RCT, see
Figure 1) that have been shown to empirically characterize
ageing characteristics using a lumped parameter model for
the Li-ion batteries [6].

Battery Internal Resistance Parameters (RE + R
CT)
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Figure 1 – Internal parameters values are used as

features extracted from EIS measurements to

characterize battery health.

As shown in Figure 2, battery capacity was also measured
in ampere hours by measuring time and currents during
discharge cycle for the batteries. For the data used in our
study, the cells were aged at 60% SOC and at temperatures
of 25°C and 45°C. The 25°C data is used solely for training
while the 45°C data is used for both training as well as
testing.

Different approaches can be taken to predict battery life
based on above measurements. One approach makes use of
EIS measurements to compute RE+RCT and then uses

prediction algorithms to predict evolution of these
parameters. RE+RCT have been shown to be directly
connected to battery capacity and hence their evolution
curve can be easily transformed into battery RUL. Another
approach directly tracks battery capacity and trends it to
come up with RUL estimates. In the next sections we
describe our prediction algorithms and the corresponding
approaches that were used to estimate battery life.

Battery Capacity Decay with Time

EOL (64.46 weeks)

Failure Threshold

8	16 24 32	40 48 56	64	72
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Figure 2 –Battery capacity decay profile at 45°C.

5. ALGORITHMS EVALUATED

In this effort we chose four data-driven algorithms to show
the effectiveness of various metrics in evaluating the
performance. These algorithms range from simple
polynomial regression to sophisticated Bayesian learning
methods. The approaches used here have been described
before in [6, 7], but they are repeated here for the sake of
completeness and readability. Also mentioned briefly is the
procedure how each of these algorithms were applied to the
battery health management dataset.

Polynomial Regression (PR) Approach

We employed a simple data-driven routine to establish a
baseline for battery health prediction performance and
uncertainty assessment. For this data-driven approach, as
the first step, the equivalent damage threshold in the
RE+RCT (dth=0.033) is gleaned from the relationship
between RE+RCT and the capacity C at baseline temperature
(25ºC). Next, via extracted features from the EIS
measurements, RE+RCT was tracked at elevated
temperatures (here 45ºC). Ignoring the first two data points
(which behave similar to what is considered as “wear-in”
pattern in other domains), a second degree polynomial was
used at the prediction points to extrapolate out to the
damage threshold. This linear extrapolation is then used to
compute the expected RUL values.

Relevance Vector Machines (RVM)

The Relevance Vector Machine (RVM) [8] is a Bayesian
form representing a generalized linear model of identical
functional form of the Support Vector Machine (SVM) [9].
Although, SVM is a state-of-the-art technique for
classification and regression, it suffers from a number of
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disadvantages, one of which is the lack of probabilistic
outputs that make more sense in health monitoring
applications. The RVM attempts to address these very
issues in a Bayesian framework. Besides the probabilistic
interpretation of its output, it uses a lot fewer kernel
functions for comparable generalization performance.

This type of supervised machine learning starts with a set of
input vectors {xn}, n = 1,..., N, and their corresponding
targets {tn}. The aim is to learn a model of the dependency
of the targets on the inputs in order to make accurate
predictions of t for unseen values of x. Typically, the
predictions are based on some function F(x) defined over
the input space, and learning is the process of inferring the
parameters of this function. The targets are assumed to be
samples from the model with additive noise:

t n = F(x n ;w)+εn	 (1)

where, sn are independent samples from some noise process
(Gaussian with mean 0 and variance 62

). Assuming the
independence of tn, the likelihood of the complete data set
can be written as:

2

p (t
 
| w , σ2

)  (2πσ 2
)

−N /2 
exp ^

^

 − 2
σ2 ^^

t −Φ	(2)

where, w = (w 1 , w2,..., wM)T is a weight vector and (D is the
N x (N+ 1) design matrix with (D = [(p(t 1 ), (p(t2), ... (p(tN),] T;

in which) _ [1	x x)	x x)	x x(p (tN	, K( n, 1 , K( n, 2 , • • •, K( n,)]
T

N ,

K(x , x i) being a kernel function.

To prevent over-fitting a preference for smoother functions
is encoded by choosing a zero-mean Gaussian prior
distribution over w parameterized by the hyperparameter
vector ri. To complete the specification of this hierarchical
prior, the hyperpriors over ri and the noise variance 62 are
approximated as delta functions at their most probable
values riMP and 6

2
MP. Predictions for new data are then made

according to:

p (t* | t) = ^p (t* | w,σMP )p(w | t ,ηMP , σ,
2
2 )dw . (3)

Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a probabilistic
technique for nonlinear regression that computes posterior
degradation estimates by constraining the prior distribution
to fit the available training data [10]. A Gaussian Process
(GP) is a collection of random variables any finite number
of which have a joint Gaussian distribution. A real GP f(x)
is completely specified by its mean function m(x) and co-
variance function k(x,x’) defined as:

m (x) = Ε[ f (x )],

k (x, x') = Ε[(f  (x ) − m (x)) (f (x ') − m (x'))], and (4)

f (x ) — GP(m (x), k (x, x')).

The index set X ∈ ℜ is the set of possible inputs, which
need not necessarily be a time vector. Given prior
information about the GP and a set of training points {(x i ,fi)|
i = 1,...,n}, the posterior distribution over functions is
derived by imposing a restriction on prior joint distribution
to contain only those functions that agree with the observed
data points. These functions can be assumed to be noisy as
in real world situations we have access to only noisy
observations rather than exact function values, i.e. y i = f(x)
+ s, where s is additive IID N(0 ,6n2). Once we have a
posterior distribution it can be used to assess predictive
values for the test data points. Following equations describe
the predictive distribution for GPR [11].

Prior

[ st

^y 	

0[K(X,X)+σn K(X,Xtes	 (5)

Jre ^	
,

L K(X
test

, x) K(X
test

, X
test

)
^ ^

Posterior

.fist | X, y, X  test — N ( .f  est , cov(f,st )), where

ff.t ≡Ε[ .ftest | X , y , X test ] = K (X , X test ) [K (X , X ) + σn

2
I ]

1−
y, 

(6)

cov(ftest ) = K (X test , X test) − K (X test, X) + σn I ] 1 K (X, X test ).

A crucial ingredient in a Gaussian process predictor is the
covariance function (K(X, X’)) that encodes the assumptions
about the functions to be learnt by defining the relationship
between data points. GPR requires a prior knowledge about
the form of covariance function, which must be derived
from the context if possible. Furthermore, covariance
functions consist of various hyper-parameters that define
their properties. Setting right values of such hyper-
parameters is yet another challenge in learning the desired
functions. Although the choice of covariance function must
be specified by the user, corresponding hyper-parameters
can be learned from the training data using a gradient based
optimizer such as maximizing the marginal likelihood of the
observed data with respect to hyper-parameters [12].

We used GPR to regress the evolution of internal
parameters (RE+RCT) of the battery with time at.
Relationship between these parameters and the battery
capacity was learned from experimental data at [7]. Thus
the internal parameters were regressed for the data obtained
at and the corresponding estimates were translated into
estimated battery capacity at 45°C using the relationship
learnt at 25°C.

Neural Network (NN) Approach

A neural network based approach was considered as an
alternative data-driven approach for prognostics. A basic
feed forward neural network with back propagation training
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was used, details on this algorithm can be found in .[13, 14]
As described earlier for other approaches, data at 25 oC was
used to learn the relationship between internal parameter
RE+RCT and the capacity C using the neural network NN1 . In
addition, the 45 oC data was used as a test case. Here,
measurements of the internal parameter RE+RCT are only
available up to time tP (time at which RUL prediction is
made). The available RE+RCT measurements are
extrapolated after time tP in order to predict future values.
This extrapolation is done using neural network NN2 which
learns the relationship between RE+RCT and time. Once
future values for RE+RCT are computed using NN2 these
RE+RCT values are the used as an input to NN1 in order to
obtain C.

The structure of NN1 consists of two hidden layers with one
and three nodes respectively. For the hidden layers tan-

sigmoid transfer functions and for the output layers log-

sigmoid transfer functions were chosen. Training considers
random initial weights, a reduced memory Levenberg-
Marquardt algorithm, 200 training epochs, and mean-
squared error as a performance parameter.

The structure and training parameters of the NN2 remained
fixed during the forecasting. The net was trained with data
available up to week 32, and then the resulting model was
used to extrapolate RE+RCT until tEOP is reached or it is clear
that it will not be reached if the model does not converge.
Once the next measurement point is available at week 36,
the net was trained again including the new data point. The
resulting model was used to extrapolate RE+RCT from
tp+1=36 onwards. It is not expected that a fixed net structure
and fixed training settings could perform optimally for all
the training instances as measurements become available
week 32 onwards. To make sure the results are acceptable
for all the training instances, the initial weights were set to
random and the training was repeated 30 times. This
allowed the exploration of with different initial values in the
optimization of the weights and allowed the exploration of
different local minimums. The results of the 30 training
cases were aggregated on the extrapolated values by
computing the median. Cases were observed where the
training stopped prematurely resulting in a net with poor
performance, these cases were regarded as outliers and the
use of the median was intended to diminish the impact of
such outliers while aggregating all the training cases. The
structure of NN2 consists of one hidden layer with three
nodes, and tan-sigmoid transfer functions for all the layers.
Training considers random initial weights, a reduced
memory Levenberg-Marquardt algorithm, 200 training
epochs, and mean-squared error as a performance
parameter.

6. PERFORMANCE METRICS

the community, i.e., accuracy, precision, Mean Squared
Error (MSE), and Mean Absolute Percentage Error
(MAPE). These metrics have been included to illustrate the
idea about how these metrics are useful but may not
encapsulate time varying aspects of prognostic estimates.
Further, five new metrics have been introduced that
encapsulate such features of interest. These metrics have
been first defined briefly and then evaluated based on the
results for battery health management as presented in the
following section.

Terms and Notations

• UUT is the unit under test

• A'(i) is the error between the predicted and the true RUL

at time index i for UUT l.

• EOP (End-of-Prediction) is the earliest time index, i,

after prediction crosses the failure threshold.

• EOL represents End-of-Life, the time index for actual
end of life defined by the failure threshold.

• P is the time index at which the first prediction is made
by the prognostic system.

• rl(i) is the RUL estimate at time ti given that data is
available up to time ti for the lth UUT.

• t is the cardinality of the set of all time indices at which

the predictions are made, i.e. 2 = (i | P ≤ i ≤ EOP) .

Average Bias (Accuracy)

Average bias is one of the conventional metrics that has
been used in many ways as a measure of accuracy. It
averages the errors in predictions made at all subsequent
times after prediction starts for the lth UUT. This metric can
be extended to average biases over all UUTs to establish
overall bias.

s

B
l

=
1
^ ∆ l

( i).	 (7)
i

Sample Standard Deviation (Precision)

Sample standard deviation measures the dispersion/spread
of the error with respect to the sample mean of the error.
This metric is restricted to the assumption of normal
distribution of the error. It is, therefore, recommended to
carry out a visual inspection of the er ror plots to determine
the distribution characteristics before interpreting this
metric.

In this section nine different performance metrics have been
described. Four of them are the metrics most widely used in

S = 
^^

 
1 
(∆( i) − m)

2

	
(8)

^ −1



where m is the sample mean of the error.

Mean Squared Error (MSE)

Simple average bias metric suffers from the fact that
negative and positive errors cancel each other and high
variance may not be reflected in the metric. Therefore, MSE
averages the squared prediction error for all predictions and
encapsulates both accuracy and precision. A derivative of
MSE, often used, is Root Mean Squared Error (RMSE).

I

	

MSE = 1 ^ ∆( i)
2
 .	 (9)

 ̂i=1

Mean Absolute Percentage Error (MAPE)

For prediction applications it is important to differentiate
between errors observed far away from the EOL than those
are observed close to EOL. Smaller errors are desirable as
EOL approaches. Therefore, MAPE weighs errors with
RULs and averages the absolute percentage errors in the
multiple predictions. Instead of the mean, median can be
used to compute Median absolute percentage error
(MdAPE) in a similar fashion.

	

MAPE = 
1 ^, 100∆(i) 	 (10)

i=1^	r„ (i) 
^

It must be noted that the above metrics can be more suitably
used in cases where either a distribution of RUL predictions
is available as the algorithm output or there are multiple
predictions available from several UUTs to compute the
statistics. Whereas these metrics can convey meaningful
information in these cases, these metrics are not designed
for applications where RULs are continuously updated as
more data is available. It is desirable to have metrics that
can characterize improvement in the performance of a
prognostic algorithm as time approaches near end-of-life. In
this paper we discuss one such application where algorithms
are tracking battery health and show how newer metrics can
encapsulate such information which is valuable for
successful fielded application of prognostics. Therefore,
next we discuss new metrics tailored for prognostics and
show how they are more informative than the ones
traditionally used.

Prognostic Horizon (PH)

Prediction Horizon has been in the literature for quite some
time but no formal definition is available. The notion
suggests that longer the prognostics horizon more time is
available to act based on a prediction that has some
credibility. We define Prognostic Horizon as the difference
between the current time index i and EOP utilizing data
accumulated up to the time index i, provided the prediction
meets desired specifications. This specification may be
specified in terms of allowable error bound (a) around true
EOL. This metric ensures that the predicted estimates are

within specified limits around the actual EOL and hence the
predictions may be considered trust worthy. It is expected
that PHs are determined for an algorithm-application pair
offline during the validation phase and then these numbers
be used as guidelines when the algorithm is deployed in test
application where actual EOL are not known in advance.
While comparing algorithms, an algorithm with longer
prediction horizon would be preferred.

H =EOP − i	 (11)

where i = min{j |(j ∈ ̂ ) ∧ (r„(1 − α) ≤ rl (j) ≤ r„(1 + α))}.

For instance, a PH with error bound of a = 5% identifies
when a given algorithm starts predicting estimates that are
within 5% of the actual EOL. Other specifications may be
used to derive PH as desired.

a-.1 Accuracy

Another way to quantify prediction quality may be through
a metric that determines whether the prediction falls within
specified accuracy levels at a given specific time. These
times instances may be specified as percentage of total
remaining life from the point the first prediction is made or
a given absolute time interval before EOL is reached. In our
implementation we define a-.1 accuracy as the prediction
accuracy to be within a„ 100% of the actual RUL at specific
time instance t.1 expressed as a fraction of time between the
point when an algorithm starts predicting and the actual
failure.; For example, it determines whether a prediction
falls within 20% accuracy (i.e., a=0.2) halfway to failure
from the time the first prediction is made (i.e., .1 =0.5).

[1 − α] ⋅ r„(t) ≤ r
l
(tλ ) ≤ [1 + α] ⋅ r„(t)	(12)

where α : accuracy modifier
.1: time window modifier

tλ = P + λ(EOL − P).

r„
l (i) 

a-.1 Accuracy

J	r l
 (i)

α = 20% r 
l 
(i)

λ= 0	 λ= 0.5	 λ= 1

t
P	 Time Index (i)	 tEOL

Figure 3 – Schematic depicting ^ -^ Accuracy.
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Relative Accuracy (RA)

Relative prediction accuracy is a notion similar to a-.1

accuracy where instead of finding out whether the
predictions fall within a given accuracy levels at a given
time instant we measure the accuracy level. The time instant
is again described as a fraction of actual remaining useful
life from the point when the first prediction is made. An
algorithm with higher relative accuracy is desirable.

RAλ = 1 −
 r*(tλ) − rl(tλ)	

(13)
r*(tλ)

where tλ = P+ λ(EOL − P)

rl

(i)rl*(i)

t
λ
	r 

l 
(i)

tP	t λ	t EOL

Figure 4 – Schematic showing Relative Accuracy

concept.

Cumulative Relative Accuracy (CRA)

Relative accuracy can be evaluated at multiple time
instances. To aggregate these accuracy levels we define
Cumulative Relative Accuracy as a normalized weighted
sum of relative prediction accuracies at specific time
instances.

s

CRA λ = 
1
^ w(r

l
)RA λ
	 (14)

i

Where w is a weight factor as a function of RUL at all time
indices. In most cases it is desirable to weigh the relative
accuracies higher closer to the EOL.

Convergence

Convergence is defined to quantify the manner in which any
metric like accuracy or precision improves with time to
reach its perfect score. As illustrated below, three cases
converge at different rates. It can be shown that the distance
between the origin and the centroid of the area under the
curve for a metric quantifies convergence. Lower the
distance faster the convergence. Convergence is a useful
metric since we expect a prognostics algorithm to converge
to true value as more information accumulates over time.
Further, a faster convergence is desired to achieve a high
confidence keeping the prediction horizon as large as
possible.

Let (xc, yc) be the center of mass of the area under the curve
M(i). then, the convergence CM can be represented by the
Euclidean distance between the center of mass and ( tp, 0),
where

CM = (xc − tP ) 2 
+ yc

2 ,

	

1 EOP	
2	2

^
( t

i+ 1 − ti )M (i)
2 i P=

	

x c = EOP	
, and

^
( t

i+ 1
 − t i )M ( i)	 (15)

i=P

1 EOP

^ ( t
i+ 1 − t

i
)M (i )

2

2 i=Py c = EOP

^ ( t
i +1 − 0M  Q)

i=P

M(i) is a non-negative prediction error accuracy or precision
metric.

t
P x

c ,1
	 Time Index (a)	 t

EOP

Figure 5 – Schematic for the convergence of a metric.

7. RESULTS & DISCUSSION

As mentioned earlier battery health measurements were
taken every four weeks. Therefore, each algorithm was
tasked to predict every four weeks after the week 32, which
gives about eight data points to learn the degradation trend.
Algorithms predict RULs until the end-of-prediction is
reached, i.e. the estimates show that battery capacity has
already hit 70% of the full capacity of one ampere hour.
Corresponding predictions are then evaluated using all nine
metrics. Algorithms like RVM always predicted
conservatively, i.e. predicted a faster degradation than
actually observed. Estimates were available for all weeks
starting week 32 through week 64. Other algorithms like
NN and PR started predicting at week 32 but could not
predict beyond week 60 as their estimates had already
crossed the failure threshold before that. GPR, however,
required more training data before it could provide any
estimates. Therefore, predictions for GPR start at week 48
and go until week 60.

Table 1 – Performance evaluation for all four test

algorithms with Error Bound = 5%.

RVM GPR NN PR

Bias -7.12 5.96 5.04 1.87

SSD 6.57 15.24 6.81 4.26

MSE 84.81 184.16 59.49 17.35

7



MAPE 41.36 53.93 37.54 23.05
PH 8.46 12.46 12.46 24.46

RA (I = 0.5) 0.60 0.86 0.34 0.82
CRA (I = 0.5) 0.63 0.52 0.55 0.65
Convergence 14.80 8.85 13.36 11.41

Prediction Horizon (5% error)

50	 O95% accuracy zone

	

PA!	 GPR i	- actual RUL

40	
NN	

End of Life (EOL)

-^^ RVM RUL

-0- GPR RUL

^	 -fir NN RUL
J 30	\	•- PA RUL

RVM
20

10

A

0 35	40	45	50	55	60	65	70

Time (weeks)

Figure 6 – Predictions from different algorithms fall

within the error bound at different times.

In Table 1 results are aggregated based on all available
predictions. These results clearly show that polynomial fit
approach outperforms all other algorithms in almost all
cases. Even though the convergence properties are not the
best they are comparable to the top numbers. However,
using all predictions to compute these metrics results in a
wide range of values, which makes it difficult to assess how
other algorithms fare even if they may not necessarily be the
best. Most metrics describe how close or far the predictions
are to the true value but prediction horizon indicates when
these predictions enter within the specified error bound and
therefore may be trust worthy (see Figure 6). PR enters the
error bound early on where as all other algorithms converge
slowly as times passes by. The convergence metric
encapsulates this attribute and shows that algorithms like
GPR converge faster to better estimates and may be useful
later on. We also learned that the current convergence
metric does not take into account cases where algorithms
start predicting at different time instances. In such cases
algorithms that start predicting early on may have a
disadvantage. Although this metric works well in most
cases, few adjustments may be needed to make it robust
towards extreme cases.

It must be pointed out that these metrics summarize all
predictions, good or bad, into one aggregate, which may not
be fare for algorithms that learn over time and get better
later on. Therefore, next, it was decided to evaluate only
those predictions that were made within the prediction
horizon so that only the meaningful predictions are
evaluated (Table 2). As expected the results change
significantly and all the performance numbers become

comparable for all algorithms. This provides a better
understanding on how these algorithms compare.

Table 2 – Performance evaluation for all four test

algorithms for predictions made within prediction

horizon with Error Bound = 5%.

RVM GPR NN PR

Bias -1.19 -1.78 -1.53 0.22
SSD 1.18 1.33 1.45 3.33
MSE 2.03 3.96 3.27 7.75

MAPE 39.33 30.40 27.44 23.25
PH 8.46 12.46 12.46 24.46

RA (I = 0.5) 0.77 0.62 0.69 0.95
CRA (I = 0.5) 0.50 0.31 0.33 0.58
Convergence 3.76 4.44 4.61 7.36

Another aspect of performance evaluation is the
requirement specifications. As specifications change the
performance evaluation criteria also changes. To illustrate
this point, prediction horizon was now defined on a relaxed
error bound of 10%. As expected prediction horizons
become longer for most of the algorithms and hence more
predictions are taken into account while computing the
metrics. Table 3 shows the results with the new prediction
horizons and now the NN based approach also seems to
perform well on several criteria. This means that for some
applications where more relaxed requirements are
acceptable simpler approaches may be chosen if needed.

Table 3 – Performance evaluation for all four test

algorithms for predictions made within prediction

horizon with Error Bound = 10%.

RVM GPR NN PR

Bias -1.83 0.05 -1.53 0.22
SSD 1.73 4.34 1.45 3.33
MSE 5.02 10.6 3.27 7.75

MAPE 37.01 31.20 27.44 23.25
PH 12.46 16.46 12.46 24.46

RA (I = 0.5) 0.76 0.79 0.69 0.95
CRA (I = 0.5) 0.57 0.43 0.33 0.58
Convergence 5.49 3.43 4.61 7.36

Figure 7 shows the a-.1 Accuracy metric for all four
algorithms. Since all algorithms except GPR start prediction
from week 32 onward, to is determined to be around 48.3
weeks. At that point only PR lies within 80% accuracy
levels. GPR starts predicting week 44 onward, i.e. its to is
determined to be around 54.3 week where it seems to meet
the requirements. This metric signifies whether a particular
algorithm reaches within a desired accuracy level halfway
to the EOL from the point it starts predicting. Another
aspect that may be of interest is whether an algorithm
reaches the desired accuracy level some fixed time interval
ahead of the EOL. In that case, for example, if to is chosen
as 48 weeks then GPR will not meet the requirement.
Therefore, this metric may be modified to incorporate cases



where not all algorithms may be able to start predicting at
the same time.

α-λ Accuracy ( a = 0.2, λ = 0.5)
06

0	End of Life (EOL)

80% accuracy zone
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Figure 7 – The ^ -̂  Accuracy metric determines whether

predictions are within the cone of desired accuracy

levels at a given time instant (tx).
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Figure 8 – Battery capacity decay profile shows several

features that are difficult to learn using simple

regression techniques.

It can be observed from the results (Figure 7) most
algorithms fail to follow the trend towards the end. These
approaches being data-driven regression based techniques
find it difficult to learn the physical phenomenon by which
batteries degrade. As shown in Figure 8, initially the battery
capacity degrades quite fast and then the degradation rate
slows down before towards the end it further slows down.
These algorithms are not able to learn this characteristic and
predict an earlier EOL.

Finally, we would like to mention few key points that are
important for performance evaluation and should be
considered ahead of choosing the metrics. Time scales
observed in various prognostic algorithms are often very
different in different applications. For instance, in battery
health management time scales are in the order of weeks
where as in other cases like electronics it may be a matter of
hours or seconds. Therefore, the chosen metrics should
acknowledge the importance of prediction horizon and

weigh errors close to EOL with higher penalties. Next, these
metrics may be modified to address asymmetric preference
on RUL error. In most applications where a failure may lead
to catastrophic outcomes an early prediction is preferred
over late predictions. Finally, in the example discussed in
this paper RUL estimates were obtained as a single value as
against a RUL distribution for every prediction. The metrics
presented in this paper can be applied to such applications
with slight modifications. Similarly for cases where multiple
UUTs are available to provide data, minor adjustments will
suffice.

8. CONCLUSION

In this paper we have shown how performance metrics for
prognostics can be designed. Four different prediction
algorithms were used to show how various metrics convey
different kinds of information. No single metric should be
expected to cover all performance criteria. Depending on
the requirements a subset of these metrics should be chosen
and a decision matrix should be used to rank different
algorithms. In this paper we used nine metrics including
four conventional ones that are most commonly used to
evaluate algorithm performance. The new metrics provide
additional information that may be useful in comparing
prognostic algorithms in particular. Specifically these
metrics track the evolution of prediction performance over
time and help determine when these predictions can be
considered trust worthy. Notions like convergence and
prediction horizon that have existed in the literature for a
long time have been quantified so they can be used in
automated fashion. Further new notions of performance
measures at specific time instances have been instantiated
using metrics like relative accuracy and a-.1 performance.
These metrics represent the notion that a prediction is useful
only if it allows certain amount of time to mitigate the
predicted contingency.

Whereas these metrics demonstrate several ideas specific to
prognostics performance evaluation, we by no means claim
this list to be near perfect. It is anticipated that as new ideas
are generated and the metrics themselves are evaluated in
different applications, this list will be revised and refined
before a standard methodology can be devised for
evaluating prognostics. This paper is intended to serve as a
start towards developing such metrics that can better
encapsulate prognostic algorithm performance.
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