
Evaluating and Comparing Language Workbenches
Existing Results and Benchmarks for the Future

Sebastian Erdwegd, Tijs van der Storma, Markus Völtere, Laurence Trattb, Remi
Bosmanf, William R. Cookc, Albert Gerritsenf, Angelo Hulshoutg, Steven Kellyh, Alex

Lohc, Gabriël Konat1, Pedro J. Molinaj, Martin Palatnikf, Risto Pohjonenh, Eugen
Schindlerf, Klemens Schindlerf, Riccardo Solmi1, Vlad Vergu1, Eelco Visser1, Kevin

van der Vlistk, Guido Wachsmuth1, Jimi van der Woningl

aCWI, The Netherlands
bKing’s College London, UK

cUniversity of Texas at Austin, US
dTU Darmstadt, Germany

evoelter.de, Stuttgart, Germany
fSioux, Eindhoven, The Netherlands

gDelphino Consultancy
hMetaCase, Jyväskylä, Finland

iTU Delft, The Netherlands
jIcinetic, Sevilla, Spain

kSogyo, De Bilt, The Netherlands
lYoung Colfield, Amsterdam, The Netherlands

Abstract

Language workbenches are environments for simplifying the creation and use of com-
puter languages. The annual Language Workbench Challenge (LWC) was launched in
2011 to allow the many academic and industrial researchers in this area an opportunity
to quantitatively and qualitatively compare their approaches. We first describe all four
LWCs to date, before focussing on the approaches used, and results generated, during
the third LWC. We give various empirical data for ten approaches from the third LWC.
We present a generic feature model within which the approaches can be understood
and contrasted. Finally, based on our experiences of the existing LWCs, we propose a
number of benchmark problems for future LWCs.

Keywords: language workbenches, domain-specific languages, questionnaire language,
survey, benchmarks

1. Introduction

Language workbenches, a term popularized by Martin Fowler in 2005 [1], are tools that
lower the development costs of implementing new languages and their associated tools
(IDEs, debuggers etc.). As well as easing the development of traditional stand-alone
languages, language workbenches also make multi-paradigm and language-oriented
programming environments (see e.g. [2, 3]) practical.

For almost as long as programmers have built languages, they have built tools to ease
the process, such as parser generators. Perhaps the earliest tool which we would now

Email address: erdweg@cs.tu-darmstadt.de (Sebastian Erdweg)

Preprint submitted to Elsevier August 25, 2015

http://www.cwi.nl
http://www.kcl.ac.uk/index.aspx
http://www.cs.texas.edu
http://www.stg.tu-darmstadt.de/
http://www.voelter.de/
http://www.sioux.eu/en/
http://www.delphino-consultancy.nl/
http://www.metacase.com/
http://www.tudelft.nl
http://www.icinetic.com/
http://www.sogyo.nl
http://www.youngcolfield.nl/

think of as a language workbench was SEM [4], which was later followed by tools such
as MetaPlex [5], Metaview [6], QuickSpec [7], and MetaEdit [8], Centaur [9], the Synthe-
sizer generator [10], the ASF+SDF Meta-Environment [11], Gem-Mex/Montages [12],
LRC [13], and Lisa [14]. Most of these systems operated on textual languages and were
intended to work with formal specifications of General Purpose Languages (GPLs) [15].
Nevertheless, many of them were used to build practical Domain-Specific Languages
(DSLs) [16].

Informally, modern language workbenches are often referred to as being textual,
graphical, or projectional. Extant textual workbenches like JastAdd [17], Rascal [18,
19], Spoofax [20], and Xtext [21] can be seen as successors of the original language
workbenches, often making use of advances in IDE or editor technology. Many extant
graphical workbenches such as MetaEdit+ [22], DOME [23], and GME [24] were
originally developed for box and line style diagrams. Projectional workbenches are a
recent addition, with JetBrains MPS [25] and the Intentional Domain Workbench [26]
reviving and refining the old idea of syntax directed editors [27], opening up the
possibility of mixing textual and non-textual notations.

Since language workbenches have come from industry, it is perhaps unsurprising
that many real-world projects have used them. As an indicative sample (in approximate
chronological order): the Eurofighter Typhoon used IPSYS’s HOOD toolset [28];
Nokia’s feature phones [29] and Polar’s heart rate monitors[30] used MetaEdit+;
WebDSL [31] and Mobl [32] were developed using Spoofax.

In short, not only are the uses for language workbenches growing, but so are the
number and variety of the workbenches themselves. One disadvantage of this growing
number of systems is that the terminology used and features supported by different
workbenches are so disparate that both users and developers have struggled to understand
common principles and design decisions. Our belief is that a systematic overview of the
area is vital to heal this rift.

The Language Workbench Challenge (LWC) was thus started to promote understand-
ing of, and knowledge exchange between, language workbenches. Each year a language
engineering challenge is posed and submissions (mostly, but not exclusively, by the
developers of the tools in question) implement the challenge; documentation is required,
so others can understand the implementation. All contributors then meet to discuss the
submitted solutions. Tackling a common challenge allows a better understanding of
the similarities and differences between different workbenches, the design decisions
underlying them, their capabilities, and their strengths and weaknesses.

Contributions and Structure In this paper, we describe the challenges posed by the
4 LWC editions run so far (Section 2), before explaining why we focus on the results
generated by its third incarnation, LWC’13. We then make the following contributions:

• We establish a feature model that captures the design space of language workbenches
as observed in the previous LWCs (Section 3).

• We present and discuss the 10 language workbenches participating in LWC’13 by
classifying them according to our feature model (Section 4).

• We present empirical data on 10 implementations of the LWC’13 assignment: a
questionnaire DSL (Section 5).

• Based on the experiences from the previous LWCs, we propose benchmark problems
to be used in future LWCs (Sections 6.1 and 6.5) We also two examples of evaluating
the benchmarks in Section 7.

This paper is an extended version of [33]. The discussion of the various editions of the

2

LWC (at the beginning of Section 2) as well as the benchmarks (in Sections 6.1 and 6.5)
are new in this version.

2. Background

The idea for the LWC came from discussions at the 2010 edition of the Code Generation
conference. Since then, four LWCs have been held, each posing a different challenge.
We first describe each year’s challenges, before explaining why we focus in this paper
on data collected from the third LWC. We start out with a note on terminology.

2.1. Terminology

In this paper we use terminology from different areas, including DSL engineering
(“program”, “abstract syntax”), model-driven engineering (“metamodel”, “model-to-
text”, “model-to-model”), and language-oriented programming (“language extension”).
The reason is that the various tools as well as the authors come from this variety of
backgrounds. We decided to not try to unify the different terminologies into a single
one because doing this well would amount to its own paper. We believe that each of the
terms is clear in whatever context it is used in the paper.

2.2. The LWC challenges

LWC’11 The first challenge consisted of a simple language for defining entities
and relations. At the basic level, this involved defining syntax for entities, simple
constraint checking (e.g. name uniqueness), and code generation to a GPL. At the
more advanced level, the challenge included support for namespaces, a language for
defining entity instances, the translation of entity programs to relational database models,
and integration with manually written code in some general-purpose language. To
demonstrate language modularity and composition, the advanced part of the assignment
required the basic solution to be extended, but not modified.

LWC’12 The second challenge required two languages to be implemented. The first
language captured piping and instrumentation models used, for instance, to describe
heating systems. The elements of this language included pumps, valves, and boilers. The
second language consisted of a state machine-like controller language that could be used
to describe the dynamic behaviour of piping and instrumentation models. Developers
were expected to combine the two languages to enable the simulation of piping and
instrumentation systems.

LWC’13 The third challenge consisted of a DSL for questionnaires, which had to be
be rendered as an interactive GUI that reacted to user input, and presented additional
questions. The questionnaire definition was expected to be validated, detecting errors
such as unresolved names and type errors. In addition to basic editor support, participants
were expected to modularly develop a styling DSL that could be used to configure the
rendering of a questionnaire. We describe the details of this challenge in Section 5.

LWC’14 The fourth challenge was based on the third, but emphasised nonfunctional
aspects, particularly teamwork (several developers editing a model concurrently) and
scalability (in terms of model sizes).

3

2.3. Focusing on LWC’13

Designing language workbench challenges is tricky. The challenge must be small
enough to encourage wide participation, modular so that participants are not forced to
address problems that their tools were never designed for, and sufficiently specified
to make comparison possible. Our subjective overview of the various challenges is as
follows:

LWC’11 had a simplistic challenge and few participants. The results are not detailed
or representative enough to warrant deep scrutiny.

LWC’12 had a large, but loosely specified, challenge. The resulting implementations
were too diverse to allow sensible comparison, and thus no meaningful results were
generated.

LWC’13 had a clearly defined task that spanned many aspects of DSL development
while permitting compact implementations. This facilitated detailed comparison and
meaningful results for the 10 participating workbenches.

LWC’14 had a focus on nonfunctional properties. It was hard to meaningfully quantify
and compare the results.

As this suggests, in our opinion LWC’13 generated the most useful results. We therefore
use that as a basis for the rest of this paper.

2.4. Survey methodology

This paper’s first contribution is to document the state of the art of language workbenches
in a structured and informative way. We do that by using the results of the LWC’13
challenge. This section sets out the methodology used. In essence, we carried out a
post-LWC survey, leading to a qualitative domain analysis of language workbenches,
and a quantitative analysis of empirical data about the LWC solutions.

Qualitative domain analysis. The first part of our methodology provides a framework
for discussion about LWBs. We asked all LWC’13 participants to provide a detailed
list of features supported by their language workbench. The first three authors used
this data to produce an initial feature model [34], which was then presented to all
participants for feedback. The refined feature model presented in Section 3 provides the
first mechanism to categorize and discuss language workbenches according to which
features they support.

Empirical data. We constructed a feature model of the questionnaire DSL’s features
and asked the participants to indicate which features they had tackled in their solution.
We present a description of the assignment and the feature model in Section 5. Using
each solution’s source code, we were able to answer the following questions:

• What is the size of the solution? This question aimed to gain a simple understanding
of the complexity of the solution each tool required. The suggested metric for the
answer was Source Lines of Code SLOC, a count which excludes comments and
empty lines. Non-textual solutions were unable to use SLOC, and we consider this
issue in more detail in Section 5.2.

• What are the compile-time dependencies? This question aimed to understand the
difficultly a user might face in installing a language workbench and generating a
questionnaire DSL (e.g. the various libraries, frameworks, and platforms that are
needed to run the compiler and IDE).

4

• What are the run-time dependencies? This question aimed to understand the difficulty
an end-user might face in running a generated questionnaire GUI.

The data for these questions is presented in Section 5.2. We then discuss the various
workbenches in light of the data in Section 5.3.

2.5. Survey Generality

Although 10 language workbenches entered LWC’13, not every extant language work-
bench was present. As Section 4 clearly shows, the language workbenches in LWC’13
support a diverse range of features, which gives us confidence that our feature model
is reasonably complete and representative of a wider class of language workbenches.
Indeed, to the best of our knowledge, the feature model adequately covers the language
workbenches that were not present in LWC’13.

3. A Feature Model for Language Workbenches

We currently lack both common terminology when discussing language workbenches
and an understanding of what features different workbenches support. To this end, we
took data generated by LWC’13 and derived a feature model from it, capturing the major
features of language workbenches. Our initial feature model was passed for feedback to
the LWC participants, altered as appropriate and the final version shown here.

The feature model is shown in Figure 1. We use standard feature-diagram notation
and interpretation [35]. For those unfamiliar with this notation, a brief summary is as
follows. To describe which features a language workbench has, one starts at the top node
(Language workbench) and selects it (i.e. says the tool is indeed a language workbench).
One then walks the tree from top to bottom, selecting nodes as appropriate. Edges which
end in a filled circle are mandatory, and if the parent node is selected, so too must the
child node. Edges which end in a hollow circle are optional, and the child node can be
selected if appropriate, but this is not required. Edges connected with a filled wedge
are ‘or’ nodes, and if the parent node is selected, at least one of the child nodes must
be selected. At the end of this activity, the selected nodes tell you which features the
language workbench implements. Note that while the feature model captures the design
space of language workbenches, it does not tell one how a specific language workbench
might support a given feature.

We separate language workbench features into six subcategories. A language work-
bench must support notation, semantics, and an editor for the defined languages and
its models. It may support validation of models, testing and debugging of models and
the language definition, as well as composition of different aspects of multiple defined
languages. In the remainder of this section, we explain the feature model in more detail.

Notation. Every language workbench must support the mandatory feature notation,
which determines how programs or models are presented to users. The notation can be
a mix of textual, graphical, and tabular notations, where textual notation may optionally
support symbols such as integrals or fraction bars embedded in regular text.

Semantics. A language workbench must support the definition of language seman-
tics. We distinguish translational semantics, which compiles a model into a program
expressed in another language, and interpretative semantics, which directly executes
a model without prior translation. For translational semantics we distinguish between
model-to-text translations, which are based on concatenating strings, and model-to-
model translations, which are based on mapping abstract model representations such as

5

Figure 1: Feature model for language workbenches. With few exceptions, all features in the feature model apply to the languages that can be defined
with a language workbench, and not to the definition mechanism of the language workbench itself.

trees or graphs. For model-to-model translations, we distinguish those which are able to
use a language’s concrete syntax in specifying translations from those that cannot.

Editor support. Editing is a central pillar of language workbenches [1] and we consider
user-defined editor support mandatory for language workbenches. The two predominant
editing modes are free-form editing, where the user freely edits the persisted model
(typically as text), and projectional editing, where the user edits a projection of the
persisted model in a fixed layout (text-like or otherwise). In addition to a plain editor,
most language workbenches provide a selection of syntactic and semantic editor services.
Syntactic editor services include:

• Customizable visual highlighting in models, such as language-specific syntax coloring
for textual languages or language-specific node shapes for graphical languages.

• Navigation support via an outline view.
• Folding to optionally hide part of a model.
• Code assist through syntactic completion templates that suggest code, graph, or

tabular fragments to the user.
• Comparison of programs via a diff -like tool.
• Auto formatting, restructuring, or aligning of a model’s presentation.

Semantic editor services include:

• Reference resolution to link different concepts, such as declarations and usages of
variables, together (e.g. for type checking).
• Code assist through semantic completion that incorporates semantic information such

as reference resolution or typing into the completion proposal.
• Semantics-preserving refactorings of programs or models, ranging from simple

renaming to language-specific restructuring.
• Error markers allow errors in the model to be clearly highlighted to the user, pin-

pointing a specific model element(s) and displaying an appropriate error message.
• Quick fixes may propose ways of fixing such an error. When the user selects a

proposed fix, the faulty model is automatically repaired.
• When transforming models, keeping track of a model’s origin enables linking ele-

ments of the transformation result back to the original input model. This is particularly
useful for locating the origin of a static or dynamic error in generated code. It is also
useful in debugging.

• To better understand the behaviour of a model, it can be useful to have a view of the
code that a model compiles to. Language workbenches that feature live translation

can display the model and the generated code side-by-side and update the generated
code whenever the original model changes.

Validation. In addition to the above, most language workbenches can display informa-
tion about the result of language-specific validation. We distinguish validations that are
merely structural, such as containment or multiplicity requirements between different
concepts, and validations that are more semantic in nature, such as name or type analysis.
Language workbenches may facilitate the definition of user-defined type systems or
name binding rules. However, many language workbenches do not provide a declarative
validation mechanism and instead allow validations to be implemented in a normal GPL.

Testing. Testing a language definition may be supported by unit-testing different
language aspects: the syntax (parser or projections), semantics (translation or interpreta-
tion), editor (completion, reference resolution, refactoring, etc.), or validation (structure
or types). Some language workbenches also support debugging. We distinguish between

7

support for debugging the language definition (validation or semantics), and support
for constructing debuggers for the defined language. The latter allows, for instance, the
definition of domain-specific views to display variable bindings, or specific functionality
for setting breakpoints.

Composability. Finally, composability of language definitions is a key requirement for
supporting language-oriented programming [2, 3] where software developers use multi-
ple languages to address different aspects of a software system. Language workbenches
may support incremental extension (modularly adding additional language constructs
to a base language) and language unification (independently developer languages can
be unified into a single language) [36]. Ideally, all aspects of a language – syntax,
validation, semantics, and editor services – should be composable.

4. The Language Workbenches of LWC 2013

In this section, we briefly introduce the LWC’13 language workbenches, before describ-
ing their fit to our feature model.

4.1. The tools

Ensō (since 2010, http://www.enso-lang.org/) is a greenfield project to enable a software
development paradigm based on interpretation and integration of executable specifi-
cation languages. Ensō has its roots in an enterprise application engine developed at
Allegis starting in 1998, which included integrated but modular interpreters for semantic
data modeling, policy-based security, web user interfaces, and workflows. Between
2003 and 2010 numerous prototypes were produced that sought to refine the vision
and establish an academic foundation for the project. The current version (started in
2010) is implemented in Ruby. Rather than integrate with an existing IDE, Ensō seeks
to eventually create its own IDE. The goal of the project is to explore new approaches
to the model-based software development paradigm.

Más (since 2011, http://www.mas-wb.com/) is a web-based workbench for the creation
of domain-specific languages and models. Más pitches itself at “non-developers”, using
projectional editing to provide an appropriate style of editing. Language semantics are
defined through “activations”, consisting, for instance, of declarative code generation
templates. Más aims at lowering the entry barrier for language creation far enough
to allow adoption and scaling of the model-driven approach across disciplines and
industries.

MetaEdit+ (since 1995, http://www.metacase.com/) is a mature, platform-independent,
graphical language workbench for domain-specific modeling [22]. MetaEdit+ aims to
remove accidental complexity, allowing users to concentrate on creating productive
languages and good models. MetaEdit+ is commercially successful, used by customers
in both industry and academia.

MPS (since 2003, http://www.jetbrains.com/mps/) is an open-source language work-
bench. Its most distinctive feature is a projectional (roughly speaking, a modernised
syntax directed) editor that supports integrated textual, symbolic, tabular and graphi-
cal notations [37], as well as wide-ranging support for composition and extension of
languages and editors. In contrast to legacy projectional editors, its editor usability is
acceptable to users [38].

Onion (since 2012) is a language workbench and base infrastructure implemented in
.NET for assisting in the creation of DSLs. Onion evolved from Essential (2008), a

8

http://www.enso-lang.org/
http://www.mas-wb.com/
http://www.metacase.com/
http://www.jetbrains.com/mps/

textual language workbench with a focus on model interpretation and code generation.
The main goal of the Onion design is to provide the tools to speed up DSL creation for
different notations (text, graphical, projectional) and provide scalability for big models
via partitioning and merging capabilities. Onion emphasizes speed of parsing and code
generation, enabling real-time synchronization of models and generated code.

Rascal (since 2009, http://www.rascal-mpl.org/) is an extensible metaprogramming
language and IDE for source code analysis and transformation [18, 19, 39, 40]. Rascal
combines and unifies features found in several other tools for source code manipulation
and language workbenches. Rascal provides a simple, programmatic interface to extend
the Eclipse IDE with custom IDE support for new languages. The tool is accompanied
with interactive online documentation and is regularly released as a self-contained
Eclipse plugin. Rascal is currently used as a research vehicle for analyzing existing
software and the implementation of DSLs.

Spoofax (since 2007, http://www.spoofax.org/) is an Eclipse-based language workbench
for efficient development of textual domain-specific languages with full IDE support [20].
In Spoofax, languages are specified in declarative meta-DSLs for syntax (SDF3 [41]),
name binding (NaBL [42]), editor services, and transformations (Stratego [43]). From
these specifications, Spoofax generates and dynamically loads an Eclipse-based IDE
which allows languages to be developed and used inside the same Eclipse instance.
Spoofax is used to implement its own meta-DSLs.

SugarJ (since 2010, http://www.sugarj.org/) is a Java-based extensible programming
language supports extension of the base language with custom language features [44, 45].
Extensions are defined with declarative meta-DSLs (SDF, Stratego, and a type-system
DSL [46]) as part of the user program and can be activated in the scope of a module
through regular import statements. SugarJ also comes with a Spoofax-based IDE [47]
that can be customized via library import on a file-by-file basis. An extension can use
arbitrary context-free and layout-sensitive syntax [48] that does not have to align with
the syntax or semantics of the base language (Java).

Whole Platform (since 2005, http://whole.sourceforge.net/) is a mature projectional
language workbench [49]. It is mostly used to engineer software product lines in the
financial domain due to its ability to define and manage both data formats and pipelines
of model transformations over big data.

Xtext (since 2006, http://www.eclipse.org/Xtext/) is a mature open-source framework
for developing programming languages and DSLs. It is designed based on proven
compiler construction patterns and ships with many commonly used language features,
such as a workspace indexer and a reusable expression language [50]. Its architecture
allows developers to start by reusing well-established and commonly understood default
semantics for many language aspects.

These descriptions reveal a striking diversity. Half of the workbenches are developed in
an academic context (Ensō, Rascal, Spoofax, SugarJ, and the Whole Platform) and the
other half in industry (Más, MetaEdit+, MPS, Onion, and Xtext). Similarly, the age of
the language workbenches varies from 18 years (MetaEdit+) to 1 year (Onion). It is to
be expected that the maturity, stability, and scalability of industrial and academic tools
differ; however, this has not been focus of our study.

4.2. Language Workbench Features

Table 1 shows the LWC’13 language workbenches relative to our feature model. In
the remainder of this subsection, we reflect on various interesting findings that Table 1

9

http://www.rascal-mpl.org/
http://www.spoofax.org/
http://www.sugarj.org/
http://whole.sourceforge.net/
http://www.eclipse.org/Xtext/

E
ns

ō

M
ás

M
et

aE
di

t+

M
P

S

O
ni

on

R
as

ca
l

S
po

of
ax

S
ug

ar
J

W
ho

le

X
te

xt

Notation Textual
Graphical
Tabular
Symbols

Semantics Model2Text
Model2Model
Concrete syntax
Interpretative

Validation Structural
Naming
Types
Programmatic

Testing DSL testing
DSL debugging
DSL prog. debugging

Composability Syntax/views
Validation
Semantics
Editor services

Editing mode Free-form
Projectional

Syntactic services Highlighting
Outline
Folding
Syntactic completion
Diff
Auto formatting

Semantic services Reference resolution
Semantic completion
Refactoring
Error marking
Quick fixes
Origin tracking
Live translation

Table 1: Language Workbench Features (= full support, = partial/limited support)

brings out.

Notation and editing mode. Most language workbenches provide support for textual

10

notations1, with the exception of MetaEdit+. Más, MetaEdit+, MPS, and the Whole
Platform provide support for tabular notations. Más, MPS and Onion employ projec-
tional editing, which simplifies the integration of multiple notation styles. In addition to
textual projections, MPS also supports graphical notations, and notations can be arbi-
trarily mixed [37]. Ensō combines textual and graphical notations by providing support
for custom projections into diagram editors. The remaining language workbenches
only support textual notation, edited in a free-form text editor. MetaEdit+, MPS, and
the Whole Platform also support mathematical symbols, such as integral symbols or
fractions.

Editor. The free-form textual language workbenches that are built on Eclipse (Rascal,
Spoofax, SugarJ, Xtext) all provide roughly the same set of IDE features: syntax colour-
ing, outlining, folding, reference resolution, and semantic completion. Spoofax, SugarJ,
and Xtext have support for syntactic completion. Rascal, Spoofax, and Xtext allow the
definition of custom formatters to automatically layout DSL programs. Projectional
editors such as MPS, Whole Platform or Más always format a program as part of the
projection rules, so this feature is implicit. Textual free-form language workbenches
can use the traditional diff program (e.g. for version control). MPS comes with a
dedicated three-way diff/merge facility that works at the level of the projected syntax.
MetaEdit+ provides a dedicated differencing mechanism so that modellers can inspect
recent changes; for version-control a shared repository is used.

Semantics. With the exception of Ensō, all language workbenches support a generative
approach, most of them featuring both model-to-text and model-to-model transforma-
tions, and many additionally supporting interpretation of models. In contrast, Ensō
eschews generation of code and is solely based on interpreters, following the working
hypothesis that interpreters compose better than generators.

Validation. Just over half of the workbenches provide a programmatic interface for
implementing validation routines. Some language workbenches lack dedicated support
for type checking and/or constraints. These concerns are either dealt with by manually
programming a type-checker or by assuming that models are correct by construction
(e.g. are instances of a specific meta-model). MPS, SugarJ [46], and Xtext provide
declarative languages for the definition of type systems. Spoofax has a declarative
language for describing name binding rules [42].

Testing. MPS, Spoofax, and Xtext have dedicated sub-languages for testing aspects
of a DSL implementations, such as parsing, name binding, and type checking. Rascal
partially supports testing for DSLs through a generic unit testing and randomized
testing framework. Five language workbenches support some form of debugging of
the language specification. Four language workbenches support the debugging of DSL
programs. For example, Xtext automatically supports debugging for programs that
build on Xbase and compile to Java. MPS has a debugger API that can be used to build
language-specific debuggers. It also defines a DSL for easily defining how debugging of
language extension works. Both Xtext and MPS rely on origin tracking of data created
during generation. In the Whole Platform, both meta-language and defined language can
be debugged using the same infrastructure which has support for conditional breakpoints
and variable views.

Composability. Composability allows languages to be built by composing separate,

1All tools allow users to type raw text. However, by “support” we mean IDE support that includes syntax
color, code completion or error markup.

11

Figure 2: An example of a textual QL model (left) and its default rendering (right).

reusable building blocks. The composition of textual languages involves different trade-
offs (see [51] for an overview) and not all workbenches follow the same approach. Ensō,
Rascal, Spoofax, and SugarJ choose to support arbitrary syntax composition which
requires the use of possibly ambiguous generalized parsing technology. In contrast,
Xtext, which uses ANTLR’s LL(*) algorithm [52] does not introduce ambiguity, but
cannot compose arbitrary grammars. Onion uses PEGs [53] which allow arbitrary
ambiguity-free composition, but without any guarantees about whether the composed
language can accept inputs that the components could. MPS and MetaEdit+, which do
not use parsing at all, allow arbitrary notations to be combined, but lose the ‘feel’ of
traditional text editing.

The composability of validation and semantics in Rascal, Spoofax, and SugarJ
is based on the principle of composing sets of rewrite rules. In Ensō, composition
of semantics is achieved by using the object-oriented principles of inheritance and
delegation in interpreter code. In MPS, different language aspects use different means
of composition. For example: the type system relies on declarative typing rules which
can be simply composed; whereas the composition of transformations relies on the
pair-wise specification of relative priorities between transformation rules.

5. LWC’13: Setup and Results

In this section, we first introduce the LWC’13 challenge before detailing which solutions
implemented which part of the challenge.

5.1. The challenge

LWC’13 asked participants to create a Questionnaire Language (QL)2. The questionnaire
language was selected based on the expectation that it could be completed with limited
effort, that it provides enough discriminatory power to identify interesting features, and
that it would not be biased towards any one style of language workbench. Anecdotally,
we have not received any feedback indicating that the assignment was unfeasible or
unsuitable.

2The original assignment can be found at
http://www.languageworkbenches.net/wp-content/uploads/2013/11/Ql.pdf

12

http://www.languageworkbenches.net/wp-content/uploads/2013/11/Ql.pdf

Figure 3: Feature model of the QL assignment.

A summary of the challenge is as follows. A questionnaire consists of a sequence of
questions and derived values presented to a user by rendering it as a GUI (an example is
shown in in Figure 2). Later questions may only be visible depending on answers given
to earlier questions. Users must be able to specify questionnaires in a tool and generate
GUIs from them. Participants were then given a list of features which they could choose
to implement, with the explicit expectation that a QL language and IDE implementation
would be generated. The complete list of features is as follows:

• Syntax: provide concrete and abstract syntax for QL models.
• Rendering: compile to code that executes a questionnaire GUI (or interpret directly).
• Propagation: generate code that ensures that computed questions update their value

as soon as any of their (transitive) dependencies changes.
• Saving: generate code that allows questionnaire users to persist the values entered

into the questionnaire.
• Names: ensure that no undefined names are used in expressions.
• Types: check that conditions and expressions are well-typed.
• Cycles: detect cyclic dependencies through conditions and expressions.
• Determinism: check that no two versions of equally-named questions are visible

simultaneously (because of conditional questions, this requires requires SMT solving
or equivalent).

• Highlighting: provide customized visual clues to distinguish language constructs.
• Outline: provide a hierarchical view or projection of QL models.
• References: support go-to-definition for variables used in conditions and expressions.
• Error marking: visually mark offending source-model elements in case of errors.

Participants were also asked to develop an optional second language called QLS for
declaring the style and layout of QL questionnaires. QLS styles were asked to be
applicable to a QL specification without the latter having knowledge of the former. In
more detail, QLS was expected to have the following features:

• Sectioning: allow questions to be (re)arranged in sections and subsections.
• Pagination: allow questions to be distributed over multiple pages.
• Styling: allow customization of fonts, colors, and font styles for question labels.
• Widgets: enable the selection of alternative widget styles for answering questions.
• Cross-validation: check that the references within a QLS specification refer to valid

entities of the corresponding questionnaire model.

A feature model for the challenge is shown in Figure 3. Together, QL and QLS define

13

E
ns

ō

M
ás

M
et

aE
di

t+

M
P

S

O
ni

on

R
as

ca
l

S
po

of
ax

S
ug

ar
J

W
ho

le

X
te

xt

Syntax

Execution Rendering
Propagation
Saving

Validation Names
Types
Cycles
Determinism

IDE Coloring
Outline
References
Marking

QLS Sectioning
Pagination
Styling
Widgets
Validation

Feature coverage (%) 24 44 88 74 82 88 97 59 65 94

Table 2: Implemented QL and QLS features per language workbench (= fully imple-
mented, = partially implemented/limited support).

17 features, of which 3 are mandatory and the rest optional.

5.2. Results

Table 2 shows which features each solution supports. The completeness of a solution
is a simple ratio of the supported features (where = 1, = 0.5), over the total
number of features (17). The feature-based comparison helps in the interpretation of the
quantitative – but sometimes not easily comparable – metrics shown in Table 3. Table 4
provides download links for the solutions so that readers can verify our interpretation

Table 3 summarizes the quantitative facts about solutions. Where possible we use
SLOC, using cloc3. Where non-textual notations are used for some, or all, of a solution
we report the Number of Model Elements (NME) used. We define this as any kind
of structural entity that is used to define aspects of a language (e.g. in MetaEdit+ this
includes graphs, objects, relationships, roles, and properties).

Although MPS is purely projectional, the languages used for language definition
are rendered textually. We therefore use an approximate SLOC count (based roughly
on [54]): for each language construct, we define an SLOC factor based on the construct’s

3http://cloc.sourceforge.net

14

http://cloc.sourceforge.net

SLOC / NME SLOC/NME
per feature

Compile-time dependencies Run-time dependencies

Ensō 83 / − 21 / − Ensō, NodeJS or Ruby 1.9 Ensō, NodeJS, browser with
JavaScript, jQuery

Más 413 / 56 55 / 9 Más, browser with JavaScript browser with JavaScript, jQuery
MetaEdit+ 1177 / 68 78 / 5 MetaEdit+ browser with JavaScript
MPS 1324 / − 106 / − MPS, JDK, Sascha Lisson’s

Richtext Plugins
JRE

Onion 1876 / − 134 / − Onion, .NET 4.5,
StringTemplate

browser with JavaScript

Rascal 2408 / − 161 / − Rascal, Eclipse, JDK, IMP PHP server, browser with
JavaScript, jQuery and validator

Spoofax 1170 / − 86 / − Spoofax, Eclipse, JDK, IMP,
WebDSL

WebDSL runtime, SQL database,
browser with JavaScript

SugarJ 703 / − 70 / − SugarJ, JDK, Eclipse, Spoofax JRE
Whole 645 / 313 59 / 28 Whole Platform, Eclipse, JDK JRE, SWT, Whole LDK
Xtext 1040 / − 65 / − Xtext, Eclipse, ANTLR, Xtend JRE, JSF 2.1, JEE container

Table 3: Size metrics and dependency information on the QL/QLS solutions.

LWB Links to the corresponding QL solutions

Ensō https://github.com/enso-lang/enso/tree/master/demos/Questionaire

Más http://www.mas-wb.com/languages/inspector?id=120001

MetaEdit+ http://www.metacase.com/support/50/repository/LWC2013.zip

MPS http://code.google.com/p/mps-lwc13

Onion https://bitbucket.org/icinetic/lwc2013-icinetic

Rascal https://github.com/cwi-swat/QL-R-kemi

Spoofax https://github.com/metaborg/lwc2013

SugarJ https://github.com/sugar-lang/case-studies/tree/master/questionnaire-language

Whole Platform https://github.com/wholeplatform/whole-examples/tree/master/org.whole.crossexamples.lwc13

Xtext http://code.google.com/a/eclipselabs.org/p/lwc13-xtext/

Table 4: Download locations for each of the LWC’13 solutions.

textual representation. Each model instance is then multiplied by the corresponding
SLOC factor to obtain a total SLOC. In addition we report the SLOC/NME per feature
ratio (though since not all features are of equal size, we caution against over-interpreting
this number). Finally, we show the compile-time and runtime dependencies of each
solution, as an indication of deployment complexity.

While the measures in Table 3 are useful in giving a sense of the different solutions
and the workbenches that led to them, we caution against over-interpretation. In
particular, the numbers we present are unsuited to ranking workbenches, for several
reasons. First, even were one to assume that SLOC is a perfect measure for textual
systems, there is no meaningful way of comparing it to NME. Second, the architecture
and design is often substantially different across QL/QLS solutions. Client-server
web architectures may impose substantially different costs on solutions than a desktop
GUI design, for example. Third, the SLOC/feature metric ignores issues such as
increased interaction between features as their number increases; put another way,
the more features one has, the more code tends to be dedicated to managing their
interactions. Fourth, those implementing the solutions varied in experience. Some
of the solutions were developed by the language workbench developers themselves
(e.g. Más and SugarJ), whereas others are built by first-time (e.g. MPS) or second-time

15

https://github.com/enso-lang/enso/tree/master/demos/Questionaire
http://www.mas-wb.com/languages/inspector?id=120001
http://www.metacase.com/support/50/repository/LWC2013.zip
http://code.google.com/p/mps-lwc13
https://bitbucket.org/icinetic/lwc2013-icinetic
https://github.com/cwi-swat/QL-R-kemi
https://github.com/metaborg/lwc2013
https://github.com/sugar-lang/case-studies/tree/master/questionnaire-language
https://github.com/wholeplatform/whole-examples/tree/master/org.whole.crossexamples.lwc13
http://code.google.com/a/eclipselabs.org/p/lwc13-xtext/

(e.g. Rascal) users of a language workbench.4 Finally, our data set is too small to derive
any statistically significant conclusions. Moreover, in the low end of the SLOC data set
there are few data points, and in the upper region of the data set there is high variability.

5.3. Observations

Bearing in mind the various warnings we have made about the numbers presented in
the previous section, they are still sufficiently useful to allow us to make a number of
interesting observations.

Completeness. All solutions fulfilled the basic requirements of rendering and executing
QL models. Furthermore, 9 out of 10 solutions provided IDE support for the QL
language. Additionally, 7 solutions also provided IDE support for the optional QLS
language. All text-oriented language workbenches achieve these results with fewer than
2,500 SLOC; those language workbenches based on non-textual notations achieve this
with fewer than 1200 NMEs.

An interesting question then arises about the size of the solutions relative to traditional
approaches. For comparison, a reasonable Java solution from our students came to
about 2,200 SLOC, excluding IDE support and QLS features.5 This can be seen as
confirmation that, by lowering language creation costs, language workbenches can make
software developers’ lives easier (see [55]).

Single or multiple meta-languages. Another interesting distinction is whether a lan-
guage workbench provides a single metalanguage or a combination of smaller metalan-
guages. For instance, Rascal provides a unified language with domain-specific features
(grammars, traversal, relational calculus, etc.) to facilitate the construction of languages.
Similarly, apart from metamodels in Más and grammars and metamodels in Onion,
these two language workbenches interface with general purpose languages for the heavy
lifting (Xtend in Más, C# in Onion). Except for the grammar, Xtext relies on Java or
Xtend for the language implementation.

On the other hand, Spoofax provides a multiplicity of declarative languages dedicated
to certain aspects of a language implementation (e.g. SDF3 for parsing and pretty
printing, Stratego for transformation, NaBL for name binding, etc.). Along the same
lines, MPS and SugarJ provide support for building such sub-languages on top of an
open, extensible base language. In this way, SugarJ integrates SDF, Stratego and a
language for type systems into the base language. MPS uses specialized languages for
type system rules, transformation rules and data flow specification, among others.

Finally, there seems to be a convergence towards language workbenches where
multiple, heterogeneous notations or editing modes co-exist within one language: MPS
already supports graphical, tabular, symbolic, and textual notations; Spoofax is currently
working towards integrating graphical notations (see e.g., [56]); and in the Onion
language workbench, textual parsing is combined with projectional editing.

Language reuse and composition. A long-standing goal of language-oriented pro-
gramming is the ability to compose different languages. The results on the QL/QLS
assignment reveal first achievements in this direction. First of all, as indicated above,
a number of language workbenches approach language-oriented programming at the

4We did not record the time spent to create any solution, partly for this reason.
5The median solution was 3,100 SLOC, which is the median over 48 QL implementations of hand-written

Java code together with a grammar definition using ANTLR, Rats! or JACC, constructed by master-level stu-
dents of the Software Construction course at University of Amsterdam, 2013. See: https://github.com/software-
engineering-amsterdam/sea-of-ql.

16

https://github.com/software-engineering-amsterdam/sea-of-ql
https://github.com/software-engineering-amsterdam/sea-of-ql

meta-level: language definitions in MPS, Spoofax, and SugarJ are combinations of
different metalanguages. Second, some of the language workbenches achieve high
feature coverage using relatively low SLOC numbers. Notably, the low SLOC/feature
number of Ensō, MPS, Spoofax, SugarJ and Xtext can be explained by reusing existing
languages or language fragments. The Ensō, MPS, SugarJ, and Xtext solutions reuse
an existing expression language (which, in cases such as Xtext, can be fairly large),
thus obtaining aspects like syntax, type checking, compilation, or evaluation for free.
The Spoofax solution targets the WebDSL platform, thus reusing execution logic at
runtime. In contrast, the Rascal solution includes full implementations of both syntax
and semantics of expressions and the execution logic of questionnaires.

Extensible Workbenches. Another observation in line with language-oriented program-
ming is the fact that all language workbenches considered in this paper are themselves
compile-time dependencies for the QL/QLS IDE. This suggests that the goal of state-of-
the-art language workbenches is not so much to facilitate the construction of independent
compilers and IDEs, but to provide an extensible environment where those compilers
and IDEs can live in. In Ensō, MetaEdit+, MPS, SugarJ, and the Whole Platform, new
languages are really extensions of or additions to the language workbench itself. MPS,
Ensō and SugarJ even facilitate extension of the metalanguages. Furthermore, with
the exception of Xtext, all language workbenches allow new languages or language
extensions to be activated dynamically within the same instance of the IDE.

6. Benchmark Problems for the Future

Although the LWC has provided the basis for much of this paper, we believe that
future LWCs can do an even better job. This section proposes a set of specific, detailed
benchmarks for some aspects of language workbenches. We first motivate the need
for better language workbench comparisons in Section 6.1. Then we discuss desirable
characteristics of benchmark problems in Section 6.2. The criteria for evaluating the
proposed benchmarks are given in Section 6.3; we show two example evaluations in
Sections 7.1 and 7.2. The actual benchmark problems are contained in Section 6.5, and
the example languages they rely on are introduced in Section 6.4.

6.1. Detailed Workbench Comparison Requires Benchmarks

The feature model in Figure 1 is, inevitably, relatively coarse-grained. For example, the
editing mode provides free-form and projectional definitions, but does not go into detail
on either, nor does it provide an explicit way to define hybrid approaches. In large part
this simply shown that the LWC challenges were unable to drill into enough detail to
bring out more fine-grained differences.

This is not to suggest that the LWC is not the right general idea, however. It is
easy to claim that a particular approach or technology can do this or that, without
ever precisely defining what ‘this’ or ‘that’ are. To put such claims on a more sound
footing – and ultimately to enable repeatable, reproducible experiments – they need
to be well-defined and standardized. This activity has a long tradition in computing
research in the form of benchmarks. For instance, benchmarks exist for evaluating
the performance of theorem provers [57] and XML data management [58], the RDF
query language SPARQL [59], or the integration between Java and native code through
JNI [60]. Not all benchmark problems address performance concerns, however. The

17

so-called ‘expression problem’6 is a well-known benchmark addressing modularity and
extension in programming languages. Competitions like POPLmark7, the Language
Workbench Challenge [33], Transformation Tool Contest [61], or the MSR Data Mining
Challenge8 propose challenge problems for specific communities to take on, and address
a variety of aspects, unrelated to performance. The benchmark problems presented in
this paper fit in that latter category.

6.2. Desirable Benchmark Characteristics

We believe that good benchmark problems have certain characteristics:

Self-contained benchmark problems highlight a specific tool capability as indepen-
dently from other capabilities as possible. Instead of requiring, for instance, the
implementation of particular language as a whole, one can try to isolate specific
features of editor technology.

Implementable benchmark problems are described sufficiently clearly to make solu-
tions practical. Each problem is illustrated using concrete, exemplary language
features.

Feasible benchmark problems are those whose solutions are small enough to permit
implementation in reasonable time.

Indicative benchmark problems are those that can reasonably lead to solutions which
can be clearly evaluated against the benchmark. Put another way, indicative bench-
mark problems give the ability to clearly analyse whether a solution implements
the benchmark problem or not.

State of the art benchmark problems are those that have particular relevance for dif-
ferentiating language workbenches. Put another way, such problems should
avoid commonplace features of editor technology such as syntax highlighting,
completion, and error marking.

Some benchmark problems, particularly those that address performance, are quantitative
in nature. However, most – including those introduced in this paper – are partly or
wholly qualitative: their results are captured in a structured description. However, by
using a structured description, comparisons are still possible and relatively easy.

The authors of this paper all have a stake in language workbenches. The benchmark
problems were written by authors who represent five separate workbenches; most bench-
mark problems were thus, explicitly or implicitly, written with a particular language
workbench’s strengths or weaknesses in mind mostly Rascal or MPS, but also Spoofax,
SugarJ, or Eco [62]. Although there is inevitably some bias towards these tools, the fact
that they represent five very different points in the design space reduces this bias to what
we consider an acceptable level.

6.3. Evaluation Criteria

Evaluating benchmark solutions requires a clear definition of the criteria to be used. In
this subsection we thus define the minimal set of criteria needed to make the benchmark
problems we propose comparable. Section 7 contains two example evaluations based
on these criteria.

6http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
7http://www.seas.upenn.edu/ plclub/poplmark/
8http://2014.msrconf.org/challenge.php

18

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://www.seas.upenn.edu/~plclub/poplmark/
http://2014.msrconf.org/challenge.php

statemachine TrafficLights { state greenForCars { state greenForPeds {

in event pedestrianButton entry { entry {

in event timeout send carLightsGreen send carLightsRed

out event carLightsRed send pedLightsRed send pedLightsGreen

out event carLightsGreen } }

out event pedLightsRed on pedestrianButton on timeout

out event pedLightsGreen -> greenForPeds -> greenForCars

} } }

Figure 4: An example state machine.

Assumptions Are there any assumptions or prerequisites relevant to the implementation
of the solution?

Implementation What are the important building blocks for defining the solution?
What does it take to implement the solution to the problem?

Variants Are there any interesting and insightful variants of the implementation? What
small change(s) to the challenge would make a big difference in the implementa-
tion strategy or effort?

Usability What is the resulting user experience? Is it convenient to use? Is it similar
to other kinds of notations? Does it feel ’foreign’ to experienced users of the
particular editor?

Impact Which artefacts have to be changed to make the solution work? Are changes
required to (conceptually) unrelated artefacts? How modular is the solution?

Composability To what degree does the solution support composition with solutions
to other benchmark problems, or with other instances of the same problem?

Limitations What are the limitations of this implementation?
Uses and Examples Are there examples of this problem in real-world systems? Where

can the reader learn more?
Effort (optional). How much effort must be spent to build the solution, assuming an

experienced user of the technology? We are realistic that precise effort levels are
almost impossible to record and we therefore consider this criteria optional.

Other Comments Anything that does not fit within the other categories.

6.4. Example Languages used in Benchmark Problems

We use three ‘standard’ languages as the basis for the implementations of the benchmark
problems in the assignment; we describe them below:

A traditional programming language. This represents a ‘standard’ mainstream pro-
gramming language that uses expressions, variable declarations, statements, and func-
tions (e.g. C, Java, Python). A simplified subset of one of these languages is sufficient
to address the benchmarks. For simplicity, we refer to this language as MiniJava (a
homage to [63]).

A state-machine DSL. A simple state-machine language has the advantage of being
manageable whilst having enough concepts to be interesting from the perspective of
language workbenches. For example, Figure 4 shows an example state machine; the
details of the syntax are unimportant in our context. The language should include
guard conditions (boolean expressions) and state entry actions (statements), for example,
similar to Fowler’s state-machine DSL [64]. We refer to this language as the state-

machine language.

An end-user query language. We define this as a simple SQL-like language along the
lines of FROM <table> SELECT <fields> WHERE <condition>. In our context, such

19

simple queries are enough; <table>, <fields> and <condition> can just be identifiers
for the purpose of the benchmarks. We refer to this as the query language.

In addition, we reference several additional languages as a means to illustrate real-world
relevance of the benchmark problems in the example and relevance sections of each
problem. Since they only serve illustrative purposes, we do not introduce them here.

6.5. Benchmark Problems for Language Workbenches

In this subsection we introduce benchmark problems for language workbenches. The
problems have been derived from the investigation of real-world DSLs, as illustrated by
the examples in each benchmark. We group the problems into three broad categories:
notation, evolution and reuse, and editing. There is inevitably some overlap between the
categories and we caution readers not to interpret them too literally.

For each benchmark problem, we give a name and a description. Since precisely
specifying benchmarks down to the finest detail would be futile (in terms of our effort)
and limiting (ruling out the possibility of creative solutions), the challenges should
be read as indicative of the class of problems specified by their name: we consider
solutions to fully satisfy the challenge if they are similar in spirit to the one described in
the benchmark problem. In addition to the description of the challenge, we discuss the
relevance to real-world systems, show a concrete example and an explicit assignment

to be clear about the expected form of solutions. Where it makes sense to do so, we
have also added illustrations of what a solution may look like; again these should be
interpreted as aides to understanding rather than as prescriptive definitions.

6.5.1. Notation

The following benchmark problems address the Notation feature of Figure 1, as well as
its subfeatures.

Mathematical Symbols. MiniJava should be extended such that users can use conven-
tional mathematical notation such as sum symbols, fractions, and square root symbols.
Normal expressions from MiniJava must be allowed inside the mathematical notations
(e.g. in the sum index, the numerator or denominator of fractions, and under the square
root).

Relevance: Mathematical calculations are an important ingredient to many systems; the
ability to use mathematical symbols enhances readability.

Example: The following code shows C extended with mathematical notations, imple-
mented in JetBrains MPS [65].

Assignment: Add fraction bars and summation symbols to MiniJava.

Tabular Notation. Represent state machines in form a transition table9 instead of the
textual representation shown in Figure 4. States could correspond to rows; events to

9http://en.wikipedia.org/wiki/State_transition_table

20

columns; and transitions to the appropriate row/column cell. The table should be fully
editable.

Relevance: Many aspects of programs, including decision tables, state machines, lookup
tables and data collections are naturally represented as tables.

Example: A (non-state machine) example of a tabular notation from a health system is
shown below.

Assignment: Represent state machines as tables.

Metadata Annotations. Users should be able to attach annotations to arbitrary program
elements without affecting the program’s core meaning. A full solution should allow
the annotation itself to have structure enforced by the workbench.

Relevance: Metadata such as the ones mentioned above are are useful for documenting
software (revisions, author) and for declaratively specifying the integration with other
systems (permissions, transactions).

Example: It should be possible to require a @revision annotation to adhere to the
versioning scheme major.minor, or the @author annotation should support picking an
author from a predefined list of names.

Assignment: Define an @author annotation that can be attached to any program element
in MiniJava.

Optional Hiding. Aspects or parts of programs should be hidden optionally. Hidden
aspects must be stored and users must be given the option to redisplay them later; the
non-hidden parts must remain fully editable. A full solution should allow users to
customize which parts of a program they can hide.

Relevance: This is an example of the widely-used concept of views, where different
subsets of a program or model are made available to different stakeholders.

Example: Consider the textual notation for state machines shown in Figure 4. Users
should be able to hide parts of the state machine so that they can concentrate on the big
picture (e.g. hiding the entry clauses).

Assignment: Implement a way for users to optionally and temporarily hide the entry

clauses of states.

Multiple Notations. This one addresses editing the same structure using different
notations, based on a user’s preference. A full solution will allow the free switching
between multiple notations. As an example, mbeddr’s state machines can be edited as
text, diagram or table.

21

Relevance: Switching between different notations helps integrating different stakehold-
ers or supports different use cases by focussing on different aspects of a data structure.

Example: A state machine can be represented as text (cf. Figure 4) or as a table. Both
cases support editing of the same underlying state machine structure.

Assignment: Support two notations for state machines. For instance, the textual notation
of Figure 4 and a tabular notation.

Computed Properties. Consider a method in MiniJava that has no side effects. The user
should be able to have the editor automatically mark the method with a pure annotation
which is visible as a keyword before the method name when this property is true.
When the property ceases to be true, the annotation should be removed automatically.
The annotation should be read-only. This challenge can be seen as embodying a
general concept of enriching the visual presentation of an element to convey information
computed from the element itself; it is similar to syntax highlighting or error highlighting,
but is more general than simple styling.

Relevance: Showing computed, read-only values in the editor helps users understand the
program; in contrast to hovers, they are always visible and do not require a mouse-over.
This allows users to glance at the whole set of computed values.

Example: An insurance DSL uses this approach to show the inferred types of complex
expressions directly in the program code.

Assignment: Show the pure annotation on MiniJava methods based on some kind of
analysis (e.g., whether it has side effects or not).

Computed Structures. This challenge can be considered as extending Computed

Properties. In the context of MiniJava, consider a program with two classes A and B.
Class A defines a method m1 and class B defines method m2. Moreover, class B inherits
from A. Even though class B inherits method m1, the source code of m1 is only visible
within class A. The goal of this challenge is to enable viewing inherited methods within
the inheriting class, that is, view all of A’s methods in B while editing B. Editing the m1

method viewed in B should edit the underlying m1 method in A. Note that, even though
the method m1 is shown inline in class B, it still is part of class A and still has access
to A’s private fields, which is not the case for m2. We leave it open to solutions how to
communicate such private fields to the user.

Relevance: The more sophisticated decomposition mechanisms a language provides
(such as specialization or aspects), the more important it becomes to show the resulting,
composed structure of a program.

Example: The same insurance DSL mentioned above uses this approach show flatten
the inheritance hierarchies of insurance contracts for some stakeholders.

Assignment: Allow inherited methods to be viewed and edited inline in the inheriting
class in MiniJava.

Skeleton Editing. Predefined templates (or ‘skeletons’) can be useful to guide data
entry for inexperienced users (i.e., those who are unfamiliar with a new language).
For example, the query language may allow queries of the form FROM table SELECT

field_1, ..., field_n WHERE expr, where FROM, SELECT and WHERE represent the
skeleton. Full skeleton editing will automatically expand the skeleton with holes and
automatically guide the user from one hole to another. The challenge is to provide
skeletons whose core contents (e.g., keywords such as FROM) not only act as scaffolding,

22

Figure 5: The left half of this figure shows a rule set type, essentially a data type
definition used in an insurance system. The right side shows a new, "empty" rule set
type. Notice how the sections where users can enter variables, libraries or business
objects are already predefined as a skeleton. Users cannot delete them; they can only
"fill in the blanks" marked by the <...> placeholders.

but also cannot be deleted.

Relevance: Skeletons guide users during editing. In particular, our experience tells us
that business users (i.e., non-programmers) appreciate such skeletons.

Example: Figure 5 shows an example from a business application.

Assignment: Allow the query language to be edited using skeletons.

Embedding Code in Prose. Support arbitrary embedded program nodes within free-
flowing text so that the embedded nodes are treated as ordinary program code. Refac-
torings such as renames should be reflected in such nodes, and editor services such as
syntax highlighting, code completion, reference hyperlinking, and error marking should
be supported.

Relevance: Languages often feature elements containing free-form prose, such as
comments or documentation text. Inside the text, however, program elements must be
embedded or referenced.

Example: Javadoc-style multi-line comments mostly consist of natural language text.
Inside the text users can refer to method parameters of the documented method. Another
example is shown in the figure below: it shows references to program elements inside
comments of a DSL for questionnaires, implemented in Rascal [18].

23

Assignment: Allow methods to be referenced in MiniJava comments.

Embedded Black Boxes. Though most of our challenges have explicitly considered
only textual editing, embedding non-textual items can be useful. At the simplest level,
one may embed images into text as shown below in example implemented in Racket [66].

At the other end of the spectrum one finds the encapsulated embedding of entire editors
(e.g. spreadsheets or graphical editors)

Relevance: Embeddeding “foreign objects” into applications has always played an im-
portant role in end-user applications (such as Microsoft OLE10 or Apple’s OpenDOC11.
Essentially, this benchmark addresses the same goal for languages and IDEs.

Example: mbeddr embeds full graphical editors for state machines in otherwise textual
C programs in order to cater for different stateholders.

Assignment: Allow the use of bitmap images as expression literals in MiniJava.

6.5.2. Evolution and Reuse

The following benchmark problems address modular extension of languages (the Com-

posability feature and its subfeatures in of Figure 1) as well as their evolution over time
(i.e. moving from one version of a DSL to another version of the same language while
keeping the programs written with the language valid).

Language Extension. One form of language composition involves adding additional
constructs to existing syntactic categories. For instance, one could add support for
an unless statement to MiniJava. The structure is similar to an if statement and the
semantics correspond to if (!<cond>). In contrast to the embedding (discussed below),
the unless extension is defined specifically for use with MiniJava, that is, the extension
may depend on the extended language. How can such extensions be supported in a
modular fashion [67], that is, without invasively changing MiniJava?

Relevance: Extension supports incrementally growing a language into a particular
domain [47] by adding language constructs relevant to that domain.

Example: mbeddr uses various language extensions of C to make it more useful for
embedded software development. Example extensions include state machines, interfaces

10http://en.wikipedia.org/wiki/Object_Linking_and_Embedding
11http://en.wikipedia.org/wiki/OpenDoc

24

and components or physical units.

Assignment: Add an unless-statement to MiniJava in a modular way.

Language Embedding. Consider an existing implementation of MiniJava and an
existing implementation of the query language. There are no dependencies between
these languages and each can be used without the other. How can the query language be
embedded [67] into MiniJava, so that it can be used as an expression such as String
name = SELECT name FROM customers WHERE ...? An important challenge here is
to achieve the embedding with minimal “glue” code to tie the languages together, and
without invasively changing either of the languages.

Relevance: Many languages support embedded query languages. Examples include
SQL/J or Microsoft Linq. Such embeddings should be modular and come with the
expected IDE support.

Example: The figure shows an embedding of regular-expression syntax into Java using
SugarJ [47].

Assignment: Embed the query language into MiniJava.

Extension Composition. Let us assume multiple MiniJava extensions have been built
independently, such as the unless extension mentioned above and a new extension
that provides complex number for MiniJava. What has to be done to support extension
composition [36], that is, to use these independent extensions in the same MiniJava
program?

Relevance: Only if extension composition is supported does it become possible to
combine independently developed extensions in a single program.

Example: The C extensions mentioned for mbeddr can be combined in the same program
without any glue code.

Assignment: Define another modular MiniJava extension similar to the unless statement.
Show how to use this one and unless in the same program.

Beyond-Grammar Restrictions. Language grammars partially restrict the programs
that can be expressed. However, in some cases, additional constraints may be necessary
to statically reject semantically undesirable programs. Consider a state machine lan-
guage extension to MiniJava. The entry actions in states should be able to contain Mini-
Java statements. However, there are specific statements such as triggerself <event>

with which the state machine can inject events into itself. Syntactically, triggerself is
a statement like any other MiniJava statement to make sure it can be used in actions.
However, it does not make sense to use it outside a state’s entry block and the editor
should therefore highlight such uses as erroneous. How can we restrict the context in

25

which a language concept can be used?

Relevance: The tighter it can be specified which contructs are allowed in which context,
the better users an be guided (for example, through code completion).

Example: In the insurance DSL mentioned earlier this feature is used to restrict certain
kinds of expressions to specific contexts.

Assignment: Define a triggerself statement and restrict its use to actions inside state
machines.

Syntax Migration. Consider the textual state machine language. A user wishes to make
a purely syntactic change to the language (e.g. changing the on keyword to event),
while keeping the underlying structure the same. How can programs be migrated from
the old to the new syntax?

Relevance: Syntax-only migration is commonplace, especially in DSLs, where changing
requirements as expressed by end users often lead to a need for different syntax.

Example: The syntax of the data type definition in Figure 5 had to be changed sev-
eral times over the course of the project (keywords, arrangement) while keeping the
underlying structure unchanged.

Assignment: Change the state machine language definition to use event instead of on
for transitions. Discuss the migration of existing programs.

Structure Migration. This challenge is, in a sense, the inverse of Syntax Migration.
Instead of adjusting a language’s concrete syntax, consider a change to the structure
of the underlying program representation while keeping the syntax the same. For
example, in the state machine language, change the representation of send commands
from send(Event) to send(Statement(Call(Event))). Again, the question is how
can existing programs be migrated to the new program representation?

Relevance: Structure migration is common as a means to refactor the structure of the
AST, for example, to support certain kinds of extensibility.

Example: In mbeddr’s state machine language, the structure of transitions had to be
changed to support triggers other than events while keeping the syntax for event-based
triggers unchanged.

Assignment: Change the program representation of send commands in the state machine
language to send(Statement(Call(Event))). Discuss how existing programs can be
migrated.

6.5.3. Editing

The following benchmark problems address the Editor feature, and its subfeatures, from
Figure 1.

Editing Incomplete Programs. Consider editing a program in MiniJava. A developer
gets half-way through writing a variable assignment (e.g., int x =) and then realizes
that they need to add another variable earlier in the program. Are they forced to make
the first variable assignment x syntactically valid (e.g., by adding an initial value and a
semicolon after the equals sign) before they can move to an earlier part of the program
and add another variable assignment?

Relevance: It is tedious for users to be forced to first ‘finish’ typing one part of the
program before being allowed to edit other parts.

26

Example: Simplistic projectional editors may not be able to deal with half-finished
program constructs.

Assignment: Discuss how syntactically incomplete programs are dealt with.

Referencing Missing Items. Some editor technologies aim to ensure referential consis-
tency by construction, that is, references refer to valid program elements at all times. For
example, in MiniJava, can the user write a function call before declaring the function
to be called? In this inconsistent state, are further edits possible? Is the reference
automatically resolved when the function definition is eventually added?

Relevance: Forcing users to create every definition before it can be referenced can make
life difficult for the user, because it prevents top-down programming.

Example: In mbeddr users can use a quick fix to create reference targets (function argu-
ments, local variables or global variables) on demand from the location of a reference.

Assignment: Discuss how references can be written when the reference target is not
available at the time of writing the reference.

Structure-agnostic Copy/Cut/Paste. Can the user select parts of a program which cut
across the abstract syntax tree? Consider an expression such as 1+2*3. Can the user
select and copy or cut 1+2* (without the 3) and paste it at other places? Does this retain
the tree structure when possible?

Relevance: Users expect to be able to copy/paste arbitrary parts of programs, based on
the concrete syntax. Restrictions based on the underlying structure are hard to accept.

Example: Some projectional editors (such as MPS) may only support selection along
the boundaries of the underlying tree structure.

Assignment: Discuss how to select and duplicate program fragments that do not respect
the underlying syntax tree.

Restructuring. Consider again the expression 1+2*3. The multiplication * binds
stronger than addition +; the program is equivalent to (1 + (2 * 3)). How can the user
edit the program to make it equivalent to (1+2)*3? This requires adding parentheses
around nodes that were not siblings of the same parent.

Relevance: If restructuring were not supported, users would be required to tediously
retype the complete expression.

Example: Again, some projectional editors do not support cross-tree editing (inserting
parentheses is a good example of cross-tree editing). MPS supports this case.

Assignment: Discuss editing operations that rearrange the tree structure of the underlying
syntax tree.

Language Demarcation. Consider the embedding of the query language into MiniJava
as described above. Does the embedded query language require explicit ‘begin’ and
‘end’ markers (e.g., brackets such as J K) to delimit the embedded language? Or is the
user required to explicitly tell the editor that they wish to switch from editing MiniJava
to editing the query language? Or is this fully transparent?

Relevance: Explicit demarcatoin can clutter the syntax of the program, especially when
used on a fine-grained (expression) level.

Example: Converge [68] requires explicit markup of program fragments written in
an embedded DSL, enforcing limiting a coarse-grained granularity of embedding. In
contrast, MPS does not require explicit demarcation.

27

Assignment: Explain how language demarcation and disambiguation are handled.

Delayed Decisions. Again consider the embedding of the query language into MiniJava
as described above. A query expression has the syntax select <expr> from Now
also consider a new kind of MiniJava expression that has the syntax select <expr> of

.... Both expressions start with select <expr> ... and the editor can only decide
which concept a user referred to by inspecting the second keyword (from or of). How
does the editor support languages that require this kind of ‘delayed’ decision?

Relevance: If this were not supported by an editor, users would be forced to make the
decision up-front, for example, through code completion.

Example: In projectional editors such as MPS, users typically have to decide which
construct they want to instantiate as the construct is entered.

Assignment: Describe how to implement the two different select expressions so that
they can be used in the same language.

End-User-Defined Formatting. In any editor technology, the structure of a program
is presented to the user in some visual form. This challenge addresses whether it is
possible for users to change, reformat, or relayout the presentation, without affecting
the underlying structure. For instance, this would allow different indentation styles or
placement of open and closing grouping constructs. A full solution to this challenge
persists and updates the different presentations.

Relevance: Different users may have different preferences; one formatting style on all
users is hard to enforce.

Example: A parser-based language implementation typically ignores whitespace, and
users can format programs as they please. In contast, a projectional editor typically
forces one particular formatting and does not give any formatting freedom to users.

Assignment: Explain the mechanisms available for users to reformat existing code
(without changing the program’s AST or the language definition).

Specification of Default Formatting. Even though editor technology may support
varying degrees of end-user formatting (cf. the previous challenge), it is often desirable
to have a default formatting tool to automatically style and layout a program. How can
such formatters be specified for a language?

Relevance: Especially for DSLs, users may not initially see the need for good formatting.
An efficient, automated way to “clean up” the code after it has been written is essential.

Example: Languages defined in Xtext may define a formatter that can be invoked on
existing programs. In contrast, since projectional editors include the formatting in the
projection rules, no additional formatter is required.

Assignment: Describe how formatting specifications are integrated with language defini-
tions.

Formatting Preservation. Refactoring and quick-fixes are examples of automated
transformations that change a program’s structure. The question addressed by this
challenge is: What happens to the visual presentation of the program when such transfor-
mation is applied? Is the program reformatted according to the default formatting? Or
is the user’s formatting preserved as much as possible? Can the behaviour be specified
for a specific language?

Relevance: Automated refactorings are much less useful if they destroy the formatting

28

of the refactored program.

Example: In projectional editors this is a non-issue because they always render a program
based on the AST. In parser-based systems, however, explicit care must be taken to
enable this feature.

Assignment: Discuss how manually created formatting information is stored in the
program and preserved by transformations.

7. Example Solutions to Challenges

The previous section introduced concrete challenges as the basis for comparing language
workbenches in detail. In this section we provide two possible solutions to two of them
to illustrate the use of the evaluation criteria introduced above. First, Section 7.1 shows
how the Metadata annotations challenge is addressed in JetBrains MPS [65]. Second,
Section 7.2 details a a Rascal [18] solution to the challenge of Persistent User-defined

Formatting.

7.1. An Example Solution to Metadata Annotations

This section provides a sample solution to the Metadata Annotations problem, including
picking the authors from a predefined list of names. The metadata annotations problem
is one that has a very specific assignment. This is in contrast to the problem discussed
in the next subsection.

The example is built with JetBrains MPS12, a projectional editor. We would expect
each description of a solution to provide a brief overview of the tool, but in this section
we have insufficient space, and thus refer the reader to [67].

Assumptions We assume that an MPS model of users is available. Each user is identified
by a unique name, and may have any number of additional attributes. We call the concept
representing each user AuthorDef.

users {

markus: Markus Voelter, voelter@acm.org // each line is an AuthorDef

tijs: Tijs van der Storm, storm@cwi.nl

laurie: Laurence Tratt, laurie@tratt.net

}

Implementation The AuthorAnnotation language concept is used to represent the
@author tag. To make it attachable to program nodes without the program node’s
definition knowing about it in advance, it must extend the predefined MPS concept
NodeAttribute:

@annotated: <any> as role: author

concept AuthorAnnotation extends NodeAttribute

references:
authorRef: AuthorDef[1]

Annotations are stored under the node they are annotated to, but without the original
definition of the annotated node declaring the child. The role property specifies the
name used to store the annotation under the annotated node. The annotated property
specifies which language concepts can hold AuthorAnnotations as children. In the
case of the @author tag, any language concept can be annotated, and the annotation
is stored in the author property. The AuthorAnnotation also references exactly one
AuthorDef in its authorRef reference. Next we define the editor:

12http://jetbrains.com/mps

29

editor for concept AuthorAnnotation:

[> [annotated_node] | @author | (%authorRef% -> name) <]

MPS’ projection engine uses editor cells as the building block of editors and editor defi-
nitions are defined collections of cells, arranged in various ways. The editor definition
above represents an AuthorAnnotation as a horizontal list of cells ([> .. <]) with
the following ingredients: first, the node to which the annotation is attached to is shown
([annotated_node]). Then a constant @author is projected. Finally, the reference to
an AuthorDef is rendered by showing the authorRef’s name property.

The original definition of MiniJava does now know about the @author annotation,
so it cannot just be typed into a program. Instead, an intention must be defined that
attaches a @author annotation to a program node. Once defined, a user can select the
intention from a special popup menu that is activated by pressing Alt-Enter. The
implementation of the intention uses the special @ notation to store a new instance of
AuthorAnnotation under the annotated node in the authorRef slot.

intention addAuthor for BaseConcept {

description(node, editorContext) -> string {

"Attach @author";

}

execute(node, editorContext) -> void {

node.@author = new node<AuthorAnnotation>();
}

}

Variants The solution above supports adding the annotation to any program node.
This may be too flexible, and the allowed targets could be restricted in two ways.
First, if there is a an existing language concept to which it should be restricted (say,
ClassDefinition), then the @annotated property of the AuthorAnnotation could be
changed to this concept (replacing <any> with ClassDefinition), and the intention
should be defined for ClassDefinition instead of BaseConcept. The second alter-
native applies to the case where there is no existing concept, but a restriction is still
necessary. For example, the @author tag may be allowed for classes and methods
in MiniJava. Since there may not be a common superconcept of ClassDefinition
and MethodDefinition, the first alternative cannot be used. However, one can add an
isApplicable function to the intention, limiting the program locations at which the
intention can be invoked:

intention addAuthor for BaseConcept {

// ... like before ...

isApplicable(node, editorContext) -> boolean {

node.isInstanceOf(ClassDefinition)

|| node.isInstanceOf(MethodDefinition);
}

}

Effort ca. 15 minutes.

Usability As mentioned, the @author annotation cannot just be typed in. Instead, they
have to be attached with an intention: users have to press Alt-Enter on the to-be-
annotated element and select Attach @author. The annotation is then attached to the
element, and the author can then be selected via code-completion. While the requirement
of using an intention can be seen as a limitation, intentions are quite natural to MPS
users, since the projectional editor in MPS heavily relies on them.

Impact The only artefact that needs to be changed is the language that defines the
@author annotation, which can be different from MiniJava. The language that contains

30

the concepts to which @author annotations should be attached to (i.e. MiniJava in the
example) need not be changed. To use the @author annotation, users add the language
that defines the annotation to a program written in MiniJava.

Composability Syntactic composability in MPS is unlimited, and since the semantics
of @author annotations are not relevant to MiniJava’s semantics, no semantic interac-
tions are possible. In particular, the structure of the AST (as defined by the original
language) is not affected; existing transformation or analysis tools will continue to work
unchanged.

Limitations The approach can only be used inside the MPS projectional editor.

Uses, Examples A similar approach is used to attach requirements traces to mbeddr
program elements; mbeddr is an extensible set of integrated languages for embedded
software engineering [69] built on top of MPS.

7.2. An Example Solution to Persistent User-defined Formatting

This subsection illustrates a second example; it shows a solution to the Persistent

User-defined Formatting problem. This benchmark problem has a more open-ended
assignment, and we decided to show how user-defined formatting is preserved during
a rename refactoring, implemented for the state machine language. This example
uses Rascal, a language workbench and functional programming language for meta
programming [18].

Assumptions We assume the state machine language is defined using Rascal’s built-in
context-free grammars Parsing an input file using the grammar results in a parse tree

(i.e. a concrete syntax tree). Unlike abstract syntax trees (ASTs), parse trees contain
all information regarding layout: white space, comments, keywords, punctuation etc..
Each subtree of the parse tree is annotated with source location values, to relate subtrees
to the textual fragment they correspond to. Source locations are a built-in data type in
Rascal, named loc. An example source location value is the following:

|project://statemachines/input/traffic.stm|(8,5)

A source location consists of the URI of the source resource, and an offset (e.g., 8) and
length (e.g., 5) to identify the textual fragment within the referenced resource. Source
locations function conveniently as unique identifiers of parse trees, and as such can be
used when implementing name analysis.

Name analysis binds use occurrences of names to their definition occurrences. Such
information is encoded using Rascal’s built-in tuple and relation types. The following
declaration defines a type alias RefGraph, which captures the required information:

alias RefGraph = tuple[set[loc] defs, set[loc] uses, map[loc, loc] refs];

In the remainder of this example, we assume there is a function (e.g., resolve) which
computes a RefGraph from a state machine parse tree. The locations in a RefGraph will
be derived from nodes in the parse tree representing names (i.e. identifier nodes).

Implementation The rename refactoring is implemented as a single function, rename,
which takes a state machine parse tree m, the location of the identifier where the user
invoked the refactoring (x), the new name (new) and the reference graph (g). The
function rename renames all name occurrences that refer to, or are referenced by, the
name located at x to the new name new. Note that the original name is not needed, since
edges in the reference graph exist only between name occurrences with the same textual
value. The rename function is defined as follows:

31

StateMachine rename(StateMachine m, loc x, str new, RefGraph g) {

loc def = x in g.uses ? g.refs[x] : x;

set[loc] toRename = {def} + { use | use ← g.uses, g.refs[use] == def };

return visit (m) {

Id x ⇒ [Id]new when x@\loc in toRename

}

}

The first line retrieves the definition site of x if it is not a definition itself. Then, the
set of locations that need renaming is computed in toRename using a comprehension
over the reference graph. The comprehension finds all use occurrences referring to the
definition def. The actual rename is performed using Rascal’s visit statement, which
is used to traverse trees in a structure-shy fashion. Whenever visit visits an Id x which
has its location in toRename, it is rewritten to the new name. The notation [S]x parses
the string value x to a parse tree of type S. Because the transformation is performed
on parse trees, and transforming a parse tree back to text is automatic, no user defined
layout is lost.

Variants The rename function described above is specific for the state machine language,
since it refers to concrete state machine types (StateMachine and Id). It could be made
fully generic using additional type abstraction. The resulting rename refactoring can
then be used for any language, provided the required reference graph is available. This
is a reasonable requirement because name analysis is needed anyway for type checking,
identifier hyperlinking, and other semantic tasks. The details of such a generic rename,
however, are outside the scope of this example

Instead of transforming parse trees, the rename refactoring could als be implemented
generically on the source text directly. In this style, the source locations in the reference
graph are interpreted as pointers into the source text. Instead of transforming the parse
tree, the locations in toRename are substituted directly in the original source text.

Effort Given an existing name analysis, ca. 15 minutes.

Usability Currently, integration of refactorings implemented in Rascal with the refac-
toring framework of Eclipse is still pending. Users have to select a name and invoke
a menu action to enter a new name. The textual update of source files participates in
Eclipse’s undo stack. This means refactorings can be undone, as expected.

Impact There’s no impact on the rest of the language implementation. The only required
glue code is registering the transformation with Rascal’s IDE framework.

Composability The rename refactoring for state machines is very abstract: it only refers
to the concrete StateMachine and Id types. The other dependencies are fully generic.
As a result, the implementation is resilient to a large class of changes or extensions to
the language. The only change that will affect this implementation is when additional
types of identifiers are introduced, which seems unlikely in practice.

Limitations The approach sketched here requires the program to be represented using
concrete parse trees, not ASTs, which is more common, and sometimes more convenient.
Rascal supports ASTs through an explicit implode step which converts parse trees to
typed ASTs. In general, however, transforming ASTs is not sufficient for refactoring,
since it is important to maintain end-user layout and comments as much as possible.

The sketched solution only work on single file refactorings. For multiple files, the
string substitution variant described above is more flexible: it just needs to load the files
corresponding to the locations that should be renamed.

The described rename refactoring is not name-safe. In other words, it could introduce
inadvertent name captures in the transformed code. A language-parameteric solution

32

to address this is described in [70], which can be used to fix name captures after the
transformation.

Uses, Examples A demo project illustrating DSL development in Rascal using a simple
state machine language includes a slight variation of the rename refactoring13.

8. Concluding Remarks

Language workbenches have seen substantial innovation over the last few years, both in
industry and academia. To document the state of the art of language workbenches, we
established a feature model that captures the design space of language workbenches.

We evaluated data from LWC’13 and positioned 10 existing language workbenches
in this design space by identifying the features they support. As our study reveals, at
least one language workbench implements any given feature in the feature model, but no
language workbench realizes all features. While some features are supported by almost
all workbenches (textual notation, model-to-text transformation, structural validation,
syntax composition, syntax highlighting, folding, auto formatting, semantic completion,
and error marking), others are less widely supported (type checking, DSL program
debugging, quick fixes, and live translation).

Also based on LWC 2013, we collected empirical data on feature coverage, size, and
required dependencies of implementations of a language for questionnaires with styling
(QL/QLS) in each language workbench. Based on the results, we observe that language
workbenches provide adequate abstractions for implementing a language like QL. The
results show a marked advantage over manual implementation. We also observe that
the language workbench space is very diverse: different sets of supported features,
maturity ranging from 1 to 18 years of development, single metalanguage or multiple
metalanguages, industry or research. However, our results are not intended, and do not,
allow us to conclude that any approach, or category, performs better than others.

To enable an even more detailed comparison and discussion of language workbenches
and their features, as well as to inspire future LWC instances, we proposed a set of
benchmark problems to compare support for flexible notations, evolution and reuse, as
well as editing; by taking input from authors representing different editing approaches,
we have attempted to make the benchmark problems as unbiased as possible. They are
in line with the following trends we observed in the field of language workbenches:

• Integration of different notational styles (textual, graphical, tabular, symbolic) and
editing modes (free-form and projectional).

• Reuse and composition of languages, leading to language-oriented programming both
at the object level and metalevel.

• Language workbenches are extensible environments, and not just tools for creating
other tools.

Acknowledgements

Part of the organization for this collaborative effort was conducted during Dagstuhl
Seminar 15062 “Domain-Specific Languages”.

13https://github.com/cwi-swat/missgrant

33

https://github.com/cwi-swat/missgrant

[1] M. Fowler, Language workbenches: The killer-app for domain specific languages?,
Available at http://martinfowler.com/articles/languageWorkbench.
html (2005).

[2] S. Dmitriev, Language oriented programming: The next programming paradigm,
JetBrains onBoard 1 (2).

[3] M. P. Ward, Language-oriented programming, Software – Concepts and Tools 15
(1995) 147–161.

[4] D. Teichroew, P. Macasovic, E. Hershey III, Y. Yamato, Application of the entity-
relationship approach to information processing systems modeling (1980).

[5] M. Chen, J. Nunamaker, Metaplex: An integrated environment for organization
and information system development, in: ICIS, 1989, pp. 141–151.

[6] P. G. Sorenson, J.-P. Tremblay, A. J. McAllister, The Metaview system for many
specification environments, IEEE Software 5 (2) (1988) 30–38.

[7] M. S. Ltd., Quickspec reference guide (1989).

[8] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, P. Marttiin, MetaEdit—a flexible
graphical environment for methodology modelling, in: CAiSE, 1991, pp. 168–193.

[9] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, V. Pascual,
Centaur: the system, SIGPLAN Not. 24 (2) (1988) 14–24.

[10] T. Reps, T. Teitelbaum, The synthesizer generator, SIGPLAN Not. 19 (5) (1984)
42–48.

[11] P. Klint, A meta-environment for generating programming environments, Transac-
tions on Software Engineering Methodology (TOSEM) 2 (2) (1993) 176–201.

[12] M. Anlauff, P. W. Kutter, A. Pierantonio, Tool support for language design and
prototyping with Montages, in: CC, 1999, pp. 296–299.

[13] M. F. Kuiper, J. Saraiva, Lrc – a generator for incremental language-oriented tools,
in: CC, 1998, pp. 298–301.

[14] M. Mernik, M. Lenic, E. Avdicausevic, V. Zumer, LISA: An interactive environ-
ment for programming language development, in: CC, 2002, pp. 1–4.

[15] J. Heering, P. Klint, Semantics of programming languages: a tool-oriented ap-
proach, SIGPLAN Not. 35 (3) (2000) 39–48.

[16] M. Mernik, J. Heering, A. M. Sloane, When and how to develop domain-specific
languages, ACM Comput. Surv. 37 (4) (2005) 316–344.

[17] E. Söderberg, G. Hedin, Building semantic editors using JastAdd: tool demonstra-
tion, in: Workshop on Language Descriptions, Tools and Applications (LDTA),
2011, p. 11.

[18] P. Klint, T. van der Storm, J. J. Vinju, RASCAL: A domain specific language for
source code analysis and manipulation, in: SCAM, 2009, pp. 168–177.

34

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

[19] P. Klint, T. van der Storm, J. Vinju, EASY meta-programming with Rascal, in:
GTTSE III, Vol. 6491, 2011, pp. 222–289.

[20] L. C. L. Kats, E. Visser, The Spoofax language workbench: Rules for declarative
specification of languages and IDEs, in: OOPSLA, 2010, pp. 444–463.

[21] M. Eysholdt, H. Behrens, Xtext: Implement your language faster than the quick
and dirty way, in: SPLASH Companion, 2010, pp. 307–309.

[22] S. Kelly, K. Lyytinen, M. Rossi, MetaEdit+: A fully configurable multi-user and
multi-tool CASE and CAME environment, in: CAiSE, Vol. 1080, 1996, pp. 1–21.

[23] Honeywell Technology Center, Dome guide (1999).

[24] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nord-
strom, J. Sprinkle, P. Volgyesi, The generic modeling environment, in: Intelligent
Signal Processing, 2001.

[25] M. Voelter, V. Pech, Language modularity with the MPS language workbench, in:
ICSE, 2012, pp. 1449–1450.

[26] C. Simonyi, M. Christerson, S. Clifford, Intentional software, in: OOPSLA, 2006,
pp. 451–464.

[27] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, Programming environments based
on structured editors: The MENTOR experience, Tech. Rep. 26, INRIA (1980).

[28] A. Alderson, Experience of bi-lateral technology transfer projects, in: Diffusion,
Transfer and Implementation of Information Technology, 1997.

[29] MetaCase, MetaEdit+ revolutionized the way Nokia develops mobile phone soft-
ware, Online, http://www.metacase.com/cases/nokia.html (June 5th,
2013) (2007).

[30] J. Kärnä, J.-P. Tolvanen, S. Kelly, Evaluating the use of domain-specific modeling
in practice, in: Workshop on Domain-Specific Modeling (DSM), 2009.

[31] E. Visser, WebDSL: A case study in domain-specific language engineering, in:
GTTSE II, Vol. 5235, 2007, pp. 291–373.

[32] Z. Hemel, E. Visser, Declaratively programming the mobile web with Mobl, in:
OOPSLA, 2011, pp. 695–712.

[33] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al., The state of the art in language
workbenches, in: Software Language Engineering, Springer, 2013, pp. 197–217.

[34] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-oriented
domain analysis (FODA) feasibility study, Tech. rep., CMU Software Engineering
Institute (1990).

[35] D. S. Batory, Feature models, grammars, and propositional formulas, in: SPLC,
Vol. 3714, 2005, pp. 7–20.

35

http://www.metacase.com/cases/nokia.html

[36] S. Erdweg, P. G. Giarrusso, T. Rendel, Language composition untangled, in:
Workshop on Language Descriptions, Tools, and Applications (LDTA), 2012, pp.
7:1–7:8.

[37] M. Voelter, S. Lisson, Supporting diverse notations in mps’ projectional editor,
GEMOC Workshop 2014 (2014) 7.

[38] M. Voelter, J. Siegmund, T. Berger, B. Kolb, Towards user-friendly projectional
editors, in: SLE, 2014, pp. 41–61.

[39] T. van der Storm, The Rascal Language Workbench, Tech. Rep. SEN-1111, CWI
(2011).

[40] M. Hills, P. Klint, J. J. Vinju, Meta-language support for type-safe access to
external resources, in: SLE, Vol. 7745, 2013, pp. 372–391.

[41] T. Vollebregt, L. C. L. Kats, E. Visser, Declarative specification of template-based
textual editors, in: Workshop on Language Descriptions, Tools and Applications
(LDTA), 2012.

[42] G. D. P. Konat, L. C. L. Kats, G. Wachsmuth, E. Visser, Declarative name binding
and scope rules, in: SLE, Vol. 7745, 2012, pp. 311–331.

[43] M. Bravenboer, K. T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.17. A
language and toolset for program transformation, Sci. Comput. Program. 72 (1-2)
(2008) 52–70.

[44] S. Erdweg, Extensible languages for flexible and principled domain abstraction,
Ph.D. thesis, Philipps-Universität Marburg (2013).

[45] S. Erdweg, T. Rendel, C. Kästner, K. Ostermann, SugarJ: Library-based syntactic
language extensibility, in: OOPSLA, 2011, pp. 391–406.

[46] F. Lorenzen, S. Erdweg, Modular and automated type-soundness verification for
language extensions, in: ICFP, 2013, pp. 331–342.

[47] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, E. Visser, Growing
a language environment with editor libraries, in: GPCE, 2011, pp. 167–176.

[48] S. Erdweg, T. Rendel, C. Kästner, K. Ostermann, Layout-sensitive generalized
parsing, in: SLE, Vol. 7745, 2012, pp. 244–263.

[49] R. Solmi, Whole platform, Ph.D. thesis, University of Bologna (2005).

[50] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow, W. Hassel-
bring, M. Hanus, Xbase: Implementing domain-specific languages for Java, in:
GPCE, 2012, pp. 112–121.

[51] L. Diekmann, L. Tratt, Eco: A language composition editor, in: SLE, 2014, pp.
82–101.

[52] T. Parr, R. W. Quong, ANTLR: A predicated-LL(k) parser generator, Software
Practice and Experience 25 (7) (1995) 789–810.

[53] B. Ford, Parsing expression grammars: A recognition-based syntactic foundation,
in: POPL, 2004, pp. 111–122.

36

[54] M. Voelter, D. Ratiu, B. Schaetz, B. Kolb, mbeddr: an extensible C-based program-
ming language and IDE for embedded systems, in: SPLASH Wavefront, 2012, pp.
121–140.

[55] P. Klint, T. van der Storm, J. Vinju, On the impact of DSL tools on the maintain-
ability of language implementations, in: Workshop on Language Descriptions,
Tools and Applications (LDTA), 2010.

[56] O. van Rest, G. Wachsmuth, J. Steel, J. G. Süss, E. Visser, Robust real-time
synchronization between textual and graphical editors, in: ICMT, 2013, pp. 92–
107.

[57] G. Sutcliffe, C. Suttner, The TPTP problem library, Journal of Automated Reason-
ing 21 (2) (1998) 177–203.

[58] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, R. Busse, XMark:
A benchmark for XML data management, in: Very Large Data Bases, 2002, pp.
974–985.

[59] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel, Sp2bench: A SPARQL perfor-
mance benchmark, in: ICDE, 2009.

[60] D. Kurzyniec, V. Sunderam, Efficient cooperation between Java and native codes–
JNI performance benchmark, in: The 2001 International Conference on Parallel
and Distributed Processing Techniques and Applications, 2001.

[61] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Á. Hegedüs, M. Herrmannsdörfer,
T. Horn, E. Kalnina, C. Krause, K. Lano, M. Lepper, A. Rensink, L. M. Rose,
S. Wätzoldt, S. Mazanek, A survey and comparison of transformation tools based
on the transformation tool contest, Sci. Comput. Program. 85 (2014) 41–99.

[62] L. Diekmann, L. Tratt, Eco: A language composition editor, in: Software Language
Engineering, Springer, 2014, pp. 82–101.

[63] E. Roberts, An overview of MiniJava, SIGCSE Bull. 33 (1) (2001) 1–5.

[64] M. Fowler, Domain Specific Languages, 1st Edition, Addison-Wesley Professional,
2010.

[65] V. Pech, A. Shatalin, M. Voelter, Jetbrains MPS as a tool for extending Java, in:
Principles and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools, 2013, pp. 165–168.

[66] M. Flatt, Creating languages in Racket, Communication of the ACM 55 (1) (2012)
48–56.

[67] M. Voelter, Language and IDE development, modularization and composition with
MPS, in: GTTSE 2011, 2011.

[68] L. Tratt, The converge programming language.

[69] M. Voelter, D. Ratiu, B. Kolb, B. Schaetz, mbeddr: Instantiating a language
workbench in the embedded software domain, Automated Software Engineering
20 (3).

37

[70] S. Erdweg, T. Van Der Storm, Y. Dai, Capture-avoiding and hygienic program
transformations, in: ECOOP 2014–Object-Oriented Programming, 2014, pp. 489–
514.

38

	Introduction
	Background
	Terminology
	The LWC challenges
	Focusing on LWC'13
	Survey methodology
	Survey Generality

	A Feature Model for Language Workbenches
	The Language Workbenches of LWC 2013
	The tools
	Language Workbench Features

	LWC'13: Setup and Results
	The challenge
	Results
	Observations

	Benchmark Problems for the Future
	Detailed Workbench Comparison Requires Benchmarks
	Desirable Benchmark Characteristics
	Evaluation Criteria
	Example Languages used in Benchmark Problems
	Benchmark Problems for Language Workbenches
	Notation
	Evolution and Reuse
	Editing

	Example Solutions to Challenges
	An Example Solution to Metadata Annotations
	An Example Solution to Persistent User-defined Formatting

	Concluding Remarks

