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Abstract

As part of improved support for building unit selection 
voices, the Festival speech synthesis system now includes two 
algorithms for automatic labeling of wavefile data. The two 
methods are based on dynamic time warping and HMM-based 
acoustic modeling. Our experiments show that DTW is more 
accurate 70% of the time, but is also more prone to gross 
labeling errors. HMM modeling exhibits a systematic bias of 
15 ms. Combining both methods directs human labelers 
towards data most likely to be problematic.

1. Introduction 
Two crucial elements of a concatenative speech synthesizer 
are the set of prerecorded wavefiles that serve as the basis for 
voice generation and the indexing of these into a catalog of 
units. A unit is simply a continuous segment of speech, 
identified by a file index plus starting and ending times, which 
may be joined with other units during synthesis. The nature of 
these units is a key classifier of synthesis systems. Phoneme, 
syllable, half-phone, and diphone-based catalogs are sensible 
choices that have been tried. Regardless of the type of units 
employed (including hybrid composition), the quality of 
synthesized speech hinges on the accuracy of their labeling. 

This is an issue because ensuring the accuracy of unit 
labels remains a labor-intensive process. Automatic labeling 
algorithms can provide a set of candidate labels from which to 
begin, but the defect rate is usually too high to avoid a follow-
on stage of hand correction. This limits how quickly voices 
can be created, or conversely, the amount of recording that 
can be quality-assured within a given time budget. Further, the 
correction stage (ideally) requires technicians that are fluent in 
the target language, familiar with acoustic phonetics, and 
cognizant of the details of current technology – a combination 
of skills that are not readily available.  

So long as some amount of hand correction is necessary, 
the ensuing drudgery implores us to minimize expended effort. 
This has three components. First, devising improved automatic 
techniques. Second, adding confidence information to better 
direct the effort. And third, one should know the point of 
diminishing returns. That is, the threshold beyond which 
additional effort will have little impact on final voice quality.  

In pursuit of these goals this paper investigates the type 
and frequency of labeling errors likely to afflict a unit 
selection synthesis system, the rate at which errors can be 
purged from the catalog, as well as the effects felt in the 
resultant voice. This work is novel in that it combines two 
independent and automatic labeling techniques, and compares 
the results against two sets of hand-corrected labels.
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2. Software and datasets 
gie Mellon’s speech synthesis systems Festival, and 
x, the associated tools for building voices, have recently 

gone a new software release [1]. Newly included is the 
 to use CMU’s SphinxTrain tool – derived from the 

tic modeling portion of the Sphinx-II recognition system 
performing automatic labeling [2]. This is in addition to 
sting module that employs dynamic time warping as its 
ent technique. Festvox-DTW is less computationally 

sive, but is more restrictive in that to be used, a voice 
lready exist in the target language — or at least exist in 

ely related language.  
esides this restriction and difference in speed, why have 
Judged by label accuracy we have found that one 
que is not clearly superior to the other, but that the error 
teristics are distinctly different. This finding supports 
tention of both, and invites the prospect of a hybrid 
d that performs better than either alone. 

peech databases 

peech databases are used in this study. The first consists 
 ‘F2b’ recordings from the Boston University Radio 

 Corpus, available from the Linguistic Data Consortium 
he recordings are prepared news broadcast stories read 
 American female with a standard North American 
t. For this work we’ve removed some of the poorer 
y recordings and split others along prosodic boundaries. 
esult is 155 wavefiles totaling 53 minutes of speech. 
ary statistics are found in Table 1.  
e second database consists of 534 short sentences read 

 American male, also of standard dialect. The sentences 
rgely excerpted from several famous children’s stories 
s Alice in Wonderland and The Jungle Book. “There 

he great Mr. Toad” is a representative sentence. We call 
database Kal-Text-4. Because it was deliberately 
ed for use in speech synthesis, the transcript has been 
iated clearly and consistently, in a deliberately flat style 
 of inflection. The speaker is the same voice talent 
 the KAL diphone database that is freely available as 

f the Festvox system. This is pertinent because the KAL 
ne synthesizer is used in the Festvox-DTW labeling 
d.
r conciseness, most of the results presented below are 
l-Text-4. 

 Hand labeling 

er to have a reference for evaluation, the F2b corpus has 
hand labeled by two of us (CB, AWB) starting from 



automatically generated DTW labels. Our labels are consistent 
with our lexicon (CMU-Dict) both in the phoneme set and in 
the pronunciations [4]. Though the Boston University data is 
packaged with label files, these are based on a larger TIMIT
phoneset and so are not directly comparable to ours. 

The Kal-Text-4 corpus is notable for having two sets of 
hand corrected labels, denoted as 1st-pass and 2nd-pass. 
These are distinguished by the amount of time devoted to 
each file. A 1st-pass correction can be performed in about two 
minutes per file with the assistance of a visual labeling tool. 
Problems that immediately catch the eye include: unnaturally 
dense conglomerations of phones, uncharacteristically long 
durations, non-speech, and sections of silence improperly 
included as part of a phonemic unit. At this stage most gross 
errors should be removed. The resulting label accuracy is 
representative of what one can expect from a database 
prepared for non-commercial use. Three people contributed to 
this effort. Our F2b labels are also characterized as 1st-pass. 

Building upon such a 1st-pass, 2nd-pass correction is 
more painstaking. Every phoneme is examined in turn, using 
the waveform, spectrogram, and RMS power curves as visual 
aids. Moreover, every word, syllable and phoneme is listened 
to at least once. Label boundaries are adjusted until 
contamination from neighboring phones is minimized. One 
can never escape the effects of co-articulation, but at word 
boundaries at least, the human ear is sensitive to edge 
impurities. To help ensure consistency in creating a ground 
truth reference set, only one of us (JK) engaged in 2nd-pass 
correction. The amount of attention required is an order of 
magnitude greater; a 2.5 second utterance takes on average 30 
minutes to complete. Out of the full corpus of 534, a subset of 
100 utterances has been 2nd-pass corrected. 

Table 1. Some basic statistics of the speech databases. The 
rows from top to bottom are: average and total utterance 
length, number of utterances, total number of labeled 
phonemes (including silences/breaths), percentage coverage of 
phonemes, diphones, and triphones. Durations are in seconds. 

2.2. Two automatic labeling techniques 

Dynamic time warping is an algorithm for deriving a 
nonlinear mapping between two waveforms so that time 
events in one waveform (here phone-to-phone boundaries) 
can be aligned to corresponding events in the other. This 
technique found early prominence as “template matching” in 
the formative years of speech recognition [5]. Our use is as 
follows. Given an utterance’s text, the Festival front-end 
translates this into a sequence of phonemes, occasionally 
inserting pauses at presumed prosodic breaks. Based on this, 
the ‘KAL’ American male diphone voice is used to generate 
synthetic wavefiles. These are time aligned against the 
corresponding targets. The known phone boundaries from the 
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tic wavefiles are then taken as indicating the positions 
ndaries in the target wavefile. 
 contrast, Festival’s SphinxTrain borrows a more 

porary technique from the arsenal of speech 
ition, that of acoustic modeling. Speaker dependent, 
ontinuous HMM-based acoustic models were built 
tely from the two datasets. Each HMM comprises 5 
 with single skips permitted. The emission properties of 
state are modeled by a mixture of 8 Gaussians, 
enting feature streams of 13 mel-cepstrum values, 
nted by delta and double-delta differences. Context 

dent triphone models are state-tied on the basis of 
tic questions, up to a limit of 6000 shared models [6]. 
s consistent with the default parameters of Sphinx-II. 
hered to the default parameter settings in order to yield 
mental results of interest to typical users. To label 
se wavefiles, the resulting acoustic model is then used 
form a forced alignment operation. For consistency, the 
phoneme transcription is used in both Festvox-DTW and 
xTrain-based alignment.
oth methods have been set up under favorable 
ions. With SphinxTrain, the database to be labeled is 
me as is used for acoustic training. For Kal-Text-4, the 
data being labeled is that of the same talent behind the 
ne synthesizer employed by Festvox-DTW. The 
nces can even be considered spoken in a diphone-
sizer-like manner. In both cases the results should thus 
d indicators of best-case performance. 

rror categories 

 referring to labeling errors it is helpful to categorize the 
in which things can go wrong. There are numerous 
ilities.
cal alignment errors of boundaries. This is the most 
on situation. The sequence of phonemes is correct but 
dpoints overlap adjacent units or shrink within the 
t one. The severity of the error depends both on the 
 of misalignment and the particular acoustic units that 
p.
ross boundary errors. In this case boundaries are so far 
at the segment becomes mislabeled as something else. 
 of this type often trigger a cascade of bad labels. 
ross durational errors. In this related problem the 
on of phonemes are significantly too short or too long.  
oise injection mistaken as speech. Without having 
lly trained noise models, extraneous sound such as lip 
s and breaths will be treated as speech. 
bstitution errors. This amounts to a deviation of spoken 
tion from dictionary entries. Use of a lexicon-based 

end opens the door to pronunciation discrepancies. For 
le the word “to” when spoken may undergo reduction 
x’ from the dictionary form of ‘t uh’. Conversely, the 

end may erroneously predict the conversational form of 
when the word was in fact pronounced as ‘t uh’.
anscription errors due to OOV words. In the F2b 
se one frequently hears the tagline “for W.B.U.R.”
ut an explicit lexicon entry, the phonemic transcript 
ot sound as “for double you bee you are” but as “wuh 

 Naturally, the frequency of out-of-vocabulary events 
 with the language domain. Transcripts derived from 
stories are prone to vocabulary misses. This is less of a 
m in Kal-Text-4. 
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Figure 1 displays a histogram of label timing errors for the 
Kal-Text-4b corpus. The errors are measured against the 
subset of 2nd-pass hand corrected labels. A total of 1981 units 
are compared. This excludes the silence segments that bracket 
the beginning and ending of an utterance. Er
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Histogram of Label Timing Errors

Kal-Text-4b

1st-Pass Corrected
  mean -0.0119
  stdev .0239
  worst 1.601

Festvox-DTW
  mean 0.0075
  stdev .1615
  worst 1.611

SphinxTrain
  mean -0.0147
  stdev .0335
  worst .318

Figure 1. Kal-Text-4 timing errors. Despite the appearance of 
asymptotic tails, a significant number of events fall outside the 
graph bounds. The histogram bin size is 5 milliseconds. 

Most striking in the plot above is the leftward shift of the 
SphinxTrain curve. SphinxTrain reveals a habitual tendency 
to predict the location of phone boundaries too early, by an 
average of 15 ms. This equates to 1 and 1/2 pitch periods, as 
the speaker has a fundament frequency close to 100 Hz. 
Timing errors less than one pitch period are generally okay. 
Errors larger than four pitch periods are almost always bad. 
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We attribute this systematic bias to the chain of 
algorithms and objective functions that control forced 
alignment. The aligner seeks to maximize the probability of 
frame sequences according to the built acoustic models, and 
the acoustic models are Baum-Welsh optimized to minimize 
word recognition error rates. Segmentation accuracy is not 
directly a part of this equation. HMM-based models have 
proved to be quite “inventive” in the solutions they discover. 
In these experiments they demonstrated an eagerness for the 
first state to overlap into (what humans would consider) the 
previous phoneme. 
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Kal-Text-4 1st-Pass Festvox-DTW SphinxTrain
Mode (s) 0.000 -0.0025 -0.0150
Mean (s) -0.0119 0.0075 -0.0147
Std. Dev. 0.0239 0.1615 0.0335
Max error 1.601 1.611 0.318
pause del 2 9 33
pause ins 4 32 22
sym del 1 1 1
sym ins 5 5 5
sym sub 13 16 15

1
2
3
4
5
6
7
8

Table 2. Error statistics of one hand-corrected and two 
automatically generated labels as measured against the 2nd-
pass reference set. Bottom five rows: pauses may be 
incorrectly deleted or inserted. A non-pause symbol may be 
deleted, inserted, or incorrectly substituted for another. 

Table
ranked
ough the half-height widths of the curves in Figure 1 
st that SphinxTrain has the largest standard deviation, 
 not the case (Table 2). Festvox-DTW is more accurate 
phinxTrain in the majority of cases, but also suffers 
 greater proportion of outliers. 

ror Time 
ange (s) 

1st-Pass
Corrected

Festvox-
DTW

SphinxTrain 

64, -0.32 0 7 0
32, -0.16 3 25 6
16, -0.08 57 112 74
08, -0.04 201 245 302
04, -0.02 267 376 513
02, -0.01 434 480 489
01, -.005 346 307 227
.005, 0.0 556 294 187
0, 0.005 376 213 190
05, 0.01 104 118 127

01, 0.02 86 108 251
02, 0.04 38 69 74
04, 0.08 20 31 23
08, 0.16 3 18 23
16, 0.32 0 15 7
32, 0.64 0 28 0
64, 1.28 0 40 0
28, 2.56 2 7 0

 3. Histogram of label errors grouped into logarithmic 
linear at the center). Labels of exactly zero error are 
 split between the central pair of rows, shaded green. 

 shaded orange lie outside the bounds of Figure 1. 

s expected, the 1st-pass labels exhibit the smallest 
e error and tightest variance. Nevertheless, since they 
 from the tweaking of Festvox-DTW labels, this heritage 
 a bias on the results. The corresponding curves of 
 1 give an indication of this effect. Notably, two of the 
erroneous labels (bottom row of Table 3) eluded 
e. The phone-to-phone identities of these pair of bad 
 are listed in the top two rows of Table 4. 
e worst eight phone-phone transitions for Festvox-DTW

l of the form X-pau, as seen in the second column of 
 4. These often occur at the end of an utterance, but the 
dramatic errors are due to internal pause ins/del errors. 
placed pause can cause DTW to get into serious trouble, 
which it never fully recovers. Once removed, the next 
ant group involves the voiceless stops p and t (1st-pass 
n). SphinxTrain’s worst offenders are more diverse. 

1st-Pass Festvox-DTW SphinxTrain
th-pau .287 v-pau .945 zh-ax .229
iy-pau .140 f-pau .823 w-ax .220
p-w .091 th-pau .756 r-er .188
m-t .090 t-pau .687 hh-ao .113
ax-ch .089 ey-pau .681 ih-hh .107
ay-p .087 k-pau .513 ow-l .104
uw-p .085 iy-pau .418 jh-d .103
ey-p .082 d-pau .346 ay-p .097

 4. Worst eight phone-phone transitions for each label set 
 by average timing error. Times are in seconds. 



4.  Error prediction and correction 
A linear regression fit between Festvox-DTW and SphinxTrain 
finds that the pairwise errors are not strongly correlated. If the 
correlation were strong, having a second set of labels would 
provide little additional information. As is, the two may 
fruitfully be combined to identify labels that are likely 
candidates for correction. 
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Figure 2. The straight line is a linear regression fit. The green 
circle indicates the zone of mutual low error. These values are 
relative to the 1st-Pass label set, chosen for the large number 
of data points. The coefficient of correlation is 0.114. • A

e
We’ve implemented and compared two straightforward 

approaches for detecting suspect labels. In one, the duration 
of labels is used as an indicator of error. Specifically, labels 
are predicted as bad if their duration is greater than 2 standard 
deviations from the mean, where the mean is on a per-
phoneme class basis. This applies to each dataset separately. 
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bIn a second approach the differences between the two 

label sets is used to compute the average discrepancy per 
utterance. The human reviewer then examines utterances in 
ranked order, from worst to best. This is how the 2nd-pass 
reference was produced. Once an utterance is loaded for 
review, all phones in that file are corrected, not just the 
egregious few. 
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Figure 3. Optimal rate-reduction curves for the label sets. 
Festvox-DTW has a faster initial rate of reduction than 
SphinxTrain, due to the larger portion of gross errors. The 
crossover point occurs after 340 labels are corrected. An 80% 
error reduction is reached after 798, 519, and 1129 corrections 
to 1st-pass, Festvox-DTW, and SphinxTrain data respectively. 
In 70% of cases, DTW errors are smaller than SphinxTrain’s. 

[1] B
S

[2] C
S

[3] O
B
D

[4] C
h

[5] N
A
o
p

[6] S
g
h

5. Voice evaluation 
aluate impact of labeling accuracy on synthesis, we have 
eleven voices out of our data. These derive from: 1-4) 
our label sets; 5) SphinxTrain, with 15 ms added 
lly; 6-8) 2nd-pass corrections applied to the other three; 
-11) using 2nd-pass information to discard good labels, 
ng a preponderance of bad ones. With this last group, 
ng the voice in a negative direction serves to accentuate 
ts hidden in the larger catalog.

6. Conclusions 
ey aim of this work has been to gain insight into the 
 of phoneme labeling errors, thereby paving the way for 
ved algorithms. We’ve also sought to collect practical 
 for voice developers. As guidance, we can offer these 
ations.
estvox-DTW is more accurate than SphinxTrain, when 
ell behaved, but is more prone to gross errors. 

n particular, spurious pauses are the bane of DTW. It 
lso has trouble with the utterance tail. 

he Festival front-end incorrectly adds (or fails to add) 
auses. It also introduces substitution errors. Be alert. 

utomatic techniques consistently predict early. This is 
specially true of SphinxTrain. 

onsider adding 15 ms to every SphinxTrain label. 

aken together, the two automatic techniques can help 
ocate suspect labels. When lacking both sets, durational 
nformation can be used to find probable mistakes. 

roviding two sets of labels to a human reviewer enables 
etter-informed decisions. 
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