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Abstract 

Determining which corn (Zea mays L.) nitrogen (N) recommendation tools best 

predict the economically optimal N rate (EONR) would be valuable for maximizing 

profits and minimizing environmental consequences. The objectives of this research were 

to evaluate the performance of publicly-available N fertilizer recommendation tools 

across a wide range of soil and weather environments for 1) prescribing EONR for 

planting and split N fertilizer applications, 2) improve understanding of the economic and 

environmental impact of these tools, 3) improve N recommendation tools by integrating 

soil and weather information, and 4) improve N recommendation tools by combing 

multiple tools. The evaluation was conducted on 49 N response trials that spanned eight 

states and three growing seasons. Soil and plant samples, weather, and management 

information were collected using standardized procedures to allow for a side-by-side 

comparison of tools. Tool N recommendations were for fertilizer applications either at-

planting or an inseason applied at V9 corn development stage. 

Only 11of 31 tool recommendations were weakly related to EONR (P ≤ 0.10 and 

r2 ≤ 0.24). These tools related to EONR resulted in only 21-47% of sites within ±30 kg N 

ha-1 of EONR. When considering partial profit for these 11 tools the average profitability 

relative to EONR range from -$56 to -155 ha-1. An environmental assessment of these 11 

tools found there was no difference found between tools, with environmental costs 

ranging from -$49 to 55 ha-1 relative to EONR. 

Using an elastic net regression model to incorporate soil and weather information 

helped to improve six N recommendation tools. This improvement resulted in a stronger 

linear relationship with EONR (r2 ≥ 0.20 but ≤ 0.39; P < 0.01) and resulted in ≥ 35% but 

≤ 55 % of the sites within ± 30 kg N ha-1 of EONR. Using other ways to improve tools 
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included combing two or three unique tools. The best results for an at-planting N 

fertilizer recommendation occurred when three at-planting N recommendation tools were 

combined with all interactions included in the elastic net regression model. This 

combined recommendation tool had an improved significant linear relationship with 

EONR (r2 = 0.46; P <0.001) compared with the best tool evaluated alone (an increase in 

r2 of 0.27). The best combination of N recommendation tools for a split N fertilizer 

application occurred when using three tools with a decision tree (r2 = 0.45; P <0.001) 

over the best tool evaluated alone (an increase in r2 of 0.18). However, while 

improvements to these publicly-available tools were noteworthy, over half of the 

variation in EONR was still unexplained. This was not surprising since many other 

factors that impact soil-crop N dynamics are unconsidered, including factors that occur 

after a sidedress N application.
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Chapter 1: Literature Review and Objectives 
 

INTRODUCTION 

Nitrogen Use Efficiency 

Nitrogen (N) is often the most limiting nutrient for economic corn (Zea mays L.) 

production. Nitrogen is essential for many physiological processes necessary in the crop’s 

life cycle such as the production of amino acids, proteins, and nucleic acid. Without N, 

corn is unable to create chlorophyll, which directly affects carbohydrate production 

(Marschner, 2012). Extensive N deficiency in cornfields can result in stunted plants, 

yellow leaves, and drastic yield reductions (Lawlor et al., 2001).  

 Applying N as inorganic N fertilizer or animal manure can alleviate N deficiency. 

However, the N use efficiency (NUE), or amount of N recovered by the crop, has been 

estimated to be only 33% worldwide (Raun and Johnson, 1999). The low NUE is 

attributed to the many potential N loss pathways of the soil-crop system. These N loss 

pathways include denitrification, volatilization, surface soil runoff, leaching out of the 

rhizosphere, and gaseous plant emissions (Owens et al., 1995; Raun and Johnson, 1999; 

Eghball et al., 2003). Nitrogen lost to the environment often results in the degradation of 

water and air quality (Oberle and Bundy, 1987; Robertson and Vitousek, 2009; Reay et 

al., 2012). 

To improve NUE, N supply needs to be better synchronized with corn demand 

(Shanahan et al., 2008; Walsh et al., 2012). There are several ways to better match N 

supply with corn N demand that are summarized in what is called the 4R guidelines of 

nutrient stewardship (right rate, right time, right source, and right place). Applying N at 

the wrong time has been considered one of the main reasons for poor NUE. The majority 
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of N throughout the Midwest is applied at planting or before planting, such as in the fall 

(Cassman et al., 2002; Kitchen et al., 2008). Applying N prior to when there is a 

substantial crop need increases the potential for N loss. In contrast, applying N as close 

the V6 to V9 developmental growth stage where rapid N uptake occurs can allow for 

lower N rates while still maximizing yields (Walsh et al., 2012).  

 Applying N at the right rate is one of the most critical management practices 

farmers can implement to improve NUE. While it is not possible to achieve 100% NUE, 

applying less N fertilize improves NUE. Applying too little N fertilizer, however, will 

limit yields, while excessive N rates result in low NUEs. One method to optimize the N 

fertilizer applications is to apply N close to the economical optimal N rate (EONR), or 

the rate at which any additional N starts to decrease profitability. However, this is 

challenging due to the uncertainty of the EONR value for any given environment. This 

uncertainty arises due to the number of abiotic and biotic factors. One of these factors is 

the uncertainty of around how much N will be supplied by mineralization in a given 

season. Nitrogen mineralization is the process by which microorganisms breakdown 

organic-N to inorganic-N. Soils with sufficient mineralization can provide adequate N, so 

there is little or no response to N fertilizer applications (Cassman et al., 2002). This 

process varies spatially and temporally and is driven by soil total N, organic matter, soil 

texture, soil water content, drainage, topography, precipitation, temperature, and 

microbial activity (Schimel and Bennett, 2004; Lobell, 2007; Schmidt et al., 2007, 2011; 

Myrold and Bottomley, 2008; Tremblay et al., 2012). The high variability and uncertainty 

associated with many of these processes make it difficult to predict and incorporate into 

N management strategies.  
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Nitrogen Recommendation Tools 

Yield Goal 

To best aid farmers with N management decisions, many different N 

recommendation tools have been developed over the years. The earliest N 

recommendation tool resulted from research in the early 1970’s that concluded that about 

0.55 kg N ha-1 was needed to produce 25 kg ha-1 of desired corn grain (1.2 lbs N bu-1; 

Stanford, 1973; Fig. 1). This research resulted in a yield-goal based N fertilizer rate 

calculation that was derived by taking this ratio multiplied by the desired yield goal for 

that field. This method could be referred to as a mass-balance approach to determining N 

rate. Several limitations of this method have been documented that show it often results 

in poor economic returns due to an over- or under-application of N when compared to the 

optimal N rate required to maximize yields (Fox and Piekielek, 1995; Kachanoski and 

Fairchild, 1996; Blackmer et al., 1997; Bundy et al., 1999; Lory and Scharf, 2003; Morris 

et al., 2018). This is especially the case in humid areas where inorganic N is highly 

susceptible to losses (Lory and Scharf, 2003). Nitrogen dynamics in humid regions are 

very complex and rely on interactions between tillage, drainage, soil organic matter, and 

weather (Dinnes et al., 2002). Of these factors, weather is hypothesized to have the 

greatest impact on driving N transformations and losses (Van Es et al., 2006). As such 

farmers have tended to over apply N as insurance during years of perceived high 

precipitation, resulting in yield-goal calculations to be inaccurate (Vanotti and Bundy, 

1994).  

The inaccuracy of yield-goal based recommendations are also a result of not 

accounting for differences in the NUE of different hybrid or fertilizer types, the amount 
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of N supplied by the soil and miscalculating the obtainable yield (Vanotti and Bundy, 

1994; Lory and Scharf, 2003). To better account for these perceived weaknesses, many 

state N fertilizer recommendations have changed by adjusting the factor by which yield 

goal is multiplied (Morris et al., 2018). In general, the variability of soil and yearly 

weather conditions are too high to make a reliable and consistent single N application 

based on these calculations. Furthermore, this method does not optimize economic 

returns for farmers since it is typically applied at a whole field basis; and as such, less 

productive parts of a field will receive more N then is needed (Fixen, 2006; Sawyer et al., 

2006; Scharf et al., 2006). 

 

PPNT and PSNT 

The U.S. state experiment station programs began in the early 1980’s to 

recommend that producers sample their soils for mineral N prior to fertilizer application 

to improve the yield-goal based recommendation (Magdoff et al., 1984; Fig. 1). High soil 

N concentrations could then be subtracted from the yield-goal recommendation, thus 

minimizing over application of N. Soil samples could be taken during the fall or just prior 

to planting when time allowed, hence the name pre-plant N test (PPNT). This test has 

been shown to be effective at reducing recommendations in fields that have high residual 

soil NO3-N concentrations. High residual N in soil occurs when N is previously applied 

in excess of plant use or when manure is used in prior years (Bundy and Andraski, 1995). 

The PPNT test was also found helpful when used in conjunction with other management 

adjustments such as crediting a previous soybean (Glycine max) crop that reduces N 

fertilizer recommendation rates by a given amount (Scharf, 2001). Additionally, research 
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has shown that PPNT is useful in medium- to fine-textured soils where the previous 

year’s precipitation was normal or below normal and excessive N was applied 

(Gelderman and Beegle, 1998; Schröder et al., 2000). When soils remain wet for 

extended periods or when there is excessive rainfall on coarse-textured soils, the 

propensity for N-loss is high, and this test becomes less effective (Van Es et al., 2006). 

Furthermore, PPNT does not account for N made available through mineralization after 

the soil was sampled, which could result in over-fertilization (Schröder et al., 2000).  

To guard against the potential loss of N that may occur during early vegetative 

growth stages, in-season N applications have been recommended (Magdoff et al., 1984). 

To accompany sidedress N applications, soil samples can be collected and tested for 

NO3–N and be used to generate a fertilizer recommendation. This test has been called the 

pre-sidedress nitrate test (PSNT) and is utilized differently than the PPNT. Unlike the 

PPNT, the PSNT uses an index that is calibrated to crop N needs (Gelderman and Beegle, 

1998). For example, when soil NO3–N samples are taken before sidedress are above a 

defined high critical concentration, no additional N is recommended. If the concentration 

is below a critical level, then a full N fertilizer rate is recommended. However, any 

concentration between the high and low critical points requires a cutback on the total rate 

of N to be applied. There are slight differences in each state’s critical points that guide 

when additional N should or should not be applied. Furthermore, each state has a 

different way of reducing the N fertilizer recommendation when N-values fall below the 

high critical point (Blackmer et al., 1997; Laboski et al., 2006). Not all Midwest states 

have a PSNT recommendation but instead, use either the Iowa PSNT method or methods 

that are available from neighboring states. 
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Compared to the PPNT, the PSNT provides a better estimate of the N supplying 

capacity of the soil (Gelderman and Beegle, 1998). Understanding the amount of N 

supplied by the soil during the season could further reduce the risk of over-fertilization of 

corn N need (Magdoff et al., 1984). This reduced risk of over-fertilization has been 

documented in research on fields where corn was grown following alfalfa or a manure 

application, where soil test results for PSNT had an increase of measured NO3–N over 

the PPNT samples taken at the start of the study (Bundy et al., 1999). On sites with corn 

followed by corn and compared to PPNT, PSNT improved by 10% the number of sites 

that were predicted to respond to additional N fertilizer (Bundy et al., 1999). While 

shown to be an improvement over the PPNT recommendation, several limitations of the 

PSNT have hindered its expanded use. The main concerns being cost, additional labor, 

sampling difficulties due to wet field conditions, and having a short time window to 

obtain results from the lab before the data are needed to determine the N rate to apply 

(Schmidt et al., 2009).    

 

MRTN 

In more recent decades, N fertilizer recommendation tools have moved away from 

the yield-goal and soil-based strategies (Fig. 1). One tool that has replaced the mass 

balance approach in much of the U.S. Midwest Corn Belt is the Maximum Return to N 

(MRTN). The use of MRTN initiated in 2006 by a few Midwest states and has since 

expanded to include several surrounding states. The MRTN is based on hundreds of N 

response studies across different regions and crop rotation practices of the Midwest. An 

N recommendation for a given area and rotation is calculated by aggregating the N 
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response trails based on soil or geographical boundaries. Each of the N response trials is 

fit with a function—linear, liner-plateau, quadratic, or quadratic-plateau. The best-fit 

function is used to determine the N rate that optimizes the return to N fertilizer inputs 

(RTN). This N rate changes based on corn and fertilizer prices, and the online MRTN 

database (nrc.agron.iastate.edu; verified 5 Mar. 2017) allows users to compare different 

prices. A final N recommendation is determined by averaging all of the calculated RTN 

together for that given region. Additionally, the MRTN recommendation provides a range 

of N rates that will produce a profit similar to MRTN (within $2.47 ha-1). This allows 

farmers to incorporate their level of risk in their decision-making process. Similar to 

previously discussed methods, the calculated MRTN can be credited for manure 

applications or residual soil NO3–N levels measured prior to planting (Tremblay et al., 

2012). 

Comparison studies have found the MRTN approach to provide a more realistic 

measurement of EONR when compared to some of the established N fertilizer 

recommendation tools (Sawyer et al., 2006a). A comparison of seven sites in Illinois 

from 1999-2008 resulted in higher revenue using MRTN based calculations than 

corresponding yield-goal calculations (Febrer, 2014). However, MRTN, like many of the 

other N recommendation systems does not account for temporal or spatial N response 

variability (Morris et al., 2018). As such, MRTN will over-estimate EONR values from 

sites that are non-responsive and underestimate EONR for sites where excessive N loss 

occurs.  
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Crop Growth Models 

Crop growth models have been developed to estimate crop growth by 

incorporating mechanistic and physiological processes. Recently these models have been 

utilized to provide an N recommendation to optimize corn yields (Setiyono et al., 2011). 

These models are more complex than the earlier discussed tools because they require 

detailed temporal and spatial information for many environmental and management 

factors. In contrast to previously mentioned tools where NUE was estimated and seldom 

changed, crop growth models are more flexible and account for additional variables to 

better estimate the NUE of a site and management scenario. For example, NUE is 

dependent on fertilizer types, N uptake, and the crop efficiency at converting acquired N 

to grain yield (Setiyono et al., 2011). This results in a less static method of predicting 

EONR for different farming situations and can better account for spatial and temporal 

variability.  

The Maize-N model is one of a few crop growth models that combine these 

factors to predict a site’s EONR. When validated it was found to better predict the actual 

sites’ EONR over the Nebraska, Kansas, South Dakota, and Missouri yield-goal based 

calculations (Setiyono et al., 2011). Another study showed Adapt-N improved profits and 

reduced N rates compared to a farmer's N rate in 79, and 88% of the sites monitored, 

respectively (Moebius-Clune et al., 2013). Despite model tools being one of the latest 

developments (Fig. 1), improvements are still needed to make the computer-based 

algorithms more user-friendly and allow assumptions to be modified. This is especially 

true regarding making models more accurate across a broader range of soil and climatic 

environments (Sawyer, 2013).  
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Canopy Reflectance Sensing 

Another tool that has been employed for making corn N fertilizer decisions is 

ground-based canopy reflectance sensing. Canopy reflectance sensing uses in-season 

measurements to assess the size (biomass) and color of plants to generate an N fertilizer 

recommendation (Kitchen et al., 2010). In this way, it is unlike the other tools since it 

uses very local and short-scale information (1-5 m) to provide N fertilizer 

recommendations (Raun et al., 2002). One of the advantages of this tool is the scale at 

which it works. The other tools listed above are used to recommend N fertilizer rate at a 

field scale or in the case of models at the scale that the soil resource is represented. 

Canopy reflectance sensing works at very short scales (< 5 m of row). These sensors 

work by emitting visible and near-infrared wavelengths and detecting reflected light 

energy from the crop canopy. In this way, it is using the crop plant as a bioassay of soil N 

availability. Measurements of corn needing N are compared to well-fertilized corn 

considered without N stress (Raun et al., 2002). The measurements are used to create 

indices, which when used with developed N algorithms provide a recommend amounts of 

additional N fertilizer that is needed (Dellinger et al., 2008; Solari et al., 2008; Franzen et 

al., 2016).  

Canopy reflectance sensing has been used successfully to provide a variable N 

fertilizer recommendation on-the-go to address site-specific crop N needs. This is 

especially true when fields consist of high soil variability or when N could be limiting 

from variable N supply from manure, legumes, or high N loss from excessive 

precipitation (Kitchen et al., 2010). It can also work as a tool to improve crop N 

synchronization by applying N in-season and thus reducing the risk associated with N 
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applications (Shanahan et al., 2008). This has been found in a study with  55 farm field 

trials which showed an average increase in partial profit of $42 ha-1 relative to a fixed 

producer’s N rate (Scharf et al., 2011). In other studies when used at a field scale with 

high soil variability, canopy reflectance sensors showed a profit increase between $25 

and 50 ha-1 when compared to a uniform N rate (Kitchen et al., 2010).  

 

Improving Nitrogen Recommendation Tools 

These tools briefly described for making corn N fertilizer recommendations have 

changed over time and by region. Their use has exposed their strengths and weaknesses 

(Morris et al., 2018). Today, farmers have many options to help determine the optimal N 

rates needed to maximize profit and reduce over-application and consequential N 

pollution in the environment. To help farmers improve their N management, these tools 

need to be validated and compared to determine which tools work best at estimating the 

EONR on fields of varying soil and weather conditions across the Midwest.  

Tools that regularly generate wrong recommendations can be described as poorly 

performing tools; they need to be improved upon, or farmers should discontinue using 

them. Tools could be enhanced by allowing for in-season N management and account for 

spatial and temporal variability associated with EONR. The inclusion of soil and weather 

variation information could make these tools more sensitive to the wide range of corn-

growing conditions across the U.S. Corn Belt, and thereby improve the overall accuracy 

of N fertilizer recommendations. This will significantly enhance farmers’ options and 

their confidence in using these tools to meet their production needs and the public’s need 

for reducing off-field losses of fertilizer N.   
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OBJECTIVES 

The objectives of this research were to: 

1. Evaluate the performance of publicly-available N fertilizer recommendation 

tools across a wide range of soil and weather environments for i) prescribing 

EONR for planting and split N fertilizer applications, and ii) improve 

understanding of the economic and environmental impact of these tools. 

2. Identify the best statistical algorithm for selecting and incorporating soil and 

weather information into N recommendation tools to improve predictions of 

EONR. 

3. Improve N management tools by adjusting N fertilizer recommendations with 

site-specific soil and current-season weather information. 

4. Improve N management strategies by combining multiple N tools for a more 

robust N recommendation strategy.  
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DISSERTATION OVERVIEW 

The overall goal was to compare and improve many of the publically-available 

corn N recommendation tools. Chapter 2 deals with comparing and contrasting these N 

recommendation tools for different objectives: 1) recommending N close to EONR, 2) 

partial profitability (Farmer’s perspective), 3) environmental N loss (societal 

perspective), and 4) a combined farmer and societal perspective. Chapter 3 explores 

different statistical methods that could be used for improving N management tools by 

using site-specific soil and weather information to adjust the N recommendations. 

Chapter 4 utilizes the best statistical method determined from chapter 3 to improve many 

of the N recommendation tools. Lastly, chapter 5 looks at an alternative way to improve 

N management by combining different N recommendation tools (“tool fusion”) as a way 

to better-estimated EONR.  
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Fig. 1. Timeline of development and use of N management decision tools (Stanford, 
1973; Magdoff et al., 1984; Rutto and Arnall, 2004; Schmidt, 2005; Fixen, 2006; Liu et 
al., 2015). 
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Chapter 2: Performance of Corn Nitrogen Rate Recommendation Tools  

Across the United States Midwest 

 
ABSTRACT 

Determining which corn (Zea mays L.) nitrogen (N) recommendation tools best 

predict the economically optimal N rate (EONR) would be valuable for maximizing 

profits and minimizing environmental consequences. The objectives of this research were 

to evaluate the performance of publicly-available N fertilizer recommendation tools 

across a wide range of soil and weather environments for 1) prescribing EONR for 

planting and split N fertilizer applications, and 2) improve understanding of the economic 

and environmental impact of these tools. The evaluation was conducted on 49 N response 

trials that spanned eight states and three growing seasons. Soil and plant samples, 

weather, and management information were collected using standardized procedures to 

allow for a side-by-side comparison of tools. Tool N recommendations were for fertilizer 

applications at-planting and when the majority of fertilizer applied as a top-dress (split) at 

V9 corn development stage. An environmental assessment was conducted by comparing 

an estimated inseason and post-season N loss at each tool’s N recommendation relative to 

EONR. Total N loss was converted to an environmental cost using $2.75 kg-1 NO3–N. 

Results showed that only 11of 31 tool recommendations were weakly related to EONR 

(P ≤ 0.10 and r2 ≤ 0.24). The 11 tools included the State-Specific YG used for split N 

applications, soil pre-plant and pre-side-dress soil nitrate testing (PPNT and PSNT) and 

canopy reflectance sensing. Furthermore, these tools related to EONR resulted in only 

21-47% of sites within ±30 kg N ha-1 of EONR. When considering partial profit for these 

11 tools the average profitability relative to EONR range from -$56 to -155 ha-1. In an 
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environmental assessment of 11 tools, there was no difference found between tools, with 

environmental costs ranging from -$49 to 55 ha-1. Also when combining both partial 

profitability and environmental costs, there were no differences between tools. While an 

N recommendation tool may perform well within a given year and U.S. state, these 

findings indicate current publicly-available N management tools mostly fail when applied 

across the broad environmental conditions represented by the U.S. Corn Belt, and further 

tool N recommendation tool development is warranted.  
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INTRODUCTION 

Nitrogen is necessary for optimizing corn yields and is the most complex plant 

nutrient to manage. The difficulty of managing N in corn crop production is the result of 

the biophysical complexity driving soil N mineralization, crop uptake, and N loss 

(Meisinger, 1984, Lory and Scharf, 2003). This complexity is magnified as these 

processes vary considerably within and between fields because of spatial variability of 

soil properties and temporal variability associated with weather (Tremblay et al., 2012). 

Soil variability impacting the N cycle arises due to short- and long-range spatial 

differences in properties such as texture, organic matter, plant-available water, 

topography, and microbial populations (Parkin, 1987; Sørensen et al., 1995; Dinnes et al., 

2002; Scharf et al., 2005; Zhu et al., 2009). Due to this complexity, farmers have to 

speculate how much N fertilizer to apply to achieve an optimal economic return. Since N 

fertilizer is typically inexpensive relative to the magnitude of crop response to this input, 

farmers often deal with this complexity and uncertainty by erroring on the side of over-

application (Vanotti and Bundy, 1994). Applying N in excess of plant need decreases 

profitability and increases the potential for N loss that contributes to environmental 

degradation (Van Es et al., 2007; Maharjan et al., 2014).  

Multiple N fertilizer recommendation decision tools have been developed in 

modern agriculture to help farmers be profitable with N management and minimize N 

loss from fields. An extensive review of the history, pros and cons, and current use of 

many of the corn N recommendation tools used within the United States has recently 

been contrasted by Morris et al. (2017). Many of the tools reported in Morris et al. (2017) 

are also included here in this investigation, as summarized in Table 1. Included tools are 
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1) mass balance calculations based on an expected yield or yield goal (YG), 2) pre-plant 

soil nitrate test (PPNT), 3) pre-sidedress application soil nitrate test (PSNT), 4) maximum 

return to N (MRTN) calculation, 5) Maize-N crop growth model, and 6) active optical 

near-plant canopy reflectance sensing.  

One of the first methods for predicting N fertilizer rates was the mass balance 

approach developed in the early 1970’s. Based on information about the N cycle and 

plant uptake, a value of 0.55 kg ha-1 of added N was estimated to produce 25 kg ha-1 of 

corn grain (1.2 lbs N bu-1; Stanford, 1973; Table 2). This value multiplied by an area-

based expected yield or yield goal produced the N recommendation. Limitations of this 

method have been documented showing that the YG and actual yield do not correlate 

well with EONR (Vanotti and Bundy, 1994; Fox and Piekielek, 1995; Kachanoski et al., 

1996; Blackmer et al., 1997; Lory and Scharf, 2003). Furthermore, the YG approach has 

been noted to be more unreliable in humid areas where year-to-year mineralization of 

inorganic N as well as N loss in the environment is more difficult to predict (Lory and 

Scharf, 2003). Farmers have thus commonly applied more N than what was suggested by 

this tool to compensate for N loss that might occur during years of high precipitation, 

resulting in N applications considerably more than from the original YG recommendation 

(Vanotti and Bundy, 1994). The weakness of YG based recommendations have been 

attributed to not accounting for N use efficiency (NUE) of different hybrid or fertilizer 

types, the amount of N supplied by the soil, and poor estimation of yield (Vanotti and 

Bundy, 1994; Lory and Scharf, 2003). To account for these limitations, many state N 

fertilizer recommendations were modified merely by adjusting the coefficients within the 

YG equation. Even with these modifications, the variability associated with soil and 
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weather interactions conditions are too difficult to predict and results in inconsistent 

performance of N fertilizer recommendations using this simplified mass balance 

approach. Most of the land-grant university fertility recommendation programs within the 

U.S. Corn Belt region discontinued in the 1990s and early 2000s N rate recommendations 

based on the YG approach (Morris et al., 2017). 

To better address soil N contributions to the crop, other recommendation tools 

were developed that measure inorganic N before or during the growing season. The 

PPNT tool measures soil nitrate (NO3–N) prior to planting as a credit to the N 

recommendation (Table 2). This test has been shown to be effective at reducing an over-

application of N fertilizer in fields that have a large residual NO3–N concentrations, such 

as excessively manured fields (Bundy and Andraski, 1995) or fields that experienced 

droughty conditions and significant unused N carried over from one year to the next 

(Meisinger et al., 2008). This test was also found helpful when used in conjunction with 

other considerations, such as giving an N credit following soybean (Glycine max) 

(Scharf, 2001). The PPNT tool performs best in medium- to fine-textured soils where the 

previous year’s precipitation was average or below average and when excessive N was 

applied (Gelderman and Beegle, 1998; Schroder et al., 2000). In contrast, this tool is less 

useful when excessive rainfall causes either extended periods of ponding (fine-textured 

soils) or leaching (coarse-textured soils) promoting N loss to the environment (van Es et 

al., 2007). Moreover, since sampling occurs prior to planting, this tool does not account 

for N mineralization during the growing season, which could result in over-fertilization if 

in-season mineralization is high (Schroder et al., 2000).  
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A tool similar to the PPNT that incorporates in-season mineralization into its N 

recommendation is the PSNT (Table 1). Soil NO3–N sampling for the PSNT tool is 

delayed four to six weeks after planting around the V5 developmental stage. The 

advantage of this tool is that the soil sampling and assessment is after the early growth 

stages of the crop when N demand is low and prior to when corn N uptake is much 

greater. The usefulness of this tool has been documented in research on fields where corn 

was grown following alfalfa or a heavy manure application; under these scenarios, soil 

test results for PSNT often showed an increase in NO3–N levels when compared to the 

PPNT values (Bundy et al., 1999). While shown to be an improvement over PPNT 

recommendation in many situations, several issues related to the implementation of the 

PSNT have hindered its adoption (Table 1). Primarily, there are concerns with not being 

able to obtain soil samples due to possible wet field conditions. Additionally, farmers are 

reliant on soil laboratories to analysis and return PSNT values promptly under a narrow 

time frame between soil sampling and side-dressing N fertilizer (Schmidt et al., 2009). 

 Because of poor performance and implementation difficulties with YG and soil 

sampling tools, a more recent tool was developed called MRTN. The basis of this tool is 

an extensive database of field trials measuring corn response to N inputs (Sawyer et al., 

2006). This free web-based tool determines an N recommendation using multiple N 

response models developed from over many years’ trials and specific geographic regions, 

such as from a specific state or sub-region within a state. Nitrogen response models are fit 

to the observed yield from each trial. Trials from continuous corn are distinguished from 

trials where corn follows soybean. These response models are adjusted to include user-

defined fertilizer and corn prices for calculating a localized EONR value to generate an N 
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recommendation. To account for changes in climate and ongoing improved corn hybrids, 

MRTN database is updated with recent years’ results and older years are removed. 

Similar to previously discussed methods, the calculated MRTN can be credited for 

manure applications or PPNT values (Laboski and Peters, 2012). Because the data used 

for the MRTN models span many years, recommendations from one year to the next for 

any given field will be consistent. A fairly constant recommendation is a weakness of this 

tool, as it does not account for the unique weather of a single growing season (Table 1).  

With inexpensive data storage and management with cloud computing services, 

crop growth models that take into account all the major processes of the N cycle have 

recently been developed to produce N recommendations. These models use management 

inputs and site-specific soil and weather information to estimate soil N transformations 

and losses and plant physiological processes. Several crop growth models currently being 

used in the North American and the U.S. Midwest include Maize-N (Setiyono et al., 

2011), Adapt-N (Melkonian et al., 2008), DuPont Pioneer’s Encrica Services 

(www.pioneer.com/home/site/us/encirca; verified 10 Dec. 2017), Monsanto’s FieldView 

Pro (www.climate.coml; verified 10 Dec. 2017), and Effigis’ SCAN 

(http://www.effigis.com/en/solutions/scan; verified 12 Jan. 2018). The modeling 

approach for developing an N recommendation only became feasible with the advent of 

advanced computing power and information management as the models use high-

resolution weather and soil information. This N recommendation method allows for a 

continual refinement based on additional field trails (He et al., 2017). A disadvantage of 

these tools is the costs required to obtain and incorporate new data into the model and 
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maintain software. These costs must be passed on to farmers using it (Morris et al., 

2017).  

 Other tools rely directly on light reflectance qualities of crop leaves to gauge crop 

N health and assist in making in-season N management decisions (Schepers et al., 1992; 

Scarf and Lory, 2002; Sripada et al., 2006; Scarf and Lory, 2009). For this investigation 

focus was given to proximal or near-plant active-optical canopy reflectance sensing 

(Dellinger et al., 2008; Holland and Schepers, 2010; Kitchen et al., 2010; Franzen et al., 

2016). Active canopy reflectance sensors determine the crop’s N status by assessing the 

size (biomass) and color of plants (Kitchen et al., 2010). This assessment works when 

sensors emit visible and near-infrared wavelengths and then detect specific wavelengths 

reflected from the crop canopy. These reflected wavelengths are used to develop 

vegetation indices, such as normalized difference vegetation index (NDVI) or normalized 

differences red edge index (NDRE). These indices are then converted into an N 

recommendation using one of many different publicly-available algorithms (Dellinger et 

al., 2008; Solari et al., 2008; Holland and Schepers, 2013; Franzen et al., 2016). In this 

way, canopy reflectance sensing is unlike the other previously described tools since they 

use very short-scale (1-5 m) information to provide N fertilizer recommendations (Raun 

et al., 2002). This tool has successfully identified plant N status and found in some 

studies to be a better predictor of EONR than soil-based tools (Gitelson and Merzlyak, 

1995; Raun et al., 2002; Scharf et al., 2006; Scharf and Lory 2009). Drawbacks of this 

tool are the acquisition cost, the requirement for in-season N application, and the 

inconvenience of measuring or estimating [e.g., virtual N-rich reference (Holland and 

Schepers, 2013)] reflectance values from non N-stressed target corn. 
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An in-depth discussion of the rationale, strengths, limitations, and utilization of 

each of these tools for corn N rate decisions can be found in Morris et al. (2017). 

However, limited research has been done to compare simultaneously these tools over a 

wide range of soil and weather environments to determine their performance broadly. 

Previous studies that attempted to compare tools usually only focused on a small 

geographical area (e.g., within a state) and typically included only a limited set of 

decisions tools (e.g., a tool compared to the farmer’s typical N rate). Furthermore, these 

studies often compared the tool’s performance to each other, and not to a measured 

EONR. Without EONR one is only able to say which tool performs better, relative to 

another tool, but is not able to assess if the tool under- or over-recommended N, and by 

how much. Thus, there is a need for tools to be compared side-by-side and with EONR as 

the standard, over a wide range of soil and weather environments, to determine the 

accuracy and precision of each of these tools. Such an evaluation can lead to a better 

general understanding of the usefulness of N management tools when used over the U.S. 

Corn Belt.  

The objectives of this research were to evaluate the performance of publicly-

available N fertilizer recommendation tools across a wide range of soil and weather 

environments for 1) prescribing EONR for planting and split N fertilizer applications, and 

2) improved understanding of the economic and environmental impact of using these 

tools. 
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MATERIALS AND METHODS 

Experimental Design 

This research was conducted as a part of a public-private collaboration between 

DuPont Pioneer and eight U.S. Midwest universities (Iowa State University, University 

of Illinois Urbana-Champaign, University of Minnesota, University of Missouri, North 

Dakota State University, Purdue University, University of Nebraska-Lincoln, and 

University of Wisconsin-Madison). Each state conducted research on two sites each year 

during 2014 to 2016, with a third site in Missouri in 2016, totaling 49 site-years. About 

half the sites were on farmers’ fields and the other half on University research stations. 

All states followed a similar protocol for plot research implementation including site 

selection, weather data collection, soil and plant sample timing and collection 

methodology, N application timing, N source, and N rates, with specific details described 

in Kitchen et al. (2017). Treatments included N fertilizer rates between 0 and 315 kg N 

ha-1 applied either all at-planting or split where 45 kg N ha-1 was applied at-planting with 

the remaining fertilizer N applied at the V9 corn developmental stage.  

 

Determining the Economic Optimal Nitrogen Rate 

Grain yield in response to N fertilizer treatments was used to calculate the EONR 

on a site level as described in Kitchen et al. (2017), using proven quadratic or quadratic-

plateau modeling methods (Cerrato and Blackmer, 1990; Scharf et al., 2005). Economic 

optimal N rate values were calculated for all N fertilizer applied at-planting (hereafter 

referred to as “at-planting”), and N split applied between planting and a single top-dress 

application (hereafter referred to as “split”). The cost of N was $0.88 kg N-1, and the price 
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of corn was $0.158 kg grain-1 (equivalent to $0.40 lbs N-1 and $4.00 bu-1). The EONR 

was set to not exceed the maximum N rate (315 kg N ha-1). Five of the seven irrigated 

sites had N applied through irrigation > 12 kg N ha-1, and this was included in 

determining the EONR of these sites. The EONR results were used as the standard for 

evaluating all other N recommendation tools. For 19 of the 49 sites, the at-planting and 

split EONR values were found statistically (P=0.05) to be same, within $2.50 ha-1 of each 

other. Thus for these the EONR used was the average of the two timings. This approach 

was also consistent with previous separate analysis using this same dataset (Bandura, 

2017). 

 

Nitrogen Recommendation Tools Evaluated 

Farmer’s N Rate and Yield Goal 

The farmer’s historical N rate was the rate the farmer or research station typically 

applied to the field site under ideal corn growing conditions. The information the 

farmer/station manager used to derive this N rate was not determined, but it was assumed 

to be based on N response of the site over multiple years, and not necessarily on any 

specific decision tool.  

Six YG tools were included in this evaluation as outlined in Table 2. These 

included a generic or general YG tool (General YG) based on original work of Standford 

(1973), four contrasting U.S. state-level YG tools [Indiana (IN) YG, Minnesota (MN) 

YG, Missouri (MO) YG, and Nebraska (NE) YG], and the state-specific YG (State-

Specific YG) tool where sites within each state only used their respective state’s YG 

method. Some states had a documented YG method that was the same or nearly identical 
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to other states, and therefore these were excluded as individual tools in this evaluation, 

but they were included as a part of the State-Specific YG tool (see Table 2 for details). 

An exception was Wisconsin that was excluded from the State-Specific YG evaluation 

because it had no published YG tool. All YG methods follow a similar mass balance 

approach established by Stanford (1973), but each was uniquely modified by adjusting 

coefficients within the calculation and incorporating additional soil and management 

information (Table 2). For example, the Nebraska YG was adjusted with PPNT values 

that were either estimated or measured to a depth of 1.20 m. Each of these six YG tools 

was used to determine a corn N fertilizer recommendation for all 49 sites of this 

investigation. 

All YG tools required an expected yield. The expected yield for each site was 

determined using the average of the previous five-yr county corn yields for the respective 

county the site was within. The five-yr average was then adjusted based on the soil 

productivity of the predominantly mapped soil of each site, similar to that done by 

Laboski and Peters (2012). This procedure classifies soil productivity as either low, 

medium, or high using soil texture, irrigation, depth to bedrock, drainage class, 

temperature regime, and available water capacity in the upper 150 cm of soil. The yield 

of a site was then calculated by increasing the five-yr average yield for low, medium, and 

high soil productivity by 10, 20, or 30%, respectively. This estimated yield value was 

used to represent the YG for the six different YG tools shown in Table 2. 
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Soil Nitrogen Tests 

Four distinct PPNT tools were evaluated. They are as follows: 1) General PPNT, 

2) MN PPNT, 3) North Dakota (ND) PPNT, and 4) WI PPNT (Table 2). Kitchen et al. 

(2017) detailed the sampling and NO3–N analysis protocols for the PPNT tool. Two of 

the 49 sites did not complete PPNT sampling, so this tool was evaluated using 47 of the 

49 sites. 

Four PSNT tools were evaluated, including 1) General PSTN, 2) Iowa (IA) 

PSNT, 3) IN PSNT, and 4) WI PSNT (Table 2). These were tested under two different 

conditions; the first used a site average of measured NO3–N from plots that received 0 kg 

N ha-1 at-planting. The second used a site average of measured NO3–N from plots that 

received 45 kg N ha-1 at-planting. These are noted as PSNT 0 and PSNT 45, respectively, 

throughout this paper. Soil samples were taken at the V5 ± 1 corn development stage and 

to a depth of 0.30 m.  

 

MRTN 

The MRTN recommendation values for all sites were determined by using values 

obtained in 2016, as only a few states had updated the MRTN database during the three 

years of this project. The MRTN values for Iowa, Illinois, Indiana, Minnesota, and 

Wisconsin were obtained from the online Iowa state extension N rate calculator 

(cnrc.agron.iastate.edu; verified 5 Mar. 2017). The MRTN values for North Dakota were 

obtained from the North Dakota Corn Nitrogen Calculator 

(www.ndsu.edu/pubweb/soils/corn; verified 5 Mar. 2017). The price of corn to N 

fertilizer ratio used was 10:1. Since neither Missouri nor Nebraska currently have the 
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compiled database and online tool for a MRTN recommendation, sites from these states 

were excluded from this tool’s evaluation.  

 

Maize-N Crop Growth Model 

The Maize-N crop model version 2016.6.0 (Setiyono et al., 2011) was used in 

generating an N fertilizer recommendation for all sites. Required in-season weather data 

was obtained at each site using a HOBO (model U30) weather station (Onset 

Corporation, Bourne, MA). Weather data underwent a quality check and were then 

aggregated into a daily summary of minimum and maximum temperature, average solar 

radiation, and precipitation as explained in Kitchen et al. (2017). Additional historical 

weather data was required to generate an N recommendation. For this analysis, 30 years 

of site-specific weather data were obtained from DuPont Pioneer using a proprietary 

method for interpolating between multiple weather stations around each site. These 

weather data mostly came from public National Service Storms Lab (NOAA) weather 

stations, supplemented with data observed by DuPont Pioneer’s internal weather network 

(HOBO stations). The weather data was collected within the acceptable range of 50 to 

100 km radius as listed in the Maize-N user guide. Explicit information required by the 

Mazie-N crop growth model by each site included management records (e.g. date of 

planting, plant population, average historical yield, tillage operations, and previous crop) 

and soil information (e.g. bulk density, % organic matter, rooting zone depth, soil pH, 

and soil NO3–N).  
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Canopy Reflectance Sensing 

Canopy Reflectance measurements were obtained using the RapidSCAN CS-45 

(Holland Scientific, Lincoln NE, USA) the same day or prior to the split N application. 

For the majority of sites, this was done at the ~V8-V10 corn development stage. 

Measurement details are described in Kitchen et al., (2017). The Holland and Schepers 

algorithm (HS; Holland and Schepers, 2010) was used to calculate an N fertilizer 

recommendation derived from these reflectance measurements. This algorithm is based 

on a sufficiency index calculated using measurements from both well-fertilized corn (“N-

Rich”) and minimally-fertilized corn that is referred to here as the “target” corn:  

        [1] 

where SI is the sufficiency index; VITarget is the vegetative index obtained from averaging 

measurements from all plots that received 45 kg N ha-1 at-planting and where a top-dress 

fertilizer was to be applied, and VIN-Rich is the vegetative index obtained by averaging all 

plots for two of the high N treatments (225 and 270 kg N ha-1 applied all at-planting). The 

NDRE vegetative index was calculated using the red-edge (730 nm; RE) and near-

infrared (780 nm; NIR) wavelengths as shown: 

        [2] 

Fertilizer N recommendations were then calculated as described in Holland and 

Schepers (2010) as follows: 

          [3] 
 
where NRec is the calculated N fertilizer recommendation; MZi is a scaling value (0 ≥ MZi 

≤ 2) used to adjust the N recommendation based on areas of high or low yield 
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performance; NOpt was the base N rate, which is determined by the farmer; NPreFert is the 

amount of N already applied prior to sensing; NCRD are N credits associated with the 

previous crop, NO3–N in irrigation water, manure, or residual NO3–N; NComp is an 

optional compensation factor for growth limiting conditions; SI is the sufficiency index, 

and ΔSI is a value to define the response range. For this analysis, MZi
 was left as the 

default value of 1.0, Nopt was set as the recorded farmer's N rate for each site, and NPreFert 

= 45 kg N ha-1. With no supportive information relative to NCRD and NComp, these two 

parameters were set to zero for all sites. The recommended value of 0.30 was used for 

ΔSI, which provides a response range between the measured vegetative index value 

between 0.70 and 1.00.  

 

Statistical Analysis 

Tools that could provide N fertilizer recommendations for both at-planting and 

top-dress applications were assessed with both timings and treated as two different tools. 

This separation of tools was warranted since for many sites N response and EONR results 

were different between the two N application times (Kitchen et al., 2017).  

Two different metrics were used to evaluate the performance of each of the N 

recommendations tools across all sites. First, a tool’s N recommendation was compared 

to the EONR across all sites using a simple linear regression model. Only if this 

relationship was positive and significant (α = 0.10) was a tool considered successful and 

given any further evaluation. Additional evaluation included examining both the average 

and the RMSE of the difference between a tool’s N recommendation and EONR. Using 

this approach tools were compared within a family of tools, between at-planting and split 
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N applications (when applicable), and across all tools and N application timings (average 

only). A second performance metric was to examine the percentage of sites a tool’s 

recommendation came within ±30 kg N ha-1 of EONR. Sites within this range of EONR 

were considered reasonably close to EONR (RC-EONR). This value around EONR was 

chosen because it is about the same as what others have suggested as both reasonable and 

practicable for evaluating a tool’s successful performance for generating an N fertilizer 

recommendation (Sawyer, 2013; Laboski et al., 2014; Sela et al., 2017).  

 

Economic Assessment of Tools 

 To assess each tool from a profitability standpoint, a partial profit was calculated 

that included implementation costs (e.g., soil sampling, sample analysis, and procurement 

costs) and cost of N fertilizer and the corresponding yield revenue at each of the tool’s N 

recommendation rates (Table 2). As such, each tool’s partial profit relative to the 

EONR’s partial profit was determined as follows:  

     

     [4] 

where GYtool and GYEONR
 are the estimated yields associated with the tool’s N 

recommendation and EONR, respectively; NTool and NEONR are the N rates associated with 

a tool’s N recommendation and EONR, respectively; and IPC is the implementation 

costs. The price of corn grain and the cost of N fertilizer was fixed at $0.158 kg grain-1 

(4.00 bu-1) and $0.88 kg N-1 ($0.40 lbs N-1), respectively. Corn grain yields were 

estimated using the same N response curves developed to calculate each site’s EONR 
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value. Implementation costs varied for each of the N recommendation tools based on the 

timing of N fertilizer application and the costs associated with sampling and analyzing 

soils as needed to implement the tool. Both the cost of N fertilizer applications and soil 

sampling were obtained from the Iowa Custom Application Survey (Plastina et al., 2017). 

The cost of analyzing the soil samples was calculated by averaging reported values 

obtained from five soil testing laboratories across the U.S. Midwest. An additional 

equipment cost was included in the canopy reflectance sensing analysis. All these 

implementation costs are described in Table 2. It is recognized that additional indirect 

costs for time and labor could be accrued that are related to completing forms, inputting 

information, and interpreting results. However, for this analysis, only direct costs 

required to obtain an N recommendation were used. This partial profit metric (Eq. 4) used 

to compare tools will always be negative unless a tool correctly predicts EONR at all 

sites and has no cost of implementation. 

 

Environmental Assessment of Tools 

An environmental evaluation for each tool was performed by accounting for both 

the N loss during the growing season as well as the potential N loss after harvest. 

Determination for each of these is described separately below. 

For the in-season N loss during the growing season, an N balance procedure was 

calculated using known N inputs and removals. Thus this procedure did not attempt to 

identify N loss pathways. The approach used was as follows: 

 [5] 
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where NFert
 was the plot-level treatment N fertilizer rate; NIrr

 was the inorganic N applied 

through irrigation; Nmin
 was N that was quantified through an N mineralization test 

(Kitchen et al., 2017); PPNT was the pre-plant soil NO3–N in the profile (0–0.90 m); 

Nuptake was the above-ground grain and biomass total N at plant maturity; Nroots was an 

estimated N content in the roots at plant maturity; and RSN was the post-harvest residual 

soil NO3–N in the profile (0–0.90 m). Nitrogen mineralization was measured using the 

surface (0–0.30 m) PPNT soil samples with a 7-d anaerobic incubation procedure 

(Keeney and Bremner, 1966; Bundy and Meisinger, 1994). For the Nebraska 2015 and 

2016 and North Dakota 2016 sites, no soil samples were preserved for Nmin. For these 

sites mineralization values from nearby fields from other years of this study were used. 

The Nuptake was calculated as the product of the R6 developmental growth stage dry-

matter mass for grain and stover samples and the total N concentration of these (Kitchen 

et al., 2017). To account for N immobilized by roots, N content was estimated using the 

measured shoot N content at plant maturity and using a root N to shoot N ratio of 0.20:1 

(Crozier and King, 1993). The RSN was measured shortly after plot grain yield harvest. 

Samples were taken from every plot down to a depth of 0.90 m, separated and analyzed 

in 0.30 m increments. 

Equation [5] was calculated for each plot within each site. A linear, quadratic, 

plateau-linear, plateau-quadratic, or exponential model was used to fit this calculated 

InseasonN loss for each site with both at-planting and split N application data. A model for 

each site was selected based on the assessed goodness-of-fit, the significance of the 

model, and the lowest RMSE (Table 5). The best-fit models for each site were then used 
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to interpolate the InseasonN loss associated with each N recommendation tool. A similar 

interpolated InseasonN loss value was determined for each site’s EONR value.  

Potential N loss after harvest was defined as the RSN remaining in the soil after 

grain harvest. For calculating the potential N loss after harvest, a model selection 

procedure was conducted in the same manner as described above for InseasonN loss. These 

models could then be used to interpolate by site an RSN value to correspond with each 

tool’s recommendation and EONR. To simplify the environmental assessment across soil 

and weather environments, all estimated RSN were considered lost to the environment.  

A total N loss for each tool and EONR was calculated by adding the estimated 

InseasonNloss and estimated RSN values together (Fig. 1). The differences between these 

were monetized to create an environmental cost for using the tool as follows:  

 

 [6] 
 

where N LossTool and N LossEONR was the amount of total N loss calculated for each tool 

and EONR, respectively. The prevention cost for this analysis was determined to be 

$2.75 kg-1 NO3–N. This value was based on the average of previously reported 

implementations costs associated with reducing soil and water NO3–N through various 

practices, such as drainage water management (Cooke et al., 2008), buffers and 

vegetative strips (Helmers et al., 2008), erosion control (Czapar et al., 2008), and cover 

crops (Kaspar et al., 2008). These costs were adjusted for inflation from their reported 

values to a 2015-dollar amount using an average inflation rate of 1.95% calculated using 

the FinanceRef inflation Calculator (www.in2013dollars.com; verified 15 Dec 2017). To 
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simplify the environmental cost, the prevention cost was assumed the same for all 

reactive N forms lost to the environment.  

 

Combined Economic and Environmental Assessment of Tools 

Lastly, a total economic and environmental cost was calculated by adding results 

from Eq. [4] and Eq. [6] together (Fig. 1). Under certain conditions, it is plausible that the 

total combined profitability and environmental costs could ≥ $0 ha-1. A result of when a 

tool’s relative environmental cost to EONR was much greater than the relative 

productivity, which would occur when a tool slightly underestimated EONR.  

 All calculations and analysis were conducted using the R Statistical Program (R 

Development Core Team, 2016). 

 

RESULTS AND DISCUSSION 

Nitrogen Response and EONR 

In general, growing season precipitation at these research sites ranged from 245 to 

1000 mm. Investigator observations noted few, if any, days of water deficiency stress 

with the corn crop. Still, given the varied soil environments represented across the 49 

sites and excessive precipitation for some sites (Kitchen et al., 2017), a wide range of 

corn response to N fertilizer rates occurred. The EONR values across both application 

timings ranged from 0 and 315 kg N ha-1. Of the 49 sites, three were nonresponsive to 

added N fertilizer, and another had an EONR value of less than 40 kg N ha-1. In contrast, 

five sites resulted in high EONR values judged to be the result of excessive precipitation 

producing conditions of denitrification at sites with fine-textured soils and presumed 
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leaching at sites with coarse-textured soils. For these sites, EONR values were at or near 

the highest N rate applied (315 kg N ha-1). A summary of yield response to added N has 

been previously published (Kitchen et al., 2017). The average EONR was 169 and 159kg 

N ha-1 for at-planting and split N applications, respectively. The standard deviation of 

EONR across all of the sites was 83 and 70 kg N ha-1 for at-planting and split, 

respectively, demonstrating the extreme range of N response across sites.  

 

Poor Performing Tools 

  Ideally, a successful tool would, first and foremost, have a significant positive 

linear relationship with EONR. Only when this condition was met was a tool judged 

successful in this assessment, and then other secondary metrics of performance were 

examined. These secondary metrics included average N rate recommendations relative to 

EONR, RMSE, and percentage of sites RC-EONR. The reason for the first linear 

regression examination as a screen is that averages alone can result in an incorrect 

assessment of tool performance. For example, a tool may on average produce an N 

recommendation close to EONR, but this could result from sites having N 

recommendations equally over-estimating EONR as sites under-estimating EONR. 

A total of 20 of the 31 tools did not meet the first condition of being significant 

and positively related to EONR (see tools not bolded in Table 3). Note, many of the YG 

methods had a negative linear relationship with EONR (Table 3). No other tool produced 

N recommendations that were negatively correlated with EONR. The negative linear 

relationship indicates that these YG N recommendations overestimated EONR at lower N 

recommendation rates and underestimated EONR at higher N recommendation rates (Fig. 
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3). Not only was this negative, but the relationship was weak (r2 ≤ 0.13; P ≤ 0.02), 

demonstrating that using a single YG method is not reliable for making N 

recommendations for the humid Midwest. Conversely, using the State-Specific YG for a 

sidedress N application was found to have a weak linear relationship with EONR (r2 = 

0.10; P = 0.04). This value was much lower than what others have also found for YG N 

recommendation tools (r2 ≤ 0.21; Blackmer et al., 1992; Vanotti and Bundy, 1994; Fox 

and Piekielek, 1995). Morris et al. (2017) summarized that YG based approaches are 

more suitable for irrigated corn production in arid environments where N mineralization 

or N loss varies little from year-to-year.     

The majority of the tools were poor predictors of EONR with no significant 

positive linear relationship with EONR, including the Farmer’s N rate, MRTN, and the 

Maize-N crop growth model. Many of the tools that did meet this first criterion of being 

successful were because the range of N recommendation was narrow relative to the range 

of EONR. The EONR values ranged from 0 to 315 kg N ha-1 and many of the tools N 

recommendations were between 98 and 283 kg N ha-1. The poor predictability of EONR 

for many of these tools occurred because they did not adequately account for the N 

supplied by the soil. Due to substantial inorganic soil N, four of 49 sites were found to be 

nonresponsive to N fertilizer. Only two of these unsuccessful tools accounted for soil N 

supply during the season: the WI PSNT 45 and the Maize-N crop growth model. The WI 

PSNT 45 correctly identified two of the four nonresponsive sites but also falsely 

identified two sites as nonresponsive. The model was able to correctly identify two of the 

four nonresponsive sites for both at-planting and split N applications. However, the 
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Maize-N falsely identified five other sites for both at-planting and split N applications as 

nonresponsive.  

To accurately predict if a site would be responsive or nonresponsive is difficult as 

it is influenced by management decisions, soil properties, and weather events that occur 

after an N application. The Maize-N crop growth model incorporates all of these 

parameters to estimate the N requirements of a corn crop and the N supplied by the soil 

through user inputs and in-season and long-term (≥10 yr) weather data. With the addition 

of actual in-season weather information, the Maize-N split N recommendation should, 

therefore, be more accurate at estimating EONR than when used for an at-planting 

application. However, for about half the sites (25 of 49) the split N recommendations 

were weaker predictors of EONR than the at-planting N recommendations. These results 

demonstrate that improvements are needed for the Maize-N model to better account for 

the year-to-year and location-to-location weather variability seen throughout the U.S. 

Corn Belt. Currently, many of the model coefficients used in Maize-N are simplified 

estimates of management, soil, and genetic parameters. These modeling parameters have 

shown to work well for the western Corn Belt, for which the model was developed, but 

additional changes to these coefficients may be one necessary step to improve the 

performance of the Maize-N model in other regions of the Corn Belt (Setiyono et al., 

2011). 

Since MRTN is promoted in six of the eight states participating in this research, 

further examination of why it was not related with EONR was warranted. The MRTN 

tool was developed from an aggregation of multiple site years of N rate response trials. 

This method provides a reasonable approximation of the EONR for a given region for 



 

43 
 

which it was developed. However, this approach does not account for local variability 

due to temporal weather or spatial soil factors to N response (Morris et al., 2017). The 

observed EONR in this study ranged from 0 to 315 kg N ha-1 while the MRTN 

recommendations were between 129 to 228 kg N ha-1 (Fig. 2a). Across all the 

environments included in this research, MRTN on average came close to EONR (Table 

4), but this was due to an equal number of N recommendations overestimating as well as 

underestimating EONR (Fig. 6). Nevertheless, MRTN could be a good starting point for 

N management decisions. Its prediction can be improved when incorporated with a PPNT 

tool, as seen in Fig. 2b where it was used as part of the WI PPNT. 

 Although the tools previously discussed were considered to perform poorly, 

information of their performance is included in all figures and tables. However, 

additional discussion will focus only on tools that had a significantly positive linear 

relationship with EONR. For convenience, successful tools meeting this first criterion are 

bolded or highlighted in the tables and figures.  

 

Successful Tools 

Only 11 of 31 were tools judged to be successful in making N fertilizer 

recommendations (see bolded in Table 3). For tools making N recommendations at 

planting, only 3 of 13 met this first condition. For tools making N recommendations for 

split applications, only 8 of 18 tools were found successful. Success was found with using 

the State-Specify YG at sidedress, three of the four PPNT tools, six of the eight PSNT 

tools, and canopy reflectance sensing. At the same time, no tool produced a 

recommendation rate that closely matched EONR, with the best-observed linear model 
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producing a relatively low coefficient of determination (r2 =0.24; P <0.001; for IA PSNT 

0; Fig. 2c). Lack of performance was also considered to be less than ideal when 

examining RMSE values (Table 4); the best tool (IA PSNT 0) and worst (General PSNT 

0) tools relative to RMSE gave values of 68 and 92 kg N ha-1, respectively. 

 

State-Specific YG 

When each state utilized their respective YG method for a sidedress N 

recommendation, there was a significant and positive linear relationship with EONR. The 

improved performance of utilizing the State-Specific YG at sidedress over the at-planting 

N application timing occurred due to lower sidedress EONR values and all NE sites 

reducing their YG-based N recommendations for the sidedress application time by 5%. 

While not all of the other states recommended an adjustment based on application timing, 

what adjustment was made by the NE sites was enough to make this tool successful. 

Further improvements for all other YG methods could be made by implementing a 

similar reduction based on application timing.  

 

Pre-plant Soil Nitrate Tests  

Three PPNT tools produced N recommendations related to EONR (General, MN, 

and WI), but these tools explained no better than 16% of the variability in EONR (P 

≤0.01; Table 3). These tools work by adjusting a base N recommendation (State-Specific 

YG or MRTN). By themselves, the base N recommendations overestimated EONR, but 

after adjusting for PPNT measurements the General, MN, and WI PPNT tools 

underestimated EONR by an average of 40, 26, and 5 kg N ha-1 (Fig. 4; Table 4). These 
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PPNT N recommendations improved over the base N recommendations because 

measured NO3–N was subtracted from the base N recommendation. As such, these PPNT 

tools were effective at adjusting sites that overestimated EONR.  

Of the three PPNT tools judged successful, the WI PPNT performed best. While 

this tool was not statistically significantly different from the other PPNT tools (Fig. 7), it 

underestimated EONR by only 5 kg N ha-1, and the RMSE was 14 and 9 kg N ha-1 lower 

than the General and MN PPNT, respectively (Table 4). Furthermore, the recommended 

N rate from the WI PPNT tool had 34 % sites RC-EONR compared to 21 and 32% of 

sites for the General and MN PPNT, respectively (Table 4). The improved performance 

of this tool was in part because the WI PPNT accounts for background NO3–N levels but 

does not recommend adjustments if the PPNT results are below 56 kg N ha-1 (Table 2). 

Due to low PPNT values measured across environments, no adjustment to the base N 

recommendation (MRNT) was made for 22 of the 44 sites evaluated (Fig 2a and 2b). 

However, for 8 of those 22 sites, an adjustment would have been beneficial as the base N 

recommendation overestimated EONR by as much as 30 kg N ha-1. Another reason for 

the improved performance of the WI PPNT over the other two PPNT tools was that the 

WI PPNT adjustments were more substantial as it accounted for NO3–N levels down to 

1.20 m rather than 0.60 m. This improved the final WI PPNT recommendation for those 

nonresponsive sites over the other two PPNT tools (Fig 2a and 2b). 

One factor of this study that may have reduced the predictability of PPNT N 

recommendations was that many of the study sites were corn following a soybean crop. 

Soybeans have been shown to be an excellent scavenger of soil NO3–N; resulting in a 

minimal amount of NO3–N remaining in the soil the following spring (Shapiro et al., 
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2008; Kaiser et al., 2016). The PPNT may be better suited for conditions where residual 

soil NO3–N would accumulate, such as with manured fields. 

 

Pre-Sidedress Soil Nitrate Test  

The PSNT tools performed better when evaluated under the conditions of 0 kg N 

ha-1 applied at-planting compared to when 45 kg N ha-1 was applied at-planting (Fig. 5). 

Of the PSNT methods evaluated with 0 kg N ha-1 applied at-planting, the General, IA, 

and WI PSNT tools were significantly and positively related to EONR. These tools 

performed similarly as their average recommendations were close to EONR, the RMSE 

deviation from EONR, and the percentage of sites RC-EONR (Table 4). While the IA 

PSNT 0 tool underestimated EONR by ~20 kg N ha-1 more than the other tools, its 

predicted N rate had the best linear relationship with EONR (r2 = 0.24, P < 0.001) of all 

N recommendation tools assessed (Table 3, Fig. 2). Nevertheless, this relationship with 

EONR was not particularly strong and substantially less than what other researchers have 

reported for other PSNT tools. Schmidt et al., (2009) reported the Pennsylvania PSNT to 

have an r2 = 0.48 with EONR. The relatively weak relationship found here with the tools 

used in this multi-state study compared to other studies could be related to the large 

geographic area and variability in weather from year to year. This would suggest that 

these PSNT tools are not well adapted for sites with extreme environmental differences. 

A similar finding was documented in Scharf et al. (2006) where pre-sidedress NO3-N 

concentrations from 62 sites across seven Midwest states had a weak relationship with 

the optimal N rate (r2 = 0.16). 
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Of the four PSNT tools evaluated with 45 kg N ha-1 applied at-planting, the 

General, IA, and IN tools were found to be related to EONR. Of these tools, the IN PSNT 

45 had one of the lowest RMSE and on average came closest to EONR (Table 4). The IN 

PSNT differs from the other PSNT methods as the N recommendation is categorized into 

six groups of N rates based on expected yield (Brouder and Mengel, 2003). While this 

method had a significant relationship when 45 kg N ha-1 was applied at-planting, no 

significant relationship was observed with EONR when evaluated with 0 kg N ha-1 

applied at-planting. The reason for the lack of consistency between the IN PSNT tools 

with the different N rates applied at-planting N amounts is unknown.  

One explanation for why the PSNT 45 tools further underestimated EONR was 

that the added 45 kg N ha-1 masked the N-supplying capacity of the soil. Others have 

found limits as to how much N could be applied at-planting before the PSNT becomes 

ineffective in predicting N requirements. Fernández et al. (2009) stated that the PSNT 

tool should not be used if > 22 to 30 kg N ha-1 was applied at-planting, while Blackmer et 

al. (1997) reported a limit < 84 kg N ha-1. Additionally, Ketterings et al. (2012) 

documented the limit to be < 45 kg N ha-1 when fertilizer was banded. It is evident from 

this research that 45 kg N ha-1 applied at-planting reduced the effectiveness of the PSNT 

tools.   

The PSNT is not currently advised under certain situations, such as sandy soils or 

soils with low organic matter (Fox et al., 1989; Meisinger et al., 1992). Nevertheless, 

removing the three sites with sand >80 % from the analysis resulted in a little or no 

improvement for all of the PSNT tools (reduced RMSE < 5 kg N ha-1; data not shown). 

As such, all sites were included in this analysis regardless of soil texture. 
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Canopy Reflectance Sensing 

The recommended N rate from the canopy reflectance sensing had a significant 

but weak linear relationship with EONR (r2 = 0.13; P = 0.01). On average canopy 

reflectance sensing underestimated the amount of N required by 49 kg N ha-1, which was 

the most of any of the 11 successful tools (Table 4 and Fig. 6). The N recommendation 

from the canopy reflectance sensing resulted in only 22% of sites RC-EONR. This was 

comparable to the Maize-N model and the majority of YG recommendations used for 

split applications (Table 4 and Fig. 6). The relatively poor performance of canopy 

reflectance sensing at many sites was a result of the minimal differences between the N-

Rich plots and target plots (SI values averaged 0.93). For the majority of sites, the corn 

that received 45 kg N ha-1 at-planting (target plots) produced reflectance readings very 

similar to the N-Rich plots. When SI values are high, the algorithm decreases the N 

recommendation, which with this dataset often resulted in underestimating EONR. Using 

the same 49-site dataset, Bean et al. (2018a) showed that sensing plots that received 0 kg 

N ha-1 at-planting improved the performance of the tool slightly over sensing plots that 

received 45 kg N ha-1 at-planting. Similar results were observed in another regional 

dataset, which showed the HS algorithm on average underestimated the optimal N rate, 

resulting in significant yield loss compared to a high N reference for four of 11 sites 

(Thompson et al., 2015).  

Efforts to improve canopy reflectance sensing with this dataset (49 sites) showed 

some promising results. Using a different algorithm developed in Missouri, Bean et al. 

(2018a) showed improved performance, as the numbers of sites RC-EONR were as high 
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as 39%. However, this improvement still did not match the performance of the PSNT 

tools where the number of sites RC-EONR was ≥ 41% (Table 4).  

 

Economic and Environmental Impacts of Tools 

Partial Profitability 

Partial profit between the planting and split N application timing tools showed no 

difference (P = 0.43; Fig. 8). As such, all tools used for both timings were illustrated 

together (Fig. 8). When comparing all successful tools (significant and positively related 

to EONR) collectively, significant differences were found between tools (Fig. 8). The 

General PSNT 45 had the lowest partial profit and was significantly different from the 

General PSNT 0, State-Specific YG, and WI PPNT tools (P ≤ 0.05; Fig. 8). Apart from 

these differences, all other tools were not considered significantly different from each 

other.  

The interpretation of these results demonstrates the opportunity cost associated 

with tools that are unable to predict an N rate that matches EONR. With just the 11 tools 

found related to EONR, the average partial profit was -$91 ha-1. Though both the N 

recommendations differing from EONR and the tool implementation costs are included in 

this analysis, the former generates the majority of the negative partial profit (Table 2). 

While unrealistic to think any tool could generate an N recommendation equivalent to 

EONR all the time, clearly this analysis provides a message of economic opportunity for 

having tools that are better at predicting EONR.   

For farmers to adopt N recommendation tools, they need to be affordable, simple 

to use, and profitable. Much of N for the U.S. Midwest is currently applied to corn in the 
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fall or early spring before planting because of convenience and available time. To 

compensate for the convenience of applying N early, tools that are reliant on soil/plant 

information need to perform equally if not better than fall applications. Furthermore, 

while tools tailored for in-season N fertilizer applications allow farmers the convenience 

of focusing more on planting operation concerns, it also requires application equipment 

capable of covering many acres within a narrow time frame.  

 

Environmental Assessment 

The relationship between InseasonN loss and fertilizer N rate differed across sites 

(Table 5). For 43 of 49 sites, InseasonN loss increased with increasing N fertilizer rates. 

However, 7 of the 49 sites showed no change in N loss while increasing N fertilizer for 

both at-planting and split applications (Fig. 9). The RSN was found to have no change 

with increasing N fertilizer rate for 2 out of 49 sites. The type of response function that 

best fit InseasonN loss or RSN varied by site and application timing (Table 5).  

 The estimated total N loss (InseasonN loss + RSN) at EONR resulted in an average 

and standard deviation across all sites of 136 (± 90) and 137 (± 84) kg N ha-1, for at-

planting and split applications, respectively. Moreover, the corresponding average and 

standard deviation of environmental costs were $152 ha-1 (± $101 ha-1) and $153 ha-1 (± 

$93 ha-1) for at-planting and split applications, respectively. In comparison, sucessful 

tools on average resulted between –$49 and 55 ha-1 relative to EONR (Fig. 9; Table 4). A 

positive cost indicates that a tool’s N recommendation resulted in reduced N loss 

compared to EONR, because of under-estimated crop N needs, and thus acting as an 

environmental credit.  
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When comparing all successful tools with each other, there was no significant 

difference found. This is not surprising as Hong et al. (2011) and Bandura (2017) showed 

that there was no significant increase in RSN until N rates exceeded EONR by about 30 

kg N ha-1. As none of the well-performing tools’ recommended an N rate in excess of 

EONR by more than 21 kg N ha-1 (Fig. 7), there was no expected significant difference 

for total N loss between these tools. 

 

Combining Economic and Environmental Costs  

 No differences were found between the previously identified successful tools 

when the partial profit and environmental costs were combined (Fig. 10). This occurred 

because the tools that had a poor partial profit due to underestimating EONR (e.g., 

General PSNT 45 and canopy reflectance sensing) had a higher environmental “credit” 

which helped to balance the total combined economic and environmental costs. Tools 

based on soil sampling (PPNT and PSNT) tended to have a combined economic and 

environmental cost closer to EONR. As previously stated when partial profit was 

discussed (Fig. 8), the results displayed in Fig. 10 give a better understanding of the 

relative opportunity costs associated with the tools assessed, however in this case both 

farmer (profit) and public (environment) interests are represented.  

The combined costs associated with each of these tools could change depending 

on the prices used to calculate profitability and environmental costs. The environmental 

costs are more likely to change than the partial profitability as they vary widely in the 

literature. An evaluation of management practices to reduce N loading in the 

environment, resulted in values between $3 to 57 kg N-1 yr-1 (Christianson et al., 2013; 
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Zhang et al., 2015). These costs could increase by a factor of ten or more if the cost of 

using water treatment facilities to remediating NO3–N were included in the analysis 

(Jensen et al., 2012). Using different costs would not change the comparison between 

tools, but the magnitude of differences would be larger than what is reported here. 

As concerns with environmental issues associated with N fertilizer continues to 

increase, social pressures may limit N management options for farmers. Some of these 

options would be to apply less N during the fall and more in the spring or top-dressed 

(Scharf et al., 2002; Christianson et al., 2012). Another option would be to reduce N rates 

applying more N in-season rather than at-planting (Christianson et al., 2012). In this case, 

the PSNT tests and canopy reflectance sensing would be ideal tools, but their adoption is 

hindered by implementation logistics. Using a higher environmental cost would further 

promote the use of canopy reflectance sensing, as it had one of the highest environmental 

credits. In comparison to the PSNT tools, canopy reflectance sensing is easier to use and 

applies N at a higher spatial resolution, close to a plant-by-plant basis. This higher 

resolution N application allows for adjustment to account for landscape positions or parts 

of the field that are more prone to runoff or leaching. Additional improvements to this 

tool could be incorporated using site-specific soil and weather information, allowing for a 

more adaptive N recommendation tool (Bean et al., 2018b). 

 

CONCLUSIONS 

There are many N recommendation tools available to aid farmers in improving N 

management. No N recommendation tool worked well for all growing conditions. Only 

11 of the 31 tools evaluated were considered successful tools as they were significantly 
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and positively correlated with EONR (r2 ≤ 0.24; P ≤0.07). The successful tools were 

based on soil sampling (PPNT and PSNT) and canopy reflectance sensing. Of these tools 

the WI PPNT and General PSNT 0 had some of the better profitable returns; however, 

there were minimal significant differences between all the successful tools. From an 

environmental standpoint, none of these successful tools were significantly different from 

each other. When combining the partial profitability and environmental costs associated 

with each tool, none of the successful tools stood out. However, as environmental costs 

increase, tools that underestimate EONR would counterbalance any loss in profitability. 

This side-by-side comparison of these tools shows that no one tool is best for any 

one environment. Tools that are adaptive and more responsive to soil and weather 

information for generating an N recommendation could improve the performance of 

tools. Additionally, some of these tools could be utilized together to form a new N 

recommendation approach, in such a way the strengths of multiple tools could be 

leveraged for better corn N management.  
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Table 1. Strengths and weaknesses of N fertilizer recommendation tools included in this investigation (YG, yield goal; PPNT, pre-
plant nitrate test; PSNT, pre-sidedress nitrate test). 

Tools Pros Cons Citations 

Yield Goal 

Mass balance approach that is easily 
calculated. Nitrogen recommendations can 
be adjusted to account for soil N using 
credits (previous crop and residual soil 
NO3–N measurements). 

Poor relationships observed between YG 
calculations and EONR due to the uncertainty of 
final yields, management, previous crop effects, soil 
N supply, corn and fertilizer prices, and fertilizer use 
efficiency. Additionally, this method does not 
account for within-field variability due to soil and 
water properties.  

Stanford; 1973; Lory 
and Scharf, 2003; 

Sawyer et al., 2006  

PPNT 

Soil NO3–N levels can be assessed for 
residual N and N supplied by manure that 
could be available for plant use. Can be 
used as an adjustment to other N 
recommendations. Sampling can be taken 
during a lull in seasonal work. 

Not a useful tool in more humid regions due to N 
loss during wet springs. Inaccurate test results due to 
varying weather affecting N mineralization rates. 
Additional cost and labor required. Requires deep 
sampling, down to 0.60 m or deeper.  

 
Magdoff et al., 1984; 
Bundy and Andraski, 
1995; Schröder et al., 

2000; Lory and Scharf, 
2003; van Es et al., 

2007 

PSNT 

Has potential for better accounting of N 
loss from leaching or denitrification and N 
inputs from mineralization than PPNT. 
Successful at identifying N-sufficient sites. 

Additional in-season sampling required and limited 
by wet conditions and short laboratory turn around. 
Limited by N loss due to temperature and rainfall 
immediately before and after sampling. Does not 
account for within-field spatial variability that 
results from variable soil and water interactions. 

Magdoff et al., 1984; 
Fox et al., 1989; 
Magdoff, 1991; 

Meisinger et al., 1992; 
Andraski and Bundy, 

2002 

---- Continued next page --- 
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Table 1. (Continued). 
Tools Pros Cons Citations 

MRTN 

Nitrogen response trials are used to 
determine N rates. Data are easily updated 
with additional experimental N-rate trials. 
Calculations reflect current economic status 
by including the price of fertilizer and corn. 
Provides a range that is within $1.00 that 
farmers can use depending on their risk 
level. 

Does not address the issue of the year to year 
temperature or rainfall variability. Cannot predict 
site-specific N requirements and unlikely to 
accurately estimate EONR for each specific 
environment. Does not account for within-field 
spatial variability due to soil and water properties. 
Must estimate what the price of corn will be at the 
end of the season. 

Nafziger et al., 2004; 
Sawyer et al., 2006; 
van Es et al., 2007 

Crop Growth 
Models 

Estimates possible weather scenarios during 
a growing season to minimize N loss and 
predict N supplied by the soil. Non-static N 
recommendation based on the genetic, 
environmental, and management conditions. 

Initial inputs require time and money. Models may 
need to be calibrated to specific climate and soil 
conditions. Many parameters are estimated or 
generalized. 

van Es et al., 2007; 
Setiyono et al., 2011; 

Sawyer, 2013 

Canopy 
Reflectance 

Sensing 

Nitrogen recommendations can be adjusted 
for plant response to soil and water 
variability within fields. Provides a real-
time assessment of corn N status during the 
season. Various algorithms allow for 
adaptability for different conditions. Works 
well with high soil variability or in 
scenarios of uncertain N. 

Expensive upfront costs for sensors and applicators. 
Needs a high-N area to normalize reflectance values. 
The sensor is not sensitive to within field changes in 
crop height. Hard to “see” slight N deficiency. 
Confounded by other plant stresses (e.g., sulfur). The 
amount of crop canopy closure affects readings, 
excessive soil exposure resulting in a diluted index 
value and a closed canopy results in saturated 
measurements. 

Shanahan et al., 
2008; 

Holland and 
Schepers, 2010; 

Kitchen et al., 2010; 
Franzen, 2016 
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Table 2: Methods and implementation costs associated with corn N recommendation tools included this investigation. The 
implementation cost and required soil analysis are reported in parenthesis. Tool descriptions include YG as yield goal, PPNT as pre-
plant nitrate test, and PSNT 0 and PSNT 45 as the pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied at-planting, respectively. 
Variables used in calculations and implementation costs are Pop as plant population, OM as organic matter, and CEC as cation 
exchange capacity.    

Tools Approach & Calculation Reference Implementation Costs§¶# 

General 
YG 

Calculation using an expected yield and a soybean credit of 45 kg N ha-1.  

Nrec
 
= 1.12

†
 × [1.2 × YG – Ncredit] 

Stanford,1973 Application Cost 

IN YG Calculation using an expected yield and a soybean credit of 34 kg N ha-1.  

Nrec
 
= 1.12

† 
× [–27 + 1.36 × YG – Ncredit] 

Vitosh et al., 
1996 

Application Cost 

MN YG Calculation using an expected yield, organic matter content, and soybean credit of 
22 to 45 kg N ha-1. Soils are grouped into either low or high organic matter content 
with 30 g OM kg-1 soil being the threshold. (Table 1 of publication) 

Schmitt et al., 
2002 

Application Cost 

MO YG Calculation using an expected yield, plant population, and N supplying power of 
the soil based on organic matter and cation exchange capacity, and a soybean credit 
of 34 kg N ha-1.  

Nrec
 
= 1.12

†
 × [0.9 × YG + 4 × Pop – NOM-credit – Ncredit] 

Brown et al., 
2004 

Application Cost + Sampling 
Collection + Sample Analysis 
($2.00 ha-1; OM & CEC)  

NE YG Calculation using an expected yield, measured or estimated inorganic soil NO3–

N(0–1.20 m), measured or estimated N supplied from organic matter, and a soybean 
credit of 39 or 50 kg N ha-1, for sandy and non-sandy soils, respectively. An 
estimated amount of N applied through irrigation is also credited. The N 
recommendation rate is adjusted for soil texture classification and time of N 
fertilizer application.  

Nrec
 
= 1.12

†
 × [35 + (1.2 × YG) – (8 × NO3–N(0–1.20 m)) – 0.14 × YG × OM – NCredit] 

× Timeadj × Priceadj 

Shapiro et al., 
2008) 

Application Cost + Sampling 
Collection + Sample Analysis 
($2.50 ha-1; OM & NO3–N) 

--- Continued next page --- 
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Table 2. (Continued). 
Tools Approach & Calculation Reference Implementation Costs§¶# 

State-
Specific 

YG 

Sites within each state only used their respective state’s YG method. The 
WI sites were excluded as no YG tool was used in WI. Yield goal tools not 
already listed are as follows: 

IA YG = 1.12† × [1.22 × YG] or 1.12† × [0.9 × YG] for fine-silty 

Hapludolls – up to 56 kg N ha-1 soybean credit  

IL YG used the General YG, and the ND YG used the ND PPNT.  

Voss and Killorn, 
1998; Hoeft and 
Peck, 1999. 

 

Application Cost + Sampling 
Collection + Sample Analysis 
($2.50 ha-1; OM & NO3–N) 

General 
PPNT 

The calculation is the measured soil NO3–N(0–0.60 m) concentration (converted 
to mass) subtracted from MRTN‡. 

Nrec
 
= 1.12† 

× [MRTN
 ‡ 

– NO3–N(0–0.60 m)] 

Bundy et al., 1999 Application Cost + Sampling 
Collection + Sample Analysis 
($1.25 ha-1; NO3–N) 

MN 
PPNT 

The calculation is 60% of the measured soil NO3–N(0–0.60 m) concentration 
(converted to mass) subtracted from MRTN‡. 

Nrec
 
= 1.12†

 × [MRTN
 ‡ 

– (0.60 × NO3–N(0– 0.60 m))] 

Kaiser et al., 2016 Application Cost + Sampling 
Collection + Sample Analysis 
($1.25 ha-1; NO3–N) 

ND PPNT The calculation is the measured soil NO3–N(0–0.60 m) concentration (converted 
to mass) subtracted from the ND YG calculation and using a soybean credit 
of 45 kg N ha-1.  

Nrec
 
= 1.12

† 
× [1.2 × YG – NO3–N(0– 0.60 m) – Ncredit] 

Franzen, 2010 Application Cost + Sampling 
Collection + Sample Analysis 
($1.25 ha-1; NO3–N) 

WI PPNT Calculation using the measured soil NO3–N concentration (converted to 
mass) in the top 0.90 m (sample taken down to 0.60 m and last 0.30 m is 
estimated) subtracted from MRTN‡. To account for background soil NO3–N 
56 kg N ha-1 is subtracted from the total profile NO3–N value.  

Nrec
 
= 1.12

† 
× [MRTN

‡
 – (ΣNO3–N(0–0.90 m) – 50)], no adjustments made if the 

sum of NO3–N is below 56 kg N ha
-1

.   

Laboski and 
Peters, 2012 

Application Cost + Sampling 
Collection + Sample Analysis 
($1.25 ha-1; NO3–N) 

--- Continued next page --- 
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Table 2. (Continued). 
Tools Approach & Calculation Reference Implementation Costs§¶# 

General 
PSNT 

MRTN or YG recommendation is adjusted proportionally based on if soil NO3–N(0–0.30 

m) concentration is below 25 mg kg-1 and above 10 mg kg-1. The full recommended 
rate is applied if the soil NO3–N(0– 0.30 m) concentration is below 10 mg kg-1 and no 
additional N is applied if it is above 25 mg kg-1. 

Fernández et 
al., 2009 

Application Cost + Sampling 
Collection + Sample 
Analysis ($0.75 ha-1; NO3–N) 

IA 
PSNT 

Calculated using measured soil NO3–N(0– 0.30 m) concentration and a critical limit of 25 
mg kg-1. To determine the N recommendation when NO3–N(0–0.30 m) is below the 
critical limit, the difference between the critical limit and the measured NO3–N(0–0.30 m) 
concentration is multiplied by 8. The critical limit is reduced by 3 to 5 mg kg-1 when 
spring precipitation is 20% above normal amounts.  

Nrec= 1.12
† 
×[(25 mg kg

-1
 – NO3–N(0–0.30 m) mg kg

-1
) × 8] 

Blackmer et 
al., 1997 

Application Cost + Sampling 
Collection + Sample 
Analysis ($0.75 ha-1; NO3–N) 

IN 
PSNT 

Calculation using yield goal and soil NO3–N(0–0.30 m) concentration (Table 2 of 

publication). 
Brouder and 
Mengel, 2003 

Application Cost + Sampling 
Collection + Sample 
Analysis ($0.75 ha-1; NO3–N) 

WI 
PSNT 

A soil N credit is calculated based on soil NO3–N(0– 0.30 m) concentration and on the 
yield potential of the soil. No N application is recommended if the measured soil 
NO3–N(0–0.30 m) concentration is above 21 mg kg-1. No N credits are applied if the soil 
NO3–N(0–0.30 m) concentration is below 10 mg kg-1. (Table 6.6 of publication) 

Laboski and 
Peters, 2012 

Application Cost + Sampling 
Collection + Sample 
Analysis ($0.75 ha-1; NO3–N) 

MRTN Yield response of N response trials spanning multiple years. From each trial, the yield 
is modeled as a function of N fertilizer and the N recommendation is determined by 
adjusting the price of corn and N fertilizer. Multiple N recommendations are grouped 
by geographical locations or soil properties.  

Sawyer et al., 
2006 

Application Cost 

--- Continued next page --- 
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Table 2. (Continued). 
Tools Approach & Calculation Reference Implementation Costs§¶# 

Maize-N Computer simulation of soil and crop processes to account for N 
uptake and removal from the root zone. Uses information based on 
soil, crop hybrid, management, economic inputs, and historical and 
daily weather.  

Setiyono et al., 
2011 

Application Cost + Sampling 
Collection + Sample Analysis ($2.75 
ha-1; OM, NO3–N, pH, & Bulk Density) 

Canopy 
Reflectance 

Sensing 

Nitrogen recommendations are based on reflectance wavelengths 
measured with proximal sensors.  

Holland and 
Schepers, 
2010 

Custom Application Costs†† ($1.40 ha-1 
more than split application cost) 

†1.12 was used to convert N recommendations from lbs N ac-1 to kg N ha-1. 
‡ MRTN values were used except when states did not recommend MRTN, in which case that state’s yield goal calculation was used.  
§ Application costs: at-planting ($13.70 ha-1) and split ($13.70 ha-1 + $28.40 ha-1) applications estimated from Iowa Farm Custom Rate Survey using the average 

reported cost of applying dry bulk fertilizer (Plastina et al., 2017) 
¶ Sample collection costs: $1.90 ha-1, $2.80 ha-1, and $3.80 ha-1 were used for shallow (0 – 0.30 m), medium (0 – 0.60 m), and deep (0 – 0.90 m) soil samples, 

respectively. Costs were based on the average reported wages ($15.25 h-1) for operating machinery from the Iowa Farm Rate Survey (Plastina et al., 2017) 
and assuming a sampling rate of 8, 6, and 4 ha-1 for shallow, medium, and deep soil samples, respectively. 

# Sample analysis costs: The cost associated with analyzing samples was determined by taking the average of five soil-testing laboratories throughout the U.S. 
Midwest that were either land grant or commercially operated (Agvise Laboratories Inc., Midwest Labs Inc., North Dakota State University, University of 
Missouri, and University of Wisconsin-Madison). The cost increased with each additional depth analyzed.  

†† The custom application cost was estimated using the reported average top-dress liquid fertilizer application rate ($28.40 ha-1) from the Iowa Farm Rate Survey 
(Plastina et al., 2017). It was assumed that 50% of the top-dress application cost comes from machinery upkeep and acquisition and 50% from labor and fuel 
(R. Massey, personal communication, 2017). The cost of using canopy reflectance sensors was calculated as 10% ($1.40 ha-1) of the base machinery upkeep 
and acquisition costs resulting in a total top-dress application cost of $29.90 ha-1.  
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Table 3. Significant linear regression relationships between each N recommendation tool and the economic optimum nitrogen rate 
(EONR). Both at-planting and split N application tools are reported. Tool descriptions include YG as yield goal, PPNT as pre-plant 
nitrate test, and PSNT 0 and PSNT 45 as the pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied at-planting, respectively. Bolded 
tool names indicate a significant and positive relationship between recommendations and EONR were found (α = 0.10). If blank, then 
non-significant. Dashes indicate not applicable. 

  At-Planting Split 
N Recommendation Tool n P-Value r2 Intercept Slope  P-Value r2 Intercept Slope 
Farmer NR 49 0.51     0.89    
General YG 49 0.01 0.13 339 –0.74  0.01 0.13 311 –0.65 
IN YG 49 0.02 0.10 316 –0.60  0.02 0.10 291 –0.53 
MN YG 49 0.11     0.06 0.07 298 –0.82 
MO YG 49 0.02 0.10 329 –0.68  0.02 0.11 306 –0.61 
NE YG 49 0.47     0.67    
State-Specific YG† 43 0.17     0.04 0.10 74 0.51 
General PPNT 47 <0.01 0.15 63 0.83  - - - - 
MN PPNT 47 0.01 0.13 49 0.84  - - - - 
ND PPNT 47 0.70     - - - - 
WI PPNT 44 <0.01 0.16 50 0.72  - - - - 
MRTN 36 0.53     0.45    
Maize-N 49 0.50     0.96    
General PSNT 0 49 - - - -  0.01 0.13 76 0.55 
IA PSNT 0 49 - - - -  <0.001 0.24 54 0.79 
IN PSNT 0 49 - - - -  0.21    
WI PSNT 0 49 - - - -  0.02 0.11 90 0.46 
General PSNT 45 49 - - - -  0.07 0.07 126 0.31 

--- Continued next page --- 
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Table 3. (Continued).  
  At-Planting  Split 

N Recommendation Tool n P-Value r2 Intercept Slope  P-Value r2 Intercept Slope 
IA PSNT 45 49 - - - -  <0.01 0.14 99 0.49 
IN PSNT 45 49 - - - -  0.01 0.12 91 0.43 
WI PSNT 45 49 - - - -  0.13    
Canopy Reflectance Sensing 49 - - - -  0.01 0.13 93 0.62 

† Indicates that each state used their respective state yield goal recommendation 
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Table 4. The precision and accuracy of each N recommendation tool were evaluated 
using the average difference (N recommendation tool – EONR), RMSE of the difference 
between a tools’ N recommendation and EONR, and the percentage of sites ±30 kg N ha-

1 of EONR or “relatively close to EONR” (RC-EONR). Tools were evaluated across 49 
sites from 2014 to 2016. The percentage of sites (n) included in the evaluation differed 
for each tool based on the availability of information to test the tool. Tools include yield 
goal (YG), pre-plant nitrate test (PPNT), pre-sidedress nitrate test (PSNT) with 0 and 45 
kg N ha-1 applied at-planting, MRTN, Maize-N crop growth model, and canopy 
reflectance sensing using the Holland and Schepers algorithm. Tools with a significant 
relationship with EONR (Table 3) are bolded. Dashes indicate not applicable. 

At-Planting  Split 

N Recommendation Tool n Average RMSE RC-
EONR 

 Average RMSE RC-
EONR 

  ----- kg N ha-1 ---- %  ----- kg N ha-1 ---- % 
Farmer NR 49 24 88 31  31 84 29 
General YG 49 58 117 14  65 113 18 
IN YG 49 73 127 14  80 125 14 
MN YG 49 –6 90 24  2 81 41 
MO YG 49 65 120 16  72 117 20 
NE YG 49 –12 86 35  –27 81 37 
State-Specific YG† 43 20 83 23  22 72 37 
General PPNT 47 –40 85 21  - - - 
MN PPNT 47 –26 80 32  - - - 
ND PPNT 47 7 93 13  - - - 
WI PPNT 44 –5 71 34  - - - 
MRTN 36 16 77 39  19 72 42 
Maize-N 49 –44 116 18  –31 112 24 
General PSNT 0 49 - - -  –4 70 43 
IA PSNT 0 49 - - -  –25 68 41 
IN PSNT 0 49 - - -  40 83 24 
WI PSNT 0 49 - - -  –5 73 41 
General PSNT 45 49 - - -  –44 92 29 
IA PSNT 45 49 - - -  –33 79 47 
IN PSNT 45 49 - - -  2 75 41 
WI PSNT 45 49 - - -  –38 90 35 
Canopy Reflectance 
Sensing 49 - - -  

–49 85 22 
† Indicates that each state used their respective state yield goal recommendation 
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Table 5. The best-fit models (Linear, Quadratic, Plateau-Linear, Plateau-Quadratic, and Exponential) for explaining N lost from the 
soil profile (0-0.90 m) in-season and post-harvest (residual soil nitrate) for each site and N application timings. The goodness of fit 
(r2/R2) values of each model are also reported for each significant (α = 0.05) model (NS = non-significant).  

   At-Planting  Split 
   Inseason N loss  Residual Soil Nitrate  Inseason N loss  Residual Soil Nitrate 

Year State Site Model R2  Model R2  Model R2  Model R2 

2014 IA Ames Exponential 0.33 
 

Plateau-Linear 0.56  NS   Plateau-Linear 0.50 

IA MasonCity NS  
 

Plateau-Quadratic 0.87  Quadratic 0.77  Exponential 0.92 

IL Brownstown Linear 0.88 
 

Plateau-Quadratic 0.50  Exponential 0.54  Plateau-Linear 0.41 

IL Urbana Plateau-Quadratic 0.30 
 

Plateau-Linear 0.27  Plateau-Linear 0.27  Plateau-Linear 0.38 

IN Loam Plateau-Linear 0.93 
 

Plateau-Quadratic 0.48  Linear 0.34  Plateau-Quadratic 0.76 

IN Sand Linear 0.16 
 

Plateau-Quadratic 0.50  NS   Exponential 0.67 

MN NewRichland Linear 0.66 
 

Linear 0.33  Linear 0.25  Plateau-Linear 0.62 

MN StCharles Linear 0.29 
 

Plateau-Linear 0.57  NS   Plateau-Linear 0.62 

MO Bay NS  
 

Plateau-Quadratic 0.80  NS   Plateau-Quadratic 0.66 

MO Troth NS  
 

Plateau-Quadratic 0.79  NS   Exponential 0.79 

ND Amenia NS  
 

Plateau-Linear 0.46  NS   Plateau-Quadratic 0.50 

ND Durbin Plateau-Quadratic 0.72 
 

Plateau-Quadratic 0.35  NS   Plateau-Linear 0.62 

NE Brandes Linear 0.63 
 

NS   Plateau-Quadratic 0.63  NS  

 NE SCAL Linear 0.47 
 

Plateau-Linear 0.72  Linear 0.46  Plateau-Quadratic 0.91 

 WI Steuben NS  
 

Plateau-Quadratic 0.85  Plateau-Linear 0.42  Plateau-Quadratic 0.91 
--- Continued next page --- 
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Table 5. (Continued).  
   At-Planting  Split 
   Inseason N loss  Residual Soil Nitrate  Inseason N loss  Residual Soil Nitrate 

Year State Site Model R2  Model R2  Model R2  Model R2 

 WI Wauzeka Linear 0.48 
 

Plateau-Linear 0.66  Quadratic 0.53  Linear 0.54 

2015 IA Boone Quadratic 0.65 
 

Plateau-Linear 0.73  Linear 0.16  Plateau-Linear 0.60 

IA Lewis NS  
 

Plateau-Linear 0.68  NS   Linear 0.49 

IL Brownstown Linear 0.82 
 

NS   Linear 0.79  Plateau-Linear 0.19 

IL Urbana Linear 0.58 
 

Plateau-Quadratic 0.63  Linear 0.25  Plateau-Quadratic 0.51 

IN Loam Quadratic 0.67 
 

Plateau-Quadratic 0.90  Plateau-Linear 0.36  Exponential 0.90 

IN Sand NS  
 

Plateau-Linear 0.55  Plateau-Quadratic 0.53  Plateau-Quadratic 0.82 

MN NewRichland Plateau-Linear 0.16 
 

Plateau-Quadratic 0.72  NS   Plateau-Linear 0.83 

MN StCharles NS  
 

Plateau-Linear 0.75  NS   Plateau-Linear 0.60 

MO LoneTree Linear 0.79 
 

NS   Linear 0.56  NS  

MO Troth Linear 0.69 
 

Linear 0.15  Linear 0.81  NS  

ND Amenia NS  
 

Exponential 0.59  Linear 0.14  Exponential 0.52 

ND Durbin NS  
 

Exponential 0.65  NS   Linear 0.44 

NE Brandes Linear 0.95 
 

Linear 0.32  Plateau-Quadratic 0.89  Linear 0.40 

NE SCAL Linear 0.71 
 

Plateau-Quadratic 0.78  NS   Quadratic 0.74 

 WI Belmont NS  
 

Linear 0.66  NS   Exponential 0.68 

 WI Darlington Linear 0.33 
 

Plateau-Linear 0.69  NS   Quadratic 0.80 
--- Continued next page --- 
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Table 5. (Continued).  
   At-Planting  Split 
   Inseason N loss  Residual Soil Nitrate  Inseason N loss  Residual Soil Nitrate 

Year State Site Model R2  Model R2  Model R2  Model R2 

2016 IA Crawford Plateau-Linear 0.40 
 

Plateau-Quadratic 0.34  Plateau-Quadratic 0.76  Plateau-Quadratic 0.85 

 IA Story Plateau-Linear 0.32 
 

Exponential 0.79  Linear 0.37  Plateau-Linear 0.73 

IL Shumway Plateau-Quadratic 0.50 
 

Plateau-Linear 0.69  Quadratic 0.30  Plateau-Linear 0.94 

IL Urbana NS  
 

Plateau-Quadratic 0.74  Linear 0.28  Plateau-Linear 0.82 

IN Loam NS  
 

Plateau-Quadratic 0.82  NA   Plateau-Linear 0.47 

IN Sand NS  
 

Plateau-Linear 0.51  Plateau-Linear 0.31  Plateau-Linear 0.57 

MN Becker Plateau-Linear 0.83 
 

NS   Linear 0.69  Plateau-Quadratic 0.27 

MN Waseca Plateau-Linear 0.75 
 

Plateau-Linear 0.25  Quadratic 0.76  Plateau-Linear 0.53 

MO Bradford Plateau-Quadratic 0.49 
 

Quadratic 0.54  NS   Quadratic 0.67 

MO Loess NS  
 

Plateau-Quadratic 0.64  NS   Plateau-Quadratic 0.79 

MO Troth NS  
 

Quadratic 0.47  Linear 0.19  Plateau-Quadratic 0.51 

ND Amenia NS  
 

Linear 0.53  Plateau-Quadratic 0.36  Quadratic 0.50 

ND Durbin Plateau-Quadratic 0.49 
 

NS   NS   Linear 0.58 

NE Kyes Exponential 0.59 
 

Plateau-Linear 0.33  NS   Plateau-Quadratic 0.47 

NE SCAL Plateau-Linear 0.91 
 

Plateau-Quadratic 0.66  Linear 0.47  Exponential 0.78 

 WI Lorenzo Linear 0.25 
 

NS   Plateau-Quadratic 0.34  NS  

 WI Plano NS  
 

Plateau-Quadratic 0.72  NS   Plateau-Linear 0.78 
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Fig. 1. An example of one site’s partial profit and environmental cost is shown using 
grain yield, inseason N loss, and post-harvest residual soil nitrate. For EONR, grain yield 
in response to applied N is shown as a quadratic-plateau model (squares and solid line). 
The calculated inseason N loss (closed circles and small dash line) and residual soil 
nitrate (open circles and large dash line) as a response to applied N (specific models used 
are reported in Table 5). The partial profit for EONR was calculated using the 
interpolated grain yield from the best-fit line (13.5 Mg ha-1 × $158 Mg-1). An 
environmental costs for EONR was calculated by multiplying the sum of the interpolated 
inseason N loss and residual soil nitrate multiplying by a prevention cost [(40 + 14 kg 
NO3–N ha-1) × $2.75 kg-1 NO3–N = $148.5 ha-1). A total combined cost for EONR was 
calculated by adding the partial profit and environmental cost together. The partial profit, 
environmental cost, and total combined cost were calculated for each N recommendation 
tool. Additional implementation costs associated with utilizing the tools were subtracted 
from the partial profit (Table 2). Each assessment was made relative to EONR. Tools that 
underestimated EONR (dark gray area) resulted in decreased partial profits but provided 
an environmental credit. Tools that overestimated EONR (light gray area) resulted in a 
decrease to partial profits and environmental costs.   
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Fig. 2. Measured economical optimal nitrogen rate (EONR) related to a) MRTN, b) the 
WI pre-plant soil nitrate test (PPNT), and c) the IA pre-sidedress soil nitrate test (PSNT) 
with 0 kg N ha-1 applied at-planting. The 1:1 indicates a perfect prediction of EONR. The 
dashed is the best-fit linear regression line.  
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Fig. 3. Box and whisker plots showing the difference between each yield goal (YG) based 
N recommendation and the economically optimal N rate (EONR) for both at planting and 
split N application timings. The median is reported by the value in the middle of the box. 
Notches on the side of each box indicate the 95% confidence interval around the median. 
Limits of the box indicate the first and third quartile, whiskers indicate 1.5 × IQR, and 
small circles indicate outliers. Tools with a significant relationship with EONR (Table 3) 
are bolded and marked with a “*”. 
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Fig. 4. Box and whisker plots showing the difference between each pre-plant soil nitrate 
test (PPNT) and the economically optimal N Rate (EONR). The median is reported by 
the value in the middle of the box. Notches on the side of each box indicate the 95% 
confidence interval around the median. Limits of the box indicate the first and third 
quartile, whiskers indicate 1.5 × IQR, and small circles indicate outliers. Tools with a 
significant relationship with EONR (Table 3) are bolded. 
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Fig. 5. Box and whisker plots showing the difference between each pre-sidedress soil 
nitrate test (PSNT) N recommendation and the economically optimal N rate (EONR). 
The PSNT tools evaluated for both 0 and 45 kg N ha-1 applied at-planting. The median is 
reported by the value in the middle of the box. Notches on the side of each box indicate 
the 95% confidence interval around the median. Limits of the box indicate the first and 
third quartile, whiskers indicate 1.5 × IQR, and small circles indicate outliers. Tools with 
a significant relationship with EONR (Table 3) are bolded and marked with a “*.” 
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Fig. 6. Box and whisker plots showing the difference between each of the tools’ N 
recommendation and the economically optimal N rate (EONR) for both at-planting and 
split N application timings. The median is reported by the value in the middle of the box. 
Notches on the side of each the box indicate the 95% confidence interval around the 
median. Limits of the box indicate the first and third quartile, whiskers indicate 1.5 × 
IQR, and small circles indicate outliers. Tools with a significant relationship with EONR 
(Table 3) are bolded. 
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Fig. 7. Graph shows the mean difference between each N recommendation tool and the 
economically optimal N rate (EONR). Both at-planting and split N application tools are 
shown, but only tools with a significant relationship with EONR (Table 3) are highlighted 
in blue. Tool descriptions include YG as yield goal, PPNT as pre-plant nitrate test, and 
PSNT 0 and PSNT 45 as the pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied at-
planting, respectively. Significance mean separation was determined using Tukey honest 
significant difference test. Values not significant from each other (α > 0.05) share similar 
lower case values. Tools not marked with letters share the same letter significance as 
tools to the left of them. 
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Fig. 8. Mean partial profit for N recommendation tools relative to the economically 
optimal N rate (EONR). Both at-planting and split N application tools are shown, but 
only tools with a significant relationship with EONR (Table 3) are highlighted in blue. 
Tool descriptions include YG as yield goal, PPNT as pre-plant nitrate test, and PSNT 0 
and PSNT 45 as the pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied at-planting, 
respectively. Significance mean separation was determined using Tukey honest 
significant difference test. Values not significant from each other (α > 0.05) share similar 
lower case values. Tools not marked with letters share the same letter significance as 
tools to the left of them.  
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Fig. 9. Mean environmental cost for N recommendation tools relative to the economically 
optimal N rate (EONR). Both at-planting and split N application tools are shown, but 
only tools with a significant relationship with EONR (Table 3) are highlighted in blue. 
Tool descriptions include YG as yield goal, PPNT as pre-plant nitrate test, and PSNT 0 
and PSNT 45 as the pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied at-planting, 
respectively. Significance mean separation was determined using Tukey honest 
significant difference test. Values not significant from each other (α > 0.05) share a 
similar lower case values. Tools not marked with letters share the same letter significance 
as tools to the left of them.  
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Fig. 10. Combined partial profit and environmental cost for N recommendation tools used 
relative to the economically optimal N rate (EONR). Both at-planting and split N 
application tools are shown, but only tools with a significant relationship with EONR 
(Table 3) are highlighted in blue. Tool descriptions include YG as yield goal, PPNT as 
pre-plant nitrate test, and PSNT 0 and PSNT 45 as the pre-sidedress nitrate test with 0 
and 45 kg N ha-1 applied at-planting, respectively. Significance mean separation was 
determined using Tukey honest significant difference test. Values not significant from 
each other (α > 0.05) share a similar lower case values. Tools not marked with letters 
share the same letter significance as tools to the left of them.  
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Chapter 3: A Comparison of Eight Statistical Algorithms for Improving Corn 

Nitrogen Recommendation Tools with Soil and Weather Information 

 

ABSTRACT 

Corn (Zea mays L.) nitrogen (N) fertilizer recommendation tools could better 

predict the economically optimal N rate (EONR) by incorporating soil and weather 

information. The objectives of this research were to 1) identify the best statistical 

algorithm that results in a parsimonious model for best-incorporating soil and weather 

information into N recommendation tools to improve predictions of EONR, and 2) 

evaluate the performance of the statistical algorithms with and without multicollinearity 

and two-way interactions. Eight algorithms [stepwise, ridge regression, least absolute 

shrinkage and selection operator (Lasso), elastic net regression, principal component 

analysis (PCA), partial least squares regression (PLS), Bayesian Lasso, and random 

forest] were evaluated using a dataset containing measured soil and weather variables 

from a regional database. Multiple algorithm modeling scenarios were examined with and 

without multicollinearity and with and without two-way interaction terms to identify the 

soil and weather variables that potentially could improve three N recommendation tools: 

1) Farmer’s N rate (NR), 2) Indiana yield goal (IN YG), and 3) canopy reflectance 

sensing. The out-of-sample error for the stepwise regression was an order of magnitude 

higher than all other models. The random forest model best adjusted each of the N 

recommendation tools regardless of modeling scenario (change in r2 ≥ 0.72 and change in 

RMSE ≥ 42 kg N ha-1) but utilized all variables in the model. The lasso and elastic net 

had the least amount of variables in the final model regardless of modeling scenario and 
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had similar improvement when adjusting N recommendation tools for all but one 

modeling scenario. When adjusting the Farmer NR without multicollinearity or two-way 

interaction terms, the elastic net (r2 = 0.24; P <0.001; RMSE = 71 kg N ha-1) improved 

the performance of the Farmer’s NR compared to the lasso (r2 = 0.03; P = 0.25; RMSE = 

82 kg N ha-1). From an agronomic standpoint, the elastic net would be a better method 

than the random forest for incorporating soil and weather information, as it performs well 

at selecting a minimum number of variables and is much easier to interpret than other 

algorithms.  



 

86 
 

INTRODUCTION 

One approach used to maximize profits and minimize environmental issues 

associated with nitrogen (N) management in corn is to apply N fertilizer at rates close to 

the economically optimal N rate (EONR; Hong et al., 2007; Kyveryga et al., 2009; 

Bandura, 2017). However, EONR is unknown at the time of N application as it is 

calculated following grain harvest. Moreover, EONR varies considerably within a field 

and from year-to-year making EONR challenging to estimate (Scharf et al., 2005; 

Shanahan et al., 2008; Kyveryga et al., 2009). Both the spatial and temporal variability of 

EONR are driven by environmental, genetic, and management factors. More specifically, 

rainfall distribution, soil texture, soil water-holding capacity, plant genetics, management 

practices, and grain and fertilizer prices have all been shown to influence EONR (Dinnes 

et al., 2002; Kay et al., 2006; Schmidt et al., 2009; Zhu et al., 2009; Tremblay et al., 

2012; Morris et al., 2018). Efforts have been made to incorporate many of these factors 

into N recommendation tools. Crop growth models for example, directly integrate 

weather, soil, and management factors through mass balance calculations to produce an N 

recommendation (Setiyono et al., 2011; Moebius-Clune et al., 2013). Nitrogen 

recommendations developed using this method vary in accuracy depending on the model, 

accuracy of input data, and location in which they are used (Setiyono et al., 2011; 

Moebius-Clune et al., 2013; Thompson et al., 2015; Jin et al., 2017).  

Other N recommendation tools have incorporated some of the spatial and 

temporal factors affecting EONR to improve their performance. However, apart from the 

crop growth models, no one method has been able to incorporate as many of the factors 

known to affect EONR. For example, the yield goal method for generating a corn N rate 
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traditionally is adjusted based on a previous soybean crop (Stanford, 1973). Other yield 

goal based methods have also included an estimate of N mineralized by organic matter or 

a measure of soil nitrate prior to N fertilizer application (Brown et al., 2004; Shapiro et 

al., 2008). The pre-sidedress nitrate test indirectly measures in-season mineralization 

rates and adjusts the sufficient N threshold based on spring precipitation (Blackmer et al., 

1997). The MRTN incorporates multiple yield response studies grouped based on 

geographical boundaries, soil texture, and climatic conditions to better account for spatial 

and temporal variability (Sawyer et al., 2006b). Finally, canopy reflectance sensing 

assesses the color and biomass of corn plants at a very short spatial scale in order to 

integrate the plant and soil N status into an N recommendation (Kitchen et al., 2010). 

Even though these tools indirectly or directly incorporate soil and weather into their N 

recommendation process, these tools have been found to be poorly related with EONR 

(chapter 2), and therefore are not reliable for making N fertilizer recommendations over 

the US Corn Belt.  

Incorporating additional factors into the N recommendation tools, known to affect 

EONR, could improve them. The incorporation of various weather and soil variables 

interactions improved the relationship of a canopy reflectance sensing algorithm’s N 

recommendation to EONR from an r2 of 0.14 to 0.43 (Bean et al., 2018). Others showed 

that including soil-specific information with a pre-plant soil test significantly improved 

the predictability of optimal N rate (r2 = 0.92; Vanotti and Bundy, 1999). Furthermore, 

management zones delineated by soil parameters improved the profitability of using 

canopy reflectance sensing as an N recommendation tool (Roberts et al., 2012).  
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Statistical Algorithms 

Stepwise Regression 

From a statistical standpoint determining which soil and weather variables to 

incorporate into an N recommendation tool can be computationally inefficient depending 

on the algorithm that is used. A standard method used in agricultural research is 

regression and least squares to estimate parameter coefficients. Stepwise regression is an 

example of this method. The utility of stepwise regression is its ability to add or remove 

variables from a model in controlled steps to better determine which explanatory 

variables best relate to a response variable (Yamashita et al., 2007). However, stepwise 

regression has often been found to overestimate values as it puts a high bias on each of 

the parameters and relies heavily on the assumption of having a single best model 

(Whittingham et al., 2006; Zou, 2006). To account for the high bias of stepwise 

procedures, a penalty on parameters can be employed using either ridge regression or the 

Lasso algorithms (Tibshirani, 1996; Zhao and Yu, 2006; McDonald, 2009).  

 

Penalization Regression Algorithms 

The ridge regression works as a continual shrinkage method in which the residual 

sum of squares is minimized as each parameter’s coefficient is adjusted close to zero, 

thus reducing the importance or influence of any one parameter (Hoerl and Kennard, 

1970). In contrast, the Lasso regression reduces coefficients parameters to zero thus 

selecting essential variables and shrinking the number of model parameters 

simultaneously (Tibshirani, 1996). It is particularly useful with large datasets as it works 

efficiently and quickly (Friedman et al., 2010). The Lasso fails in the variable selection 
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process, however, when the number of observations is less than the number of parameters 

in the model or when there are many highly correlated variables (Zou and Hastie, 2005). 

To account for this weakness, the elastic net algorithm has been suggested as a way to 

determine the best combination of both the ridge regression and Lasso (Zou and Hastie, 

2005).  

 

Principal Component Analysis and Partial Least Squares Regression 

Apart from these penalization methods, other algorithms account for the weakness 

associated with regression analysis. The principal component analysis can overcome 

issues related to multicollinearity by transforming groups of explanatory variables into 

new variables or principal components. Principle components are determined by fitting a 

line through the explanatory variables that best captures the quantity and direction of the 

variance. The numbers of principal components that are determined are based on the 

number of explanatory variables. However, only the principal components that explain 

the most amount of variance are retained, resulting in a reduction of the number of new 

explanatory variables. These new variables are then regressed against the response 

variable. However, there is no guarantee that the newly devised principle component 

variables will explain the response variable (Jagadamma et al., 2008; Abdi and Williams, 

2010). A similar technique to the principal component analysis is the partial least square 

regression. It works by finding the best relationship between the explanatory and 

response variables that explains the basic structure of the data. This is done using linear 

regression models to fit pairs of explanatory and response variables. The best prediction 

functions are then regressed against the explanatory variable (Geladi and Kowalski, 
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1986). Both the principal component analysis and partial least squares regression 

methods work well when the number of observations is less than the number of 

explanatory variables in the model.  

 

Bayesian Lasso and Random Forest 

There is a multitude of other algorithms that could also be helpful at incorporating 

soil and weather information into an N recommendation tool. Bayesian statistics are 

promising as prior knowledge or parameters can be incorporated into the analysis as an 

assigned prior distribution. These distributions are updated with collected data and 

conclusions are reported as probabilities (Theobald and Talbot, 2002; Kyveryga et al., 

2013). The Bayesian Lasso has been found to act similarly to the Lasso but provides a 

better interval estimate for all parameters and is more computationally competitive (Park 

and Casella, 2008). Other machine learning processes that have the potential to identify 

and incorporate soil and weather data into N recommendation tools are decisions tree-

based algorithms. Decisions trees create a model of decisions (like a flow chart) to 

predict a response variable. A model is created as data are continually split based on the 

explanatory variables until additional splits stop adding value to the prediction (Quinlan, 

1986). Another commonly used method in machine learning is to ensemble multiple 

methods to provide a more accurate prediction. Random forest is an example of this 

approach. Random forest creates hundreds of decision trees, which are developed using a 

random subset of explanatory variables to define each split best. A final prediction is 

made by averaging all the trees predictions (Breiman, 1999; Grömping, 2009).  
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Improving Nitrogen Recommendation Tools  

These statistical methods could be used to determine which soil and weather 

variables could be integrated into N recommendation tools to improve their predictability 

of EONR. However, identifying which soil and weather variables are necessary for 

adjusting each N recommendation tool can be computationally complex. To learn how 

best to improve N recommendation tools, eight different statistical methods were 

evaluated for utilizing data that contained more variables than observations and consisted 

of many highly correlated variables. The primary objective was to identify the best 

statistical algorithm that resulted in a parsimonious model and best-incorporated soil and 

weather information into an N recommendation tool. A secondary objective was to 

determine how these algorithms performed with and without multicollinearity and two-

way interaction terms.  

 

MATERIALS AND METHODS 

This research was part of a public-private collaboration between DuPont Pioneer 

and eight U.S. Midwest universities (University of Iowa, University of Illinois Urbana-

Champaign, University of Minnesota, University of Missouri, North Dakota State 

University, Purdue University, University of Nebraska-Lincoln, and University of 

Wisconsin-Madison). The data used in this project were developed from field research 

conducted at two sites each year during 2014 to 2016 in each state with the participating 

university, with a third site in Missouri in 2016. A total of 49 site-years of data from 

environments ranging in soil productivity and weather conditions were collected. 

Treatments included N fertilizer rates between 0 and 315 kg N ha-1 applied either all at-
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planting or were split, where 45 kg N ha-1 was put on at-planting, and additional fertilizer 

N was applied at the V9 corn growth stage. All states followed a similar protocol for plot 

research implementation including weather data collection, soil, and plant sample timing 

and collection methodology, N application timing, N source, and N rates as described in 

Kitchen et al. (2017). 

 

Nitrogen Recommendation Tools and EONR 

Three unique tools were selected based on their previously identified ability to 

predict EONR as discussed in chapter two. They are as follows: 1) Farmer’s NR, 2) 

Indiana yield goal (IN YG), and 3) active-optical canopy reflectance sensing. The 

farmer’s NR was the fertilizer N rate that the farmer or research station applied to the 

field site under ideal corn growing conditions. The recommended N rate using the IN YG 

method (Vitosh et al., 1995) was calculated as follows: 

   [1] 

where YG is the yield goal or expected yield for that field. The expected yield was 

determined based on a five-year grain yield county average and modified to match the 

site’s productivity as described in chapter two. The Ncredit is valued as 34 kg N ha-1 for 

corn following soybean. Canopy reflectance sensing was evaluated using the Holland and 

Schepers algorithm with reflectance measurements taken at ~V8-V10 corn development 

stage using the RapidSCAN CS-45 (Holland Scientific, Lincoln NE, USA). The Holland 

and Schepers algorithm (Holland and Schepers, 2010) was used to calculate an N 

fertilizer recommendation derived from these reflectance measurements. This algorithm 
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is based on a sufficiency index calculated using measurements from both well-fertilized 

corn (“N-Rich”) and minimally-fertilized (“target”) corn:  

       [2] 

where SI is the sufficiency index; VITarget is the vegetative index obtained from averaging 

measurements from all plots that received 45 kg N ha-1 at-planting and where a top-dress 

fertilizer was to be applied, and VIN-Rich is the vegetative index obtained by averaging all 

plots for two of the high N treatments (225 and 270 kg N ha-1 applied all at-planting). The 

NDRE vegetative index was calculated using the red-edge (730 nm; RE) and near-

infrared (780 nm; NIR) wavelengths as shown: 

        [3] 

Fertilizer N recommendations were then calculated as described in Holland and 

Schepers (2010) as follows: 

      [4] 

where NRec is the calculated N fertilizer recommendation; MZi is a scaling value (0 ≥ MZi 

≤ 2) used to adjust the N recommendation based on areas of high or low yield 

performance; NOpt was the base N rate, which is determined by the farmer; NPreFert is the 

amount of N already applied prior to sensing; NCRD are N credits associated with the 

previous crop, NO3–N in irrigation water, manure, or residual NO3–N; NComp is an 

optional compensation factor for growth limiting conditions; SI is the sufficiency index, 

and ΔSI is a value to define the response range. For this analysis, MZi
 was left as the 
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default value of 1.0, Nopt was set as the recorded farmer's NR for each site, and NPreFert = 

45 kg N ha-1. With no supportive information relative to NCRD and NComp, these two 

parameters were set to zero for all sites. The recommended value of 0.30 was used for 

ΔSI, which provides a response range between the measured vegetative index value 

between 0.70 and 1.00.  

Grain yield in response to N fertilizer treatments was used to calculate the EONR 

on a site level as described in Kitchen et al. (2017), using proven quadratic or quadratic-

plateau modeling methods (Cerrato and Blackmer, 1990; Scharf et al., 2005). Economic 

optimal N rate values were calculated for all N fertilizer applied at-planting, and N split 

applied between planting and a single top-dress. For this study, the prices of N and grain 

were set at $0.88 kg N-1 and $0.158 kg grain-1 (equivalent to $0.40 lbs N-1 and $4.00 bu-

1). The EONR was set to not exceed the maximum N rate (315 kg N ha-1). For five of the 

seven irrigated sites, where the amount of N applied through irrigation was above 12 kg 

N ha-1 (ranging from 15 – 43 kg N ha-1), this amount was added to the EONR value. The 

EONR was used as the standard by which each of the N recommendation tools was 

compared. For 19 of the 49 sites, the at-planting and split EONR values were found 

statistically (P=0.05) to be same, within $2.50 ha-1 of each other. Thus for these the 

EONR used was the average of the two timings. This approach was also consistent with 

previous separate analysis using this same dataset (Bandura, 2017). 
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Modeling Scenarios 

Ninety distinct modeling scenarios [8 algorithms × 2 types of data (explained 

below) × 2 interaction types (explained below) × 3 N recommendation tools – 6 excluded 

modeling scenarios (explained below)] were developed to model the difference between a 

tool N recommendation and EONR and soil and weather information. These included the 

following eight algorithms: 1) stepwise using Akaike’s information criteria (Yamashita et 

al., 2007), 2) ridge regression (McDonald, 2009), 3) Lasso, 4) elastic net regression (Zou 

and Hastie, 2005), 5) principal component analysis (PCA; Abdi and Williams, 2010), 6) 

PLS, 7) Bayesian Lasso (Park and Casella, 2008), and 8) random forest (Grömping, 

2009). Each of these algorithms was evaluated with a complete and a reduced dataset. 

The complete dataset contained all available soil and weather variables (Table 1), while 

the reduced dataset excluded variables that were highly correlated (|r| > 0.85) with each 

other (Table 2; Fig. 1). Correlated variables were determined by using pair-wise 

correlations, with variables having the highest mean absolute correlation removed from 

the dataset as identified with the findCorrelation function from the R ‘caret’ package 

(Kuhn, 2017). For both the complete and reduced datasets each of the algorithms were 

evaluated with and without 2-way-interaction terms. Each of these modeling scenarios 

was repeated for each of the three N recommendation tools. Six modeling scenarios 

associated with using the stepwise regression with two-way interaction terms were not 

included in this evaluation due to the process being computationally slow and often 

resulting in errors. 
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Fitting Algorithm Models 

All algorithms were fit using the ‘caret’ package using R Statistical Software (R 

Core Team, 2016). For some of the algorithms, additional parameters needed to be tuned 

for optimal performance. The tuning procedure was done using a tenfold cross-validation 

repeated five times, where for each fold of the cross-validation the data were split 

randomly into ten folds. Nine of the folds were selected as a training dataset to fit a 

model. The training dataset was used to fit multiple models to determine the optimal 

tuning parameter values. For example, to optimize the elastic net both the alpha and 

lambda parameters needed to be optimized. A model was fit to each unique combination 

of 5 alpha, and 100 lambda values, resulting in a total of 500 models fit on each fold of 

the training dataset. Each of these models was then evaluated by calculating a root mean 

square error (RMSE) value by comparing the predicted to the actual values of the 10th 

fold left out of the training dataset. This was repeated until each fold was used as the 

testing dataset. The overall process was then repeated five times to provide a total of 50 

unique testing folds and resulting in 25,000 elastic net models (50 folds × 500 tuning 

parameter models). The resulting RMSE values were averaged across tuning parameter 

combinations. The best tuning parameter was selected as the one with the lowest average 

RMSE.  

The range of tuning parameters differed for each algorithm. The ridge regression, 

lasso, and elastic net all utilize lambda parameters ranging from 0.001 to 25 in increments 

of 0.25. The alpha parameter was maintained constant for the ridge regression and lasso 

but ranged between 0 and 1 in increments of 0.25. For these three models, the best tuning 

parameters were determined using a coordinate descent algorithm (Friedman et al., 2010). 
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The Bayesian Lasso’s sparsity threshold ranged from 0 to 1 in increments of 0.10, where 

a sparsity value of .50 indicated that at least half of the posterior estimates used were 

nonzero (Kuhn, 2017). The Gibbs sampling algorithm was used to determine the best 

sparsity value (Park and Casella, 2008). For the random forest algorithm, the number of 

variables evaluated at each split was determined by tuning between 1 and 25 variables for 

the dataset with complete interactions, and 1 and 10 when no interactions were present.  

All explanatory variables were preprocessed first by normalizing the data by 

subtracting the mean and dividing by the standard deviation of each variable. 

Preprocessing was used for all algorithms except the random forest.  

For each modeling scenario the response variable was the difference between 

each tool’s N recommendation and the EONR value for each site as follows:  

        [5] 

where EONR was calculated using N treatments applied all at-planting (Farmer’s NR and 

IN YG) or with split N treatments (canopy reflectance sensing). Explanatory variables 

included measured physical and chemical soil properties and measured weather 

information. Soil properties were collected by sampling 1.2 m soil cores from each of the 

sites and analyzing each pedological soil horizon for texture, bulk density, pH salt, pH 

water, CEC, total N, total carbon, inorganic carbon, organic carbon, and organic matter as 

(Table 1). Soil properties were then depth weighted across three different depths of 0-

0.30, 0-0.60, and 0-0.90 m. Weather data were collected using on-site weather stations 

(HOBO U30 Automatic Weather Station; Onset Computer Corporation, Bourne, MA). 

Daily values were calculated for the maximum and minimum temperature and 

precipitation. These values were then used to calculate a cumulative precipitation, 
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growing degree days, corn heat units, Shanon’s diversity index of precipitation, and 

abundantly and well-distributed rainfall as described by Tremblay et al. (2012), in 

increments of either 30 days before planting up to the date of planting and from the date 

of planting to the time of sensing (Table 1).   

 

Assessing Algorithm Performance 

Each algorithm’s performance was assessed using the out-of-sample error, the 

number of variables in the final model, and the performance of each N recommendation 

tool incorporating each algorithm's model. The out-of-sample error was calculated using 

the same cross-validation folds that were used to tune each algorithm’s parameters. An 

RMSE was computed on the testing fold using the predictive models developed with each 

training dataset. A total of 50 RMSE values was calculated for each algorithm, one for 

each cross-validation testing dataset. The same cross-validation folds were used for all 

modeling scenarios to compare across algorithms accurately. To determine significant 

differences between algorithms, an ANOVA was conducted using the 50 RMSE values 

as the response variable and the algorithm and N recommendation tool (Farmer NR, IN 

YG, canopy reflectance sensing) as the explanatory variables. Significance mean 

separation between algorithms was determined using a Tukey HSD (α = 0.05).  

Secondly, the total number of variables selected by each algorithm was 

determined using the varImp function in the R ‘caret’ package. Determining which 

variables were important varied depending on the algorithm. For regression-based 

algorithms (stepwise, Lasso, ridge regression, and elastic net) the varImp function 

calculates the absolute value of the t-statistic for each parameter in the model, with higher 
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t-statistic values indicating higher importance. While for PLS, the varImp function is 

based on the weighted sums of the absolute regression coefficients. The PCA was 

determined as the number of variables used in the principal component that explained the 

most variability. Random forest uses the mean square error (MSE) for both the out-of-bag 

prediction accuracy for each tree constructed and the out-of-bag prediction accuracy for 

each predictor variable permuted. The differences between the tree and predictor variable 

out-of-bag MSEs are averaged and normalized using the standard error. Additional 

details can be found in the caret vignette under “14.1 Model Specific Metrics” (Kuhn, 

2017).   

Lastly, each N recommendation was adjusted by taking the original tool 

recommendations and subtracting the predicted values generated using the model 

parameters as follows: 

           [4] 

This adjustment to each tool was repeated for each modeling scenario for a total of 30 (8 

variable selection methods × 2 data types × 2 interaction types – 2 excluded modeling 

scenarios) newly adjusted N recommendations. Each adjusted tool was then compared to 

EONR to determine if there was an improved performance of the tools at predicting 

EONR. This was accomplished by calculating both a coefficient of determination and 

RMSE for each adjusted tool. The coefficient of determination was calculated using 

simple linear regression with EONR as the response variable and the adjusted tool as the 

explanatory variable. The RMSE was calculated based on the difference between the 

adjusted tool and EONR values. Improvement for the adjusted tool was determined by 

comparing the r2 and RMSE similar values obtained from the unadjusted tool.  
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RESULTS AND DISCUSSION 

Algorithm Performance: Model Accuracy and identifying Important Variables 

There was a significant two-way interaction (P < 0.001) when comparing the out-

of-sample errors across all algorithms and tools (Fig. 2 – 4). For all N recommendation 

tools, the stepwise regression’s out-of-sample error using the complete dataset was 

significantly greater than all other algorithm types including using the stepwise 

regression with all multicollinearity removed (Fig. 2 – 4). Apart from the one modeling 

scenario with the stepwise regression, there was no significant difference between the 

out-of-sample error for the other algorithms or modeling scenarios.   

The number of important variables identified in the final models varied based on 

the type of algorithm. For all modeling scenarios, the Lasso and elastic net resulted in the 

fewest number of variables in the final model. Stepwise regression, Ridge regression, 

PCA, PLS, Bayesian Lasso, and Random Forest maintained all or close to all of the 

variables in their final model (Table 3).  

Determining the algorithm that best incorporates soil and weather information 

into an N recommendation tool depends on the investigative priority. Algorithms can be 

chosen based on either optimizing accuracy or resulting in a parsimonious model. Tools 

that select and utilize numerous variables could improve the accuracy of the model, such 

as using the random forest. However, from an agronomic standpoint, algorithms that 

select fewer variables have the advantage of being easier to interpret. Furthermore, 

implementing a model that requires more variables increases costs associated with 

measurement, sampling, and analysis. From this standpoint utilizing the Lasso or elastic 

net under any modeling scenario would be ideal as there was no significant difference in 
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modeling accuracy and they produced the most parsimonious model (Table 3, Fig. 2 – 4). 

Between these two algorithms, it has been shown that the elastic net is more robust and 

often accurately selects more true variables (Bien et al., 2013; Lu and Petkova, 2014).  

Ideally, an algorithm that can select for variables using a dataset with highly 

correlated variables and multiple interaction terms would minimize the amount of data 

processing required. The ridge regression, PCA, PLS, Bayesian Lasso and random forest 

algorithms have been identified as suitable algorithms for when multicollinearity and 

interaction terms are included in the model (Geladi and Kowalski, 1986; Grömping, 

2009; Abdi and Williams, 2010; Lu and Petkova, 2014). However, these algorithms did 

not produce a parsimonious model. To improve these algorithms to have a more 

parsimonious model the number of variables can be prefiltered before modeling. The 

method used in this research for lowering variable numbers based on correlation tests was 

successful, and the results were promising but still not more parsimonious than the elastic 

net. The ridge regression, PCA, PLS, Bayesian Lasso and random forest produced a more 

parsimonious model without reducing their predictive accuracy (Table 3). In contrast, to 

the Lasso and elastic net, these algorithms still retained more variables in the final model.  

Results about which parameters were selected and their importance for explaining 

the variability around EONR will be addressed in chapter 4.  

 

Adjusting Tools with Soil and Weather Information 

Removing Multicollinearity  

There was a difference in the observed improvement between the complete and 

reduced dataset based on the algorithm type and N recommendation tool (Table 4). For 
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both the stepwise and ridge regression algorithms, there was less improvement for all 

three tools using the reduced dataset compared to the complete dataset (r2 increased ≥ 

0.10 and RMSE decreased ≥7). For the elastic net, there was an improvement in which 

removing multicollinearity improved the Farmer NR. Additionally, the PCA improved 

the Farmer NR and canopy reflectance sensing. These improvements occurred when all 

interaction terms were excluded (Table 4). For the remaining modeling scenarios, there 

was no improvement by first eliminating multicollinearity.  

The Lasso algorithm resulted in the fewest number of variables in the final model 

regardless of modeling scenario. However, modeling with highly correlated variables 

have been found to quickly oversaturate the Lasso algorithm, especially when the number 

of variables exceeds the number of observations (Zou and Hastie, 2005). Under such 

conditions, the Lasso randomly selects one variable from a group of highly correlated 

variables and disregards the rest (Efron et al., 2004; Bondell and Reich, 2008). This can 

result in the algorithm selecting variables that are not valid predictors of the response 

variable (Lu and Petkova, 2014). However, when accounting for multicollinearity by 

removing variables, there was a minimal change in the number of variables in the final 

model. In both modeling scenarios with and without multicollinearity, the Lasso was only 

helpful in improving N recommendations using canopy reflectance sensing. The final 

Lasso model for canopy reflectance sensing had more variables than the Lasso models for 

the Farmer NR and IN YG. For these tools, it seems that selecting too few variables 

reduces the algorithm’s ability to capture the most amount of variability affecting EONR, 

resulting in no or a limited improvement to the N recommendation tool.  
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The elastic net deals with these issues of oversaturation or selecting too few 

variables by balancing the Lasso and ridge regression methods. For most of the modeling 

scenarios, the elastic net either selected the same or up to eight more variables than the 

Lasso algorithm. The selection of these additional variables did not decrease the accuracy 

of the elastic net algorithm. However, it did not substantially improve the performance of 

N recommendation tools for the majority of modeling scenarios. The only improvement 

occurred was with the Farmer’s NR after multicollinearity was removed, where the r2 for 

the elastic net was 0.24 (P < 0.001) compared to 0.03 (P = 0.25) for the Lasso. 

Comparable, research utilizing the Lasso and elastic net for selecting optimal testing 

parameters for Autism, showed they performed the same, but both were optimized when 

there was no multicollinearity between variables (Lu and Petkova, 2014).  

Utilizing the PCA to improve the Farmer NR and canopy reflectance sensing 

showed greater improvement after removing multicollinearity. The presence of 

multicollinearity has been shown not to affect PCA, as it can efficiently reduce variables 

to where multicollinearity is no longer an issue. One study showed that PCA effectively 

identified five soil properties as a subset of 20 correlated soil variables to predict grain 

yield (Jagadamma et al., 2008). However, PCA has also been found to select variables 

that are not well related to the response variable (Abdi and Williams, 2010). This issue 

could be minimized by reducing the number of variables in the final model.  

 

Interaction Terms 

There were a few modeling scenarios in which including the interaction terms 

improved a tool’s performance compared to excluding the interaction terms (r2 increased 
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≥ 0.10 and RMSE decreased ≥7). This occurred for the Farmer’s NR using the ridge 

regression without removing multicollinearity (Table 4). However, there were two 

instances where including the interaction terms decreased the performance of the tools. 

This occurred for the elastic net and PCA after having first removed multicollinearity. 

For the remaining modeling scenarios, there was no added benefit observed by including 

the two-way interactions.  

The observed decrease in performance using the elastic net and PCA is contrary 

to what has been reported by others (Wu et al., 2009; Wang et al., 2011). However, 

elastic net, similar to Lasso, could be affected by oversaturation resulting in more two-

way interaction selected and resulting in more penalization of main effects which could 

be of more importance (Bien et al., 2013). Likewise, PCA has been found to select 

variables that are not well related to the response variable (Abdi and Williams, 2010). It 

is more likely that with additional interaction terms in the model, the likelihood of 

selecting for unimportant variables could increase.  

 

The Best Algorithm for Improving EONR Prediction  

Algorithms did not improve the N recommendation tools’ performance equally. 

The random forest model showed the most improvement for predicting EONR regardless 

of modeling scenario. With this algorithm, all adjusted tools’ relationship with EONR 

improved the r2 values from ≤ 0.13 to ≥ 0.82 (Table 4). The RMSE values were also 

some of the lowest and ranged between 33 and 43 kg N ha-1. The stepwise regression was 

the only algorithm that was able to adjust the N recommendation tool to where the r2 

values were ≥ 0.86 (P < 0.001), and the RMSE was as low as 21 kg N ha-1. However, the 
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stepwise regression only showed this level of improvement when using the complete 

dataset with highly correlated variables. This is indicative of overfitting the model, and 

therefore the final model would likely fail when applied to other datasets. Under 

conditions where multicollinearity was removed, the stepwise regression did not have as 

great a performance, but it was no less than the other algorithms.  

The overall performance of tools adjusted using each of the algorithms depends 

on how well the unadjusted tool was initially related to EONR. The IN YG, which had a 

negative linear relationship with EONR, showed minimal improvement with five and six 

of the algorithms with and without multicollinearity, respectively (Table 4). An 

improvement that was observed with IN YG when adjusted with soil and weather 

information was that its predicted N values were no longer negatively related to EONR. 

Nevertheless, these values were also not significantly associated with EONR. When 

evaluating the IN YG without removing multicollinearity, the ridge regression and 

random forest were the only algorithms able to improve the IN YG to where it had a 

significant and positive linear relationship with EONR.   

The Farmer’s NR, which unadjusted was not related to EONR, showed greater 

improvement when soil and weather variables were incorporated with many of the 

algorithm types than the IN YG. Still, not all algorithms were able to improve the tool’s 

relationship with EONR. The algorithms that did positively impact the Farmer’s NR 

performance (besides stepwise and random forest) still had a weak association with 

EONR (r2 ≤ 0.47) and a high RMSE value ≥ 60 kg N ha-1 (Table 4).  

Canopy reflectance sensing, which unadjusted had a significant positive linear 

relationship with EONR, was improved when using any of the algorithms. Apart from the 
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random forest algorithm and stepwise regression, the ridge regression showed the most 

improvement using the complete dataset (Table 4). A slight decrease in improvement was 

observed with all the other algorithms; however, these remaining algorithms showed 

similar improvement with r2 values between 0.24 and 0.44 and RMSE values between 63 

and 71 (Table 4). 

Another important factor for choosing an algorithm is the ease of interpretation. 

For many of the regression-based algorithms, the interpretation can be straightforward. 

For instance, the stepwise, ridge regression, Lasso, and the elastic net can return 

coefficients for the parameters, allowing a researcher to compare the magnitude and 

direction (i.e., positive or negative) of the relationship between each parameter and the 

response variable. This makes these algorithm types very compelling. The ridge 

regression can be the most difficult to interpret out of these regression-based algorithms 

as it keeps all parameters in the final model.  

In contrast to regression-based algorithms, the PCA, PLS, and random forest 

algorithms are much more difficult to interpret. For example, the PCA final model is 

made up of the best principle components that explain the majority of variability in the 

explanatory variables. However, additional steps are required to determine which 

variables were used to create those principal components. To explain results data must be 

displayed by comparing multiple principal components using biplots or scree plots. This 

has been done successfully in many agricultural datasets however the interpretation is 

complicated compared to regression-based algorithms (Mueller et al., 2017; Zuber et al., 

2017). Similar graphical procedures are required for the PLS algorithm. Apart from the 
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difficulty of interpreting these algorithms, they both did not perform any better than the 

ridge regression, lasso, or elastic net in the majority of cases.  

Compared to the PCA and PLS algorithms, the random forest best improved all 

three N recommendation tools. This algorithm was best able to incorporate complex 

interaction and highly correlated variables since it uses nonparametric methods to 

identify relationships between explanatory and response variables (Archer and Kimes, 

2008; Strobl et al., 2008). The ability to model complex interactions could be helpful as 

soil and weather interaction terms have been found to explain EONR or a yield response 

(Schröder et al., 2000; Shanahan et al., 2008; Shahandeh et al., 2011; Tremblay et al., 

2012). However, like PCA the interpretability of the random forest is complicated as it is 

the result of an ensemble of hundreds of decision trees. The random forest can be 

interpreted by using the most important explanatory variables identified to capture the 

most variability in the response variable. Determining the specific effects of each 

parameter requires additional steps which include complex graphical interpretations 

(Meinshausen, 2011; Welling et al., 2015, 2016). A possible method is to filter out 

unimportant variables selected using another method (correlation tests or elastic net). It 

was observed that the accuracy of the model was not reduced by decreasing the number 

of variables from 1080 to 10.  

Deciding on how best to incorporate soil and weather information into N 

recommendation tools may require the use of multiple algorithms. Selecting the best 

algorithm could be accomplished based on the simple initial linear relationship the tool 

had with EONR. Tools that are significant but negatively related to EONR would best be 

improved by utilizing the random forest or ridge regression algorithms. Whereas, tools 
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that are not related to EONR, like the Farmer’s NR could best be explained using the 

elastic net, after removing multicollinearity. Lastly, tools that showed to be already 

significantly and positively related to EONR could best be improved using any one of the 

algorithm types. However, for ease of interpretability, the elastic net would be the 

optimal tool for removing multicollinearity but keeping interaction terms.  

 

CONCLUSIONS 

This study compared eight algorithm types for incorporating soil and weather data 

into three different N recommendation tools. Random forest models were best able to 

improve all three N recommendation tools however at the expense of including an 

extensive number of variables. Pre-filtering the number of variables by removing 

multicollinearity did not decrease the accuracy of this algorithm regardless of the N 

recommendation tool. However, to fully interpret results would require additional steps 

for many of these algorithms. On the other hand, penalization based algorithms such as 

Lasso or elastic net produced a parsimonious model that could easily be interpreted. The 

Lasso was observed to have the least amount of variables in the final model, which did 

not help in maximizing N recommendation tool’s performance. In contrast, the elastic net 

allowed for more variables in the final model and showed slight improvements for the 

adjusted N recommendation tools. The elastic net did not work for improving all N 

recommendation tools but was shown to work best after multicollinearity, and two-way 

interaction terms were removed from the model. From an agronomic point of view, the 

elastic net was best suited for the desired results of improving N recommendation tools 

with soil and weather information.  
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Table 1. Weather and soil variables used in the complete dataset with calculations, methods, and associated citations. The period of 
time used to calculate the weather variables are found in Table 2.  

Complete Dataset 
Variables Calculations and Sample Depths Method References 

Weather 
Precipitation (PPT) Sum of daily rainfall, mm. Tipping bucket§ (Tremblay et al., 2012) 

Corn heat units (CHU) Σ(Ymax + Ymin)/2; Ymax and 
Ymin are the daily maximum and 
minimum temperatures, oC.  

Temperature 
sensor§ 

(Tremblay et al., 2012) 

Growing degree day 
(GDD) 

Σ((Ymax + Ymin)/2)-Tbase; Ymax, 
Ymin, Tbase are the daily maximum, 
minimum, and base temperatures, 
respectively. Tbase = 10oC.  

Temperature sensor (Tremblay et al., 2012) 

Shanon diversity index 
(SDI) 

[-Σpi ln(pi)]/ln(n); where pi = 
Rain/PPT (daily rainfall relative to 
total rainfall in a given time; n = 
total number of days.  

Tipping bucket (Tremblay et al., 2012) 

Abundant and well-
distributed rainfall 
(AWDR) 

SDI × PPT Tipping bucket (Tremblay et al., 2012) 

Soil 
Clay 0-30, 0-60, 0-90 cm Pipette Soil Survey Staff (2014) 3A1 
Sand 0-30, 0-60, 0-90 cm Pipette Soil Survey Staff (2014) 3A1 
Silt 0-30, 0-60, 0-90 cm Pipette Soil Survey Staff (2014) 3A1 

--- Continued next page --- 
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Table 1 (Continued.) 
Complete Dataset 

Parameter Calculations and Sample Depths Method References 

Cation exchange capacity 0-30, 0-60, 0-90 cm Ammonium acetate Soil Survey Staff (2014) 
4B1a1a1a1a-b1 

Total N 0-30, 0-60, 0-90 cm Dry combustion Soil Survey Staff (2014) 4H2a1 

Total carbon (C) 0-30, 0-60, 0-90 cm Dry combustion Soil Survey Staff (2014) 4H2a1 

Total organic C 0-30, 0-60, 0-90 cm Dry combustion Nelson and Sommers (1996) 

Total inorganic C 0-30, 0-60, 0-90 cm 
Difference between 
Total C and total 
organic C 

 

Organic matter 0-30, 0-60, 0-90 cm Loss-on-ignition Soil Survey Staff (2014) 5A 

pH (Salt) 0-30, 0-60, 0-90 cm pH Meter Soil Survey Staff (2014) 
4C1a1a2 

pH (Water) 0-30, 0-60, 0-90 cm pH Meter Soil Survey Staff (2014) 
4C1a1a2 

Bulk Density 0-30, 0-60, 0-90 cm Core Soil Survey Staff( 2014) 3B6a 
† Daily temperature and precipitation measured using HOBO weather stations instrumentation (Onset Computer Corporation, 

Bourne, MA). 
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Table 2. Variables used by all algorithms to modify three N recommendation tools. Within the 
table, X indicates parameters used for modeling and blank indicates parameters that were 
removed due to multicollinearity issues. Dashes indicate not applicable.  

Reduced Dataset 

Parameter Farmer NR IN YG 

Canopy 
Reflectance 

Sensing 
Weather    

PPT (Planting)†    
PPT (Sidedress)‡ – – X 
Corn Heat Units (Planting)    
Corn Heat Units (Sidedress) – – X 
GDD (Planting) X X X 
GDD (Sidedress) – –  
SDI (Planting) X X X 
SDI (Sidedress) – – X 
AWDR (Planting) X X X 
AWDR (Sidedress) – –  

Soil    
Clay X (0-90 cm) X (0-90 cm) X (0-90 cm) 
Sand X (0-90 cm) X (0-90 cm)  
Silt   X (0-60 cm) 
Cation exchange capacity    
Total N    
Total carbon (C)  X (0-90 cm) X (0-90 cm) X (0-90 cm) 
Total organic C    
Total inorganic C X (0-30 cm) X (0-30 cm) X (0-30 cm) 
Organic matter X (0-30 cm) X (0-30 cm) X (0-90 cm) 
pH (Salt)    
pH (Water) X (0-30 cm) X (0-30 cm) X (0-30 cm) 
Bulk Density X (0-30 cm) X (0-30 cm) X (0-30 cm) 

† Planting indicates data used 30 days prior to planting up to the date of planting 

‡Sidedress indicates data used from the date of planting up to the date of sidedress
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Table 3. The number of soil and weather variables identified as important for adjusting three different N recommendation tools using 
eight different algorithms with four different modeling scenarios. Models were fit with and without two-way interactions terms using  
either a complete dataset with all soil and weather variables or a reduced dataset with highly correlated variables removed (r > |0.85|). 

Complete Dataset Reduced Dataset 

Farmer 
NR 

IN 
YG 

Canopy 
Reflectance 

Sensing  
Farmer 

NR 
IN 
YG 

Canopy 
Reflectance 

Sensing 
Algorithm Number of Important Variables  Number of Important Variables 
Stepwise 39 39 44  9 9 12 
Ridge 40 40 45  9 9 12 

+ Interactions 860 860 1080  54 54 90 
Lasso 2 4 7 1 2 5 

+ interactions 2 3 4 3 2 7 
Elastic Net 2 7 15 9 2 8 

+ Interactions 2 8 12 3 2 7 
PCA 45 45 45 9 9 9 

+ Interactions 1080 1080 1080  54 54 54 
PLS 40 40 45 9 9 12 

+ Interactions 860 860 1080 54 54 90 
Bayesian Lasso 39 39 44 9 9 12 

+ Interactions 39 39 44 9 9 12 
Random Forest 40 40 45 9 9 12 

+ Interactions 860 860 1080 54 54 90 
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Table 4. The accuracy of each N recommendation tool compared to EONR that was unadjusted and adjusted with soil and weather 
variables as determined by each of the eight algorithms. Models were evaluated using a complete dataset or reduced dataset 
(multicollinearity removed) with and without 2-way interactions. The coefficient of determination was measured from a simple linear 
relationship between each tool and EONR with the corresponding relationship marked in parenthesis: (+) positive linear relationship, 
(-) negative linear relationship, and no parenthesis after the r2 value is non-significant (α = 0.10). The RMSE was calculated from the 
difference between a tool’s N recommendation and EONR.  

  Complete Dataset Reduced Dataset 

Model Adjustment Farmer NR IN YG 
Canopy Reflectance 

Sensing Farmer NR IN YG 
Canopy Reflectance 

Sensing 
r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE 

Unadjusted 0.01 88 0.10 (-) 127 0.13 (+) 85 0.01 88 0.10 (-) 127 0.13 (+) 85 

Stepwise 0.94 (+) 21 0.86 (+) 31 0.95 (+) 41 0.30 (+) 68 0.03 90 0.41 (+) 63 
Ridge 0.32 (+) 67 0.08 (+) 83 0.66 (+) 52 0.27 (+) 70 0.03 89 0.43 (+) 62 

+ Interactions 0.47 (+) 60 0.14 (+) 78 0.58 (+) 56 0.23 (+) 71 0.01 91 0.38 (+) 64 
Lasso 0.03 82 0.00 92 0.40 (+) 63 0.03 82 0.00 92 0.39 (+) 63 

+ Interactions 0.06 (+) 80 0.00 91 0.32 (+) 66 0.04 81 0.00 93 0.44 (+) 61 
Elastic Net 0.03 82 0.00 91 0.39 (+) 63 0.24 (+) 71 0.00 92 0.38 (+) 64 

+ Interactions 0.06 (+) 80 0.00 91 0.34 (+) 65 0.04 81 0.00 93 0.43 (+) 62 
PCA 0.10 (+) 78 0.01 98 0.24 (+) 69 0.21 (+) 72 0.00 93 0.35 (+) 65 

+ Interactions 0.09 (+) 78 0.00 95 0.27 (+) 68 0.06 (+) 80 0.00 94 0.23 (+) 70 
PLS 0.19 (+) 74 0.02 93 0.32 (+) 65 0.22 (+) 73 0.02 92 0.38 (+) 63 

+ Interactions 0.12 (+) 76 0.01 94 0.30 (+) 66 0.20 (+) 74 0.02 94 0.34 (+) 65 
Bayesian Lasso 0.14 (+) 76 0.01 95 0.28 (+) 68 0.07 (+) 79 0.04 99 0.22 (+) 71 

+ Interactions 0.09 (+) 78 0.00 93 0.29 (+) 67 0.15 (+) 75 0.00 95 0.31 (+) 67 
Random Forest 0.85 (+) 38 0.87 (+) 33 0.90 (+) 42 0.84 (+) 39 0.83 (+) 37 0.90 (+) 43 

+ Interactions 0.82 (+) 40 0.86 (+) 35 0.91 (+) 44 0.83 (+) 41 0.82 (+) 38 0.91 +) 43 
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Fig. 1. Correlation matrix of variables that were used for algorithm adjustment of N 
recommendation tools. The color intensity and size of the circles is proportional to the 
correlation coefficients. Weather variables calculated from 30 days prior to planting up to the 
date of planting (planting) and from the date of planting to the date of a sidedress N fertilizer 
application (SD). They include cumulative precipitation (PPT), corn heat units (CHU), Shannon 
diversity index of precipitation (SDI), and abundant and well-distributed rainfall (AWDR). Soil 
variables include texture, cation exchange capacity (CEC), total nitrogen (N), total carbon (TC), 
total organic carbon (TOC), total inorganic carbon (TIC), organic matter (OM), pH with and 
without salt, and bulk density (BD). Each measurement was average over three separate depth 
increments of 0-0.30, 0-0.60, and 0-0.90 m. Produced using the “corrplot” R software package 
(Wei and Simko, 2017).   
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Fig. 2. The out-of-sample RMSEs from eight algorithms that were used for adjusting the 
Farmer’s N rate. The errors were calculated from 5x10 cross-validation folds (totaling 50 RMSE 
values for each model). Each of the eight models types was used with a complete and reduced 
dataset (multicollinearity removed) with and without 2-way interactions. The eight models 
include 1) AIC stepwise linear regression, 2) Ridge regression parameter penalization, 3) least 
absolute shrinkage and selection operator (Lasso), 4) Elastic Net, 5) Elastic Net and principal 
component analysis (PCA), 6) partial least square regression (PLS), 7) Bayesian Lasso, and 8) 
Random Forest. Limits of the box indicate the 1st and 3rd quartile and whiskers indicate 1.5 × 
IQR. The significance between models is noted by lower case letters, using a Tukey’s HSD test 
(α = 0.05).  
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Fig. 3. The out-of-sample RMSEs from eight algorithms that were used for adjusting the Indiana 
yield goal N recommendation tool. The errors were calculated from 5x10 cross-validation folds 
(totaling 50 RMSE values for each model). Each of the eight models types was used with a 
complete and reduced dataset (multicollinearity removed) with and without 2-way interactions. 
The eight models include 1) AIC stepwise linear regression, 2) Ridge regression parameter 
penalization, 3) least absolute shrinkage and selection operator (Lasso), 4) Elastic Net, 5) Elastic 
Net and principal component analysis (PCA), 6) partial least square regression (PLS), 7) 
Bayesian Lasso, and 8) Random Forest. Limits of the box indicate the 1st and 3rd quartile and 
whiskers indicate 1.5 × IQR. The significance between models is noted by lower case letters, 
using a Tukey’s HSD test (α = 0.05).  
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Fig. 4. The out-of-sample RMSEs from eight algorithms that were used for adjusting the canopy 
reflectance sensing recommendation tool. Each of the eight models types was used with a 
complete and reduced dataset (multicollinearity removed) with and without 2-way interactions. 
The eight models include 1) AIC stepwise linear regression, 2) Ridge regression parameter 
penalization, 3) least absolute shrinkage and selection operator (Lasso), 4) Elastic Net, 5) Elastic 
Net and principal component analysis (PCA), 6) partial least square regression (PLS), 7) 
Bayesian Lasso, and 8) Random Forest. Limits of the box indicate the 1st and 3rd quartile and 
whiskers indicate 1.5 × IQR. The significance between models is noted by lower case letters, 
using a Tukey’s HSD test (α = 0.05).  
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Chapter 4: Improving Corn Nitrogen Rate Recommendation Tools  

with Weather and Soil Information  

 
ABSTRACT 

 Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools is 

necessary for improving farmer’s profits and one way to mitigate N pollution. Since 

weather and soil factors have repeatedly been shown to influence crop N need, one 

method to improve N management is to incorporate additional soil and weather 

information directly into the N recommendation tool. The objectives of this research were 

to improve publicly-available N recommendation tools with other soil and weather 

information. A range of N recommendation tools used at-planting and for split N 

fertilizer applications were evaluated. Using an elastic net algorithm the difference 

between each tool’s N recommendation and the economically optimum N rate (EONR) 

was regressed against measured soil and weather information. Tools were then adjusted 

by subtracting the elastic net regression coefficients of soil and weather variables from 

the N recommendation tools. Weather parameters most frequently identified as important 

were the evenness of rainfall calculated 30 days prior to planting up to the date of 

planting and from planting to the date of sidedness. Soil parameters frequently identified 

as important included pH (0-30 cm) and total carbon (0-90 cm). Six of the fifteen N 

recommendation tools showed improvements with a stronger simple linear relationship 

with EONR (an increase of r2 ≥ 0.13). These tools included MRTN for both at-planting 

and split applications, WI pre-plant soil nitrate test (PPNT), IA pre-sidedress soil nitrate 

test with 0 kg N ha-1 applied at-planting (PSNT 0), IN PSNT 0, and canopy reflectance 

sensing. The best performance of tools with including soil and weather information 
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occurred with the IA PSNT 0, canopy reflectance sensing, and MRTN that showed a final 

r2 ≥ 0.20 but ≤ 0.39, and resulted in ≥ 35% but ≤ 55 % of the sites within ± 30 kg N ha-1 

of EONR. This analysis shows that incorporating soil and weather information could help 

improve N recommendation tools across the U.S. Midwest. However, while 

improvements to these publicly-available tools were noteworthy, over half of the 

variation in EONR is still unexplained. This is not surprising since many other factors 

that impact soil-crop N dynamics are unconsidered, including factors that occur after a 

sidedress N application. 
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INTRODUCTION 

One approach used to maximize profits and minimize environmental issues 

associated with N management in corn is to apply N fertilizer at rates close to the EONR 

(Hong et al., 2007; Kyveryga et al., 2009; Bandura, 2017). However, EONR is unknown 

at the time of N application as it is calculated following grain harvest. Moreover, EONR 

varies considerably within a field and from year-to-year making EONR challenging to 

estimate (Scharf et al., 2005; Shanahan et al., 2008; Kyveryga et al., 2009). Both the 

spatial and temporal variability of EONR are driven by environmental, genetic, and 

management factors. More specifically rainfall distribution, soil texture, soil water-

holding capacity, plant genetics, management practices, and grain and fertilizer prices 

have been shown to influence EONR (Dinnes et al., 2002; Kay et al., 2006; Schmidt et 

al., 2009; Zhu et al., 2009; Tremblay et al., 2012; Morris et al., 2018). However, many of 

the current methods used to determine how much N fertilizer to apply do not account for 

many of these factors. 

A few of the publically available N recommendation tools that have been 

developed incorporate some of the management, soil, and weather factors. A few 

examples include the yield goal method which was adjusted with a soybean (Glycine 

max) credit if the previous crop was soybean (Stanford, 1973). Other yield goal based 

methods have also included an estimate of N mineralized by organic matter or a measure 

of soil nitrate (NO3–N) before N fertilizer application (Brown et al., 2004; Shapiro et al., 

2008). The pre-sidedress nitrate test indirectly measures in-season mineralization rates, 

and the sufficient N threshold is adjusted based on spring precipitation (Blackmer et al., 

1997). The MRTN incorporates multiple yield response studies grouped based on 
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geographical boundaries, soil texture, and climatic conditions to better account for spatial 

and temporal variability (Sawyer et al., 2006b). Canopy reflectance sensing assesses the 

color and biomass of corn plants at a very short spatial scale to integrate the plant and soil 

N status into an N recommendation (Kitchen et al., 2010). Even though these tools 

indirectly or directly incorporate some aspect of management, soil, and weather into their 

N recommendation process, these tools have been found to be poorly related with EONR 

(chapter 2), and therefore are not reliable for making N fertilizer recommendations over 

the U.S. Corn Belt.  

Incorporating additional factors into N recommendation tools, known to affect 

EONR, could improve them. The incorporation of various weather and soil variables and 

their interactions improved the relationship of a canopy reflectance sensing derived N 

recommendation to EONR from an r2 of 0.14 to 0.43 (Bean et al., 2018). Others showed 

that including soil-specific information with a pre-plant soil test significantly improved 

the predictability of optimal N rate (r2 = 0.92; Vanotti and Bundy, 1999). The objectives 

of this chapter are to determine if soil and weather information could improve N 

recommendation tools. This objective was applied to only tools found successful from 

chapter 2. 

 

MATERIALS AND METHODS 

Experimental Design 

This research was conducted as a part of a public-private collaboration between 

DuPont Pioneer and eight U.S. Midwest universities (Iowa State University, University 

of Illinois Urbana-Champaign, University of Minnesota, University of Missouri, North 
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Dakota State University, Purdue University, University of Nebraska-Lincoln, and 

University of Wisconsin-Madison). Each state conducted research on two sites each year 

during 2014 to 2016, with a third site in Missouri in 2016, totaling 49 site-years. About 

half the sites were on farmers’ fields and the other half on University research stations. 

All states followed a similar protocol for plot research implementation including site 

selection, weather data collection, soil sample timing and collection methodology, N 

application timing, N source, and N rates with specific details described in Kitchen et al. 

(2017). Treatments included N fertilizer rates between 0 and 315 kg N ha-1 applied either 

all at-planting or split where 45 kg N ha-1 was applied at-planting with the remaining 

fertilizer N applied at the V9 corn developmental stage.  

 

Determining the Economically Optimal Nitrogen Rate 

Grain yield in response to N fertilizer treatments was used to calculate the EONR 

on a site level as described in Kitchen et al. (2017), using proven quadratic or quadratic-

plateau modeling methods (Cerrato and Blackmer, 1990; Scharf et al., 2005). 

Economically optimal N rate values were calculated for all N fertilizer applied at-planting 

(hereafter referred to as “at-planting”), and N split applied between planting and a single 

top-dress application (hereafter referred to as “split”). The cost of N was $0.88 kg N-1, 

and the price of corn was $0.158 kg grain-1 (equivalent to $0.40 lbs N-1 and $4.00 bu-1). 

The EONR was set to not exceed the maximum N rate (315 kg N ha-1). Five of the seven 

irrigated sites had N applied through irrigation > 12 kg N ha-1, and this was included in 

determining the EONR of these sites. The EONR results were used as the standard for 

evaluating all other N recommendation tools. For 19 of the 49 sites, the at-planting and 
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split EONR values were found statistically (P=0.05) to be same, within $2.50 ha-1 of each 

other. Thus for these the EONR used was the average of the two timings. This approach 

was also consistent with previous separate analysis using this same dataset (Bandura, 

2017). 

 

Nitrogen Recommendation Tools Evaluated 

Tools that were evaluated for improvement in this chapter included only those 

that were found successful from Chapter 2. These were defined as tools having an N 

recommendation that had a significant and positive linear relationship with EONR. The 

one exception was MRTN (explained below). This focus was given because analysis 

from chapter 3 showed tools which had a negative linear relationship with EONR did not 

improve with added soil and weather information, with the majority of algorithms tested 

in that chapter. Successful tools used from chapter 2 included the State-Specific yield 

goal (YG), three variations of the pre-plant soil nitrate test (PPNT), four variations of the 

pre-sidedress soil nitrate test (PSNT), and canopy reflectance sensing using the Holland 

and Schepers algorithm. In addition to these tools, MRTN was also evaluated for 

improvement with added soil and weather information because many of the successful 

tools utilize MRTN as its base N recommendation, and it is a tool that is currently 

promoted through many Midwest land-grant universities.  

 

State-Specific Yield Goal 

The State-Specific YG tool was evaluated to where sites within each state only 

used their respective state’s YG method. All states except Wisconsin (WI) at one point in 
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time utilized a YG, as such all but the WI sites are included in the State-Specific YG 

analysis (n =43). All YG methods followed a similar mass balance approach established 

by Stanford (1973), but each has been uniquely modified by adjusting coefficients within 

the calculation and incorporating additional soil and management information. For 

example, the Nebraska YG was changed by incorporating PPNT values that have been 

either estimated or measured to a depth of 120 cm. 

All YG tools required an expected yield. The expected yield for each site was 

determined using the average of the previous five-yr county corn yields for the respective 

county the site was within. The five-yr average was then adjusted based on the soil 

productivity of the predominantly mapped soil of each site, similar to that done by 

Laboski et al. (2012). This procedure classifies soil productivity as either low, medium, 

or high using soil texture, irrigation, depth to bedrock, drainage class, temperature 

regime, and available water content information. The yield of a site was then calculated 

by increasing the five-yr average yield for low, medium, and high soil productivity by 10, 

20, or 30%, respectively. This estimated yield value was used to represent the YG for 

each method used to calculate the State-Specific YG (Table 1).  

 

Soil Nitrogen Tests 

Three distinct PPNT tools were evaluated. They are as follows: 1) General PPNT, 

2) Minnesota (MN) PPNT, and 3) and WI PPNT (Table 1). Kitchen et al. (2017) detailed 

the sampling and NO3–N analysis protocols for the PPNT tool. Two of the 49 sites did 

not complete PPNT sampling, so this tool was evaluated using 47 of the 49 sites. 
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Four PSNT tools were evaluated, including 1) General PSNT, 2) Iowa (IA) 

PSNT, 3) Indiana (IN) PSNT, and 4) WI PSNT (Table 1). These were tested under two 

different conditions. The first used a site average of measured NO3–N from plots that 

received 0 kg N ha-1 at-planting. The second used a site average of measured NO3–N 

from plots that received 45 kg N ha-1 at-planting. These are noted as PSNT 0 and PSNT 

45, respectively, throughout this chapter. Soil samples were taken at the V5 ± 1 corn 

development stage and to a depth of 0.30 m.  

 

MRTN 

The MRTN recommendation values for all sites were determined by using values 

obtained in 2016, as only a few states had updated the MRTN database during the three 

years of this project. The MRTN values for IA, IL, IN, MN, and WI were obtained from 

the online Iowa State Extension N rate calculator (cnrc.agron.iastate.edu; verified 5 Mar. 

2017). The MRTN values for North Dakota were obtained from the North Dakota Corn 

Nitrogen Calculator (www.ndsu.edu/pubweb/soils/corn; verified 5 Mar. 2017). The price 

of corn to N fertilizer ratio used was 10:1. Since neither Missouri nor Nebraska currently 

have the compiled database and online tool for an MRTN recommendation, sites from 

these states were excluded from this tool’s evaluation, so the tool was tested at 36 sites.  

 

Canopy Reflectance Sensing 

Canopy Reflectance measurements were obtained using the RapidSCAN CS-45 

(Holland Scientific, Lincoln NE, USA) the same day or just prior to the split N 

application. For the majority of sites, this was done at the ~V8-V10 corn development 
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stage. Measurement details are described in Kitchen et al. (2017). The Holland and 

Schepers algorithm [HS; Holland and Schepers (2010)] was used to calculate an N 

fertilizer recommendation derived from these reflectance measurements. This algorithm 

is based on a sufficiency index calculated using measurements from both well-fertilized 

corn (“N-Rich”) and minimally-fertilized corn that is referred to here as the “target” corn:  

       

 [1] 

where SI is the sufficiency index; VITarget is the vegetative index obtained from averaging 

measurements from all plots that received 45 kg N ha-1 at-planting and where a top-dress 

fertilizer was to be applied, and VIN-Rich is the vegetative index obtained by averaging all 

plots for two of the high N treatments (225 and 270 kg N ha-1 applied all at-planting). The 

NDRE vegetative index was calculated using the red-edge (730 nm; RE) and near-

infrared (780 nm; NIR) wavelengths as shown: 

      

 [2] 

Fertilizer N recommendations were then calculated as described in Holland and Schepers 

(2010) as follows: 

     [3] 

where NRec is the calculated N fertilizer recommendation; MZi is a scaling value (0 ≥ MZi 

≤ 2) used to adjust the N recommendation based on areas of high or low yield 

performance; NOpt was the base N rate, which is determined by the farmer; NPreFert is the 

amount of N already applied prior to sensing; NCRD are N credits associated with the 
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previous crop, NO3–N in irrigation water, manure, or residual NO3–N; NComp is an 

optional compensation factor for growth limiting conditions; SI is the sufficiency index, 

and ΔSI is a value to define the response range. For this analysis, MZi
 was left as the 

default value of 1.0, Nopt was set as the recorded farmer's N rate for each site, and NPreFert 

= 45 kg N ha-1. With no supportive information relative to NCRD and NComp, these two 

parameters were set to zero for all sites. The recommended value of 0.30 was used for 

ΔSI, which provides a response range between the measured vegetative index value 

between 0.70 and 1.00. 

 

Incorporating Soil and Weather Information 

To determine what soil and weather information was to be incorporated, an elastic 

net regression (Zou and Hastie, 2005) was used with soil and weather variables as the 

explanatory variables. The response variable of this regression was the difference 

between each tool’s N recommendation and the EONR for each site as follows:  

     [4] 

where EONR was calculated for both at-planting and split N application scenarios. The 

EONR values calculated at-planting were compared to MRTN, General PPNT, MN 

PPNT, and WI PPNT. The EONR values calculated from split N treatments were 

compared to MRTN, State-Specific YG, General PSNT 0 and 45, IA PSNT 0 and 45, IN 

PSNT 0 and 45, WI PSNT 0 and 45, and canopy reflectance sensing. Explanatory 

variables included measured physical and chemical soil properties and measured weather 

information. Soil properties were collected by sampling 120 cm-depth soil cores from 

each of the sites and analyzing by pedological soil horizon for texture, bulk density, pH 
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salt, pH water, CEC, total N, total carbon, inorganic carbon, organic carbon, and organic 

matter as described in Table 2. Each of these soil properties was then depth weighted to 

obtain values for 0-30, 0-60, and 0-90 cm depth increments. Weather data were collected 

using on-site weather stations (HOBO U30 Automatic Weather Station; Onset Computer 

Corporation, Bourne, MA). Daily values were calculated for the maximum and minimum 

temperature and precipitation. These values were then used to calculate a cumulative 

precipitation, growing degree days, corn heat units, Shanon’s diversity index of 

precipitation (evenness of rainfall), and abundantly and well-distributed rainfall as 

described by Tremblay et al. (2012), for two time periods, 30 days before planting up to 

the date of planting and from the date of planting to the time of sidedress (Table 2).  

Many of these variables were highly correlated (|r| > 0.85). To minimize 

multicollinearity, the explanatory variables with the highest mean absolute pair-wise 

correlation values were removed from the model (Table 3). This procedure was 

automated by using the findCorrelation function from the R ‘caret’ package (Kuhn, 

2017). Using the reduced number of variables, two models were created with and without 

two-way interaction terms for each N recommendation tool. All explanatory variables 

were normalized before running the model by subtracting the mean and dividing by the 

standard deviation. Preprocessing was necessary to minimize any bias the elastic net 

regression would have with variables that consisted of different units or ranges of values 

(e.g., cumulative precipitation vs. bulk density). The variables were converted back to 

their normal units to adjust N recommendation tools (explained in the next section).  

The elastic net was fit with the ‘caret’ package using R Statistical Software (R 

Core Team, 2016). The elastic net was optimized by tuning the alpha and lambda 
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parameters using a tenfold cross-validation repeated five times, where for each fold of the 

cross-validation the data were split randomly into ten folds. Nine of the folds were 

selected as a training dataset to fit a model for each combination of alpha and lambda 

tuning parameters, and the 10th fold was used as the testing dataset to calculate the 

accuracy of the predicted model. This was repeated a total of 50 times, and the accuracy 

for each combination of tuning parameters was determined using the average root-mean-

square error (RMSE) across these 50 folds.  

 

Statistical Analysis 

For each model (with and without two-way interactions for each N 

recommendation tool), the out-of-sample RMSE was calculated for each cross-validation 

fold. These out-of-sample RMSE values were used to compare the accuracy of models 

developed with and without two-way interactions. A t-test was used to compare among 

each tool rthe difference between models with and without two-way interactions (α = 

0.10).  

Final models with all the essential variables and corresponding coefficients were 

used to adjust each N recommendation tool as follows:  

       [4] 

Each adjusted tool was then compared to EONR as described in Eq. 4 to determine if 

there was an improved performance of the tools at predicting EONR. This was 

accomplished by calculating 1) a coefficient of determination, 2) an RMSE for each 

adjusted tool using the difference between each tool’s adjusted N recommendation and 
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EONR, and 3) the percentage of sites within ± 30 kg N ha-1 of EONR, or reasonably 

close to EONR (RC-EONR). 

 

RESULTS AND DISCUSSION 

The final models developed using the elastic net showed no significant difference 

between models with and without two-way interactions (α =0.10; Fig. 1). Only models 

developed with just the main effects are presented for the rest of this chapter. 

 

 Which Soil and Weather Variables Were Found to be Important?  

The variables found to be important for explaining the difference between each N 

recommendation tool and EORN varied by the tool. Three of the fifteen tools (General 

PPNT, General PSNT 0, and WI PSNT 0) had final models where only the intercept was 

used to adjust these tools (Table 4). Eight of the fifteen tools’ final models contained four 

or more variables. There was no apparent explanation as to why some N recommendation 

tools were best adjusted with the number of variables > 4 while others were ≤ 4. The 

most important factors for explaining the difference between N recommendation tools 

and EONR were the evenness of rainfall (SDI), soil pH (0-30 cm), and total carbon (0-90 

cm). They were the most frequently used in the final model and on average had the 

highest absolute coefficient values (Table 4). To simplify the interpretation of these 

results, only the most important variables (SDI, pH, and total carbon) will be discussed in 

detail.  
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Weather Variables 

The SDI was found to be an essential variable for adjusting the majority of N 

recommendation tools. This included both the measurements of SDI from 30 days before 

planting up to the date of planting (Planting) and from the date of planting to the date of 

sidedress (SD). The Planting and SD SDI were both found to be important for eight and 

nine of the fifteen N recommendation tools, respectively (Table 4). In all cases, the 

difference between each tool’s N recommendation and EONR decreased with increasing 

SDI measurements. When used to adjust the N recommendation tool, the greater the SDI 

value, the greater the increase in an N recommendation.  

Not surprisingly, SDI was determined as one of the most important variables as 

precipitation-based measurements often have a bigger impact on N fertilizer response and 

EONR calculations than soil parameters (Sogbedji et al., 2001; Tremblay et al., 2012; 

Sela et al., 2017). Precipitation is a major driving factor for soil organic matter 

mineralization, yield potential, NO3–N leaching losses, and N uptake (Cassman and 

Munns, 1980; Schröder et al., 2000; Wilhelm and Wortmann, 2004; Melkonian et al., 

2007). However, in this analysis, the cumulative precipitation was not found to be helpful 

in explaining EONR. The SD SDI helped explain 22% of the variation (P < 0.001) in the 

observed EONR values. This is similar to what Xie et al. (2013) reported, that SDI of 

precipitation and not precipitation alone better-explained corn response to sidedressed N 

fertilizer. This relationship could be explained by an increased N loss, decreased plant N 

uptake, or a reduced soil N supply. With increased SDI, the soil moisture would be 

maintained at a higher level over an extended period leading to possible soil surface 

runoff, N leaching, or denitrification (Maag and Vinther, 1996). Having consistent 
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deficient soil moisture could also minimize root exploration leading to shallow rooting 

depths, thus limiting water availability and decreasing a plant’s ability to take up N (Xie 

et al., 2013). Lastly, a laboratory experiment showed that mineralization decreases with 

increasing soil moisture above -200 kPa matric potential, thus limiting the N supply of 

the soil (Cassman and Munns, 1980). The general trend observed among the sites of this 

study showed the smallest SD SDI values were from the northwestern locations (North 

Dakota) and increased down to the southeast similar to the long-term rainfall trend seen 

in Fig. 2a. A more specific explanation of how SDI influenced the EONR for each 

location would require additional analysis, which is beyond the scope of this chapter.  

In conjunction with the SD SDI, the Planting SDI was also found to be very 

influential. However, unlike the SD SDI, the Planting SDI’s was not able to explain any 

variation of EONR (P = 0.92). This is not surprising as precipitation events 30 days prior 

to planting up to the date of planting would have a smaller impact on soil N and grain 

production compared to in-season precipitation events. As such, it is unclear how to 

agronomically explain how Planting SDI helped improve N recommendation tools used 

for a sidedress N application (usually occurring ~55 days after planting).  

 

Soil Variables 

Of all the soil parameters that were used in the final model, pH (0-30 cm) and 

total carbon (0-90 cm) were the most frequently identified as important (Table 4). The pH 

and total soil carbon across all sites ranged from 5.5 to 7.8 and 0.03 to 0.26 g C kg-1, 

respectively. Both of these parameters increased as the difference between a tool’s N 
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recommendation and EONR increased. This translates into a more significant reduction 

to a tool’s N recommendation with increasing pH or total carbon values (Table 5). 

Soil pH affects soil fertility and drives many factors of the N cycle. For example, 

the microbial-driven conversion of ammonium to nitrate is optimized at pH values above 

7.5 (Kyveryga et al., 2004). While denitrification rates are greatest at pH values less than 

7 (Šimek and Cooper, 2002). The pH of a field was also found to commonly be related to 

corn yield and protein factors across multiple growing conditions and hybrids (Miao et 

al., 2006). However, directly relating pH to EONR showed no significant relationship (P 

= 0.13). For this investigation, the pH was found to be greater for the northern sites, 

where soils were formed under drier and colder conditions (Fig. 2b), and, therefore, are 

less weathered soils with free calcium carbonates. Adjusting for pH was necessary for 

many of the northern sites such, as North Dakota and Wisconsin, where pH > 7.0 (Fig. 

3a). A few of these sites were non-responsive to added N fertilizer, suggesting the 

possible positive impact these pH values had on N mineralization when adequate organic 

matter was present. However, it is unlikely there is a direct causal relationship between 

EONR and mineralization, as the weather most likely drove the majority of N 

mineralization. This was observed as the 2016 ND sites were both non-responsive to 

added N fertilizer. However, the ND sites in 2014 and 2015, conducted on the same or 

nearby fields with very similar soil pH, had EONR values that ranged between 100 and 

180 kg N ha-1.  

Adjusting for total soil carbon (0-90 cm) was also helpful for improving nine of 

the fifteen N recommendation tools. The organic carbon made up the majority of the total 

carbon in the soil (mean overall sites of 88 %). Only a few sites (mostly from North 
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Dakota) had any inorganic carbon measured throughout the soil profile. In the process of 

reducing the number of parameters to model, the organic matter and organic carbon 

measurements were found to be highly correlated (r > 0.96). As such, the modeling 

procedures narrowed the results to only include the total carbon from 0 to 90 cm. The 

total carbon was found to account for 16 and 13% of the variability around the at-planting 

and split EONR, respectively. Higher soil organic carbon is related to higher potential N 

mineralization rates (Culman et al., 2013), which would help explain the lack of fertilizer 

N response for many of the northern locations. In colder climates and with shorter 

growing seasons these soils formed with greater organic matter than soils in warmer 

wetter regions, and thus a potentially greater soil N supply exists in these soils today (Fig. 

2b). Accounting for mineralization indirectly through total carbon allows tools to 

incorporate N supplied by the soil. The inability for tools to account for N mineralization 

rates is one reason that they performed poorly, as shown in chapter 2.  

  

Improving Performance of N Recommendation Tools  

 Incorporating soil and weather information into the N recommendation tools 

helped improve the tools. For all tools, the average difference between each tool’s N 

recommendation and EONR all came closer to 0 (Fig. 4), and most RMSE values were 

decreased (mean overall tools of 78 vs. 67 for unadjusted vs. adjusted, respectively). 

Additionally, there were four tools (MRTN used at-planting, MRTN used for a split 

application, IN PSNT 0, and WI PSNT 45) that when unadjusted were not significant and 

positively related to EONR. After adjusting for soil and weather information, these four 

tools were significant and positively related to EONR. 
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When evaluating the improvement of these tools using other metrics, the tools 

varied in how well they were improved. The most critical metric for improvement was to 

have an increased linear relationship (r2) with EONR (mean overall tools from 0.11 to 

0.22 for unadjusted vs adjusted, respectively), followed by an increase in the percentage 

of sites RC-EONR (mean overall tools from 35 to 41% for unadjusted vs adjusted, 

respectively; Table 6). Tools were grouped into three categories of improvement (“good,” 

“mediocre,” and “no”) based on two of the performance criteria. Tools were classified as 

“good” when there was an increase in r2 ≥ 0.13 and an increase in the percentage of sites 

RC-EONR (Fig. 5; Table 6). Tools were classified as “mediocre” when adjusted models 

had an increase in r2 > 0 and ≤ 0.13 (Fig. 6). The remainder tools were classified as not 

being improved (Fig. 7). 

 

Nitrogen Recommendation Tools with “Good” Improvements 

Tools that exhibited “good” improvements included MRTN for both at-planting 

and split applications, WI PPNT, IA PSNT 0, IN PSNT 0, and canopy reflectance sensing 

(Fig. 5). The most notable improvement based on the adjusted tools improved linear 

relationship with EONR occurred with MRTN for both application times (r2 increased 

0.22 and 0.21 for at-planting and split, respectively; Table 6). When averaging across all 

sites, MRTN alone came close to EONR. However, because the tool was unable to 

account for sites that were less responsive to N or sites which required high N rates (i.e., 

sites with excessive N loss), there was no significant linear relationship with EONR. 

Using weather and soil information helped adjust for these extreme sites. Nitrogen 

recommendations for the MRTN where it overestimated EONR were decreased based on 
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sites characterized by a higher pH and total carbon content, and a lower Planting AWDR 

or SD SDI. Whereas sites where MRTN underestimated EONR, the MRTN N rate 

recommendations were increased. Sites where the adjustment increased the MRTN 

recommendation had lower soil pH and total carbon content, and a higher Planting 

AWDR or SD SDI (Fig. 3; Table 5). After adjusting for soil and weather information, 

MRTN showed a greater range of N rates of 80 to 240 kg N ha-1 (Fig 5a & 5b). 

The WI PPNT showed a similar pattern as MRTN in its adjustment. This is 

expected as the WI PPNT uses MRTN as its base N recommendation and is further 

adjusted based on measured soil NO3–N. Compared to the adjusted MRTN, the adjusted 

WI PPNT resulted in a higher r2 value (0.29; P < 0.001) but a decrease in the percentage 

of sites RC-EONR (Table 6; Fig. 5a vs. 5c). This result indicates that MRTN could be 

adjusted using precipitation and soil pH to about the same performance level as with 

adjusted PPNT measurements; since the adjusted MRTN adds no new sampling and lab 

costs, farmers could deploy it with less expense.   

Of these tools, the best-adjusted tool was the IA PSNT 0, where the adjusted 

tool’s r2 was 0.39 (P <0.001), and the percentages of sites RC-EONR was 55% (Table 6). 

Unadjusted the IA PSNT 0 had an r2 of 0.24 (P <0.001), the highest of all the tools. 

Unlike MRTN, the PSNT based tools were successful at identifying when some sites 

would be less responsive and thus were more successful without adjustment (Fig. 5d). 

With adjustment, the most improvement occurred with sites where the IA PSNT 0 

underestimated EONR, resulting in an increase in the N recommendation. The majority 

of adjustments were a result of the SD SDI.  
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The unadjusted IN PSNT 0 tool overestimated EONR for the majority of sites 

with 61% of the recommendations at 225 kg N ha-1 (Fig. 5e). Incorporating soil and 

weather information reduced this tool’s N recommendation for many of these sites. This 

resulted in 33% of the sites to be RC-EONR after adjustments and 14% of the sites to 

remain RC-EONR. However, this adjustment also caused 10% of the sites that were 

initially RC-EONR to be adjusted to where they no longer were RC-EONR (Fig. 5e; 

Table 6).  

Adjusting the Holland and Schepers canopy reflectance sensing algorithm with 

soil and weather information helped to improve the predictability of EONR, from an r2 of 

0.13 (P = 0.01) up to 0.36 (P <0.001; Table 6). This method for determining an N 

recommendation is unique in that it quantifies the plant’s color and biomass using 

specific reflectance wavelengths to estimate a plant’s N status. The conclusion here is 

that soil and weather information provided an estimate of N that was lost, but that this 

loss was not evident in the reflectance properties of the crop at the time of sensing. The 

soil and weather adjustment resulted in a general increase in the recommendation overall 

EONR values. As such, sites with low EONR values without adjustment had an even 

greater over-recommendation after being adjusted (Fig. 5f). This adjustment made the 

adjusted canopy reflectance sensing less able to correctly recommend N for sites that 

were less responsive to N fertilizer.  

 

Nitrogen Recommendation Tools with “Mediocre” Improvements 

 Tools that were grouped as only having “mediocre” improvement with adjustment 

included MN PPNT, State-Specific YG, General PSNT 45, IA PSNNT 45, IN PSNT 45, 
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and WI PSNT 45 (Fig. 6). Similar to WI PPNT, the MN PPNT is based off MRTN. 

However, the MN PPNT does not account for a baseline of soil NO3–N as does the WI 

PPNT; this resulted in many of the unadjusted recommendations to be decreased more 

than the WI PPNT (Table 1). This additional decrease in MRTN using the MN PPNT 

method resulted in a weaker adjustment with soil and weather information than the 

adjustments made to the WI PPNT or MRTN. Even though on average, the unadjusted 

MN PPNT called for applying only 14 kg N ha-1 more than the WI PPNT. This goes to 

show the inconsistency of adjusting MRTN based on soil NO3–N. Using soil pH, total 

carbon, and SDI as previously described would help better adjust MRTN than starting 

with the MN PPNT method.  

 The State-Specific YG was one of the few tools where the use of soil and weather 

information decreased the N recommendations for 41 of 43 sites. Utilizing a yield goal 

approach often results in overestimating the amount of N required, one of the limitations 

of this method as farmers can often be over-optimistic (Vanotti and Bundy, 1994). 

Unique from other tool’s adjustments, the State-Specific YG relied solely on SD SDI 

values to adjust the tool. Values ≥ 0.71 resulted in an increase in the N recommendation, 

but with 41 of the 43 sites having an SD SDI value ≤ 0.71 the majority of sites were 

reduced (Table 5; Fig. 6b).  

Of note, all the PSNT with 45 kg N ha-1 applied at-planting (i.e., PSNT 45) were 

classified as having “mediocre” improvements. These mediocre adjustments could be 

attributed to an increase into the range of N recommendation rates when using the PSNT 

with 45 kg N ha-1 applied at-planting. Adding 45 kg N ha-1 at planting would be expected 

to increase the amount NO3–N in the soil that would be measured using the PSNT test, 
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with this sampling occurring about 35 days after fertilizer application. But that the effect 

of N addition varied across the environments of this study. For a few sites the soil NO3–N 

with added N was equivalent to no fertilization. Potentially this was the result of leaching 

(coarse-textured soils) or denitrification (fine-textured soils) during those early weeks 

after planting. However, with about ~90% of sites, there was an increase in the soil NO3–

N, when fertilized, was compared to non-fertilized. Of these sites, eight sites had PSNT 

values ≥ 45 kg N ha-1 than the non-fertilized crop and resulted in N recommendations ≤ 

115 kg N ha-1. However, only three of these eight sites had EONR values ≤ 115 kg N ha-

1. The conclusion is that when N fertilizer is added at or near planting, greater variability 

can result with the PSNT soil NO3–N values and thereby the N recommendation. Since 

this variability is not systematic, incorporating soil and weather with PSNT 45 was less 

helpful in explaining variation between the tool and EONR. The opposite was found with 

PSNT 0 (Fig. 5d-e & Fig. 7b-c vs. Fig. 6c-f).   

Of the all PSNT 45 tools, the IA PSNT 45 showed the best improvement based on 

the coefficient of determination. However, the adjustment also resulted in a decrease in 

the percentage of sites RC-EONR (Table 6). This occurred as the majority of the N 

recommendations were increased which moved six sites, which were previously RC-

EONR, further away from EONR (Fig. 6d). 

 

 Poor Improvements 

Three tools showed no improvement; these included the General PPNT, General 

PSNT 0, and WI PSNT 0 (Fig. 7). For both the General PPNT and General PSNT 0 there 

were no soil or weather variables that were identified as helpful in adjusting these tools. 
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As such, the General PPNT and General PSNT 0’s N recommendations were only 

adjusted using the intercept of the model to where they were increased by 40 and 4 kg N 

ha-1, respectively. In contrast, the WI PSNT 0, was able to be adjusted using soil and 

weather information to where the intercept was slightly decreased and the slope increased 

(Fig. 7c). However, the coefficients used for adjusting the tools did not provide any 

improvement (Table 6).  

 

Was this Improvement Enough? 

Improvement using soil and weather information was observed for many tools but 

tested over this 8-state, 3-season dataset still did not match what others have reported for 

some N recommendation tools. Tested against EONR, the Pennsylvania PSNT was found 

to have an r2 = 0.48 (Schmidt et al., 2009). Utilizing a dataset from New York, Sela et al. 

(2017) showed that the Adapt-N crop growth model had an r2 = 0.56. While Scharf et al. 

(2006) and Schmidt et al. (2009) in two separate investigations showed that chlorophyll 

meter derived N recommendations resulted in a strong linear relationship with EONR 

with r2 values that ranged between 0.53 to 0.76. Bean et al. (2018) showed slightly better 

results from improving the Missouri canopy reflectance sensing algorithm using soil and 

weather information and their interactions to obtain a relationship between the N 

recommendations and EONR with r2 = 0.43. One of the likely reasons for the more 

mediocre results in this analysis is that the tools and their adjustments were tested using a 

dataset that represented a large range in weather conditions unlike what the previous 

studies had (Kitchen et al., 2017). Most of these tools tested were developed or tailored 

from field research within a given U.S. state. It is perhaps unreasonable to expect tools 
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developed in specific states to perform well across a broad region. However, to do so 

shows whether existing tools are robust enough to fit a wide array of environmental 

extremes for growing corn. These results would suggest they are not. Additional 

improvements may be needed with different types, and intensity of information in order 

produce better performing corn N recommendations that could be used more universally.  

 

CONCLUSIONS 

Efforts to improve N recommendation tools utilizing soil and weather information 

was successful for the 12 of the 15 tools evaluated. Many of the improvements occurred 

at locations that overestimated EONR as any adjustment was based on soil information, 

while sites that underestimated EONR were improved with weather information. Tools 

overestimated EONR when they did not take into account the potential soil N supply of a 

site. Much of the N supply could be accounted for with total carbon and soil pH. Tools 

underestimated EONR when conditions lead to excessive N loss, accounting for this with 

an evenness of rainfall was shown to be a useful adjuster.  

The best adjustments occurred with tools that prior to being adjusted were able to 

identify non-responsive sites. These tools included the IA PSNT 0 and the Holland and 

Schepers canopy reflectance sensing algorithm. After adjusting these tools with soil and 

weather information, they had the highest linear relationship with EONR. In addition to 

these two tools, MRTN was also improved significantly. In fact, the adjusted MRTN had 

the greatest improvement (r2 values increased from 0.01 to 0.23). The MRTN also 

performed equal to or even better than many of the PPNT based tools that rely on MRTN 

as the base N recommendation. By adjusting the MRTN with soil and weather 
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information farmers could bypass taking soil NO3–N samples, assuming that using 

precipitation indices (SDI or AWDR) and soil pH would be cheaper and easier to acquire 

than PPNT samples.  

With all of these adjustments, however, many of these tools still had a weak linear 

relationship with EONR (r2 ≤ 0.39). This means the majority of the variability in EONR 

was not captured with N recommendation tools. Additional improvements could occur by 

incorporating other soil, weather, or management variables not included in this analysis 

that might better delineate N response. However, even with all the information, one might 

collect up to the point of a sidedress application, it would only account for about 1/3 of 

the growing season. Therefore, N recommendations will only be useful as “predictions” 

or “forecasts” that can be used to estimate corn N needs for the rest of the growing 

season.  
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Table 1. Methods associated with corn N recommendation tools included in this 
investigation. Tool descriptions include YG as yield goal, PPNT as pre-plant nitrate test, 
and PSNT 0 and PSNT 45 as the pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied 
at-planting, respectively. Variables used in calculations are Pop as plant population, OM 
as organic matter, and CEC as cation exchange capacity.  

Tools Approach & Calculation Reference 
Iowa YG Calculation using an expected yield and a soybean credit equal to 

the previous year yield up to 56 kg N ha-1.  

 

IA YG = 1.12† × [1.22 × YG] or 1.12† × [0.9 × YG] for fine-silty 

Hapludolls – up to 56 kg N ha
-1

 soybean credit 

Voss and 
Killorn, 1998 

Illinois 
YG 

Calculation using an expected yield and a soybean credit of 45 kg 
N ha-1.  

Nrec
 
= 1.12

†
 × [1.2 × YG – Ncredit] 

Hoeft and 
Peck, 1999 

Indiana 
YG 

Calculation using an expected yield and a soybean credit of 34 kg 
N ha-1.  

Nrec
 
= 1.12

† 
× [–27 + 1.36 × YG – Ncredit] 

Vitosh et al., 
1995 

Minnesota 
YG 

Calculation using an expected yield, organic matter content, and 
soybean credit of 22 to 45 kg N ha-1. Soils are grouped into either 
low or high organic matter content with 30 g OM kg-1 soil being 
the threshold (Table 1 of publication). 

Schmitt et al., 
2002 

Minnesota 
YG 

Calculation using an expected yield, plant population, and N 
supplying power of the soil based on organic matter and cation 
exchange capacity, and a soybean credit of 34 kg N ha-1.  

Nrec
 
= 1.12

†
 × [0.9 × YG + 4 × Pop – NOM-credit – Ncredit] 

Brown et al., 
2004 

Nebraska 
YG 

Calculation using an expected yield, measured or estimated 
inorganic soil NO3–N(0–120 cm), measured or estimated N supplied 
from organic matter, and a soybean credit of 39 or 50 kg N ha-1, 
for sandy and non-sandy soils, respectively. An estimated amount 
of N applied through irrigation is also credited. The N 
recommendation rate is adjusted for soil texture classification and 
time of N fertilizer application.  

Nrec
 
= 1.12

†
 × [35 + (1.2 × YG) – (8 × NO3–N(0–120 cm)) – 0.14 × YG 

× OM – NCredit] × Timeadj × Priceadj 

Shapiro et al., 
2008 

North 
Dakota 

YG 

The calculation is the measured soil NO3–N(0–60 cm) concentration 
(converted to mass) subtracted from the ND YG calculation and 
using a soybean credit of 45 kg N ha-1.  

Nrec
 
= 1.12

† 
× [1.2 × YG – NO3–N(0– 60 cm) – Ncredit] 

Franzen, 2010 

--- Continued next page --- 
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Table 1. (Continued). 
Tools Approach & Calculation Reference 

General 
PPNT 

The calculation is the measured soil NO3–N(0–60 cm) concentration 
(converted to mass) subtracted from MRTN‡. 

Nrec
 
= 1.12† 

× [MRTN
 ‡ 

– NO3–N(0–60 cm)] 

Bundy et al., 
1999 

MN 
PPNT 

The calculation is 60% of the measured soil NO3–N(0–60 cm) 
concentration (converted to mass) subtracted from MRTN‡. 

Nrec
 
= 1.12†

 × [MRTN
 ‡ 

– (0.60 × NO3–N(0–60 cm))] 

Kaiser et al., 
2016 

WI 
PPNT 

Calculation using the measured soil NO3–N concentration 
(converted to mass) in the top 90 cm (sample taken down to 60 cm 
and last 30 cm is estimated) subtracted from MRTN‡. To account 
for background soil NO3–N 56 kg N ha-1 is subtracted from the 
total profile NO3–N value.  

Nrec
 
= 1.12

† 
× [MRTN

‡
 – (ΣNO3–N(0–90 cm) – 50)], no adjustments 

made if the sum of NO3–N is below 56 kg N ha
-1

. 

Laboski et al., 
2012 

General 
PSNT 

MRTN or YG recommendation is adjusted proportionally based on 
if soil NO3–N(0–30 cm) concentration is below 25 mg kg-1 and above 
10 mg kg-1. The full recommended rate is applied if the soil NO3–

N(0– 30 cm) concentration is below 10 mg kg-1 and no additional N is 
applied if above 25 mg kg-1. 

Fernández et 
al., 2009 

IA PSNT Calculated using measured soil NO3–N(0– 30 cm) concentration and a 
critical limit of 25 mg kg-. To determine the N recommendation 
when NO3–N(0– 30 cm) is below the critical threshold, the difference 
between the critical threshold and the measured NO3–N(0–30 cm) 
concentration is multiplied by 8. The critical limit is reduced by 3 
to 5 mg kg-1 when spring precipitation is 20% above normal 
amounts.  

Nrec= 1.12
† 
×[(25 mg kg

-1
 – NO3–N(0– 30 cm) mg kg

-1
) × 8] 

Blackmer et 
al., 1997 

IN PSNT Calculation using yield goal and soil NO3–N(0– 30 cm) concentration 
(Table 2 of publication). 

Brouder and 
Mengel, 2003 

WI 
PSNT 

A soil N credit is calculated based on soil NO3–N(0– 30 cm) 
concentration and the yield potential of the soil. No N application 
is recommended if the measured soil NO3–N(0– 30 cm) concentration 
is above 21 mg kg-1. No N credits are applied if the soil NO3–N(0– 30 

cm) concentration is below 10 mg kg-1. (Table 6.6 of publication) 

Laboski et al., 
2012 

--- Continued next page --- 
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Table 1. (Continued). 
Tools Approach & Calculation Reference 

MRTN Yield response of N response trials spanning multiple years. 
From each trial, the yield is modeled as a function of N fertilizer 
and the N recommendation is determined by adjusting the price 
of corn and N fertilizer. Multiple N recommendations are 
grouped by geographical locations or soil properties.  

Sawyer et al., 
2006 

Canopy 
Reflectance 

Sensing 

Nitrogen recommendations are based on reflectance wavelengths 
measured with proximal sensors.  

Holland and 
Schepers, 
2010 



 

 

156 

Table 2. Weather and soil variables used in the complete dataset with calculations, methods, and associated citations.  
Complete Dataset 

Variables Calculations and Sample Depths Method References 
Weather 

Precipitation (PPT) Sum of daily rainfall, mm. Tipping bucket§ (Tremblay et al., 2012) 

Corn heat units (CHU) Σ(Ymax + Ymin)/2; Ymax and 
Ymin are the daily maximum and 
minimum temperatures, oC.  

Temperature 
sensor§ 

(Tremblay et al., 2012) 

Growing degree day (GDD) Σ((Ymax + Ymin)/2)-Tbase; Ymax, 
Ymin, Tbase are the daily 
maximum, minimum, and base 
temperatures, respectively. Tbase = 
10oC.  

Temperature 
sensor 

(Tremblay et al., 2012) 

Shanon diversity index 
(SDI) 

[-Σpi ln(pi)]/ln(n); where pi = 
Rain/PPT (daily rainfall relative to 
total rainfall in a given time; n = 
total number of days.  

Tipping bucket (Tremblay et al., 2012) 

Abundant and well-
distributed rainfall 
(AWDR) 

SDI × PPT Tipping bucket (Tremblay et al., 2012) 

Soil 
Clay 0-30, 0-60, 0-90 cm Pipette Soil Survey Staff (2014) 3A1 
Sand 0-30, 0-60, 0-90 cm Pipette Soil Survey Staff (2014) 3A1 
Silt 0-30, 0-60, 0-90 cm Pipette Soil Survey Staff (2014) 3A1 
Cation exchange capacity 
(CEC) 0-30, 0-60, 0-90 cm Ammonium 

acetate 
Soil Survey Staff (2014) 
4B1a1a1a1a-b1 

Total N (TN) 0-30, 0-60, 0-90 cm Dry combustion Soil Survey Staff (2014) 4H2a1 
Total carbon (TC) 0-30, 0-60, 0-90 cm Dry combustion Soil Survey Staff (2014) 4H2a1 

--- Continued next page --- 
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Table 2. (Continued). 

Parameter Calculations and Sample Depths Method References 

Total organic carbon 
(TOC)  0-30, 0-60, 0-90 cm Dry combustion Nelson and Sommers (1996) 

Total inorganic carbon 
(TIC) 0-30, 0-60, 0-90 cm 

Difference 
between Total C 
and total organic C 

 

Organic matter (OM) 0-30, 0-60, 0-90 cm Loss-on-ignition Soil Survey Staff (2014) 5A 

pH (Salt) 0-30, 0-60, 0-90 cm pH Meter Soil Survey Staff (2014) 
4C1a1a2 

pH (Water) 0-30, 0-60, 0-90 cm pH Meter Soil Survey Staff (2014) 
4C1a1a2 

Bulk Density (BD) 0-30, 0-60, 0-90 cm Core Soil Survey Staff( 2014) 3B6a 
† Daily temperature and precipitation measured using HOBO weather stations instrumentation (Onset Computer Corporation, 

Bourne, MA). 
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Table 3. Variables inputs used in the elastic net algorithm modeling. Within the table, X 
indicates parameters used for modeling and blank indicates parameters that were 
removed due to multicollinearity issues. Dashes indicate not applicable.  

Parameter Planting Tools Split Tools 
Weather   

PPT (Planting)†   
PPT (SD)‡ – X 
Corn Heat Units (Planting)   
Corn Heat Units (SD) – X 
GDD (Planting) X X 
GDD (SD) –  
SDI (Planting) X X 
SDI (SD) – X 
AWDR (Planting) X X 
AWDR (SD) –  

Soil   
Clay X (0-90 cm) X (0-90 cm) 
Sand X (0-90 cm)  
Silt  X (0-60 cm) 
Cation exchange capacity   
Total N   
Total carbon (C)  X (0-90 cm) X (0-90 cm) 
Total organic C   
Total inorganic C X (0-30 cm) X (0-30 cm) 
Organic matter X (0-30 cm) X (0-90 cm) 
pH (Salt)   
pH (Water) X (0-30 cm) X (0-30 cm) 
Bulk Density X (0-30 cm) X (0-30 cm) 

† Planting indicates data used 30 days prior to planting up to the date of 
planting 

‡SD indicates data used from the date of planting up to the date of sidedress
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Table 4. Normalized coefficients of influential variables selected by elastic net regression models for adjusting N recommendation 
tools. Includes weather variables calculated from 30 days prior to planting up to the date of planting (Planting) and from the date of 
planting to the date of a sidedress N fertilizer application (SD). These include cumulative precipitation (PPT), corn heat units (CHU), 
Shannon diversity index of rainfall (SDI), and abundant and well-distributed rainfall (AWDR). Soil variables include texture, total 
carbon (TC), total inorganic carbon (TIC), organic matter (OM), pH, and bulk density (BD). Soil variables were taken in depth 
increments of 0-30, 0-60, or 0-90 cm. Variables that were not in the final model have no value. The direction of the relationship is 
shown by the + or – sign. The four most frequent and influential soil and weather variables are bolded. Nitrogen recommendation 
tools included the State-Specific yield goal (YG), pre-plant nitrate test (PPNT), pre-sidedress nitrate test (PSNT) with 0 and 45 kg N 
ha-1 applied at-planting, MRTN, and canopy reflectance sensing using the Holland and Schepers algorithm.  

†Indicates that the sign of the intercept changes when data is normalized (scaled and centered). See Table 5 for non-normalized coefficients. 

Tool Intercept 
Planting 

GDD 
Planting 

SDI 
Planting 
AWDR 

SD 
PPT 

SD 
SDI 

TIC
30 

OM
30 

pH 
30 

BD 
30 

Silt 
60 

Clay
30 

Sand
30 

TC 
90 

    ------ mm ------  ------- g kg-1 ------- g 
cm-3 ------------ g kg-1 ------------ 

Planting  
MRTN +15.8†   –5.3 NA NA   +26.1      
General PPNT –40.3    NA NA         
MN PPNT –25.7    NA NA        +11.9 
WI PPNT –4.8† –1.5 –9.3 –0.1 NA NA +1.9  +7.1   –0.6 +8.5 +1.2 

Sidedress  
MRTN +19.2†     –10.4   +18.9      
State-Specific YG +23.4  –17.9  
General PSNT 0 –4.2              
IA PSNT 0 –25.4†  –1.9   –9.6  +1.9 +7.3 –2.4 +4.2   +7.0 
IN PSNT 0 +39.6 –6.5 –1.3  +1.3 –11.9  +6.1 +1.3 –0.3 +6.1   +3.8 
WI PSNT 0 –4.6              
Gen PSNT 45 –44.1  –7.9   –7.4   +10.6     +5.3 
IA PSNT 45 +33.5 +0.6 –5.0   –8.7   +8.3 –4.2 +2.8   +6.1 
IN PSNT 45 +2.2  –0.2   –8.1   +3.4 –5.4    +1.3 
WI PSNT 45 –38.5  –6.2 –4.4  –10.3   +14.4 +1.2 +2.5   +8.2 
Canopy Reflectance –49.5†  –5.9  –8.8 +2.1  +6.6 –7.1 +1.5 +9.8  +3.6 

Number of times variable are used 3 8 3 1 9 2 2 10 6 5 2 1 9 
Mean of absolute value  2.2 4.2 2.5 0.7 9.3 1.3 2.7 9.5 2.9 2.9 3.5 4.3 4.8 
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Table 5. Coefficients of weather and soil parameters used to adjust N recommendation 
tools.  

Tool Parameter Adjustments 
Planting  

MRTNadj = MRTN + 265.9 + 0.2 Planting_AWDR - 43.7 pH30 

General PPNTadj = General PPNT + 40.3 
MN PPNTadj = MN PPNT + 45.6 - 18.7 TC90  
WI PPNTadj = WI PPNT - 12.3 + 0.3 Planting_GDD + 34.3 Planting_SDI + 

0.3 Planting_AWDR - 6.2 TIC30 - 6.1 pH30 + 0.01 Clay90 - 
0.4Sand90 - 1.9 TC90 

Split  
MRTNadj= MRTN + 90.7 + 162.9 SD_SDI - 31.6 pH30 

State-Specific YG adj = State-Specific YG - 203.5 + 287.5 SD_SDI 

General PSNT 0adj = General PSNT 0 + 4.2 
IA PSNT 0adj = IA PSNT 0 - 5.2 + 22.7 Planting_SDI + 157.5 SD_SDI - 2.0 

OM30 - 12.1 pH30 + 19.8 BD30 - 0.2 Silt60 - 11.2 TC90 

IN PSNT 0adj = IN PSNT 0 - 142.5 + 0.2 Planting_GDD + 14.8 Planting_SDI 
- 0.01 SD_PPT + 194.7 SD_SDI - 6.6 OM30 - 2.1 pH30 + 

2.5BD30 - 0.3 Silt60 - 6.0 TC90 

WI PSNT 0adj = WI PSNT 0 - 4.6 
General PSNT 45adj = General PSNT 45 +38.7 +93.5 Planting_SDI + 121.5 SD_SDI 

- 17.5 pH30 - 8.5 TC90 

IA PSNT 45adj = IA PSNT 45 - 26.0 - 0.02 Planting_GDD + 58.8 
Planting_SDI + 142.0 SD_SDI - 13.7 pH30 + 34.4 BD30 - 0.2 
Silt60 - 9.7 TC90 

IN PSNT 45adj = IN PSNT 45 - 107.8 + 0.2 Planting_SDI + 132.3 SD_SDI - 5.7 
pH30 + 44.2 BD30 - 2.1 TC90  

WI PSNT 45adj = WI PSNT 45 +75.5 + 73.0 Planting_SDI + 0.1 
Planting_AWDR + 168.2 SD_SDI - 23.8 pH30 - 9.4 BD30 - 
0.1 Silt60 - 13.2 TC90 

Canopy Reflectanceadj = Canopy Reflectance - 58.0 + 70.0 Planting_SDI + 144.9 
SD_SDI - 20.9 TIC30 - 10.9 pH30 + 57.8 BD30 - 0.1 Silt60 - 
0.8 Clay90 - 5.8 TC90  
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Table 6. The performance of each N recommendation tool unadjusted and adjusted with soil and weather information as presented in 
Table 5. The precision and accuracy were evaluated using the coefficient of determination measured from a simple linear relationship 
between each tool and the economically optimal N rate (EONR), RMSE of the difference between a tool’s N recommendation and 
EONR, and the percentage of sites with ±30 kg N ha-1 of EONR or “reasonably close to EONR” (RC-EONR). The number of sites (n) 
included in the evaluation differed for each tool based on the availability of information to test the tool. Tools include the State-
Specific yield goal (YG), pre-plant nitrate test (PPNT), pre-sidedress nitrate test (PSNT) with 0 and 45 kg N ha-1 applied at-planting, 
MRTN, and canopy reflectance sensing using the Holland and Schepers algorithm.  

  Unadjusted Tools  Adjusted Tools 
N Recommendation Tool n P-Value r2 RMSE RC-EONR  P-Value  r2 RMSE RC-EONR 

   -kg N ha-1- --- % ---    -kg N ha-1- --- % --- 
At-Planting           

MRTN 36 0.53 0.01 77 39  <0.01 0.23 63 50 
General PPNT 47 <0.01 0.15 85 21  <0.01 0.15 75 30 
MN PPNT 47 0.01 0.13 80 32  <0.01 0.20 73 40 
WI PPNT 44 <0.01 0.16 71 34  <0.001 0.29 65 36 

Sidedress           
MRTN 36 0.45 0.02 72 42  <0.01 0.23 58 47 
State-Specific YG 43 0.04 0.10 74 37  <0.01 0.19 64 37 
General PSNT 0 49 0.01 0.13 70 43  0.01 0.13 70 41 
IA PSNT 0 49 <0.001 0.24 68 41  <0.001 0.39 56 55 
IN PSNT 0 49 0.21 0.03 83 24  <0.01 0.20 65 47 
WI PSNT 0 49 0.02 0.11 73 41  0.02 0.11 73 39 
General PSNT 45 49 0.07 0.07 92 29  <0.01 0.15 74 43 
IA PSNT 45 49 <0.01 0.14 79 47  <0.001 0.27 65 35 
IN PSNT 45 49 0.01 0.12 75 41  <0.01 0.18 70 47 
WI PSNT 45 49 0.13 0.05 90 35  <0.01 0.17 71 39 
Canopy Reflectance 49 0.01 0.13 85 22  <0.001 0.36 58 35 
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Fig. 1. The out-of-sample RMSE associated with models used to identify weather and 
soil information with and without two-way interactions for adjusting 15 N 
recommendation tools. No significant difference was observed between models with and 
without two-way interactions terms (α = 0.10). 
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Fig. 2. U.S. maps depicting spatial distribution of a) mean annual rainfall from the 
National Severe Storms Lab (NOAA), and b) mean annual temperature. The location of 
the 49 study sites from 2014 to 2016 within the eight states Iowa, Illinois, Indiana, 
Minnesota, Missouri, Nebraska, North Dakota, and Wisconsin are also overlaid on each 
map. This figure was adapted from Kitchen et al. (2017).
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Fig. 3. MRTN N recommendation at-planting compared to the economically optimal N rate (EONR) before (sites as black labels) and 
after (sites as blue labels) adjusting with soil and weather information (MRTNadj = MRTN + 265.9 + 0.2 Planting_AWDR - 43.7 pH). 
The unadjusted N recommendations are displayed as bubbles with their corresponding abbreviated state label (black text), and the 
adjusted N recommendation using soil and weather information is shown with a similar abbreviated state label (blue text). Both graphs 
display the same data except the bubbles are sized differently based on either a) the soil pH (0-30 cm) or b) the abundantly and well-
distributed rainfall (AWDR) calculated from 30 days prior to planting up to the date of planting. Two sites (IL and ND) are 
highlighted (red bubble for unadjusted and red abbreviated state label for adjusted) as examples of where soil pH effectively decreased 
N rate when the unadjusted tool overestimated EONR (ND), and where AWDR increased N rate based when the unadjusted tool 
underestimated EONR (IL). Solid 1:1 line is an indicator of a perfect predictor of EONR; the dashed lines indicated the area in which 
N recommendations were relatively close to EONR (or within ± 30 kg N ha-1 of EONR).  
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Fig. 4. Box and whisker plots showing the difference between each of the tools’ N 
recommendation and the economically optimal N rate (EONR) for tools before and after 
adjusting with soil and weather information. The median is reported by the value in the 
middle of the box. Notches on the side of each the box indicate the 95% confidence 
interval around the median. Limits of the box indicate the first and third quartile, 
whiskers indicate 1.5 × IQR, and small circles indicate outliers. Improvement is assessed 
by the decrease in the box and whisker length, and the box is centered on the zero line 
(dashed line).  
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Fig. 5. Nitrogen recommendation tools that showed “good” improvement after being 
adjusted with soil and weather information. “Good” means tools had an increase in r2 ≥ 
0.13 and an increase in the percentage of sites RC-EONR. Each tool’s N recommendation 
was compared to the economically optimal N rate (EONR) before (black labels and line) 
and after (blue labels and line) adjusting with soil and weather information. Tools include 
a) MRTN used at-planting, b) IA pre-sidedress soil nitrate test (PSNT) with 0 kg N ha-1 

applied at-planting, c) IN PSNT 0, d) General PSNT with 45 kg N ha-1 applied at-
planting, and e) canopy reflectance sensing. The 1:1 line is an indicator of a perfect 
predictor of EONR, the dashed lines indicated the area in which tools ± 30 kg N ha-1 of 
EONR or relatively close to EONR.  
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Fig. 6. Nitrogen recommendation tools that showed “mediocre” improvement after being 
adjusted with soil and weather information. “Mediocre” means that tools had an increase 
in r2 > 0 and ≤ 0.13. Each tool’s N recommendation was compared to the economically 
optimal N rate (EONR) before (black labels and line) and after (blue labels and line) 
adjusting with soil and weather information. Tools include a) WI pre-plant soil nitrate test 
(PPNT), b) MRTN used for a split N application, c) IA pre-sidedress soil nitrate test 
(PSNT) with 45 kg N ha-1 applied at-planting, and d) WI PSNT 45. The 1:1 line is an 
indicator of a perfect predictor of EONR, the dashed lines indicated the area in which 
tools ± 30 kg N ha-1 of EONR or relatively close to EONR.  
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Fig. 7. The N recommendation tools that showed no improvements after being adjusted 
for soil and weather information. Each tool’s N recommendation was compared to the 
economically optimal N rate (EONR) before (black labels and line) and after (blue labels 
and line) adjusting with soil and weather information. Tools include a) General pre-plant 
soil nitrate test (PPNT), b) General pre-sidedress soil nitrate with 0 kg N ha-1 applied at-
planting (PSNT 0), and c) WI PSNT 0. The 1:1 line is an indicator of a perfect predictor 
of EONR, the dashed lines indicated the area in which tools ± 30 kg N ha-1 of EONR or 
relatively close to EONR.  
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Chapter 5: Tool Fusion of Corn Nitrogen Rate Recommendations 

 for an Improved Prediction of Economically Optimal Nitrogen Rate 

 

ABSTRACT 

Improving corn (Zea mays L.) nitrogen (N) rate fertilizer recommendation tools 

can improve farmer’s profits and help mitigate N pollution. Previous efforts to improve N 

recommendation tools showed moderate improvement when using soil and weather 

information, but still only accounted for 39% of the variability around the economically 

optimum N rate (EONR). Another possible way to improve N recommendation is to 

combine tools. This could be thought of as “tool fusion.” The objective of this research 

was to improve N recommendations by combining N recommendation tools for both at-

planting and split applied timings. The evaluation was conducted on 49 N response trials 

that spanned eight states and three growing seasons. An economical optimal N rate 

(EONR) was calculated for N treatments that were applied either all at-planting or split 

with 45 kg N ha-1 applied at-planting with the remaining fertilizer N applied at the V9 

corn developmental stage. Models were developed using the elastic net and decision tree 

modeling approaches. For at-planting recommendation models, the EONR was regressed 

with the General yield goal, Wisconsin pre-plant soil nitrate test, and the Maize-N crop 

growth model as the explanatory variables. For a split applied N, EONR was regressed 

with the General yield goal, Wisconsin pre-sidedress soil nitrate test calculated with no N 

applied at planting, and canopy reflectance sensors using the Holland and Schepers 

algorithm as the explanatory variables. Regardless of the way tools were combined, using 

any combination of two or three N recommendation tools resulted in a decrease in RMSE 
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and an increase in the percentage of sites within 30 kg N ha-1. However, not all 

combinations of two tools improved the linear relationship with EONR, but there was 

also no observed decrease in the performance. The best results for an at-planting 

recommendation occurred when the three at-planting N recommendation tools were 

combined with all interactions included in the elastic net regression model. This 

combined recommendation tool had a significant linear relationship with EONR (r2 = 

0.46; P <0.001), an increase of 0.27 over the best tool evaluated alone. The best 

combination of N recommendation tools for a split application occurred when using the 

three split tools with a decision tree (r2 = 0.45; P <0.001), an increase of 0.18 over the 

best tool evaluated alone. This shows that this process of combining tools is a valid way 

to improve N recommendations to match EONR and thus could aid farmers in better 

managing N than using a single tool by itself.  
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INTRODUCTION 

Over the last six decades, significant public resources have been spent on 

developing corn N rate recommendation tools (Nafziger et al., 2004; Morris et al., 2018). 

The goal for each of these tools has been to instruct farmers as to the optimal fertilizer N 

rate necessary for maximizing production and minimizing environmental degradation. 

However, developing an N recommendation system is very complicated due to spatial 

and temporal differences in crop N need as a result of genetics, management practices, 

and growing conditions (Scharf et al., 2005; Tremblay et al., 2012). A variety of N 

recommendation tools have been developed by focusing on different aspects of the soil-

plant N dynamics. For example, soil samples used in-season allow for measurements of 

residual soil nitrate (NO3–N) as well as an estimate of the N supplying capacity for that 

soil to determine if sufficient N is available in the soil. Canopy reflectance sensing is 

another unique tool that measures the soil-plant N dynamic indirectly by assessing the 

plant’s biomass and color. A thorough review of many of these N recommendation tools 

can be found in Morris et al. (2018), and the strengths and weaknesses of some of the 

tools are summarized in Table 1.  

Many of these publicly-available tools’ performance has been assessed and been 

found not to be related to EONR, resulting in a mediocre performance across the U.S. 

Midwest (chapter 2). The effectiveness of these tools have been improved when soil and 

weather information was incorporated, but this only helps explain less than 40% of the 

variability of EONR (chapter 4; Bean et al., 2018). Improvements are still needed to 

maximize profits and minimize environmental damage associated with N loss to surface 

runoff, subsurface drainage, or to the atmosphere (Zhang et al., 2004; Hong et al., 2007; 
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Tremblay et al., 2012). Instead of spending additional time and resources developing new 

methods for determining corn N fertilizer rates, combining already developed methods 

might aid in improving the predictability of EONR. No one tool has been able to capture 

every aspect of the soil-plant N dynamic, with some being limited by soil or plant 

sampling constraints or fail to incorporate the spatial and temporal variability of weather 

and soil (Morris et al., 2018). Combing N recommendation tools together (“tool fusion”) 

that vary in methodology will allow for an N recommendation to account for multiple 

aspects of the soil-plant N dynamic not previously accounted for in a single tool.  

This tool fusion could be accomplished by following similar procedures used in 

other scientific fields for creating an ensemble of separate algorithms (Hansen and 

Salamon, 1990). An ensemble is merely the average of multiple predictive models, done 

to obtain one prediction, which is more accurate than the best predictive model used 

alone. There are multiple ways to create an ensemble which include: averaging 

predictions, taking a weighted average of predictions, or using other algorithms to 

determine which predictive models to include or exclude in the ensemble (Unger et al., 

2009; Mendes-Moreira et al., 2012; Zheng et al., 2014). This strategy has been found 

useful in many fields of science. A few specific examples include the use of ensembles 

for crop, climate, and economic models to improve the predictability by using vastly 

different models developed by many different researchers (Rosenzweig et al., 2013; 

Wallach et al., 2016). This same theory could also apply toward improving N 

recommendation tools. The objective of this research was to determine if N 

recommendations could be improved by combining multiple N rate determining methods 

for both at-planting and split applied timings.  
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MATERIALS AND METHODS 

Experimental Design 

This research was conducted as a part of a public-private collaboration between 

DuPont Pioneer and eight U.S. Midwest universities (Iowa State University, University 

of Illinois Urbana-Champaign, University of Minnesota, University of Missouri, North 

Dakota State University, Purdue University, University of Nebraska-Lincoln, and 

University of Wisconsin-Madison). Each state conducted research on two sites each year 

during 2014 to 2016, with a third site in Missouri in 2016, totaling 49 site-years. About 

half the sites were on farmers’ fields and the other half on University research stations. 

All states followed a similar protocol for plot research implementation including site 

selection, weather data collection, soil, and plant sample timing and collection 

methodology, N application timing, N source, and N rates, with specific details described 

in Kitchen et al. (2017). Treatments included N fertilizer rates between 0 and 315 kg N 

ha-1 applied either all at-planting or split where 45 kg N ha-1 was applied at-planting with 

the remaining fertilizer N applied at the V9 corn developmental stage.  

 

Determining the Economic Optimal Nitrogen Rate 

Grain yield in response to N fertilizer treatments was used to calculate the EONR 

on a site level as described in Kitchen et al. (2017), using proven quadratic or quadratic-

plateau modeling methods (Cerrato and Blackmer, 1990; Scharf et al., 2005). 

Economically optimal N rate values were calculated for all N fertilizer applied at-

planting, and N split applied between planting and a single top-dress application. The 

cost of N was $0.88 kg N-1, and the price of corn was $0.158 kg grain-1 (equivalent to 
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$0.40 lbs N-1 and $4.00 bu-1). The EONR was set to not exceed the maximum N rate (315 

kg N ha-1). Five of the seven irrigated sites had N applied through irrigation > 12 kg N ha-

1, and this was included in determining the EONR of these sites. The EONR results were 

used as the standard for evaluating all other N recommendation tools and their 

improvement. For 19 of the 49 sites, the at-planting and split EONR values were found 

statistically (P=0.05) to be same, within $2.50 ha-1 of each other. Thus for these the 

EONR used was the average of the two timings. This approach was also consistent with 

previous separate analysis using this same dataset (Bandura, 2017). 

 

Nitrogen Recommendation Tools Considered for Combinations 

General Yield Goal 

 The General YG method represents the approach established by Stanford (1973) 

where the expected yield was multiplied by a constant factor 0.021 kg N (kg grain)-1, or 

1.2 lbs N bu-1. An additional soybean (Glycine max) credit of 45 kg N ha-1 was subtracted 

from the final N recommendation for sites that followed a soybean crop. The expected 

yield for each site was determined using the average of the previous five-yr county corn 

yields for the respective county the site was within. The five-yr average was then 

adjusted based on the soil productivity of the predominantly mapped soil of each site, 

similar to that done by Laboski et al. (2012). This procedure classifies soil productivity as 

either low, medium, or high using soil texture, irrigation, depth to bedrock, drainage 

class, temperature regime, and available water content information. The yield of a site 

was then calculated by increasing the five-yr average yield for low, medium, and high 

soil productivity by 10, 20, or 30%, respectively. 
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WI PPNT 

The General PPNT was calculated using soil NO3–N samples taken to a depth of 

90 cm. Kitchen et al. (2017) detailed the sampling and NO3–N analysis protocols for the 

PPNT tool. The measured NO3–N (converted to mass) is subtracted from N 

recommendations developed using the Maximum Return to N (MRTN). The MRTN 

recommendation values for all sites were determined by using values obtained in 2016, as 

only a few states had updated the MRTN database during the three years of this project. 

The MRTN values for IA, IL, IN, MN, and WI were obtained from the online Iowa State 

Extension N rate calculator (cnrc.agron.iastate.edu; verified 5 Mar. 2017). The MRTN 

values for North Dakota were obtained from the North Dakota Corn Nitrogen Calculator 

(www.ndsu.edu/pubweb/soils/corn; verified 5 Mar. 2017). The price of corn to N 

fertilizer ratio used was 10:1. Since neither Missouri nor Nebraska currently have a 

compiled database and online tool for an MRTN recommendation, sites from these states 

(n = 13) use their respective YG based recommendation (Brown et al., 2004; Shapiro et 

al., 2008). Both the Missouri and Nebraska substitute for MRTN are calculated as 

follows: 

MO YG
 
= 1.12 × [0.9 × YG + 4 × Pop – NOM-credit – Ncredit]   [1] 

NE YG
 
= 1.12 × [35 + (1.2 × YG) – 0.14 × YG × OM – NCredit] × Priceadj     [2] 

were YG is the expected yield calculated using the same protocol described in the 

General YG, Pop is the plant population, NOM-credit is a measure of the soil N supplying 

capacity based on organic matter and cation exchange capacity, Ncredit
 is a soybean of 

either 34, 39, or 50 kg N ha-1 for Missouri, Nebraska sandy, or Nebraska non-sandy soils, 
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respectively. The Nebraska yield goal utilized OM for organic matter and Priceadj
 is the 

adjustment factor for the price of corn and N fertilizer. All calculations were done in 

English units and converted to SI by using a factor of 1.12.  

Two of the 49 sites (2016 Nebraska sites) did not complete PPNT sampling, as 

such the PPNT was estimated from previous year’s locations data. This was justified as 

one of the Nebraska sites was on the same research station as the 2014 and 2015 

Nebraska sites. The other Nebraska site was conducted on a sandy soil, and minimal 

NO3–N would be measured, similar to the 2014 and 2015 Nebraska sandy locations. The 

WI PPNT is not recommended for use in sandy soils, however, to maintain all 

observations, the four sandy locations were included in the WI PPNT, contrary to what 

was reported in chapter 2.  

 

Maize-N 

The Maize-N crop model version 2016.6.0 (Setiyono et al., 2011) was used in 

generating an N fertilizer recommendation for all sites for an at-planting N 

recommendation. A total of 30 years of historical data for each site was obtained from 

DuPont Pioneer using a proprietary method for interpolating between multiple weather 

stations around each site. These weather data mostly came from public National Service 

Storms Lab (NOAA) weather stations, supplemented with data observed by DuPont 

Pioneer’s internal weather network (HOBO stations). The weather data were collected 

within the acceptable range of 50 to 100 km radius as listed in the Maize-N user guide. 

Explicit information required by the Mazie-N crop growth model by each site included 

management records (e.g. date of planting, plant population, average historical yield, 
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tillage operations, and previous crop) and soil information (e.g. bulk density, % organic 

matter, rooting zone depth, soil pH, and soil NO3–N).  

 

IA PSNT 

 The IA PSNT was calculated using soil NO3–N samples taken to a depth of 30 cm 

at the V5 ± 1 corn development stage. Soil samples were taken from plots that received 0 

kg N ha-1 and averaged together to obtain a site level NO3–N concentration. The site level 

NO3–N concentration was used to determine the amount of N to apply as an in-season N 

application. Values above the 25 mg kg-1 critical limit received no additional N. To 

determine the N recommendation when NO3–N is below the critical limit, the difference 

between the critical limit and the measured NO3–N concentration is multiplied by 8. The 

critical limit is reduced by 3 mg kg-1 when spring precipitation (April to June) is 20% 

above normal amounts.  

 

Canopy Reflectance Sensing 

Canopy Reflectance measurements were obtained using the RapidSCAN CS-45 

(Holland Scientific, Lincoln NE, USA) the same day or just prior to the split N 

application. For the majority of sites, this was done at the ~V8-V10 corn development 

stage. Measurement details are described in Kitchen et al. (2017). The Holland and 

Schepers algorithm [HS; Holland and Schepers (2010)] was used to calculate an N 

fertilizer recommendation derived from these reflectance measurements. This algorithm 

is based on a sufficiency index calculated using measurements from both well-fertilized 

corn (“N-Rich”) and minimally-fertilized corn that is referred to here as the “target” corn:  
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      [3] 

where SI is the sufficiency index; VITarget is the vegetative index obtained from averaging 

measurements from all plots that received 0 kg N ha-1 at-planting (which is different from 

previous chapters where results were reported based on plot that received 45 kg N ha-1 at 

planting ), and VIN-Rich is the vegetative index obtained by averaging all plots for two of 

the high N treatments (225 and 270 kg N ha-1 applied all at-planting). The NDRE 

vegetative index was calculated using the red-edge (730 nm; RE) and near-infrared (780 

nm; NIR) wavelengths as shown: 

      

 [4] 

Fertilizer N recommendations were then calculated as described in Holland and Schepers 

(2010) as follows: 

     [5] 

where NRec is the calculated N fertilizer recommendation; MZi is a scaling value (0 ≥ MZi 

≤ 2) used to adjust the N recommendation based on areas of high or low yield 

performance; NOpt was the base N rate, which is determined by the farmer; NPreFert is the 

amount of N already applied prior to sensing; NCRD are N credits associated with the 

previous crop, NO3–N in irrigation water, manure, or residual NO3–N; NComp is an 

optional compensation factor for growth limiting conditions; SI is the sufficiency index; 

and ΔSI is a value to define the response range. For this analysis, MZi
 was left as the 

default value of 1.0, Nopt was set as the recorded farmer's N rate for each site, and NPreFert 

= 45 kg N ha-1. With no supportive information relative to NCRD and NComp, these two 
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parameters were set to zero for all sites. The recommended value of 0.30 was used for 

ΔSI, which provides a response range between the measured vegetative index value 

between 0.70 and 1.00.  

 

Tool Fusion  

 Tool fusion was accomplished using either elastic net regression (Zou and Hastie, 

2005) or decision tree regression models (Questier et al., 2005). For the elastic net based 

tool fusion, a series of ensemble models were created with tools used only for making an 

N recommendation at-planting (at-planting fused tool) and others for in-season N 

recommendations (split fused tool). Three N recommendation tools were selected for 

developing the at-planting and split fused tools. This analysis was limited to only three 

tools, to ensure that these methods would still be practical for a farmer to utilize without 

having to acquire excessive information. The at-planting fused tools were created using 

two and three tool combinations of the General yield goal (YG), Wisconsin pre-plant soil 

nitrate test (WI PPNT), and the Maize-N crop growth model. The split fusion tools were 

created using two and three tool combinations of the General YG, Iowa pre-sidedress soil 

nitrate test calculated with 0 kg N ha-1 applied at planting (IA PSNT 0), and canopy 

reflectance sensing based on the Holland and Schepers algorithm. Ideally, the best tool 

fusion would occur when N recommendation are diverse and accurate—similar to 

requirements for ensembling in machine learning (Hansen and Salamon, 1990). 

Following these guidelines, each of the tools was selected because their methods for 

determining an N rate had unique properties and inputs, with the majority of these tools 
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also identified as some of the more accurate tools for predicting EONR as described in 

chapter 2. 

 The elastic net regression based fused tools were developed with the EONR 

regressed as a function of the N recommendation tools. For each at-planting and split 

fused tool, the N recommendation tools were evaluated under two scenarios. The first 

was with using only the main effects, and the second was using the main effects and all 

possible three-way and two-way interactions when applicable. For example, the at-

planting fused tools without interaction terms included 1) General YG + WI PPNT, 2) 

General YG + Maize-N, 3) WI PPNT + Maize-N, 4) General YG + WI PPNT + Maize-N. 

Additional fused tools were created where the interaction terms were added to each of 

these ensembles. This process was repeated using the previously described three N 

recommendation tools selected for the split ensembles.  

The elastic net used for tool fusion was fit with the ‘caret’ package using R 

Statistical Software (R Core Team, 2016; Kuhn, 2017). The elastic net was optimized by 

tuning the alpha and lambda parameters using a tenfold cross-validation repeated five 

times, where for each fold of the cross-validation the data were split randomly into ten 

folds. Nine of the folds were selected as a training dataset to fit a model, and the 10th fold 

was used as the testing dataset to calculate the accuracy of the predicted model. The test 

statistic used to determine accuracy was the root-mean-square error (RMSE) between the 

predicted values and actual values of the 10th fold. A total of 50 RMSE values were 

calculated for each combination of alpha and lambda values. The best combination of 

these tuning parameters was determined as the lowest average RMSE, which was then 

used to determine the coefficients necessary for creating each fused tool. 
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For both N application timings, a split decision tree modeling approach for tool 

fusion was also utilized. Regression tree models were created using the ‘caret’ and ‘rpart’ 

package in R (Therneau and Atkinson, 2018). The EONR was fit as a function of the 

three N recommendation tools for both at-planting and split. Each tree was developed 

where the variables were selected at each node of the tree to where the greatest 

homogeneity of the data would be explained (Questier et al., 2005). The homogeneity 

was measured as the absolute deviation from the mean.  

 

Determining Tool Improvement 

Three different metrics were used to evaluate the performance of each elastic net 

and decision tree based fused N recommendation tool across all sites. First, the elastic net 

or decision tree fused tools were compared to the EONR across all sites using a simple 

linear regression model and the performance was based on the coefficient of 

determination. Secondly, the average and the RMSE of the difference between a fused 

tool’s N recommendation and EONR were used to evaluate accuracy. Lastly, the 

performance of each fused tool was examined by determining the percentage of sites 

where the tool’s N recommendation came within ±30 kg N ha-1 of EONR. Sites within 

this range of EONR were considered reasonably close to EONR (RC-EONR). This value 

around EONR was chosen based on this value to be found reasonable and practicable for 

evaluating a tool’s successful performance for generating an N fertilizer recommendation 

(Sawyer, 2013; Laboski et al., 2014; Sela et al., 2017).  
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RESULTS AND DISCUSSION 

Combining Nitrogen Recommendation Tools 

 The strengths of using the elastic net or decision tree based approaches for 

combing tools is that they can filter out any tools that do not improve the accuracy of the 

model. For three of the eight elastic net models, at least one N recommendation tool term 

(main or two-way interaction) in the model was not important. Of these three instances, 

the Maize-N tool was not considered important for two models, when modeling the WI 

PPNT and Maize-N with and without interactions (Table 2). The other instance was the 

exclusion of the two-way interaction between the General YG and IA PSNT 0 (Table 2). 

For these three elastic net models, there was  minimal improvement (increase in r2 ≤ 

0.05) when compared to the performance of the best tool evaluated alone (Table 3). This 

suggests that merely combining any two tools in an additive way will not improve all 

metrics of performance for N recommendations, but careful paring based on how the 

tools are interactively related to EONR may. For example, the WI PPNT on average 

came close to EONR and had a positive linear relationship with EONR (Fig. 2b), 

whereas, the Maize-N model greatly underestimated EONR but had no relationship with 

EONR (Fig. 2c). The combination of these tools had little improvement (Fig. 2f), but 

when the General YG, which greatly overestimated EONR, was combined with the 

Maize-N model there was a much greater improvement (Fig. 2e). Even though some pairs 

of tools did significantly improve the performance of predicting EONR, the combinations 

did cause the average difference between N recommendations and EONR to be close to 0 

kg N ha-1 and a decrease in RMSE (Table 3). There was no observed performance loss by 

combining tools.  
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Performance of At-Planting Elastic Net Based Tool Fusion 

 The best improvement using the elastic net for at-planting tools occurred when all 

three N recommendations were combined and all three- and two-way interacting terms 

and the main effects were included in the model (r2 =0.46 ; P <0.001). In comparison to 

previous methods for evaluating and improving N recommendation tools using this 

dataset (chapters 2 and 4), this was the best predictor of EONR. By incorporating soil and 

weather information, the best improvement only produced an r2 = 0.29 (P <0.001) for at-

planting tools (chapter 4). Here, the majority of combinations of tools used at-planting 

showed a similar or greater coefficient of determination (Table 3).   

The best single combination of two tools was the Maize-N crop growth model and 

the General YG. When used alone the Maize-N underestimated EONR while the General 

YG overestimated EONR (Table 3; Fig. 2a & 2c). By themselves, the General YG and 

Maize-N model had only 14 and 18% of their sites RC-EONR, respectively. But these 

increased to 41% when combined. The Maize-N crop growth model was the only at-

planting tool included in this analysis that was able to predict non-responsive sites (Fig. 

2c). Incorporating the Maize-N model into ensembles with the General YG helped in 

reducing the N recommendations for those non-responsive sites, where the General YG 

greatly overestimated EONR. Accounting for these sites helped to improve the linear 

relationship between the elastic net based fused tool and EONR compared to tools 

evaluated alone.  
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Performance of Split Elastic Net Based Tool Fusion 

 Similarly to the at-planting elastic net models, the best improvement occurred 

when all three split N recommendation tools were combined by using all three- and two-

way interaction terms and the main effects (r2 = 0.42; P <0.001). Compared to previous 

efforts of improving tools by incorporating soil and weather information, the best 

improvement was the IA PSNT 0 (r2 = 0.39 P <0.001; chapter 4). When adjusted with 

soil and weather information, the IA PSNT 0 resulted in 55% of sites RC-EONR. In 

contrast, the best-fused tool only had 47 % of sites RC-EONR. Hypothetically, an 

additional improvement to the fused tool might be obtained by adjusting the fused tool 

with soil and weather information, as was done in chapter 4.  

 

Performance of Decision Tree Based Tool Fusion 

 The at-planting decision tree fused tool resulted in an r2 = 0.37 (P <0.001), which 

was not as good a performance as the best elastic net fused tool. However, this method 

did have the lowest RMSE and the highest percentage of sites RC-EONR (Table 3). A 

result of the decision tree method is that N recommendations are no longer a span of 

continuous rates. Instead, the decision tree bins the N recommendations based on the 

number of end nodes in the tree. In the case of the at-planting fused tool, this resulted in 

five different N rate recommendations (Fig. 5). For each N recommendation, many of the 

sites either under- or overestimating EONR, but the average came very close to EONR 

(Fig. 2l). For the at-planting decision tree fused tool, only two of the three N 

recommendation tools (General YG and WI PPNT) were used. The Maize-N model was 

not helpful in creating homogenous groups; as such, the modeling procedure did not 
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include it. This corresponds with some of the elastic net models in which the Maize-N 

was also not selected in the final model (Table 2).  

In contrast to the at-planting decision tree, the split decision tree fused tool 

resulted in an r2 = 0.45 (P <0.001; Fig. 4l), which was the best performance of any split 

fused tool (Table 3). Also, this method had the lowest RMSE and the second highest 

percentage of sites RC-EONR (Table 3). This method used all three N recommendation 

tools in the model (Fig. 6). The downside to using this particular decision tree method is 

that interaction terms could not be used in the model, which was shown to be very helpful 

for many of the elastic net models.  

  

 Was this Improvement Enough? 

The best improvement observed from this analysis (r2 =0.46; P <0.001) was much 

better than the previous analysis used to adjust recommendations with soil and weather 

information (r2 = 0.39; P <0.001; chapter 4). The best improvement observed with tool 

fusion was similar to what was reported for the relationship between the Pennsylvania 

PSNT and EONR (r2 = 0.48; Schmidt et al., 2009). However, further improvement is 

necessary to match the performance reported for other N recommendation tools. Sela et 

al. (2017) showed that the Adapt-N crop growth model had an r2 = 0.56. Scharf et al. 

(2006) and Schmidt et al. (2009) in two separate studies showed that chlorophyll meter 

derived N recommendations were more strongly related with EONR (r2 between 0.53 to 

0.76).  
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CONCLUSION 

 Efforts to improve N recommendations by combining two or three different N 

recommendations was successful and explained between 42 and 46% of the variability 

around EONR. The best improvements occurred when three tools were combined with all 

interaction terms. Nitrogen recommendations based on two or more tools showed an 

improvement that was much greater than the sum of the performance of each 

recommendation. An alternative way of combining N recommendations using a decision 

tree method was explored. Fused tools from this method were found to be as accurate as 

elastic net based fused tools. An example of which is the split decision tree where it 

explained 45% of the variability around EONR and had the lowest RMSE value of 53 kg 

N ha-1. It also had one of the highest percentages of sites RC-EONR (45%).  

 Combining two N recommendation tools could improve the performance of N 

recommendations tools. There was no observed decrease in performance by combining 

these tools, however, while this theory has been proven useful, additional validation is 

necessary to determine if these combinations work on independent data sets. Additional 

improvement could occur by replacing the Maize-N model with another N 

recommendation tool, which by itself performed better. Including more than three N 

recommendation tools in the model could also improve the performance of both the 

decision trees and elastic net fused tools. However, deploying too many recommendation 

tools could result in farmers ignoring the approach because too much information would 

be required.  

 Another feasible method for improving the elastic net and decision tree fused 

tools would be to adjust them using soil and weather information. A previous analysis 



 

187 
 

showed that the evenness of rainfall between planting and the time of sidedress was able 

to explain 22% of the variation around EONR (chapter 4). Using this weather parameter 

could help to provide additional adjustments to the fused tools. It is not possible to 

explain all of the variability around EONR especially when recommendations are made 

early in the growing season without knowing if the following growing conditions would 

optimize or limit plant growth. However, the process of combining multiple tools 

provides an improved method of estimating EONR compared to using a single N 

recommendation tool.  
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Table 1. Strengths and weaknesses of N fertilizer recommendation tools included in this 
investigation (YG, yield goal; PPNT, pre-plant nitrate test; PSNT, pre-sidedress nitrate 
test). 

Tools Pros Cons Citations 

Yield Goal 

Mass balance approach that is 
easily calculated. Nitrogen 
recommendations can be adjusted 
to account for soil N using credits 
(previous crop and residual soil 
NO3–N measurements). 

Poor relationships 
observed between YG 
calculations and EONR 
due to the uncertainty of 
final yields, management, 
previous crop effects, soil 
N supply, corn and 
fertilizer prices, and 
fertilizer use efficiency. 
Additionally, this method 
does not account for 
within-field variability due 
to soil and water 
properties.  

Stanford, 1973; 
Lory and 

Scharf, 2003; 
Sawyer et al., 

2006  

PPNT 

Soil NO3–N levels can be 
assessed for residual N and N 
supplied by manure that could be 
available for plant use. Can be 
used as an adjustment to other N 
recommendations. Sampling can 
be taken during a lull in seasonal 
work. 

Not a useful tool in more 
humid regions due to N 
loss during wet springs. 
Inaccurate test results due 
to varying weather 
affecting N mineralization 
rates. Additional cost and 
labor required. Requires 
deep sampling, down to 
0.60 m or deeper.  

 
Magdoff et al., 
1984; Bundy 
and Andraski, 

1995; Schröder 
et al., 2000; 

Lory and 
Scharf, 2003; 
Melkonian et 

al., 2007 

PSNT 

Has potential for better 
accounting of N loss from 
leaching or denitrification and N 
inputs from mineralization than 
PPNT. Successful at identifying 
N-sufficient sites. 

Additional in-season 
sampling required and 
limited by wet conditions 
and short laboratory turn 
around. Limited by N loss 
due to temperature and 
rainfall immediately before 
and after sampling. Does 
not account for within-field 
spatial variability that 
results from variable soil 
and water interactions. 

Magdoff et al., 
1984; Fox et 

al., 1989; 
Magdoff, 

1991; Andraski 
and Bundy, 

2002 

---- Continued next page --- 
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Table 1. (Continued). 
Tools Pros Cons Citations 

MRTN 

Nitrogen response trials are used 
to determine N rates. Data are 
easily updated with additional 
experimental N-rate trials. 
Calculations reflect current 
economic status by including the 
price of fertilizer and corn. 
Provides a range that is within 
$1.00 that farmers can use 
depending on their risk level. 

Does not address the issue 
of the year to year 
temperature or rainfall 
variability. Cannot predict 
site-specific N 
requirements and unlikely 
to accurately estimate 
EONR for each specific 
environment. Does not 
account for within-field 
spatial variability due to 
soil and water properties. 
Must estimate what the 
price of corn will be at the 
end of the season. 

Nafziger et al., 
2004; Sawyer 
et al., 2006; 

Melkonian et 
al., 2007 

Crop 
Growth 
Models 

Estimates possible weather 
scenarios during a growing 
season to minimize N loss and 
predict N supplied by the soil. 
Non-static N recommendation 
based on the genetic, 
environmental, and management 
conditions. 

Initial inputs require time 
and money. Models may 
need to be calibrated to 
specific climate and soil 
conditions. Many 
parameters are estimated 
or generalized. 

Setiyono et al., 
2011; Sawyer, 
2013; Morris et 

al., 2018 

Canopy 
Reflectance 

Sensing 

Nitrogen recommendations can 
be adjusted for plant response to 
soil and water variability within 
fields. Provides a real-time 
assessment of corn N status 
during the season. Various 
algorithms allow for adaptability 
for different conditions. Works 
well with high soil variability or 
in scenarios of uncertain N. 

Expensive upfront costs 
for sensors and 
applicators. Needs a high-
N area to normalize 
reflectance values. The 
sensor is not sensitive to 
within field changes in 
crop height. Hard to “see” 
slight N deficiency. 
Confounded by other plant 
stresses (e.g., sulfur). The 
amount of crop canopy 
closure affects readings, 
excessive soil exposure 
resulting in a diluted index 
value and a closed canopy 
results in saturated 
measurements. 

Shanahan et 
al., 2008; 

Holland and 
Schepers, 

2010; Kitchen 
et al., 2010; 

Franzen et al., 
2016 
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Table 2. The elastic net model coefficients for at-planting and split fused N 
recommendation tools with and without interactions. The “:” between tools indicates 
when interactions and main effects were included in the model.  

Tool Parameter Adjustments 
Planting  
General YG + WI PPNT  188 - 0.58 General YG + 0.71 WI PPNT 

General YG + Maize-N  438 - 1.5 General YG + 0.59 Maize-N 

WI PPNT + Maize-N  61 + 0.67 WI PPNT 

General YG + WI PPNT 
+ Maize-N 

305 - 1.19 General YG + 0.50 WI PPNT + 0.42 Maize-N 

General YG:WI PPNT  1009 - 4.08 General YG - 4.36 WI PPNT + 0.02 General 
YG x WI PPNT 

General YG:Maize-N  333 - 1.08 General YG + 1.84 Maize-N - 0.0048 General 
YG x Maize-N 

WI PPNT:Maize-N  65 + 0.65 WI PPNT 

General YG: 
WI PPNT:Maize-N 

530 - 2.0 General YG - 1.25 WI PPNT + 0.87 Maize-N + 
0.0065 General YG x WI PPNT - 0.0027 General YG x 
Maize-N + 0.0022 WI PPNT x Maize-N - 0.0000013 MO 
YG x WI PPNT x Maize-N 

Split  
General YG + IA PSNT 0 171 - 0.36 General YG + 0.55 IA PSNT 0 

General YG + Canopy 
Reflectance  

193 - 0.32 General YG + 0.32 Canopy Reflectance 

IA PSNT 0 + Canopy 
Reflectance  

80 + 0.38 IA PSNT 0 + 0.22 Canopy Reflectance 

General YG + IA PSNT 0 
+ Canopy Reflectance 

153 - 0.29 General YG + 0.35 IA PSNT 0 + 0.19 Canopy 
Reflectance  

General YG:IA PSNT 0 172 - 0.39 General YG + 0.59 IA PSNT 0 

General YG:Canopy 
Reflectance  

-194 + 1.24 General YG + 2.99 Canopy Reflectance - 0.01 
General YG x Canopy Reflectance  

IA PSNT 0:Canopy 
Reflectance  

92 + 0.27 IA PSNT 0 + 0.11 Canopy Reflectance + 0.00094 
IA PSNT 0 x Canopy Reflectance 

General YG:IA PSNT 
0:Canopy Reflectance 

0 + 1.9 Gen. YG + 0.96 IA PSNT 0 + 3.79 Canopy 
Reflectance - 0.0005 Gen. YG x IA PSNT 0 - 0.015 
General YG x Canopy Reflectance - 2.53 IA PSNT 0 x 
Canopy Reflectance + 0.000003 Gen. YG x IA PSNT 0 x 
Canopy Reflectance 
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Table 3. Elastic net and decision tree fused tools used to predict the economically optimal N rate (EONR). The coefficient of 
determination calculated by regressing EONR as a function of each tool or fused tool N recommendation. The precision and accuracy 
of each N recommendation tool were evaluated using the average difference (N recommendation tool – EONR), RMSE of the 
difference between a tools’ N recommendation and EONR, and the percentage of sites ±30 kg N ha-1 of EONR or “relatively close to 
EONR” (RC-EONR). The number of sites (n) included in the evaluation†. The number of tools (p) used in each regression or decision 
tree model. Tools include the General yield goal (YG), WI pre-plant nitrate test (PPNT), IA pre-sidedress nitrate test (PSNT) with 0 
kg N ha-1 applied at-planting, Maize-N crop growth model, and canopy reflectance sensing using the Holland and Schepers algorithm. 
Dashes indicate not applicable. 

  Main Effects Only   Main and Interaction Effects 

Tools n p r2 Average RMSE 
RC-

EONR  p r2 Average RMSE 
RC-

EONR 
    ----- kg N ha-1 ---- %    ----- kg N ha-1 ---- % 

At-Planting             
General YG 49 1 0.10 58 117 14  - - - - - 
WI PPNT† 49 1 0.19 –7 76 35  - - - - - 
Maize-N 49 1 0.00 –44 116 18  - - - - - 
General YG + WI PPNT  49 2 0.29 0 68 35  3 0.37 0 64 33 
General YG + Maize-N  49 2 0.33 0 67 41  3 0.37 0 64 41 
WI PPNT + Maize-N  49 2 0.20 0 73 31  3 0.20 0 73 31 
General YG + WI PPNT + Maize-N 49 3 0.39 0 64 41  7 0.46 0 60 41 
Decision Tree (Fig. 5) 49 2 0.37 0 53 43  - - - - - 
Split             
General YG 49 1 0.13 65 113 18  - - - - - 
IA PSNT 0 49 1 0.24 –25 68 41  - - - - - 
Canopy Reflectance‡ 49 1 0.19 –23 73 29  - - - - - 
General YG + IA PSNT 0 49 2 0.29 0 61 45  3 0.29 0 61 45 
General YG + Canopy Reflectance  49 2 0.25 0 63 37  3 0.33 0 59 43 
IA PSNT 0 + Canopy Reflectance  49 2 0.26 0 63 41  3 0.26 0 62 43 
General YG + IA PSNT 0 + Canopy Reflectance 49 2 0.31 0 61 41  7 0.42 0 55 47 
Decision Tree (Fig. 6) 49 3 0.45 0 53 45  - - - - - 

†Values are different for WI PPNT than from chapter 2. Included sandy soil, contrary to the WI PPNT recommendations, and filled in two 2016 NE sites missing 
soil NO3–N values with the average of the 2014 and 2015 data from nearby sites. 

‡ Canopy reflectance sensing was calculated using plots that received 0 kg N ha-1 at-planting rather than what was used in previous chapters of 45 kg N ha-1 at-
planting. 



 

196 
 

 

Fig. 1. Box and whisker plots showing the difference between the N recommendation 
tools used at-planting and the economically optimal N rate (EONR). General yield goal 
(YG), Wisconsin pre-plant soil nitrate test (WI PPNT), and the Maize-N crop growth 
model N recommendation tools were used to create eight combinations of elastic net 
models, four with and four without interaction terms and a decision tree. Models marked 
with “:” indicates fused tools developed with all combinations of main effects and 
interaction terms. The median is reported by the value in the middle of the box. Notches 
on the side of each box indicate the 95% confidence interval around the median. Limits 
of the box indicate the first and third quartile, whiskers indicate 1.5 × IQR, and small 
circles indicate outliers. 
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Fig. 2. At planting N recommendation tools evaluated relative to the economically 
optimal N rate (EONR). Tools included General yield goal (YG), Wisconsin pre-plant 
soil nitrate test (WI PPNT), and the Maize-N crop growth model. Graphs a-c) are tools 
evaluated alone (green), d-g) are combined using only main effects (orange), h-k) are 
combined using both main effects and interaction terms, and l) decision tree (red). Elastic 
net based fused N recommendation tools are marked with “:” indicates all combinations 
of main effects and interaction terms. The 1:1 line is an indicator of a perfect predictor of 
EONR, the dashed lines indicated the area in which tools ± 30 kg N ha-1 of EONR or 
relatively close to EONR.  
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Fig. 3. Box and whisker plots showing the difference between the tools used at sidedress 
and the economically optimal N rate (EONR). General yield goal (YG), Iowa pre-
sidedress soil nitrate test with 0 kg N ha-1 applied at-planting (IA PSNT 0), and canopy 
reflectance sensing N recommendation tools were used to create eight combinations of 
elastic net models, four with and four without interaction terms and a decision tree. 
Elastic net based fused N recommendation tools are marked with “:” indicates models 
with all combinations of main effects and interaction terms. The median is reported by 
the value in the middle of the box. Notches on the side of each box indicate the 95% 
confidence interval around the median. Limits of the box indicate the first and third 
quartile, whiskers indicate 1.5 × IQR, and small circles indicate outliers. 
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Fig. 4. Sidedress N recommendation tools evaluated relative to the economic optimal N 
rate (EONR). Tools included General yield goal (YG), Iowa pre-sidedress soil nitrate test 
with 0 kg N ha-1 applied at-planting (IA PSNT 0), and canopy reflectance sensing. Graphs 
a-c) are tools evaluated alone (green), d-g) are combined using only main effects 
(orange), h-k) are combined using both main effects and interaction terms, and l) decision 
tree (red). Elastic net based fused N recommendation tools are marked with “:” indicates 
all combinations of main effects and interaction terms. The 1:1 line is an indicator of a 
perfect predictor of EONR, the dashed lines indicated the area in which tools ± 30 kg N 
ha-1 of EONR or relatively close to EONR.  
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Fig. 5. The resulting decision tree model used to predict the economically optimal N rate 
(EONR) at-planting using the General yield goal (YG) and Wisconsin pre-plant soil 
nitrate test (WI PPNT). The number of sites (n) used to make up each terminal node of 
the tree.  
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Fig. 6. The resulting decision tree model used to predict the economically optimal N rate 
(EONR) for an in-season N application using the General yield goal (YG), Iowa pre-
sidedress soil nitrate test with 0 kg N ha-1 applied at-planting (IA PSNT 0), and canopy 
reflectance sensing using the Holland and Schepers algorithm. The number of sites (n) 
used to make up each terminal node of the tree.  
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Appendix A 

 Supplemental Material for Chapter 1 
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Table A1. Mean values for partial profit, environmental, and total cost of N recommendations tools relative to economically optimum 
N rates (EONR) for at-planting and split N applications across all sites. Tools include yield goal (YG), pre-plant nitrate test (PPNT), 
pre-sidedress nitrate test (PSNT) with 0 and 45 kg N ha-1 applied at-planting, MRTN, Maize-N crop growth model, and canopy 
reflectance sensing using the Holland and Schepers algorithm. Tools with a significant relationship with EONR (Table 3) are bolded. 
Dashes indicate not applicable. 

--- Continued next page --- 

At-Planting  Split 
N Recommendation Tool Partial Profit Environmental Cost  Total Cost   Partial Profit Environmental Cost  Total Cost  
 --------Mean $ ha-1 (Relative to EONR)--------  --------Mean $ ha-1 (Relative to EONR)-------- 
Farmer NR –55 –40 –95  –51 –70 –121 
General YG –89 –119 –208  –87 –155 –241 
IN YG –96 –153 –249  –95 –193 –288 
MN YG –85 7 –79  –72 –17 –89 
MO YG –95 –135 –230  –87 –172 –259 
NE YG –91 13 –78  –98 25 –73 
State-Specific YG† –67 –36 –103  –56 –61 –117 
General PPNT –102 55 –47  - - - 
MN PPNT –81 39 –42  - - - 
ND PPNT –96 –20 –116  - - - 
WI PPNT –61 9 –52  - - - 
MRTN –50 –24 –74  –50 –48 –98 
Maize-N –201 32 –169  –196 12 –184 
General PSNT 0 - - -  –63 –8 –71 
IA PSNT 0 - - -  –72 23 –49 
IN PSNT 0 - - -  –64 –85 –149 
WI PSNT 0 - - -  –69 –11 –80 
General PSNT 45 - - -  –155 41 –114 
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Table A1 (Continued) 

† Indicates that each state used their respective state yield goal recommendation 

 At-Planting Split 
N Recommendation Tool Partial Profit Environmental Cost  Total Cost   Partial Profit Environmental Cost  Total Cost  

 --------Mean $ ha-1 (Relative to EONR)--------  --------Mean $ ha-1 (Relative to EONR)-------- 
IA PSNT 45 - - -  –115 28 –87 
IN PSNT 45 - - -  –78 –26 –104 
WI PSNT 45 - - -  –140 39 –101 
Canopy Reflectance sensing - - -  –144 45 –99 
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Fig. A1. Partial profit for N recommendation tools relative to the economically optimal N 
rate (EONR). Both at-planting and split N application tools are shown. Tool descriptions 
include YG as yield goal, PPNT as pre-plant nitrate test, and PSNT 0 and PSNT 45 as the 
pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied at-planting, respectively. 
Notches on the side of each the box indicate the 95% confidence interval around the 
median. Limits of the box indicate the first and third quartile, whiskers indicate 1.5 × 
IQR, and small circles indicate outliers. 
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Fig. A2. Environmental costs for N recommendation tools relative to the economically 
optimal N rate (EONR). Both at-planting and split N application tools are shown. Tool 
descriptions include YG as yield goal, PPNT as pre-plant nitrate test, and PSNT 0 and 
PSNT 45 as the pre-sidedress nitrate test with 0 and 45 kg N ha-1 applied at-planting, 
respectively. Notches on the side of each the box indicate the 95% confidence interval 
around the median. Limits of the box indicate the first and third quartile, whiskers 
indicate 1.5 × IQR, and small circles indicate outliers. 
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Fig. A3. Combined partial profit and environmental costs for N recommendation tools 
relative to the economically optimal N rate (EONR). Both at-planting and split N 
application tools are shown. Tool descriptions include YG as yield goal, PPNT as pre-
plant nitrate test, and PSNT 0 and PSNT 45 as the pre-sidedress nitrate test with 0 and 45 
kg N ha-1 applied at-planting, respectively. Notches on the side of each the box indicate 
the 95% confidence interval around the median. Limits of the box indicate the first and 
third quartile, whiskers indicate 1.5 × IQR, and small circles indicate outliers. 
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