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Abstract—Agent modelling involves considering how other
agents will behave, in order to influence your own actions. In
this paper, we explore the use of agent modelling in the hidden-
information, collaborative card game Hanabi. We implement
a number of rule-based agents, both from the literature and
of our own devising, in addition to an Information Set-Monte
Carlo Tree Search (IS-MCTS) agent. We observe poor results
from IS-MCTS, so construct a new, predictor version that uses
a model of the agents with which it is paired. We observe a
significant improvement in game-playing strength from this agent
in comparison to IS-MCTS, resulting from its consideration of
what the other agents in a game would do. In addition, we create
a flawed rule-based agent to highlight the predictor’s capabilities
with such an agent.

I. INTRODUCTION

Hanabi is a co-operative, partially-observable [1] board

game which in 2013 won the prestigious Spiel des Jahres

award for best board game of the year. For the reasons

outlined below, it has featured in a number of recent academic

publications. This paper explores whether the use of agent

modelling can lead to an improvement in strength for agents

playing the game.
Hanabi has a number of interesting features that make it

a good choice for research in the field of agent modelling.

Firstly, the domain is a co-operative one, in that the agents

must work together to achieve a shared goal. This disfavours

agents that behave greedily: for example, helping another

player score a point is better than playing a risky card that

might end the game. Secondly, its rules build in well-defined

communication actions. These use a resource that regulates

communication and must be managed by the agents. Finally,

the game has hidden information, with no one player able to

see the entire game state. This is a source of complexity for

agents, because imperfect information needs to be reasoned

about intelligently. Note that Hanabi has been proven to be

NP-Complete even when players have perfect information [2].
A number of rule-based approaches for designing agents

that can play Hanabi have been presented in the literature,

however there have been few attempts to employ more general

strategies. In this paper, we go some way towards redressing

this imbalance. Furthermore, because the use of information

about other players’ strategies can help to inform human

players in co-operative games, we also explore whether or

not such information could help guide our general agents’

decisions.
Section I-A describes the rules of the game of Hanabi.
Section II describes the agents that were implemented to

play Hanabi under these rules.

Section III describes how the agents were tested and eval-

uated.

Section IV presents the results of the tests.

Section V discusses and explains our findings in the results.

Section VII discusses potential future AI-related work in-

volving Hanabi.

A. Hanabi

Hanabi is a co-operative game in which a team of two to

five players attempts to complete five stacks of sequentially-

numbered cards (one for each of the game’s five suits).

The game is played with a deck of 50 cards, each possessing

a suit and a rank. The suits are coloured white, yellow, green,

blue and red. Within each suit, there are three cards of rank 1,

two cards each of ranks 2, 3 and 4, and one card of rank 5. The

game additionally features two types of token: an information

token and a life token. The players collectively start the game

with 3 life tokens and 8 information tokens.

Every player begins with a randomly-dealt hand of five

cards. Cards are held facing away, such that players can’t see

the suit or rank of their own cards but can see the suit and

rank of the cards held by the other players. The cards not dealt

out at the start are placed face down as a draw deck, which

will be accessed during play.

Play proceeds with each player taking it in turn to perform

an action of their choice. There are three different types of

action available:

Tell Select a player and point to all their cards of a

given number or suit. This costs one information

token.

Play Choose a card from the player’s own hand and

play it.

Discard Choose a card from the player’s own hand and

add it to the discard pile

In a single Tell action, a set of cards can only be identified

either by their suit or by their rank — not by both. Further-

more, cards must be present in the hand to be identified: it

is not permitted to state that another player has no cards of a

given suit or rank.

Playing a card means adding it to the stack with matching

suit. It is not required that the player know which stack it

belongs to - for example, at the beginning of the game it is

acceptable to blindly play a 1 that has been indicated to you.

Each card in the stack must be of the correct suit and have a
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rank one greater than the card below (except for 1 cards, which

are used to start a stack). If a card is played out of sequence,

the group loses one life token. Completing a stack of cards

associated with a given suit grants an additional information

token (if the team does not already have the maximum number,

eight).

Discarding is only permitted if there is at least one informa-

tion token to be gained. This means that either a Tell action

or a Discard action is always possible.

After either discarding or playing a card, the player draws

a replacement card from the draw deck. Discarded cards are

visible to all players. Discarding a card increments the number

of information tokens up to the maximum. Once all cards in

the draw deck have been drawn, all players get one more turn

and then the game is considered to be over. The game also

ends if the team uses up all of the life tokens.

Scoring is achieved by summing the top card of each stack

that has been correctly played. The maximum possible score

for the standard game is therefore 25, obtained by completing

the stacks for all five suits. Remaining life or information

tokens are not counted towards score in the standard game.

B. Multi-agent domains

Multi-agent domains can be categorised as either centralised

or distributed. A centralised system features a single controller

controlling multiple agents; a distributed system has each

agent in the world controlled by a separate controller. In this

paper, we consider only the distributed approach.

Existing work in this space includes: attempting to reason

about what the other agent knows using answer set program-

ming [3]; iterating on a plan that is communicated between

agents [4]; and attempting to use plan recognition to allow one

agent to assist another in a planning task [5].

Another possibility involves co-operative, multi-agent learn-

ing. Within this area, there have been attempts to learn models

of teammates in order to make more informed decisions about

which action to take. For a review of the literature, see Panait

& Luke [6].

The use of embedding agent models into Monte Carlo Tree

Search (MCTS) has previously been looked at by Barrett et

al in the pursuit domain [7]. They made the assumption that

all agents except for their modelling agent would be using the

same, fixed strategy, and embedded perfect knowledge of this

strategies into their agent. One of their findings was that the

system did not perform well with models that didn’t represent

the behaviour of the agent.

The use of Theory of Mind (ToM) (reasoning about what the

other agents know and will do in a given situation) has proven

useful in competitive games such as Rock Paper Scissors [8].

In these games, higher-order ToM agents were able to out-

perform lower-order ToM players.

C. Co-ordination in Hanabi

In Hanabi all agents have access to different information;

because of this, a centralised approach to multi-agent planning

would not make sense in this domain as private information

must not be shared between agents.

The fact that the Tell action has an associated cost (an in-

formation token) means that information about a player’s hand

needs to be communicated efficiently. Also, because Hanabi

players are limited to a set of well-defined communication

actions, communication between them is very limited. This

makes using communication between agents to co-ordinate

their actions a challenging prospect — which is one reason

why Hanabi is increasingly becoming the object of research.

The understanding of other players’ strategies forms a core

component of a great number of games and has been studied

widely [8]. Existing Hanabi research assumes that all agents

are playing the same pre-agreed strategy. The ability to reason

about the actions that a player would take and their reasons

for taking these actions can be used as part of the reasoning

process of an agent.

Our approach is to assume that we have access to a model

which, given a state, will be able to return a possible action

that an agent would perform in that state; if the agent may

make multiple moves, then a single action from the set of

possible actions will be returned. Given this model, we are

able to incorporate the behaviour of the other agent into our

model without understanding of that agent’s reasoning process.

A point to note is that Tell actions can convey more

information than just the obvious: because all cards of a

given suit or rank must be identified, cards which are not

identified therefore must not satisfy the criterion. This negative

information can be used to inform the possible values for a

given card. Negative information can add up over a few turns,

providing enough information to determine what a card is —

or at least that it is playable. In the end game, such knowledge

becomes very powerful.

Human players of Hanabi often make additional use of

Tell actions. In particular, they can restrict their Tell actions

by convention only to identify certain cards as playable. For

example, suppose that Player 2 had the hand {(R, 1), (B, 1),

. . .} and the current stacks on the table were {(R, 1), (B, 0),

(G, 0), (W, 0), (Y, 0)}. Player 1 may elect to tell Player 2

about the suit rather than the number, to avoid identifying the

non-playable red card. Player 2 could then infer that the card

being identified was indeed a playable card, as they would

know that Player 1 would not have identified a non-playable

card. As they were told the suit rather than the number, they

could further infer that they have a non-playable 1 in their hand

(although they would not know the location of this card). The

use of information in this way requires an understanding of

how the player will use the provided information as part of

their policy.

D. Monte Carlo Tree Search

MCTS [9] is a widely-used tree-search algorithm that can

operate without domain-specific knowledge. This gives MCTS

the anytime property: the algorithm can be stopped at any time

and can provide an answer for the next move. Given more

time, it will typically produce a more accurate answer.

MCTS proceeds using multiple iterations of the four main

stages shown in Figure 1. The iterations typically continue

until a predetermined end condition is met, such as running



out of time. In the selection stage, the current tree is traversed

using the tree policy to select the best child of each node. In

the expansion stage, a new node is added to the tree. In the

main, simulation phase, a simulation (rollout) of future moves

is undertaken from the state represented by the new node until

an end condition is met. Moves are selected according to

the default policy (which is often to select at random from

all possible moves). In the backpropagation phase, nodes in

the tree that were selected are updated with the result of the

rollout.

E. Monte Carlo Tree Search and Theory of Mind

Zero-order theory of mind [8] agents are capable of using

an agent’s history in order to inform future actions. A first-

order theory of mind agent is capable of using a model of

a zero-order theory of mind agent to inform its own future

decisions. Our selection of MCTS for use in this domain

came from a particular desire to find an algorithm that could

be easily modified to operate with predictions of what other

agents would do. This makes it a zero-order agent.

This approach has been tested before in the Tiny Co-op

domain [11] by Walton-Rivers, who found that prediction

worked best with a deterministic agent that did as it was

instructed [12]. The Tiny Co-op domain is a simple, grid-based

world containing a number of agents, goals, doors and buttons.

Each agent must visit each goal individually for successful

completion. Doors separate different areas in which the agents

can move, and each door will only open if an agent is standing

on its associated button. This forces the agents to co-operate

to succeed overall.

While MCTS was a good performer in Tiny Co-op when

paired with itself (and even with random agents), it struggled

when trying to co-operate with a particular agent that was de-

signed to follow direction indications. Essentially, this follower

agent moved to where it was instructed to move, but MCTS

didn’t pick up on this. The root cause was that it didn’t model

such behaviour in its search tree, leading to inaccurate states

in the majority of the search space. The author added agent

modelling to MCTS and found that the performance of MCTS

when paired with the follower agent improved significantly. In

this paper we used this approach to create a Hanabi-playing

agent to assess the effectiveness of agent modelling in this

domain.

F. Previous research

1) Imperfect Information AI: Games with imperfect infor-

mation are a complex challenge for AI. Poker is often chosen

as an application, because it is a game that many people

are familiar with on some level. Poker contains an unusual

dynamic for games, as a strong player doesn’t so much play

the game as play the opponents. Winning requires a player

to understand their opponents and to adopt a strategy that

will counter their strengths while exploiting their weaknesses.

Rule-based agents feature strongly in this, as do simulation-

based agents such as MCTS. Poker has been extensively

studied — see the review conducted by Rubin & Watson [13];

one of their notable finds was that a simulation-based approach

is inferior to the formula-based approach, despite expectations.
Whitehouse et al [14] looked into using MCTS for the card

game Dou Di Zhu, which (like Hanabi) also features imperfect

information. Here, they apply determinisation and IS-MCTS

to the problem and conclude while the IS-MCTS is superior

in some cases, no overall difference was observed.
2) Hanabi AI: There has been a small amount of research

into using artificial intelligence techniques to play Hanabi.

Osawa [15] devised a number of rule-based agents for the

2-player version of the game, the mechanisms for which are

described in Sections II-A2 and II-A3. Osawa found that the

incorporation of consideration of the other agent’s strategy and

why they did what they did allows an agent to perform better

than do the other non-cheating agents.
Cox [16] derives strategies for the game of Hanabi using

the hat guessing game as inspiration. The agents all use an

agreed encoding strategy to indicate what any particular Tell

action specifically means, enabling them to co-operate so as

to work around the limited view of their own hands. The

encoding strategy does require the 5 player version of the

game, however, as it won’t work unless the hand size matches

the number of other players in the game. We considered using

this agent in the tests, as its unique strategy could have been

the perfect test for agent modelling. However, there is an issue

with the encoding strategy: every agent must know what every

other agent has in their hands. This is cannot be used in agent

modelling. If the Predictor IS-MCTS is agent 1, then it has

access to the hands of agents 2, 3, 4 and 5 — which in Hanabi

it does indeed have. Unfortunately, its internal copy of agent

2 needs access to the hands of agents 1, 3, 4 and 5. Agent

1 cannot give this information without breaking the rules of

Hanabi. For this reason, we did not run tests with this agent.
Van den Bergh et al [17] analyse Hanabi and define a

number of rules for the game. The amount of time it would

take to test every possible combination of these rules was too

large, however, so they used an iterative approach to explore

the search space intelligently. They note that some rules are

far more effective than others, as well as observing that a risk-

taking rule does have some value. They found that the use of a

Discard action when there is a possible hint is not optimal. In a

follow-up paper [18], the authors present their best rule-based

agent along with one using a Monte Carlo search.

II. AI

A number of the controllers used in this experiment were

implemented as production rule agents. Many of these share

individual rules, so each rule will be described here indepen-

dently. All rules have additional pre-conditions that ensure they

can only fire if it is legal to do so within the game rules

(for example, a Discard action would necessitate a check that

an information token was available). To avoid verbosity, we

assume that the rules of Hanabi will be properly followed (so,

for example, if the rule says to inform a player about a card,

then the player will also be informed about other cards that

satisfy the Tell’s stated criterion).

• PlaySafeCard: Plays a card only if it is guaranteed that

it is playable



Fig. 1: The four steps of Monte Carlo Tree Search [10]

• OsawaDiscard: Discards a card if it cannot be played at

the end of the turn. This will discard cards that we know

enough about to disqualify them from being playable. For

example, a card with an unknown suit but a rank of 1 will

not be playable if all the stacks have been started. This

rule also considers cards that can not be played because

their pre-requisite cards have already been discarded.

• TellPlayableCard: Tells the next player a random fact

about any playable card in their hand.

• TellRandomly: Tells the next player a random fact about

any card in their hand.

• DiscardRandomly: Randomly discards a card from the

hand.

• TellPlayableCardOuter: Tells the next player an un-

known (to that player) fact about any playable card in

their hand.

• TellUnknown: Tells the next player an unknown fact

about any card in their hand.

• PlayIfCertain: Plays a card if we are certain about which

card it is and that it is playable.

• DiscardOldestFirst: Discards the card that has been held

in the hand the longest amount of time.

• IfRule(λ) Then (Rule) Else (Rule): Takes a Boolean

λ expression and either one or two rules. The first rule

will be used if the λ evaluates to true. If it is false, and a

second rule was provided, then that will be used instead.

• PlayProbablySafeCard(Threshold ∈ [0, 1]): Plays the

card that is the most likely to be playable if it is at least

as probable as Threshold.

• DiscardProbablyUselessCard(Threshold ∈ [0, 1]):
Discards the card that is most likely to be useless if it is

at least as probable as Threshold.

• TellMostInformation(New? ∈ [True, False]): Tells

whatever reveals the most information, whether this is the

most information in total or the most new information.

• TellDispensable: Tells the next player with an unknown

dispensible card the information needed to correctly iden-

tify that the card is dispensible. This rule will only target

cards that can be identified to the holder as dispensible

with the addition of a single piece of information.

• TellAnyoneAboutUsefulCard: Tells the next player

with a useful card either the remaining unknown suit of

the card or the rank of the card.

• TellAnyoneAboutUselessCard: Tells the next player

with a useless card either the remaining unknown suit

of the card or the rank of the card.

A. Agents

1) Legal Random: This agent makes a move at random

from the set of legal actions available to it at any given time

step.
2) Internal: This is a clone of the agent presented by

Osawa that shares the same name. It features memory of the

information it has been told about its own hand but does not

remember information about what other players have been

told. The rules used in order are:

• PlaySafeCard

• OsawaDiscard

• TellPlayableCard

• TellRandomly

• DiscardRandomly

3) Outer: This is a clone of the agent presented by Osawa

with the same name. It features knowledge of what the other

agents have been told already, to avoid repeating Tell actions.

The rules used in order are:

• PlaySafeCard

• OsawaDiscard

• TellPlayableCardOuter

• TellUnknown

• DiscardRandomly

4) Cautious: This is an agent derived from human game-

play. The agent plays cautiously, never losing a life. The rules

used in order are:

• PlayIfCertain

• PlaySafeCard

• TellAnyoneAboutUsefulCard

• OsawaDiscard

• DiscardRandomly



5) IGGI: This agent is a modification of Cautious. The

alteration to a deterministic Discard function greatly aids the

predictability of this player. The rules used in order are:

• PlayIfCertain

• PlaySafeCard

• TellAnyoneAboutUsefulCard

• OsawaDiscard

• DiscardOldestFirst

6) Piers: This is an agent designed to use IfRules to

improve the overall score. Otherwise, it is similar to IGGI.

The rules used in order are:

• IfRule (lives > 1 ∧ ¬deck.hasCardsLeft) Then (PlayProb-

ablySafeCard(0.0))

• PlaySafeCard

• IfRule (lives > 1) Then (PlayProbablySafeCard(0.6))

• TellAnyoneAboutUsefulCard

• IfRule (information < 4) Then (TellDispensable)

• OsawaDiscard

• DiscardOldestFirst

• TellRandomly

• DiscardRandomly

The first IfRule is designed as a hail Mary in the end

game: if there is nothing left to lose, try to gain a point. This

derives from human play, when typically during the end game

we make random plays if we know there is a playable card

somewhere in our hand. This rule is more accurate, as it uses

all the information it has gathered to calculate probabilities.

The second IfRule simply risks playing a card if there is a

reasonable chance of its being safe.

The third IfRule is designed to try to provide more intelli-

gent Tell conditions. If there is nothing useful to Tell and we

are low on information, we set another agent up to be able to

discard cards that are not needed. This means that the agents

can burn through cards that are not helpful so as to try to

obtain useful cards from the deck.

7) Flawed: This is an agent designed to be intelligent but

with some flaws: it does not possess intelligent Tell rules, and

has a risky Play rule as well. Understanding this agent is the

key to playing well with it, because other agents can give it

the information it needs to prevent it from playing poorly. The

rules used in order are:

• PlaySafeCard

• PlayProbablySafeCard(0.25)

• TellRandomly

• OsawaDiscard

• DiscardOldestFirst

• DiscardRandomly

Giving information is the key to getting this agent to work

intelligently. Without information, the intelligent rules can’t

fire, thereby leaving this agent to Tell randomly and Discard

randomly — not a great strategy.

8) Van den Bergh Rule: This is the best rule-based agent

from [18]. It was created by observing from human play that

there are four main tasks:

• If I’m certain enough that a card is playable, Play it.

• If I’m certain enough that a card is useless, Discard it.

• Give a hint if possible.

• Discard a card.

Van den Bergh et al used a Genetic Algorithm (GA) to evolve

the best options for each section, resulting in the following

rules as an implementation:

• IfRule (lives > 1) Then (PlayProbablySafeCard(.6)) Else

(PlaySafeCard)

• DiscardProbablyUselessCard(1.0)

• TellAnyoneAboutUsefulCard

• TellAnyoneAboutUselessCard

• TellMostInformation

• DiscardProbablyUselessCard(0.0)

9) MCS: This agent is a simple Monte Carlo Search (MCS)

that uses a provided agent for the rollout phase. MCS is

a technique that uses the Upper Confidence Bound (UCB)

equation to select actions in a single step lookahead, with

policy informed rollouts to evaluate those positions. It is

essentially MCTS with a tree depth limit of one turn. In this

paper, we name the agent MCS-[agent] to indicate which agent

provided the rollout policy. For example, a MCS agent using

IGGI as a policy would be named MCS-IGGI. The agent has

a one-second time limit to return a move.

10) IS-MCTS: This agent uses a MCTS technique for

handling games with partial observability as described in the

paper by Cowling et al [19].

IS-MCTS is a modification to MCTS in which, on each

iteration through the tree, the partially-observable game state

is determinised into a possible fully-observable state. This

state remains consistent for the selection, expansion, rollout

and backpropagation phases before being replaced by a new

determinisation. The implementation uses a time limit for

returning moves of one second per move.

11) Predictor IS-MCTS: This agent was provided with a

copy of each of the agents that it was paired with to use in its

prediction. The predicted agents were initialised with random

seeds: this corresponds to the predictor’s having knowledge of

each agent’s overall strategy but no knowledge of its internal

workings.

The Predictor IS-MCTS agent modifies the selection, ex-

pansion and rollout phases of MCTS when considering nodes

for other agents turns. The modifications remove Upper Con-

fidence bound for Trees (UCT) for other agents’ turns and

replaces it with a query to the agent model to discover what

that agent would do in that situation. The rollout phase is

similarly modified. When making moves for its own turn, the

predictor agent defaults to the legal random selection method

used by IS-MCTS. The implementation maintains the one-

second-per-move limit of IS-MCTS.

III. METHOD

A. Validation

In order first to validate our framework and AI implemen-

tations, we performed experiments using reimplimentations

of the Osawa and Van den Bergh agents. This involved

recreating the experiments that they described in their papers

and checking that we obtained similar results.



B. Full Test

The set of agents under test contained a mix of current

research on Hanabi as well as some rule-based agents of our

own. There is also a mix of strong and poor agents for balance.

We tested all the agents from this list:

• Legal Random

• Outer

• IGGI

• Piers

• Flawed

• Van den Bergh Rule

• MCS-Legal Random

• MCS-IGGI

• MCS-Flawed

• IS-MCTS

• Predictor IS-MCTS

In each experiment, one of the agents was selected from the

list above and the remaining agents were selected as a group

from the list below. For example, in the first experiment the

Legal Random agent would be alone among four IGGI agents

— a concept we call pairing. The agents above were all paired

in turn with:

• IGGI

• Internal

• Outer

• Legal Random

• Van den Bergh Rule

• Flawed

• Piers

200 random seeds were chosen, and for each seed every

agent under test played two games with every agent with which

it was paired. It did this for standard Hanabi rules with 2, 3, 4

and 5 players. Each agent under test played from a randomised

position (first, second, third, fourth or fifth) determined by

the seed. This ensured that each agent under test was in the

same position for the same seed. Every agent therefore played

200(nSeeds) ∗ 4(2, 3, 4or5Players) ∗ 7(nAgentPaired) ∗
2(reruns) = 11200 games.

The configuration, final score and other basic state informa-

tion were logged to a file upon completion of the game. The

results were collated per agent and the mean score and number

of turns taken were calculated. We also stored additional

information about the final state of each game including

the number of lives remaining and the information tokens

remaining. When there are no lives remaining at the end of

the game, this indicates that the players ran out of life tokens.
The full (human readable) game traces for each game are

also stored, for evaluating agent behaviour and the effective-

ness of strategies.
Finally, the configuration and results of each game are

processed to obtain the mean score, mean number of moves

per game and the mean remaining life and information tokens.

IV. RESULTS

A. Validation

The validation results are in Table I. The two Osawa agents

obtained similar results in our system to those reported in

the original paper. The Van den Bergh Rule agent performed

differently, appearing to be somewhat improved in our system.

B. Full Test

Table II shows the full results for this test. Predictor IS-

MCTS outperformed IS-MCTS in this experiment, with an

average score of 10.74 versus IS-MCTS’s score of 5.9. MCS

typically performed very similarly to the agent it was provided

with for its rollouts; little benefit was apparent from using

MCS with these agents over simply using their rules in the

first place. Overall, Piers performed the best by a slim margin

over MCS-IGGI, IGGI and Van den Bergh Rule. The Flawed

agent was only a little better than Legal Random.

V. DISCUSSION

The Predictor IS-MCTS agent outperformed the IS-MCTS

agent. This is mostly due to its better being able to take

advantage of the effect of communication actions. As agents

cannot see their own hands, the only way they gain information

about their hands is via Tell actions; this then informs their

decision process. When IS-MCTS appraises the moves of

other agents in its tree, it considers all possible outcomes

from that state. Some of these states will never occur in the

real game because the paired agent would never select that

action. The model that is available to Predictor IS-MCTS

prunes the search to branches that are likely to occur in

the game, resulting in more accurate statistics for the same

number of iterations (Figure 2). The more deterministic the

model, the lower the branching factor for the tree will be.

Smaller branching factors concentrate the rollouts, resulting in

potentially more accurate statistics regarding those positions.

More accurate statistics should result in more intelligent game

play.

The Predictor MCTS really shows its benefit with the

Flawed agent as its partner. Table III shows each agent when

paired with Flawed, with Predictor IS-MCTS in the clear lead

ahead of other agents.

Interestingly, Predictor MCTS’s poor overall score appears

to come largely from two-player games, for which it scores

significantly lower than usual. This can be explained by the

decreased rollout length present in these games. The more

players in the game, the fewer random moves will be made in

the rollouts (selecting random moves tends to end games very

quickly with low scores, as exemplified by Legal Random).

Table IV shows all the agents’ average scores over each

player count. Most agents tend to follow one of two trends:

either performing better when there are more players in the

game, or performing worse. Those that improve are typically

poor players, with each new player added to the game on

average being better than them. Those that decline are the

opposite: more players added means more poorer players in

the team. Predictor IS-MCTS isn’t the only agent to exhibit

trouble with two player games, with Outer experiencing some

difficulty (despite having been designed for two-player games)

and Van den Bergh Rule displaying a more prominent drop in

performance. In 3, 4 and 5 player games, the Predictor IS-

MCTS is the best player from the set of agents.



Agent Our Average Their Average N Games N Players

Internal 10.12 (SD 1.98) 10.97 (SD 1.94) 10
2 2

Outer 13.83 (SD 2.23) 14.53 (SD 2.24) 10
2 2

Van den Bergh Rule 16.95 15.4 10
4 3

TABLE I: Table of results of validation tests

Agent Score (2.d.p) Sem (2.d.p)

Piers 11.18 0.06

MCS-IGGI 10.97 0.06

IGGI 10.96 0.06

Van den Bergh Rule 10.88 0.06

Predictor IS-MCTS 10.74 0.06

Outer 10.2 0.05

IS-MCTS 5.9 0.04

MCS-Legal Random 5.45 0.04

MCS-Flawed 5.06 0.04

Flawed 5.02 0.04

Legal Random 4.59 0.04

TABLE II: Table of results with Score, Standard Error of the

Mean and Ticks for each agent. Agents are sorted by score.

N=11200

Agent Score (2.d.p) Sem (2.d.p)

Predictor IS-MCTS 4.82 0.06

IGGI 3.26 0.06

Piers 3.24 0.06

Van den Bergh Rule 3.23 0.06

MCS-IGGI 3.21 0.06

Outer 2.96 0.05

IS-MCTS 1.8 0.04

MCS-Legal Random 1.78 0.04

MCS-Flawed 1.67 0.04

Legal Random 1.65 0.04

Flawed 1.59 0.04

TABLE III: Table of results with Score, Standard Error of the

Mean and Ticks for each agent paired with Flawed. Agents

are sorted by score. N=1600

Agent 2 3 4 5

Flawed 3.52 4.69 5.43 6.45

IGGI 11.76 11.29 10.71 10.09

IS-MCTS 4.8 5.44 6.24 7.14

Legal Random 1.68 4.3 5.83 6.53

MCS-Flawed 3.61 4.72 5.43 6.48

MCS-IGGI 11.79 11.34 10.68 10.09

MCS-Legal Random 3.84 5.14 5.87 6.95

Outer 10.55 10.64 9.99 9.62

Piers 11.91 11.67 10.89 10.26

Predictor IS-MCTS 8.36 12.14 11.43 11.02

Van den Bergh Rule 10.55 11.76 10.91 10.29

TABLE IV: Average scores for each agent over 2, 3, 4 and

5 player games sorted alphabetically. Bold scores indicate the

highest score for that column.
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(b) Predictor IS-MCTS

Fig. 2: Game trees from same state for both agents paired

with Cautious illustrating the difference in tree size between

IS-MCTS and Predictor IS-MCTS

VI. CONCLUSION

In conclusion, we found that agent modelling improves

playing strength for tree search algorithms such as MCTS

in the game of Hanabi. These results are consistent with the

findings of [7].

VII. FUTURE WORK

There is a lot of scope for future work in this area. Hanabi

has some additional variants in its rules that focus on the

addition of a multi-coloured suit of cards. This suit also

contains 3 1’s, 2 2’s, 3’s and 4’s as well as a single 5. The

different variants are:

Variant 1 Add the multi-coloured suit as a sixth suit to

the game. Maximum score is boosted to 30.

Variant 2 Same as Variant 1, but only a single tile of

each number from the multi-coloured suit is

added to the game.

Variant 3 The multi-coloured suit now functions as a

wild card in Tell actions, and cannot be di-

rectly called out. For example, if Player 1 tells

Player 2 {(M, 2), (Y, 2), (B, 5), (B, 3)} about

all the blues, then cards 1, 3 and 4 will be

indicated. With this setup, the multi-coloured

cards can only be identified by contradicting

information given, requiring 3 pieces of infor-

mation to fully identify one.



Variant 1 would be simple to implement and test, but was

omitted from this paper as being too off-topic. Variant 2 adds

a little extra strategy, but is very similar to Variant 1. Variant

3 would require some additional work to implement, as well

as appropriate modifications to the AI agents.

The Predictor IS-MCTS has a number of limitations that

we aim to address. The agent requires access to an accurate

model of the co-operators in advance. It would be better if

the agent could instead attempt to learn agent strategies based

on observations in the game state. This would lead naturally

to a more complicated agent that started with a more generic

capability but was able to build models of its team members

and update those models as games go on. Testing how much

information is needed to learn enough to significantly improve

the scores that a team achieve would then need to be done.
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