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Abstract: MR-based measurements of brain volumes may be affected by the presence of white matter
(WM) lesions. Here, we assessed how and to what extent this may happen for WM lesions of various
sizes and intensities. After inserting WM lesions of different sizes and intensities into T1-W brain
images of healthy subjects, we assessed the effect on two widely used automatic methods for brain
volume measurement such as SIENAX (segmentation-based) and SIENA (registration-based). To
explore the relevance of partial volume (PV) estimation, we performed the experiments with two dif-
ferent PV models, implemented by the same segmentation algorithm (FAST) of SIENAX and SIENA.
Finally, we tested potential solutions to this issue. The presence of WM lesions did not bias measure-
ments for registration-based method such as SIENA. By contrast, the presence of WM lesions affected
segmentation-based brain volume measurements such as SIENAx. The misclassification of both gray
matter (GM) and WM volumes varied considerably with lesion size and intensity, especially when the
lesion intensity was similar to that of the GM/WM interface. The extent to which the presence of WM
lesions could affect tissue-class measures was clearly driven by the PV modeling used, with the mixel-
type PV model giving a lower error in the presence of WM lesions. The tissue misclassification due to
WM lesions was still present when they were masked out. By contrast, refilling the lesions with
intensities matching the surrounding normal-appearing WM ensured accurate tissue-class measure-
ments and thus represents a promising approach for accurate tissue classification and brain volume
measurements. Hum Brain Mapp 00:000–000, 2011. VC 2011 Wiley-Liss, Inc.
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INTRODUCTION

The development of computational methods that, using
conventional magnetic resonance (MR) images, are able to
provide sensitive and reproducible measures of brain vol-
umes, has allowed an indirect quantification of the brain.

These methods have been extensively used in the study of
multiple sclerosis (MS) to estimate total and regional (i.e.,
white matter [WM] and gray matter [GM]) cerebral tissue
loss, providing measures able to accurately assess and
monitor the pathologic evolution of the disease [Battaglini
et al., 2009; Bendfeldt et al., 2009; Chard et al., 2004; Chen
et al., 2004; De Stefano et al., 2003].

Recently, much effort has been dedicated to improve the
efficiency of automated segmentation algorithms for MR
images [Nakamura and Fisher, 2009; Sdika and Pelletier,
2009], particularly in relation to the influence that the pres-
ence of WM lesions, such as those found in the brain of
MS patients, can have in the measurement of tissue spe-
cific brain volumes [Chard et al., 2010; Nakamura and
Fisher, 2009; Sdika and Pelletier, 2009]. In one recent study

*Correspondence to: Nicola De Stefano, MD PhD, Department of
Neurological and Behavioral Sciences, University of Siena, Viale
Bracci 2, 53100 Siena, Italy. E-mail: destefano@unisi.it

Received for publication 14 June 2010; Revised 6 March 2011;
Accepted 11 April 2011

DOI: 10.1002/hbm.21344
Published online in Wiley Online Library (wileyonlinelibrary.
com).

VC 2011 Wiley-Liss, Inc.



[Sdika and Pelletier, 2009], WM lesions were shown to dis-
tort the output of non-linear registration, and the filling of
the lesions with the intensity of the normal-appearing
neighbor voxels appeared as an effective solution for this
bias. In another recent study [Nakamura and Fisher, 2009],
a new segmentation algorithm was developed and tested.
This was able to calculate GM volumes avoiding the
misclassification of WM lesions by using a combination of
intensity, anatomical and morphological probability maps.
The work pointed out that, in the presence of WM lesions,
GM could be linearly underestimated (and consequently
the WM overestimated), even when the misclassification of
lesions was avoided, due to a misclassification of voxels
with overlapping intensities [Nakamura and Fisher, 2009].
Finally, Chard et al. [2010] confirmed that lesions with an
intermediate intensity between GM and WM produce an
underestimation of GM volumes. They also investigated
the effect of filling lesions before the segmentation, using
intensities sampled from a single, global WM distribution,
with the mean and standard deviation equal to that of the
original WM.

Given the limited resolution of MR images and the irreg-
ular shape of brain tissue interfaces, the accuracy of any
segmentation method in assigning partial volume (PV) vox-
els to a single tissue type is inherently limited [Niessen
et al., 1999] and PV classification models need to be used
[Santago and Gage, 1995; Van Leemput et al., 2003]. How-
ever, although it may be true that PV models fail to provide
adequate tissue classification in the presence of WM lesions
[Nakamura and Fisher, 2009], it is less certain to what
extent this affects the measurements of global and regional
brain volume. To address these issues, we performed the
present study with the aims (i) to assess how and to what
extent the presence of WM lesions of various sizes and
intensities can affect brain volume measurements using a
segmentation-based approach such as SIENAX [Smith
et al., 2002], and with different PV models; (ii) to assess
whether these issues hold for a registration-based approach
such as SIENA [Smith et al., 2001]; (iii) to propose a robust
and practical approach to solve the issues related to the
presence of WM lesions in tissue classification analysis.

METHODS

To estimate the accuracy of performing total and tissue
type brain volume measurements in the presence of WM
lesions that vary in size and intensity, we needed to work
with brain volume measures with a known ground truth.
Thus, we selected five normal T1-weighted three-dimen-
sional gradient echo (T1-W) images (FFE, flip angle ¼ 40,
TR/TE ¼ 35/10 ms, 256 � 256 matrix, 1 signal average,
250 � 250 mm2 field of view, 50 contiguous 3-mm slices)
of five healthy subjects obtained by using a Philips Gyro-
scan operating at 1.5 T (Philips Medical Systems, Best, The
Netherlands), and six binarized lesion masks previously
created from T2-weighted (T2-W)/proton-density (PD) MR

images of six different MS patients with different lesion
loads (6, 12, 18, 24, 30 and 60 cm3). We then ‘‘created’’
lesions in the images using these six lesion masks, on each
of the five ‘‘original’’ T1-W images, thus creating 30 ‘‘artifi-
cial’’ images with binarized regions of interest (ROIs) hav-
ing a known and relatively wide range of volumes.

To fill the ROIs of each of the 30 ‘‘artificial’’ images with
intensity values of cerebrospinal fluid (CSF), CSF/GM
interface, GM, and GM/WM interface, this strategy was
followed:

i. Each ‘‘original’’ T1-W image of the healthy controls
was hard segmented and binarized maps of WM,
GM, and CSF were created.

ii. Each of these binarized maps was multiplied by the
original T1-W image, and the mean and standard
deviation within the WM, GM, and CSF tissue
masks were calculated.

iii. Four different Gaussian intensity distributions were
generated for each ‘‘original’’ image: CSF, CSF/GM,
GM, GM/WM (Fig. 1- top). They had an intensity
mean equal to the mean intensity of the CSF, CSF/
GM interface, GM and GM/WM interface, respec-
tively. The GM/WM and CSF/GM intensity means
were defined as the average of the GM and WM
mean values or the average of the CSF and GM
mean values, respectively. The standard deviations
of each of the intensity distributions were calculated
by dividing the standard deviation of each tissue or
tissue mixel types (i.e., tissue made by a mixture of
different tissues) by 4, in order to obtain a narrow
range around the mean. In this case, the GM/WM
and CSF/GM standard deviations were set to be the
difference between the GM and WM means, divided
by 4, or the difference of the CSF and GM means,
divided by 4, respectively.

iv. Finally, ROIs of each of the 30 ‘‘artificial’’ images
were filled by randomly extracting voxel values
from each of the four different intensity (Gaussian)
distributions (Fig. 1- bottom), creating a total of 120
‘‘artificial’’ T1-W images.

WM Lesions and Segmentation-Based

Brain Volume Measurements

At this stage, brain volume measurements were obtained
using a segmentation-based algorithm (SIENAX) to get val-
ues of normalized brain volume (NBV), normalized white
matter volume (NWMV) and normalized gray matter vol-
ume (NGMV) from the ‘‘original’’ 5 T1-W images of healthy
controls, as well as from the 120 ‘‘artificial’’ images with
various lesion size, load, and intensities. Each ‘‘original’’
T1-W image was then compared to the corresponding 24
‘‘artificial’’ images derived from it, to obtain changes in
NBV, NWMV, and NGMV between the two images.
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WM Lesions and Registration-Based Brain

Volume Measurements

Brain volume measurements were also performed using
a linear registration-based algorithm (SIENA), able to
obtain values of percentage brain volume change (PBVC)
in two subsequent MR scans. In this two-time point
approach, each ‘‘original’’ T1-W image of each healthy
control was used as the first time point, and each of the
corresponding 24 ‘‘artificial’’ images, containing the above-
described variety of lesion load and intensity, was used as
the follow-up scan.

‘‘Masked-Out’’ or ‘‘Refilled’’ WM Lesions

and Segmentation-Based Brain

Volume Measurements

Once the error due to lesion misclassification during
brain volume measurements was assessed and quanti-

fied, possible strategies for minimizing this error were
tested. Two ‘‘adjusted’’ T1-W images were created from
each of the 30 ‘‘artificial’’ images with a binarized ROI
of known and wide range (6, 12, 18, 24, 30, and 60 cm3)
for a total of 60 additional ‘‘adjusted’’ T1-W images. The
first set of 30 ‘‘adjusted’’ T1-W images was obtained by
simply masking out the ROIs from the original T1-W
images. The second set was created by refilling each
two-dimensional lesion with intensities derived from a
histogram that was matched closely to the histogram of
the WM surrounding the lesion, obtained using a non-
uniformly sampled histogram. The latter method was
chosen since there may be only a small number of vox-
els immediately neighboring the lesions, and so a non-
uniformly sampled histogram is better adapted to the
available data. No ‘‘a-priori’’ choice of intensity distribu-
tion was imposed.

The following steps provide details of how the ROIs
were refilled:

Figure 1.

Illustrative example of the creation of four different Gaussian in-

tensity distributions (CSF, CSF/GM, GM, and GM/WM) from the

histogram intensity of an ‘‘original’’ image (top). The binarized

regions of interest of the ‘‘artificial’’ images (previously created

from the ‘‘original’’ image and a given lesion mask, see methods

for details) were then filled by randomly extracting voxel values

from each of the four different Gaussian intensity distributions

(Fig. 1- bottom).

r White Matter Lesions and Brain Volume Measurements r

r 3 r



i. An ROI (RL) was selected by using 2-D dilation and
defined as the ROI comprising the voxels that are
immediate neighbors of the binarized lesion mask
(L) and belong to the WM. From RL, the number of
voxels (NR) and their mean intensity (MR) were cal-
culated. The intensity histogram of RL was then con-
structed with the number of bins (nbins) equal to 10
if NR was bigger than 40 and equal to round (NR/4)
if lower. The bins were all of equal width. Finally,
the fraction of voxels of RL belonging to the ith bin
was calculated: fRi ¼ NRi/NR, where NRi is the num-
ber of voxels of RL falling in the ith bin.

ii. Because we wanted the refilled intensities in L to
vary smoothly at the boundary, L was divided into
two additional binarized masks: the border voxels of
L (dL, refilled using the method described below in
Step iii) and the inner voxels (Lin, obtained from L by
excluding the border voxels). The number of voxels
in Lin is denoted as NLin. To create a histogram for Lin
that is well matched to the histogram of the voxels in
RL, the same number of bins (nbins) were used and
each bin had the same proportion of entries.
The number of voxels in Lin assigned to the ith bin

is denoted as NL-Bi. Initially we set NL-Bi to be the in-
teger giving the smallest difference between fRi and
fLi, where fLi is the fraction of voxels of Lin in the ith
bin. However, this definition did not guarantee that
the sum of NL-Bi was equal to NLin. The difference,
Ndiff, is defined as

Ndiff ¼ NLin �
Xi¼nbins

i¼1

NL�Bi

All the possible ways in which the Ndiff voxels could
be rearranged into the nbins were then explored, and
for each of them a new fLi was calculated. Finally, a set
ofNL-Bi was chosen to minimize the function

Xi¼nbins

i¼1

ðfRi � fLiÞ
2
:

The nbins chosen previously were an arbitrary
choice, made without taking into account the lesion
size. To account for size, a non-uniform sampling of
the histogram was obtained by dividing each bin into
an appropriate number of sub-bins. This was
achieved by applying the procedure described above
(Step ii) to each of the previously defined equally-
sized bins, substituting RL with RLi and NLin with
NL-Bi. Thus, each bin was potentially divided into
sub-bins, each of which can have a different number
of voxels falling in it.

We denote the range of intensities covered by the
jth sub-bin of the ith bin as �Iij, which contains NBij

voxels. The intensities chosen for refilling voxels are
drawn from uniform distributions covering each �Iij.

iii. Finally, dL voxels were refilled with the mean value
of 8 in plane nearest neighboring voxels that belong
to either RL or Lin. In addition, the mean of all the
voxel intensities used to refill L was constrained
to be equal to MR by simply adding an offset,
(MR � ML), to the intensity of each voxel, where ML

is the mean voxel intensity in L.

At this stage, SIENAX was used to obtain NGMV from
(i) the 5 ‘‘original’’ T1-W images, (ii) the 30 ‘‘adjusted’’ T1-
W images where the lesions were masked out, and (iii) the
30 ‘‘adjusted’’ T1-W images where the lesions were refilled
with the procedure described above.

PV Models’ Impact on Estimation of Volumes

in the Presence of WM Lesions

All the analyses described above were repeated using
two different PV estimation methods, as provided in two
different versions of FAST (FMRIB’s Automated Segmenta-
tion Tool) [Zhang et al., 2001]: FAST version 3 (released in
FSL-4.0); and FAST version 4 (released in FSL-4.1). This
was done to assess two things: how the size of the differ-
ences in brain volume measurements, in the presence of
WM lesions, depends on the different PV classification
approaches; and in addition, to test whether or not the
refilling method affects the PV estimations to different
extents. The main difference between the partial volume
modeling used in FAST-3 and FAST-4 is that the Markov
Random Field (MRF) is applied to the partial volume frac-
tions (i.e., WM, GM and CSF) in FAST-3, but it is applied
to the mixel-type in FAST-4. The mixel-type represents the
classification of the mixture present in each voxel (e.g.,
pure WM, or a mixture of GM and WM, etc.) and apply-
ing the MRF to the mixel-type makes the assumption that
the same mixture of tissues will be spatially adjacent,
rather than assuming that the partial volume fractions will
be similar between spatially adjacent voxels. A conse-
quence of this is that the borders appear sharper in the
FAST-4 version, as a pure tissue type (partial volume frac-
tion of 1.0) is more likely to occur in one voxel away from
a boundary voxel. This is mainly due to the fact that in
the FAST-3 version, the MRF on the partial volume frac-
tion tends to blur out the boundaries, biasing voxels that
actually contain pure tissue to have lower partial volume
fractions in order to be similar to their neighboring
(boundary) voxels. However, the effect of these differences
in partial volume modeling in the presence of WM lesions
is difficult to assess theoretically, which is why this empir-
ical study was performed.

Statistical Analysis

Statistical analysis was performed using the R software
(www.r-project.org). A within-within analysis of variance
(ANOVA) of the values of NBV, NWMV and NGMV and

r Battaglini et al. r

r 4 r



PBVC was performed using both lesion load and the type
of lesion intensity distribution as factors. These analyses
were followed by a pair-wise post-hoc comparison using
Tukey’s honestly significant difference procedure.

A linear regression was performed to evaluate the
dependence of NGMV on lesion load in ‘‘masked’’
and ‘‘refilled’’ images. Data were considered significant at
a P-value <0.05.

RESULTS

Preliminary Test for the Use of ‘‘Artificial’’

Images in SIENAx and SIENA

As preliminary step, we assessed whether the use of
‘‘artificial’’ images, which are identical to ‘‘original’’ images
for the vast majority of voxels, did not cause unexpected
or unwanted behavior of the software in both SIENAx and
SIENA measurements.

We first tested if the skull-finding (used as scaling fac-
tor) could be altered when artificial lesions were inserted.
This was done by calculating the coefficient of variation
(CV) for all the scaling factors referring to the ‘‘artificial’’
images related to the image of each healthy subject. We
found that mean of the CV was 0.48, indicating a very
small dispersion of the data within the same subject. In
addition, the mean scaling factor for all the ‘‘artificial’’
images was 1.34 (range 1.24–1.44), with a maximum varia-
tion of �8%.

We then tested the performance of the SIENA method
by analyzing five pairs of identical images. The PBVC val-
ues obtained from this analysis was equal to 0%, ruling
out possible errors resulting from this approach.

Influence of WM Lesions on Segmentation-Based

Brain Volume Measurements

The extent to which the WM lesions may bias brain vol-
ume measurements in a segmentation method was assessed
by comparing the SIENAX results of each ‘‘original’’ T1-W
image and the corresponding ‘‘artificial’’ images with dif-
ferent WM lesion load and lesion intensities, thus obtaining
the pd-NBV, pd-NWMV, and pd-NGMV (see Fig. 2).

When FAST-3 was used for the analysis, the results
showed:

• NBV measures were 1664 � 19 cm3 in the ‘‘original’’
T1-W images and were generally not influenced by the
increase in lesion load. When the lesion load was
6 cm3, the values of differences in NBV for the diffe-
rent intensity filling models were: GM/WM = 6.15 �
23.3 cm3, GM = �0.33 � 6.6 cm3, CSF/GM = 0.33 �
3.3 cm3, CSF = �7.15 � 5.0 cm3. The values of differen-
ces in NBV decreased significantly (P < 0.001) with
high lesion load only when the lesion intensity was
similar to that of CSF (differences in NBV: �56.1 �
13.6 cm3 for lesion load of 60 cm3).

• NWMV measures were 858 � 38 cm3 in the ‘‘original’’
T1-W images. When the lesion load was 6 cm3, the val-
ues of differences in NWMV for the different intensity
filling models were: GM/WM = 5.83 � 12.9 cm3, GM =
�4.8 � 4.3 cm3, CSF/GM = �5.8 � 1.7 cm3, CSF = �11.6
� 2.6 cm3. The values of differences in NWMV appeared
to increase significantly (P< 0.001) with high lesion load
when the lesion intensity was similar to that of the GM/
WM interface (differences in NWMV: 93.6 � 18.9 cm3

for lesion load of 60 cm3). By contrast, they decreased
with high lesion load (P < 0.001) when the lesion inten-
sity was similar to that of the CSF (NWMV:�58.3� 11.8 cm3

for lesion load of 60 cm3).
• NGMV measures were 805 � 37 cm3 in the ‘‘original’’
T1-W images. When the lesion load was 6 cm3, the
values of differences in NGMV for the different inten-
sity filling models were: GM/WM = 0.5 � 10.4 cm3,
GM = 4.4 � 4.8 cm3, CSF/GM = 6.1 � 4.0 cm3, CSF =
3.9 � 4.0 cm3. The values of differences in NGMV
progressively decreased with increasing lesion load
(P < 0.001) only when the lesion intensity was similar
to that of the GM/WM interface (differences in
NGMV: �82.7 � 4.8 cm3 for lesion load of 60 cm3).

When FAST-4 was used for the analysis, the results
showed:

• NBV measures were 1,555 � 16 cm3 in the ‘‘original’’ T1-
W images and were generally not influenced by the
increase in lesion load. When the lesion load was 6 cm3,
the values of differences in NBV for the different intensity
filling models were: GM/WM = 9.0 � 18.7 cm3, GM¼ 2.6
� 6.2 cm3, CSF/GM¼ �1.5� 3.11 cm3, CSF¼ �8.8� 7.8 cm3.
The values of differences in NBV decreased significantly
(P < 0.001) with high lesion load only when the lesion
intensity was similar to that of CSF (differences in NBV:
�51.3� 14.5 cm3 for lesion load of 60 cm3).

• NWMVmeasures were 802� 17 cm3 in the ‘‘original’’ T1-
W images. When the lesion load was 6 cm3, the values of
differences in NWMV for the different intensity filling
models were: GM/WM ¼ 3.3 � 9.6 cm3, GM ¼ �3.92 �
3.2 cm3, CSF/GM ¼ 0.0 � 1.6 cm3, CSF ¼ �6.3 � 4.0 cm3.
The values of differences in NWMV decreased with high
lesion load (P< 0.001) when the lesion intensity was simi-
lar to that of GM (differences in NWMV: �42.4 � 7.7 cm3

for lesion load of 60 cm3) or CSF (differences in NWMV:
�37.5� 9.7 cm3 for lesion load of 60 cm3).

• NGMV measures were 753 � 19 cm3 in the ‘‘original’’
T1-W images. When the lesion load was 6 cm3, the
values of differences in NGMV for the different inten-
sity filling models were: GM/WM ¼ 5.7 � 9.0 cm3,
GM ¼ 6.6 � 3.0 cm3, CSF/GM ¼ �1.7 � 1.6 cm3, CSF
¼ �2.4 � 3.8 cm3. The values of differences in NGMV
progressively increased with increasing lesion load
(P < 0.001) only when the lesion intensity was similar
to that of the GM (differences in NGMV: 50.8 �
6.8 cm3 for lesion load of 60 cm3).
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Influence of WM Lesions on Registration-Based

Brain Volume Measurements

An analysis similar to that performed with the segmen-
tation-based algorithm (SIENAX) was performed to test
the extent to which the WM lesions could bias brain vol-

ume measurements in a registration-based method such as
SIENA. In this case, PBVC was generally not influenced
by the increase in lesion load and no differences were
found by using FAST-3 or FAST-4 when performing the
analysis (see Fig. 3). In both FAST-3 and FAST-4 analyses,
the PBVC was always <0.1 for a lesion load of 6 cm3 with

Figure 2.

The graphs illustrate the percentage differences (y-axis, defined

as 100 � (V2 � V1)/V1, where V1 and V2 represent the first and

the second volume measurement, respectively) in the segmenta-

tion-based measurements (as assessed by SIENAX) of NBV (pd-

NBV, top panels), NWMV (pd-NWMV, central panels), and

NGMV (pd-NGMV, bottom panels) when lesions were inserted

into the ‘‘original’’ T1-weighted images with an increasing lesion

load (x-axis) and different intensities ( for GM/WM interface,

for GM, for CSF/GM and for CSF). The analysis was

performed by using two different partial volume approaches as

provided by FAST-3 (left column) and FAST-4 (right column) (see

Methods for details). Each dot and vertical line in the graphs

represents the mean and standard deviations of the five percent-

age differences obtained by comparing each ‘‘original’’ T1-

weighted image with the related ‘‘artificial’’ T1- weighted image

of a given lesion load and intensity.
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intensities similar to that of the GM/WM interface, GM

and the CSF/GM interface, and it did not appear to

increase with increasing lesion loads (see Fig. 3). The

PBVC showed a significant difference (P < 0.001) with

high lesion load only when the lesion intensity was similar

to that of CSF (for lesion load of 60 cm3, PBVC with

FAST-3: �0.66 � 0.33; PBVC with FAST-4: �0.84 � 0.14).

‘‘Masked-Out’’ and ‘‘Refilled’’ WM Lesions

in Segmentation-Based Brain Volume

Measurements

In the SIENAX analysis, possible strategies for minimiz-
ing the errors due to WM lesion misclassification were
tested (see Fig. 4). This was done by comparing two mean
slopes derived by the NGMV measurements in (i) the
‘‘original’’ 5 T1-W images and each of the ‘‘adjusted’’
images where the six lesion masks with increasing lesion
loads were masked out and (ii) the ‘‘original’’ 5 T1-W
images and each of the ‘‘adjusted’’ images where the six
lesion masks were filled with intensities similar to that of
the surrounding normal appearing WM (following the
method described previously).

Interestingly, with both FAST-3 and FAST-4 approaches
(see Fig. 4), the analysis showed that NGMV measures
were not dependent on WM lesions when these were

refilled with intensity similar to that of the surrounding
normal appearing WM (FAST-3: slope 0.051 � 0.093;
FAST-4: 0.011 � 0.037). By contrast, in both cases an
inverse dependence between lesion load and NGMV was
found when the lesions were masked out (FAST-3: �0.35
� 0.15; FAST-4: �0.20 � 0.14).

DISCUSSION

Recent work has shown that the presence of focal WM
abnormalities such as those found in MS can affect MR-
based quantitative measurements of the brain, especially if
these rely on tissue type segmentation [Nakamura and
Fisher, 2009] or registration algorithms [Sdika and Pelletier,
2009]. In the present study, using two widely utilized meth-
ods for brain volume measurements in MS research, a seg-
mentation-based method for the measurement of atrophy
state (SIENAX) and a registration-based approach for the
measurement of atrophy rate (SIENA), we assessed how
and to what extent WM lesions of various size and intensity
may affect brain volume measurements when they are arti-
ficially inserted into the ‘‘original’’ T1-W brains. The main
results of the study were: (i) WM lesions do affect segmen-
tation-based measurements of brain volume, especially
when tissue-class segmentation is performed; (ii) in these
conditions the measurement error may vary considerably
with lesion size and intensity as well as with the type of PV

Figure 3.

The graphs illustrate the percentage brain volume changes

(PBVC, y-axis) in the registration-based measurements (as

assessed by SIENA) when lesions were inserted into the ‘‘origi-

nal’’ T1-weighted images with an increasing lesion load (x-axis)

and different intensities ( for GM/WM interface, for GM,

for CSF/WM and for CSF). The analysis was performed by

using two different partial volume approaches as provided by

FAST-3 (left column) and FAST-4 (right column) (see Methods for

details). Each dot and vertical line in the graphs represents the

mean and standard deviations of the five percentage differences

obtained by comparing each ‘‘original’’ T1-weighted image with

the related ‘‘artificial’’ T1- weighted image of a given lesion load

and intensity.
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estimation used; (iii) the linear registration-based approach
(SIENA) is relatively insensitive to the presence of WM
lesions, with the exception of cases with large, CSF-like
intensity lesion loads; (iv) the error found in the segmenta-
tion-based measurements might be substantially solved by
refilling the WM lesions with an intensity similar to that of
the surrounding normal appearing WM.

By comparing the SIENAX results of ‘‘original’’ T1-W
images from healthy controls and the corresponding ‘‘arti-
ficial’’ images where WM lesions with different sizes and
intensities were inserted, we were able to accurately assess
the influence of WM lesions on total and tissue-class (i.e.,
WM and GM) brain volume measures. These results
showed that a certain degree of influence of WM lesions
on segmentation-based brain volume measurements was
generally present. This was, in the case of total brain
measures (i.e., NBV), relevant only in the presence of very
high lesion load with CSF intensity, which is very rare on
clinical grounds. By contrast, substantial changes were
seen in both WM and GM measures in most of the tested
‘‘artificial’’ images, showing that tissue misclassification is
often found in the presence of WM lesions of different
intensities and even with moderate lesion load. Differently
from previous work [Chard et al., 2010; Nakamura and
Fisher, 2009], we investigated the effect on partial volume
estimation and how this can affect measures of atrophy
calculated by the segmentation-based methods (SIENAX)
and registration-based methods (SIENA). Interestingly, tis-
sue misclassification was greater in the FAST-3 measures,
with a pronounced underestimation of the GM volume
(and a consequent overestimation of the WM volume)
with increasing lesion load and lesion intensity similar to
that of the GM/WM interface (see Fig. 2). This is particu-
larly important in a real-world setting since intensities
between that of WM and GM are very likely to be present
in hypointense WM lesions on the conventional T1-W
images that are generally used in clinical studies for MR-
based measurements of brain volumes.

The misclassification of MS lesions as GM in T1-W
images is probably not the only source of error in brain
volume measurements. In support of this, the error in the
assessment of GM volumes was also present when the
NGMV were calculated after the exclusions of lesional
voxels misclassified as GM (data not shown). Furthermore,
for example, when ‘‘artificial’’ T1-W images with 60 cm3 of
lesions were filled with GM/WM intensity, the absolute
volume of the FAST3 output underestimated the GM of
about 69 cm3 and when the same images were filled with
the GM intensity, the absolute volume of the FAST4 out-
put overestimated the GM of about 43 cm3. This demon-
strates that the observed brain volume changes due to the
lesions are not simply the volume of those (misclassified)
lesion voxels themselves, but that the presence of lesions
may affect the tissue classification of the segmentation
algorithm. Given the irregular shape of brain tissue inter-
faces, the MRI voxels in specific brain regions (i.e., the
GM/WM and CSF/GM interfaces) contain a mixture of
tissue types. In the presence of WM lesions this may lead
to classification errors during segmentation due to the fail-
ure of PV models to provide accurate tissue classification
[Nakamura and Fisher, 2009]. Interestingly, in our study,
this issue has shown to produce very different results
when two different PV approaches were implemented
in the same segmentation algorithm (i.e., FAST-3 and

Figure 4.

The graphs illustrate the regression lines of NGMV measure-

ments (y-axis) in relation to lesion load (x-axis) when lesions

were either ‘‘masked out’’ ( ) or ‘‘refilled’’ with the surrounding

normal-appearing WM ( ). Values of NGMV at 0 lesion load

are given by those of the ‘‘original’’ T1-weighed images of the

healthy controls. The analysis was performed by using two dif-

ferent partial volume approaches as provided by FAST-3 (left col-

umn) and FAST-4 (right column) (see Methods for details).
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FAST-4, see Fig. 2). Indeed, the influence of WM lesions
and the consequent error in brain volume measurements
appeared much lower in the FAST-4 analyses, probably
due to the use of a mixel-type MRF in its PV model (see
Methods for details). The mixel-type represents the classifi-
cation of the mixture present in each voxel, which in
FAST-4 included a six-tissue-class PV modeling (i.e., pure
WM, WM/GM, pure GM, GM/CSF, pure CSF and WM/
CSF) rather than the three-tissue-class approach of FAST-3
and other widely used segmentation algorithms [Ash-
burner and Friston, 2005; Nakamura and Fisher, 2009].
Thus, although it is not possible to generalize from data in
this study, a mixel-type PV modeling such as that used in
FAST-4 seems to be the best approach in presence of WM
lesions such as those found in MS brains.

In the present study we also tested the extent to which
the WM lesions could bias a registration-based method for
global measurement of brain volume changes, such as
SIENA. Results showed that PBVC measures were insensi-
tive to increases in lesion load and to different intensity
filling models, independently of PV modeling used, with
the exception of the CSF intensity-filling model. This is
particularly interesting as it is very similar to what was
found in the segmentation-based analysis of global brain
volume measurements. Taken together, these findings sug-
gest that when the WM and GM segmentation is not
attempted, the error due to the presence of WM lesions is
limited to CSF misclassification that, on clinical grounds,
might be present only in T1-W black holes exhibiting
extreme tissue loss [Barkhof and van Walderveen, 1999].
Finally, it is worth noting that the present data suggest
that the linear registration methods do not seem to suffer
from the same problems encountered by the non-rigid
registration approaches in the presence of WM lesions of
MS brain images [Sdika and Pelletier, 2009].

Once the error in brain volume measurements due to
WM lesions was quantified, possible strategies for mini-
mizing this error were tested. Our results showed that, in
the SIENAX analysis, the errors due to GM misclassifica-
tion in the presence of WM lesions could not be corrected
by simply masking the WM lesions out, an approach
widely used in clinical studies [Chard et al., 2002]. By con-
trast, the refilling of the lesions with intensities that match
their surrounding normal-appearing WM appeared to
solve most of the issues related to GM misclassification.
This refilling used a methodological approach similar to
that previously reported by Sdika and Pelletier [2009]. The
presence of similar results with different PV modeling
methods (similar slopes were found with both FAST-3 and
FAST-4 analyses) adds further support to this statement. It
must be stressed here that the use of ‘‘artificial’’ T1-W
images obtained from T1-W images of healthy controls
may have created an easier scenario than the one that
needs to be faced in routine MR images of MS brains. Cer-
tainly, for example, the normal-appearing WM of MS
patients might not be normal, especially in perilesional
regions [Vrenken et al., 2006]. In this case, however, the

enlargement of the surrounding WM area beyond the per-
ilesional ‘‘dirty’’ WM, which could be easily done with our
non-uniformly sampled method, may help to solve or min-
imize the problem.

In conclusion, the results of this study show that the
presence of WM lesions does not bias longitudinal, linear-
registration-based measurements of global brain atrophy,
where tissue-class classification is not required. By con-
trast, WM lesions may significantly affect GM measure-
ments, especially when their intensity is between that of
WM and GM, a condition that is very likely to occur in
the hypointense WM lesions found on the conventional
T1-W images that are used in clinical settings. However,
the extent to which the presence of WM lesions may affect
tissue-class measures is clearly driven by the PV modeling
used by the segmentation algorithm. The use of both a
mixel-type PV model and the refilling of the lesions with
the surrounding normal-appearing WM seem to solve the
problems created by the presence of WM lesions and pro-
vide accurate tissue-class measurements.
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