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Abstract 

The Community Land Model (CLM3) Dynamic Global Vegetation Model (CLM-

DGVM) is used diagnostically to identify land and atmospheric model biases that lead to 

biases in the simulated vegetation. The CLM-DGVM driven with observed atmospheric 

data (offline simulation) underestimates global forest cover, overestimates grasslands, 

and underestimates global net primary production. These results are consistent with 

earlier findings that the soils in CLM3 are too dry. In the offline simulation an increase in 

simulated transpiration by changing this variable’s soil moisture dependence and by 

decreasing canopy-intercepted precipitation results in better global plant biogeography 

and global net primary production. When CLM-DGVM is coupled to the Community 

Atmosphere Model (CAM3), the same modifications do not improve simulated 

vegetation in eastern United States and Amazonia where the most serious vegetation 

biases appear. The dry bias in eastern United States precipitation is so severe that the 

simulated vegetation is insensitive to changes in the hydrologic cycle. In Amazonia, 

strong coupling among soil moisture, vegetation, evapotranspiration, and precipitation 

produces a highly complex hydrologic cycle in which small perturbations in precipitation 

are accentuated by vegetation. These interactions in Amazonia lead to a dramatic 

precipitation decrease and a collapse of the forest. These results suggest that the accurate 

parameterization of convection poses a complex and challenging scientific issue for 

climate models that include dynamic vegetation. The results also emphasize the 

difficulties that may arise when coupling any two highly non-linear systems that have 

only been tested uncoupled. 
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1. Introduction 

 Dynamic global vegetation models (DGVMs) were introduced as a practical and 

ecologically realistic means of simulating vegetation change in global climate models  

(Foley et al. 1996; Friend et al. 1997; Brovkin et al. 1997; Cox et al. 1998; Potter and 

Klooster 1999; Kucharik et al. 2000; Sitch et al. 2003; Bonan et al. 2003). DGVMs 

coupled to climate models have been used to simulate vegetation for past, present, and 

future climates to assess the interactions among climate, CO2, and vegetation (Levis et al. 

1999, 2004b; Doherty et al. 2000; Brovkin et al. 2003; Wang et al. 2004; Cowling et al. 

2004). DGVMs have also been used in offline simulations (not coupled to a climate 

model), usually to evaluate simulated vegetation against observations and other model 

simulations (e.g., Cramer et al. 2001). 

 The vegetation simulated by DGVMs responds primarily to solar radiation, air 

temperature, and soil moisture (in this paper, we neglect the response to changing 

atmospheric CO2 concentration). Therefore, the successful coupling of a DGVM to a 

climate model to simulate climate-vegetation feedbacks relies on good quality 

atmospheric and soil moisture data in addition to the careful selection of vegetation 

parameterizations. In this paper, we use a DGVM to identify key land and atmosphere 

biases in the Community Climate System Model (CCSM3) that result in large biases in 

simulated vegetation. 
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2. Methods 

a. Models 

We use the Community Land Model version 3 (CLM3) (Oleson et al. 2004) with 

dynamic vegetation (Levis et al. 2004a). The model, hereafter referred to as CLM-

DGVM, is coupled to the Community Atmosphere Model version 3 (CAM3) (Collins et 

al. 2005) with a 20-minute time step. CAM3 is a spectral model and here CAM3 and 

CLM-DGVM operate at T42 horizontal resolution (~2.81° by 2.81° in longitude and 

latitude). Dickinson et al. (2005) describe biases in the land surface climatology. In this 

paper we are primarily interested in prominent dry biases in eastern United States and 

tropical South American precipitation. For our simulations, we use climatological sea 

surface temperatures and sea ice rather than the fully coupled CCSM3, but the specific 

dry and associated warm biases persist (Figure 1). 

The DGVM is the same used with the NCAR LSM land surface model, which is 

the predecessor to the Community Land Model, and has been documented and evaluated 

against observations (Bonan et al. 2003). The dynamic vegetation parameterizations 

originated mostly from the LPJ-DGVM, a model also documented and evaluated against 

observations (Sitch et al. 2003). LSM-DGVM and LPJ-DGVM simulate similar global 

vegetation with a tendency in LSM-DGVM to overestimate global net primary 

production and forest cover at the expense of grasses. CLM-DGVM, when forced with 

the same prescribed atmospheric data as LSM-DGVM, underestimates global net primary 

production and forest cover and favors grasses (Levis et al. 2004a). We hypothesize that 

the difference in simulated vegetation between CLM-DGVM and LSM-DGVM relates to 

aspects of the simulated soil moisture. 
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CLM3, CLM-DGVM, and CAM3 are described at length elsewhere (Oleson et al. 

2004; Levis et al. 2004a; Collins et al. 2005). Here we restrict our model description to 

two CLM3 parameterizations previously identified as causing the model to have drier 

soils than NCAR LSM (Bonan et al. 2002a). We describe modifications to these 

parameterizations such that more soil moisture may be transpired during plant 

photosynthesis and more precipitation may reach the soil. The first pertains to the soil 

water factor, βt, and the second to the fraction of canopy-intercepted precipitation, fpi: 

1) βt is a coefficient in the calculation of the maximum rate of carboxylation, Vmax, a key 

variable in the photosynthesis calculation and by extension the transpiration calculation 

(Oleson et al. 2004). βt ranges nonlinearly from 0 to 1 as a function of soil water based on 

matric potential and root resistance. Lower values of βt decrease the rate of 

photosynthesis, stomatal conductance, and transpiration, all other factors being equal. For 

the purpose of this study we have modified βt to a linear function of soil water from 

wilting point (βt = 0) to optimum transpiration (βt = 1), as in NCAR LSM (Bonan 1996). 

In CLM3 βt for a given soil moisture is always less than or equal to that in NCAR LSM 

and the difference grows for drier soil (Bonan et al. 2002a). 

2) Both CLM3 and NCAR LSM have the same maximum canopy water storage (0.1 mm 

per unit leaf and stem area), but NCAR LSM restricts interception to 20% of precipitation 

(Bonan et al. 2002a). In CLM3 the maximum fraction of precipitation intercepted by 

vegetation increases with leaf area index (L) and stem area index (S) as 

1 exp[ 0.5( )]
pi

f L S= − − + . In CLM3 fpi exceeds that of NCAR LSM for (L + S) greater 

than about 0.45 m
2
 m

-2
, which is the case in all but the most arid regions of the world. At 

leaf and stem area index greater than about 4.5 m
2
 m

-2
, CLM3 allows more than 90% of 
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precipitation to be intercepted (if storage capacity is not exceeded). Greater canopy 

interception means that less precipitation reaches the ground. Greater interception also 

results in a greater wetted leaf fraction, which reduces the leaf surface area from which 

transpiration occurs. For the purpose of this study we have modified fpi to that used in 

NCAR LSM. 

 

b. Simulations 

 We performed three sets of paired climate model simulations to identify 

deficiencies in the CAM3 climate and the CLM3 hydrologic cycle that adversely affect 

the global plant biogeography simulated by CLM-DGVM. The first two sets of 

simulations utilized the dynamic vegetation, forced with either observed atmospheric data 

or coupled to CAM3: 

1a. (OV) 80-year offline CLM-DGVM simulation forced with observed 

atmospheric data from the period 1979-1998 (Bonan et al. 2002b). The 20-year 

atmospheric data was cycled to allow an 80-year simulation. 

1b. (OVM) 120-year offline CLM-DGVM simulation with βt and fpi modified as 

per section 2a. 

2a. (CV) 120-year simulation like OV but coupled to CAM3. 

2b. (CVM) 120-year simulation like OVM but coupled to CAM3. 

The third set of simulations disabled the dynamic vegetation as in the standard CAM3-

CLM3: 

3a. (C) 50-year simulation like CV but without vegetation dynamics. Vegetation 

is prescribed from satellite data as in CLM3 when run without dynamic vegetation 



 7

(Bonan et al. 2002a; Levis et al. 2004a). This is the standard CAM3-CLM3 

configuration. 

3b. (CM) 20-year simulation like C but with βt and fpi modified. 

Simulation OVM relative to simulation OV reveals the combined role of βt and fpi 

on global vegetation. Simulations CV and CVM compared to OV and OVM isolate the 

role of climate biases relative to the role of βt and fpi on global vegetation. Simulations C 

and CM isolate the climatic effects of changes to βt and fpi independent of vegetation 

dynamics. 

All simulations with dynamic vegetation enabled were initialized from a previous 

spin-up simulation. Starting from bare ground, CLM-DGVM vegetation was brought to 

equilibrium in a 400-year simulation at T31 horizontal resolution (~3.75° by 3.75° in 

longitude and latitude) driven with the atmospheric data used also in OV and OVM. 

Output from this simulation was mapped to T42 horizontal resolution (~2.81° by 2.81°) 

to initialize OV. Land surface initial conditions for the remaining simulations were 

obtained from OV.  

 

3. Results and Discussion 

a. Vegetation simulated with prescribed atmospheric data 

Results from simulation OV illustrate that CLM-DGVM underestimates forest 

cover on a global scale in favor of grasses (Figures 2, 3a). In areas where forests are 

simulated, especially in the tropics, CLM-DGVM underestimates evergreen trees in favor 

of deciduous trees. Observed vegetation includes crops and shrubs. Simulated vegetation 

does not, which explains many of the large differences from the observations. However, 
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the dominance of deciduous trees where one would expect evergreens in the tropics, the 

dominance of grasses instead of trees in eastern United States, and the dominance of 

grasses in mid-continental parts of the boreal forest all suggest the soils are simulated too 

dry to support observed vegetation. The global total net primary production (43 Pg C yr
-1

) 

is 25-30% lower than observational estimates (Schlesinger 1997). These results are in 

contrast to simulations with LSM-DGVM, which showed more geographically extensive 

and more productive forest vegetation (Bonan et al. 2003). 

Simulation OVM uses two parameterizations from LSM-DGVM that allow more 

precipitation to reach the soil and more soil water to be accessed by plants for 

photosynthesis and transpiration (section 2a). As a result coefficient βt increases, canopy 

evaporation decreases, and transpiration increases compared with OV (Figure 4). 

Transpiration increases because the higher values of βt allow higher stomatal 

conductance, but also because less precipitation is intercepted by foliage so that the 

wetted fraction of the canopy, from which transpiration is precluded, decreases. 

Simulation OVM produces increased forest cover and reduced grass cover compared with 

OV in agreement with our hypothesis that the soils in CLM-DGVM are too dry (Figure 

3). The relative distribution of evergreen and deciduous trees has not reached 

equilibrium, but the trends on a global average (not shown) decrease for most plant 

functional types over the course of the simulation, indicating that global biogeography is 

approaching steady state. Evergreen trees occupy more of the tropical rainforest, trees 

dominate the eastern United States, and trees appear in mid-continental areas of the 

boreal forest (Figure 3b versus Figure 3a). The global total net primary production (60 Pg 

C yr
-1

) is in good agreement with published estimates of this variable (Schlesinger 1997). 
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b. Vegetation simulated with CAM3 

 Simulations CV and CVM couple CLM-DGVM to CAM3. The global vegetation 

patterns simulated in CV and OV are similar in that forest cover is underestimated and 

grass cover is overestimated (Figure 5a versus Figure 3a). Regionally there are 

differences that are directly related to biases in simulated precipitation (Figure 6). For 

example, the Amazon rainforest is even more deciduous in CV than in OV due to a dry 

bias in precipitation. The eastern United States is drier in CV compared with OV 

resulting in even fewer trees. Some desert appears in central United States. Elsewhere, a 

wet bias contributes to denser vegetation than in OV. This is particularly evident in 

tropical Africa, Indonesia, and China, where forests are denser, and in southern Africa, 

the Arabian Peninsula, and northern Australia, where grasses are denser. The global total 

net primary production (53 Pg C yr
-1

) is higher than in OV due to overestimated 

precipitation in CV in most regions other than eastern United States and Amazonia 

(Figure 6). 

Simulation CVM shows the same general characteristics of OVM, with reduced 

canopy evaporation and increased transpiration compared with CV, but the soil water 

factor βt does not increase greatly and it decreases in some regions such as Amazonia 

(Figure 7). Simulation CVM preserves some of the characteristics of global vegetation 

found in CV, but the dry and warm biases in eastern United States and the Amazon basin 

are more extreme (Figure 6c and 6f). As a result vegetation patterns simulated in CV 

persist or degrade in CVM (Figure 5). Only forest cover at higher latitudes increases in 
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response to the modified CLM3 parameterizations. Global total net primary production is 

61 Pg C yr
-1

. 

 

c. On climate-vegetation coupling in CLM-DGVM and CAM3 

Why does the model’s dry bias in Amazonia intensify in response to the modified 

CLM3 parameterizations in CVM? Offline model simulations OV and OVM show that 

less water evaporates from the canopy and more transpires through leaf stomata with the 

modifications to βt and fpi (Figure 4). In part, this is because the wetted fraction of the 

canopy is reduced, but transpiration also increases because βt increases. However, total 

evapotranspiration (the sum of transpiration and soil and canopy evaporation) decreases 

and runoff increases, in part because less water is intercepted and more water reaches the 

soil (Table 1). Coupled model simulations C and CM, with prescribed rather than 

dynamic vegetation, show similar behavior with reduction in total evapotranspiration in 

Amazonia (Figure 8, Table 1).  

In CV and CVM the reduction in total evapotranspiration in combination with the 

dynamic vegetation initiates a positive feedback that reduces precipitation in Amazonia 

(Table 1). This decrease in the intensity of the hydrologic cycle coincides with a decline 

in forest vegetation and an increase in grasses. Simulation CV maintains a landscape that 

is primarily forest (55% tree, 37% grass). Simulation CVM has 25% tree cover and 60% 

grass cover (Table 1). The decline in tree cover and increase in grass cover is abrupt, 

occurring within the first two years of the simulation. The reduction in evapotranspiration 

with the modifications to CLM3 reduces precipitation, which further dries the soil and 

causes a dieback of forest vegetation, which further reduces evapotranspiration.  Other 
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studies have also shown that CAM3 and CLM3 have high land-atmosphere coupling 

strength in this region such that precipitation is sensitive to perturbations in soil moisture 

and evapotranspiration (Koster et al. 2005; Guo et al. 2005). Such a decrease in 

precipitation is not seen in simulations C and CM, which used prescribed vegetation 

datasets, suggesting that the conversion of forest to grassland with the drier climate 

contributed to the reduction in precipitation (Table 1).  

Similar behavior is seen in eastern United States. The modifications to CLM3 

reduce evapotranspiration and increase runoff in the offline simulation OVM compared 

with OV, a trend that is accentuated in the coupled simulation CM (compared with C) 

due to decreased precipitation (Table 2). Here, however, the inclusion of dynamic 

vegetation in simulation CVM does not produce a large further decrease in precipitation 

(Table 2). The dry bias in eastern United States is so severe that the simulated vegetation 

of grassland (in contrast to observed forest) is insensitive to changes in the hydrologic 

cycle. Indeed, even a smaller reduction of 10% or 20% in annual precipitation begins to 

convert the forest vegetation to grassland (Table 3). 

Except for these two regions (Amazonia, eastern United States), much of the rest 

of the world is subject to a wet precipitation bias in simulation CV without indications of 

strong feedbacks in simulation CVM except in North Africa (Figure 6). In this region 

climate is particularly sensitive to increased soil moisture and a positive feedback is 

established. More soil moisture lowers the surface albedo and intensifies the North 

African monsoon (Levis et al. 2004b). 
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4. Conclusions 

 Offline simulations in which CLM-DGVM is forced with observed atmospheric 

data indicate that this model’s simulated vegetation is highly sensitive to land model 

parameterizations that affect the water cycle. In Amazonia, where CLM-DGVM 

underestimates evergreen tree cover, parameterization changes reducing canopy 

interception and increasing transpiration lead to an increase in evergreen tree cover. In 

southeast United States and in mid-continental boreal regions, where CLM-DGVM 

underestimates tree cover, the tree cover increases. These results along with satisfactory 

results from LSM-DGVM (Bonan et al. 2003) and LPJ-DGVM (Sitch et al. 2003) offer 

confidence in the ability of this model to simulate global vegetation when given observed 

climate. 

Coupled simulations with CAM3 show that the simulated climate mostly 

overrides the effects of changing land model parameterizations. The vegetation of boreal 

regions, where CAM3 overestimates precipitation, shows improvement with the CLM3 

parameterization changes as in the offline case. However, the vegetation of eastern 

United States and Amazonia does not. In these regions CAM3 has a dry and warm bias. 

The bias intensifies with the parameterization changes due to a hydrologic feedback that 

weakens the already weak hydrologic cycle of these regions. Dynamic vegetation further 

accentuates this feedback in Amazonia where dry soil reduces vegetation cover, which 

further reduces precipitation. 

The results of these simulations suggest that the accurate parameterization of 

convection will pose an extremely complex scientific challenge for climate models that 

include vegetation feedbacks. In eastern United States, a 10% decrease in annual 
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precipitation from observations results in simulated vegetation that is parkland rather than 

forest, and a 20% reduction results in a savanna-like mixture of grasses and trees. 

Accurate simulation of vegetation in this region requires a high level of accuracy in the 

simulated precipitation. In Amazonia, strong coupling among soil moisture, vegetation, 

evapotranspiration, and precipitation produces a highly complex hydrologic cycle in 

which small perturbations in precipitation are accentuated by vegetation. 

The results also emphasize the difficulties that may arise when coupling any two 

highly non-linear systems that have only been tested uncoupled. In particular, the two 

simple changes to the hydrologic cycle that performed well in the uncoupled CLM-

DGVM performed poorly when coupled to CAM3. Future development of the hydrologic 

cycle in CLM3 will require an approach that improves vegetation and hydrology in both 

uncoupled and coupled simulations. 
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Figures 

Figure 1. Simulated and observed monthly temperature and precipitation for eastern 

United States (30-45ºN, 70-100ºW) and the Amazon basin (9ºS-9ºN, 52-75ºW). 

Observations are from Willmott and Matsuura (2000). 

Figure 2. Observed global vegetation cover as a percentage of the soil-covered portion of 

the grid cell (Bonan et al. 2002b). 

Figure 3. As in Figure 2 but for vegetation in simulations (A) OV and (B) OVM. Data 

are averages from the last 20 years of each simulation. 

Figure 4. Annual average (A) soil water factor, βt, (B) evaporation of canopy-intercepted 

water (mm d
-1

), and (C) transpiration (mm d
-1

) from simulations OV and OVM. Data are 

averages from the last 20 years of each simulation. 

Figure 5. As in Figure 3 but for simulations (A) CV and (B) CVM. 

Figure 6. Annual average (A) observed precipitation from the data that drives 

simulations OV and OVM (Bonan et al. 2002b); (B) precipitation simulated in CV minus 

observed as a percent of the observed; (C) precipitation simulated in CVM minus that 

simulated in CV as a percent of that simulated in CV; (D) surface air temperature 

simulated in OV; (E) surface air temperature simulated in CV minus that simulated in 

OV; (F) surface air temperature simulated in CVM minus that simulated in CV. Data are 

averages from the last 20 years of each simulation. 

Figure 7. As in Figure 4 but for simulations CV and CVM. 

Figure 8. As in Figure 4 but for simulations C and CM. 
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Table 1. Annual average precipitation (P), evapotranspiration (E), and runoff (R) in 

simulations OV, OVM, CV, CVM, C, and CM for the Amazon basin (9ºS-9ºN, 52-

75ºW). Data are 20-year averages. The precipitation of OV and OVM is the observed 

precipitation (Bonan et al. 2002b). Observed runoff is from Dickinson et al. (2005). Also 

shown is the percent cover of evergreen trees (ET), deciduous trees (DT), and grasses (G) 

for simulations with dynamic vegetation. Observed vegetation is shown in Figure 2. 

Simulation P (mm d
-1

) 

 

 

E  

(mm d
-1

) 

R (mm d
-1

) Vegetation 

cover (%) 

ET/DT/G 

 Simulated Observed  Simulated Observed  

OV - 5.88 3.81 2.07 3.81 27/56/15 

OVM - 5.88 2.64 3.24  42/49/8 

CV 5.21  3.43 1.78  11/44/37 

CVM 4.42  2.88 1.54  2/23/60 

C 5.08  3.44 1.65  - 

CM 5.16  3.11 2.06  - 
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Table 2. As in Table 1 but for eastern United States (30-45ºN, 70-100ºW). 

Simulation P (mm d
-1

) 

 

 

E  

(mm d
-1

) 

R (mm d
-1

) Vegetation 

cover (%) 

ET/DT/G 

 Simulated Observed  Simulated Observed  

OV - 2.75 1.83 0.93 0.96 0/13/84 

OVM - 2.75 1.64 1.11  10/49/39 

CV 1.99  1.66 0.33  0/0/65 

CVM 1.82  1.52 0.29  0/2/78 

C 2.08  1.81 0.27  - 

CM 1.83  1.57 0.27  - 
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Table 3. Percent vegetation cover for eastern United States (30-45ºN, 70-100ºW) 

simulated with the modified CLM-DGVM under conditions of reduced precipitation. 

Data are for offline simulations (OVM) with annual precipitation reduced to 90%, 80%, 

70%, and 60% of observed values. Data are averages from the last 20 years of each 

simulation. 

 Percent Vegetation Cover 

Precipitation 

(% of observed) 

Evergreen 

Tree 

Summergreen 

Tree 

Grass Bare 

100 (OVM) 10 49 39 2 

90 9 42 47 2 

80 4 27 67 2 

70 1 15 81 3 

60 0 4 88 8 
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Figure 1. Simulated and observed monthly temperature and precipitation for eastern 

United States (30-45ºN, 70-100ºW) and the Amazon basin (9ºS-9ºN, 52-75ºW). 

Observations are from Willmott and Matsuura (2000). 
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Figure 2. Observed global vegetation cover as a percentage of the soil-covered portion of 

the grid cell (Bonan et al. 2002b). 
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Figure 3. As in Figure 2 but for vegetation in simulations (A) OV and (B) OVM. Data are 

averages from the last 20 years of each simulation. 
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Figure 4. Annual average (A) soil water factor, βt, (B) evaporation of canopy-intercepted 

water (mm d
-1

), and (C) transpiration (mm d
-1

) from simulations OV and OVM. Data are 

averages from the last 20 years of each simulation. 
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Figure 5. As in Figure 3 but for simulations (A) CV and (B) CVM. 
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Figure 6. Annual average (A) observed precipitation from the data that drives simulations 

OV and OVM (Bonan et al. 2002b); (B) precipitation simulated in CV minus observed as 

a percent of the observed; (C) precipitation simulated in CVM minus that simulated in 

CV as a percent of that simulated in CV; (D) surface air temperature simulated in OV; 

(E) surface air temperature simulated in CV minus that simulated in OV; (F) surface air 

temperature simulated in CVM minus that simulated in CV. Data are averages from the 

last 20 years of each simulation. 
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Figure 7. As in Figure 4 but for simulations CV and CVM. 
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Figure 8. As in Figure 4 but for simulations C and CM. 


