
1612 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

Evaluating Associativity in CPU Caches

Abstract-Because of the infeasibility or expense of large
fully-associative caches, cache memories are usually designed
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe set-associative or direct-mapped. This paper presents 1)
new and efficient algorithms for simulating alternative direct-
mapped and set associative caches, and 2) uses those algorithms
to quantify the effect of limited associativity on the cache miss
ratio.

We introduce a new algorithm, forest simulation, for simulat-
ing alternative direct-mapped caches and generalize one, which
we call all-associativity simulation, for simulating alternative
direct-mapped, set-associative, and fully-associative caches. We
find that while all-associativity simulation is theoretically less ef-
ficient than forest simulation or stack simulation (a commonly
used simulation algorithm); in practice, it is not much slower
and allows the simulation of many more caches with a single
pass through an address trace.

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso provide data and insight into how varying associativity
affects the miss ratio. We show: 1) how to use simulations of
alternative caches to isolate the cause of misses; 2) that the
principal reason why set-associative miss ratios are larger than
fully-associative ones is (as one might expect) that too many
active blocks map to a fraction of the sets even when blocks
map to sets in a uniform random manner; and 3) that reducing
associativity from eight-way to four-way, from four-way to two-
way, and from two-way to direct-mapped causes relative miss
ratio increases in our data of respectively about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, 10, and 30
percent, consistently over a wide range of cache sizes and a
range of line sizes.

Index Terms- Associativity, buffer, cache memory, com-
puter architecture, direct-mapped, memory systems, perfor-
mance evalulation, set-associative and trace-driven simulation
algorithms.

I. INTRODUCTION

HREE important CPU cache parameters are cache size, T block (line) size, and associativity [27]. Cache size (buffer

size, capacity) is so important that it is a part of almost all

cache studies (for a partial bibliography see [29]). Block size

(line size) has recently been examined in detail in [30]. Here

we concentrate on associativity (degree of associativity, set

Manuscript received February 14, 1989; revised July 10, 1989. The work
presented here is based on research supported in part by the National Sci-

ence Foundation under Grants CCR-8202591 and MIP-8713274, by the State
of California under the MICRO program, by the Defense Advanced Re-
search Projects Agency monitored by Naval Electronics Systems Command
under Contract N00039-85-C-0269, the graduate school at the University of
Wisconsin-Madison, and by IBM Corporation, Digital Equipment Corpora-

tion, Philips Research Laboratories/Signetics Corporation, Apple Computer
Corporation, and the Hewlett Packard Corporation.

M. D. Hill is with the Department of Computer Sciences, University of
Wisconsin, Madison, WI, 53706.

A. J. Smith is with the Computer Science Division, Department of Elec-
trical Engineering and Computer Science, University of California, Berkely,
CA 94720.

IEEE Log Number 8931174.

size) which is the number of places in a cache where a block

can reside.

Selecting optimal associativity is important, because chang-

ing associativity has a significant impact on cache performance

and cost. Increasing associativity improves the likelihood that

a block is resident by decreasing the probability that too many

recently-referenced blocks map to the same place and by al-

lowing more blocks to be considered for replacement. The

effect of associativity on cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmiss ratio has never been iso-

lated and quantified, and that is one of the major goals of

this paper. Conversely, increasing associativity often increases

cache cost and access time, since more blocks (frames) must

be searched in parallel to find a reference [161.

Fig. 1 illustrates set-associativity. A set-associative cache

uses a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset-mapping function f to partition all blocks (data

in an aligned, fixed-sized region of memory) into a number

of equivalence classes. Some number of block frames in the

cache are assigned to hold recently-referenced blocks from

each equivalence class. Each group of block frames is called

a set. The number of such groups, equal to the number of

equivalence classes, is called the number of sets (s). The

number of block frames in each set is called the associativity
(degree of associativity, set size, n). The number of block

frames in the cache (c) always equals the associativity times

the number of sets (c = n . s). A cache is fully-ussociative
if it contains only one set (n = c , s = l), is direct-mapped
if each set contains one block frame (n = 1, s = c) , and is

n-way set-ussociative otherwise (where n is the associativity,

s = c /n) .
On a reference to block x , the set-mapping function f feeds

the “set decoder” with f (x) to select one set (one row), and

then each block frame in the set is searched until zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is found (a

cache hit) or the set is exhausted (a cache miss). On a cache

miss, one block in set f (x) is replaced with the block x ob-

tained from memory. Finally, the word requested from block

x is returned to the processor. Here for conceptual simplic-

ity we show the word within the block selected last (in the

box “compare block number with tags and select data word”).

Many implementations, however, select the word within the

block while selecting the set to reduce the number of bits that

must be read; i.e., only words are gated into the multiplexer,

not full lines. The most commonly used set-mapping function

is the block number modulo the number of sets, where the

number of sets is a power of two. This set mapping function

is called bit selection since the set number is just the num-

ber given by the low-order bits of the block address. For 256
sets, for example, f (x) = x mod 256 or f (x) = x AND Oxff,
where mod is remainder and AND is bitwise AND.

The method we use for examining associativity in CPU

caches is tracedriven simulation. It uses one or more (ad-

OO18-9340/89/1200-1612$01.OO @ 1989 IEEE

HILL AND SMITH: ASSOCIATIVITY IN CPU CACHES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Number

of sw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(S=dn)

v

1613 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
block number b i a k offset

Address zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 1

Set Associativily (A=n)
Decoder < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb

I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I ...
I I

Compare Block Number wilh Tags

Fig. 1 . Set-associative mapping.

dress) traces and a (cache) simulator. A trace is the log of a

dynamic series of memory references, recorded during the ex-

ecution of a program or workload. The information recorded

for each reference must include the address of the reference

and may include the reference's type (instruction fetch, data

read, or data write), length, and other information. A sim-
ulator is a program that accepts a trace and parameters that

describe one or more caches, mimics the behavior of those

caches in response to the trace, and computes performance

metrics (e.g., miss ratio) for each cache.

We analyze associativity in caches with trace-driven simula-

tion for the same reasons as are discussed in [28]. The princi-

pal advantage of trace-driven simulation over random number

driven simulation or analytical modeling is that there exists no

generally-accepted model for program behavior (at the cache

level) with demonstrated validity and predictive power. The

major disadvantage is that workload samples must be rela-

tively short, due to disk space and simulation time limits.

The CPU time required to simulate many alternative caches

with many traces can be enormous. Mattson et al. [I91 ad-

dressed a similar problem for virtual memory simulation by

developing a technique we call stack simulation, which allows

miss ratios for all memory sizes to be computed simultane-

ously, during one pass through the address trace, subject to

several constraints including a fixed page size. While stack

simulation can be applied to caches, each cache configuration

with a different number of sets requires a separate simulation.

For this reason, this paper first examines better algorithms

for simulating alternative direct-mapped and set-associative

caches, and then uses those algorithms to study associativity

in caches.

The rest of this paper is organized as follows. Section I1

reviews previous work on cache simulation algorithms and

associativity in caches. In Section 111, we explain our meth-

ods in more detail and describe our traces. Section IV dis-

cusses cache simulation algorithms, including properties that

facilitate rapid simulation, a new algorithm for simulating al-

ternative direct-mapped caches, and an extension to an al-

gorithm for simulating alternative caches with arbitrary set-

mapping functions. Section V examines the effect of associa-

tivity on miss ratio, including categorizing the cause of misses

in set-associative caches, relating set-associative miss ratios

to fully-associative ones, comparing miss ratios from similar

set-associative caches, and extending the design target miss
ratios from [28] and [30] to caches with reduced associativity.

Readers interested in the effect of associativity on miss ratio

but not in cache simulation algorithms may skip Section IV,

as Section V is written to stand alone.

II. RELATED WORK

A . Simulation Algorithms

The original paper on memory hierarchy simulation is by

Mattson et al. [19]. They introduce inclusion, show when

inclusion holds, and develop stack simulation, which uses

inclusion to rapidly simulate alternative caches. Inclusion is

the property that after any series of references, larger alterna-

tive caches always contain a superset of the blocks in smaller

alternative caches.' Mattson et al. show inclusion holds be-

tween alternative caches that have the same block size, do no

prefetching , use the same set-mapping function (and therefore

have the same number of sets), and use replacement algorithms

that before each reference induce a total priority ordering on

all previously referenced blocks (that map to each set) and use

only this priority ordering to make the next replacement deci-

sion. Replacement algorithms which meet the above condition,

called stack algorithms, include LRU, OPTIMUM, and (if

properly defined) RANDOM [6]. FIFO does not qualify since

cache capacity affects a block's replacement priority. In Sec-

tion IV-A, we will prove when inclusion holds for caches that

use arbitrary set-mapping functions and LRU replacement.

Mattson et al. develop stack simulation to simulate alter-

native caches that have the same block size, do no prefetching,

use the same set-mapping function, and use a stack replace-

ment algorithm. Since inclusion holds, a single list per set,

called a stack, can be used to represent caches of all associa-

tives, with the first n elements of each stack representing the

blocks in an n-way set-associative cache. For each reference,

stack simulation performs three operations: 1) locate the ref-
erence in the stack, 2) update one or more metrics to indicate

which caches contained the reference, and 3) update the stack

to reflect the contents of the caches after the reference. We

' Inclusion is different from multilevel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinclusion defined by Baer and
Wang [5] . While inclusion is a property relating alternative caches, multilevel
inclusion relates caches in the same cache hierarchy.

1614 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

call these three operations FIND, METRIC, and UPDATE,

and will show that the algorithms discussed in later in Sections

IV-B and IV-C use the same steps.

The most straightforward implementation of stack simula-

tion is to implement each stack with a linked list and record

hits to position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn by incrementing a counter distance[n]. After zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N references have been processed, the miss ratio of an n-way
set-associative cache is simply 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Er=, distance[il/N. Since

performance with a linked list will be poor if many elements of

a stack must for searched on each reference, other researchers

have developed more complex implementations of stack simu-

lation, using hash tables, m-ary trees, and AVL trees [8], [21],
[33]. While these algorithms are useful for some memory hi-

erarchy simulations, Thompson [33] concludes that linked list

stack simulation is near optimal for most CPU cache simu-

lations. Linked list stack simulation is fast when few links

are traversed to find a reference. On average, this is the case

in CPU cache simulations since 1) CPU references exhibit a

high degree of locality, and 2) CPU caches usually have a

large number of sets and limited associativity, dividing active

blocks among many stacks and bounding maximum stack size;

different results are found for file system and database traces.

For this reason, we consider only linked list stack simulation

further, and use stack simulation to refer to linked list stack

simulation.

Mattson et al. also briefly mention a way of simulating

caches with different numbers of sets (and therefore different

set-mapping functions). In two technical reports, Traiger and

Slutz extend the algorithms to simulate alternative caches with

different numbers of sets and block sizes [34], and with dif-

ferent numbers of sets, block sizes, and subblock sizes (sector

and block sizes, address and transfer block sizes) [24]. They

require that all alternative caches use LRU replacement, bit-

selection for set mapping, and have block and subblock sizes

that are powers of two. (Bit selection uses some of the bits

of the block address as a binary number to specify the set.)

In Section IV-C, we generalize to arbitrary set-mapping func-

tions their algorithm for simulating alternative caches that use

bit selection.

The speed of stack simulation can also be improved by delet-

ing references (trace entries) that will hit and not affect re-

placement decisions in the caches to be simulated [25]. Puzak

[23] shows that if all caches simulated use bit selection and

LRU replacement, references that hit the most recently used

element of a set can be deleted without affecting the total

number of misses. We will show that this result trivially fol-

lows from properties we define in Section IV-A, allowing

such references to be deleted from traces before using any

of our simulation algorithms. (The total number of memory

references in the original trace must be retained, in order to

compute the miss ratio.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Associativity

Previous work on associativity can be broken into the fol-

lowing three categories: 1) papers that discuss associativity

as part of a more general analysis of 32 kbyte and smaller

caches, among the more notable of which are [18], [17], [7],

[32], [27],* and [l l] , and [13]; 2) papers that discuss asso-
ciativity and other aspects of cache design for larger caches

([4], [2], and [22]); and 3) those that discuss only associativity

([26] and [16]). Since caches have been getting larger, papers

in category 1) can also be characterized as older, while those

in category 2) are more recent.
Papers in category 1) provide varying quantities of data

regarding the effect of changing associativity in small caches.

The qualitative trend they support is that changing associativ-

ity from direct-mapped to two-way set-associative improves

miss ratio, doubling associativity to four-way produces a

smaller improvement, doubling again to eight-way yields an

even smaller improvement, and subsequent doublings yield no

significant improvement. Our quantitative results are consis-

tent with results in these papers. We extend their results by

examining relative miss ratio changes to isolate the effect of

associativity from other cache aspects, and by examining some

larger caches.

Alexander et al. use trace-driven simulation to study small

and large caches [4]. Unfortunately, the miss ratios they give

are much lower than those that have been measured with hard-

ware monitors and real workloads; see [28] for reports of real

measurements.

Agarwal et al. use traces gathered by modifying the mi-

crocode of the VAX 8200 to study large caches and to try

to separate operating system and multiprogramming effects

[2]. They briefly examine associativity, where they find that

associativity in large caches impacts multiprogramming work-

loads more strongly than uniprocessor workloads. They find

for one workload that decreasing associativity from two-way

to direct-mapped increases the multiprogramming miss ratio

by 100 percent and the uniprogramming miss ratio by 43 per-

cent. These numbers are much larger than the average miss

ratio change we find (30 percent).

Przybylski et al. [22] examine cache implementation trade-

offs. They find that reducing associativity from two-way to

direct-mapped increases m i s s ratio 25 percent, regardless of

cache size, which is consistent with our results. One contribu-

tion of that paper is a method of translating the architectural

impact of a proposed design change into time by computing

the cache hit time increase that will exactly offset the bene-

fit of the proposed change. A change improves performance

only if the additional delay required to implement the change

is less than the above increase. Przybylski et al. find that the

architectural impact times for increasing associativity are of-

ten small, especially for large caches, calling into question the

benefit of wide associativity.

The first paper to concentrate exclusively on associativity is

[26]. That paper presents a model that allows miss ratios for

set associative caches to be accurately derived from the fully

associative miss ratio. In Section V-B, we further validate

those results by showing that the model accurately relates the

miss ratios of many caches, including large direct-mapped

caches, to LRU distance probabilities.

The second paper to concentrate on associativity is [16],
based on parts of [15]. It shows that many large single-level

(e.g., 32-way set-associative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 kbyte caches).
This survey includes results for some large caches with wide associativity

HILL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND SMITH: ASSOCIATIVITY IN CPU CACHES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Trace Sampk lnstnrtion Length (looo’s

N W References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(%) of references)

mul2-2ndMOK 53 500
mul8-2ndMOK 51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500

ue-2nd500K 55 500
mvs1-2ndS00K 52 500
mvs2 2ndMOK 55 500

1615

Dynamic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(K-bytes)

218
292
277
163
201

caches in uniprocessors should be direct-mapped, since the

drawbacks of direct-mapped caches (e.g., worse miss ratios

and more-common worst case behavior) have small signifi-

cance for large caches with small miss ratios, while the bene-

fits of direct-mapped caches (lower cost and faster access time)

do not diminish with increasing cache size. Here we examine

miss ratio in more detail, but do not discuss implementation

considerations.

111. METHODS AND TRACES

In this section, we discuss the use of the miss ratio as a

suitable metric (among others), describe the traces that we

use, show how we estimate average steady-state miss ratios,

and show that our traces yield results consistent with those

observed from running systems.

To first order, the effective access time of a cache can be

modeled as tcache + miss-ratio . tmemory. (Additional factors

which affect access time including the overhead of write backs,

extra time for line crossers, page crossers, and TLB misses,

and the fact that writes may be slower than reads. These latter

delays are much less significant than those given in the expres-

sion.) The miss ratio is the number of cache misses divided

by the number of memory references, tmemory is the time for

a cache miss, and tcache is the time to access the cache on a

hit. The two latter parameters are implementation dependent,

and in [15] there is a discussion of their effect on cache per-

formance. As noted earlier, increases in associativity, while

generally improving the miss ratio, can increase access time,

and thus degrade overall performance. Here, we concentrate

on miss ratio because it is easy to define, interpret, compute,

and is implementation independent. This independence facili-

tates cache performance comparisons between caches not yet

implemented and those implemented with different technolo-

gies and in different kinds of systems.

Results in this paper are based on two partially overlapping

groups of traces, called the five-trace and 23-trace groups,

respectively. Table I presents data on the traces. The first

column gives the name of each trace sample. The second gives

the fraction of all references that are instruction references.

In these simulations, we do not distinguish between data reads

and writes. The third column gives the length of the address

traces in 1000’s of references. The final column gives the

number of distinct bytes referenced by the trace, where any

reference in an aligned 32-byte block is considered to have

touched each byte in the block.

Each of the trace samples in the five-trace group comes

from the second 500000 references of a longer trace. The

first three samples are user and system VAX-11 traces gath-

ered with ATUM [11. Trace mu12-2nd500k contains a circuit

simulator and a microcode address allocator running concur-

rently under VMS. Trace mu18-2nd500k is an eight-job mul-

tiprogrammed workload under VMS: spice, alloc, a Fortran

compile, a Pascal compile, an assembler, a string search in

a file, jacobi (a numerical benchmark) and an octal dump.

Trace ue2nd500k consists of several copies of a program

that simulates interactive users running under Ultrix. The

other two samples in the trace group, mvs1-2nd500k and

rnvs2-2nd500k, are collections of IBM 370 references from

lnsrmction Length (looo’s Trace
Name References (%) of references)

TABLE I
DATA ON ~ C E S

Dynamic Size
(K-bytes)

-...

fora
forf

50 353 125
52 388 144
52 401 128

61

I 387 152 11 :: I 414 I 105 I

228 54
ue 56

57
358 205
372 191

system calls invoked in two Amdahl standard MVS workloads

1281.
The second trace group contains 23 samples of various

workloads gathered on a VAX- 1 1 with ATUM [13. Trace sam-

ples that exhibit unstable behavior (e.g., a particular doubling

of cache size or associativity alters the miss ratio observed by

many factors of two) have been excluded from both groups.

We estimate the steady-state miss ratios for a trace sample

using the miss ratio for a trace after the cache is warm (the

warm-start miss ratio). A cache is warm if its future miss

ratio is not significantly affected by the cache recently being

empty [2]. We compute warm-start miss ratios using the sec-

ond 250K references of each 500K-reference trace sample.

We found that most caches with our traces are warm by 250K

references by locating the knee in the graph of the cumulative

misses to empty block frames versus references, a method

of determining when caches are warm proposed in Agarwal

et al. [2]. Furthermore, results for these multiprogrammed

traces properly include cold-start effects whenever a process

resumes execution.

Fig. 2(a) and (b) displays miss ratio data for unified caches

(mixed, i.e., cache data and instructions together) with 32-

byte blocks. Solid lines show the average warm-start miss ra-

tios with different associativities (1, 2, 4, and 8). The average

warm-start miss ratio is the arithmetic average of warm-start

miss ratios for each of the five traces in the five-trace group.

The arithmetic mean is used because it represents the miss
ratio of a workload consisting of an equal number of refer-

ences from each of the traces. Previous experiments (as were

done for [3 11 and [151) showed that little difference was ob-

served when other averaging methods were used. The dashed

line (labeled “inf”) gives the warm-start m i s s ratio of an infi-

55 364 22 1

1616 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

s

s

R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

0.050 -

o.Oo0

0.030. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.020 -

0.010 -

M
1

s

s

0.40

0.30

0.20

0.10

0.00

100 IK 10K
Cache Size (bytes)

(a)

o~060 1

o.Oo0 j4,
IOK 100K IM

Cache Size (bytes)

(b)

Fig. 2 . Miss ratios for five-trace workload with caches of associativities of
1 , 2, 4, and 8. The dashed line shows the miss ratio for an infinite cache.
(a) Smaller caches. (b) Larger caches.

nite cache, a cache so large that it never replaces any blocks.

Measurements for the 23-trace group are similar.

Fig. 3 compares miss ratios for the five-trace group in eight-

way set-associative unified caches, having 16-byte and 32-byte

blocks, to miss ratios from other sources. Line “cold” mea-
sures miss ratios from an emDtv cache. while line “warm”

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

0.20

0.15

M
I

s

s

0.10
R
a

I

I

0

0.05

0.00

1K Cache Size 10K (bytes) l00K

(a)

0.20

0.15 ,

M
1

s

s

IK IOK IOOK

Cache Size (bytes)

@)

Comparison of our miss ratio data (solid lines) with other published
data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A, B, C, D). (a) 16-byte blocks. (b) 32-byte blocks.

Fig. 3.

does not count misses until after 250K references. Since the
trace samples include multiprogramming effect, both contain

some cold-start misses [12]. Lines labeled A and B show

the design target miss ratios for fully-associative caches from

1281 and 1301. The line labeled C from r21 shows four-way - - - -
I I set-associative miss ratio results from Fig. -17 in that paper. Fi-

HILL AND SMITH: ASSOCIATIVITY IN CPU CACHES 1617

nally, the line labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD from [27] shows four-, six- and eight-

way set-associative miss ratios taken from hardware monitor

measurements on an Amdahl 470 (Fig. 33 of that paper, as-

suming 50 percent supervisor execution). Fig. 3 demonstrates

that the miss ratios of the five-trace group are consistent with

those measured and/or proposed for actual operating environ-

ments.

Despite the similarities with previously published data, miss

ratio data for large caches (greater than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64K bytes) are subject

to greater error, since only a few thousand misses may occur

during a trace sample. To reduce sensitivity to such error,

results in Section V concentrate on the relationship between

the miss ratios of alternative caches rather than on the miss

ratio values themselves.

to be inferred from hits detected in smaller ones. Mattson et
al. [19] show when inclusion holds for alternative caches that

use the same set-mapping function (and hence the same num-

ber of sets). Next we show when it holds with LRU replace-

ment and arbitrary set-mapping functions.

Theorem I: Given the same block size, no prefetching and

LRU replacement, cache C2(A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n2, F = f2) includes cache

Cl (A = n l , F = f l) if and only if set-mapping function f2
refines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf1 (set-refinement) and associativity n2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n1 (nonde-

creasing associativity).

Proof: Suppose cache C2 includes cache C1. Suppose

further that a large number of blocks map to each set in both

caches, as is trivially true for practical set-mapping functions

(e.g., bit selection). To demonstrate that inclusion implies

both set-refinement and nondecreasing associativity, we show

that a block can be replaced in cache C1 and still remain in

cache C2, violating inclusion, if either 1) set-refinement does

IV . SIMULATION TECHNIQUES FOR ALTERNATIVE

DIRECT-MAPPED AND SET-ASSOCIATIVE CACHES

In this section we first discuss two properties, set refine-
ment and inclusion, that facilitate the rapid simulation of al-

ternative caches. We then develop a new algorithm that uses

both set-refinement and inclusion to rapidly simulate alterna-

tive direct-mapped caches. Next we generalize an algorithm

that simulates alternative set-associative caches using bit se-

lection [34] to one that allows arbitrary set-mapping functions.

Finally we compare implementations of the algorithms.

A . Properties that Facilitate Rapid Simulation

Two properties useful for simulating alternative direct-

mapped and set-associative caches are set -refinement3 (in-

troduced below) and inclusion (introduced in Mattson et al.
[19]). Here we discuss these properties with respect to caches

that have the same block size, do no prefetching, use LRU

replacement, have arbitrary associativities, and can use arbi-

trary set-mapping functions. Let Cl (A = n l , F = f l) and

C2(A = n2, F = f 2) be two such caches, where cache C;
has associativity n; and set-mapping function f;, i = 1, 2 .

Definition I : Set-refinement: Set-mapping function f2
refines set-mapping function f1 if f2(x) = f 2 (y) implies

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) = f 1 (y), for all blocks x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy.
Furthermore, cache C2(A = n2, F = f 2) is said to refine

an alternative cache Cl (A = n l , F = f 1) if set-mapping

function f2 refines set-mapping function f l . Refines is so

named becauses f2 refines f1 implies set-mapping function

f2 induces a finer partition on all blocks than does f1. Since

set refinement is clearly transitive, if f ;+ l refines f; for each

i = 1, L - 1 then fj refines f; for all j > i , implying a

hierarchy of sets. We will use set refinement to facilitate the

rapid simulation of alternative direct-mapped caches (Section

IV-B) and set-associative caches (Section IV-C).

Definition 2: Znciusion: Cache C2(A = n2, F = f2) in-
cludes an alternative cache Cl (A = n l , F = f l) if, for any

block x after any series of references, x is resident in C1
implies x is resident in C2.

Thus, when cache C2 includes cache C1, C2 always contains

a superset of the blocks in C1. Inclusion facilitates rapid sim-

ulation of alternative caches by allowing hits in larger caches

not hold or 2) set-refinement holds but the larger cache has

the smaller associativity.

1) If cache C2 does not refine cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACI, then there exists at

least one pair of blocks x and y such that f2(x) = f 2 (y) and

f 1 (x) # f 1 0) . Since we assume many blocks map to each set,

there exist many blocks z; for which f2(z;) = f2(x) = f 2 (y > .

(or both), implying set-refinement is violated many times.

Without loss of generality, assume that many 2;’s map to dif-

ferent f1 sets than x (otherwise, many map to a different f1
sets than y). Let n2 of these be denoted by w 1 , . . . , w,, .4 Con-

sider references to x , w 1 , . . . , w n2 . Inclusion is now violated

since x is in cache C1, but not in cache C2. It is in cache C1,
because blocks w 1 , . . . , w,, mapped to other sets than x and

could not force its replacement; x is replaced in n2-way set-

associative cache C2, since LRU replacement is used and the

n2 other blocks mapped to its set are more recently referenced.

2) Let X O , . . . ,xn2 be a collection of blocks that map to the

same f2 set. Since we are assuming f2 refines f1, they also

map the same f1 set. Consider references to X O , X I , . . . , x n 2 .
Inclusion is now violated since xo is in nl-way set-associative

cache C1, but not in n2-way set-associative cache C2(n1 > n2
implies nl 2 n2 + 1).

Suppose cache C2 refines cache C1 and n2 2 nl . Initially

both caches are empty and inclusion holds, because everything

(nothing) in cache C1 is also in cache C2. Consider the first

time inclusion is violated, i.e., some block is in cache C1 that

is not in cache C2. This can only occur when some block xo
is replaced from cache C2, but not from cache C1. A block xo
can only be replaced from cache C2 if n2 blocks, x1 through

xnz , all mapping to f2(xo), are referenced after it. By set-

refinement, f l (x0) = f l (x1) = . . . = f1(xn2). Since n2 2
0

Several corollaries, used to develop the cache simulation

algorithms in the next two sections, follow directly from the

above definitions and theorem.

1) If cache C2 refines cache C1 and their set-mapping func-

tions f 2 and f1 are different (partition blocks differently), then

cache C2 has more sets than cache C1. The number of sets

Since f 1 (x) # f lo), either f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (Z i) # f 1 (x) or f l (Z i) # f 10)

n l , xo must also be replaced in cache C1.

Set-refinement is called set-hierarchy in 1151. Blocks W I , . . . , w,, exist if at least 2 4 blocks map to set f ~ (x) .

1618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12, DECEMBER 1989

in a cache is equal to the number of classes in the partition

induced by its set-mapping function. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 has fewer classes

than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 and at least one block maps to every f1 class, set-

refinement is violated since some pair of those blocks must

map to the same f2 class. Iff2 has the same number of classes

a s f ~ and at least one block maps to every f 1 class, then there

exists a one-to-one correspondence between f 2 classes and f i

classes, implying both functions induce the same partition.

2) If bit selection is used, a cache with 2' sets refines one

with 2J ones, for all i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 j . That is, set-mapping function x
mod 2' refines x mod 2 J , i 2 j . For all blocks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y (x
mod 2' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= y mod 2') implies (x mod 2j = y mod 2 j) , because

2' can be factored into positive integers 2'-J and 2J, and (x
mod a b = y mod ab) implies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x mod b = y mod b), for all

positive integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and b.
3) Cache C2 must be strictly larger than a different cache

C1 to include it. Two caches are different if they can contain

different blocks (after some series of references). If cache C2

is smaller than cache C1, inclusion is violated whenever C1 is

full. If C2 and C1 are the same size, different, and both full,

then inclusion will be violated whenever they hold different

blocks.

4) Set refinement implies inclusion in direct-mapped caches.

By Theorem 1, inclusion requires set-refinement and nonde-

creasing associativity. Since all direct-mapped caches have as-

sociativity one, only set-refinement is necessary.

5) Inclusion holds between direct-mapped caches using bit

selection. Implied by corollaries 2) and 4).

6) Inclusion does not hold between many pairs of differ-

ent set-associative caches. It does not hold a) between two

different set-associative caches of the same size [by corollary

3)], b) if the larger cache has smaller associativity (Theorem

l) , and c) if set-refinement is violated (also Theorem 1). Set-

refinement can be violated even when bit selection is used

(e.g., the larger cache is twice as big but has four times the

associativity of the smaller cache).

7) The includes relation is a partial ordering of the set of

caches. The proof of this, omitted here, need only show that

includes is reflexive, antisymmetric, and transitive; see [151.

8) Similarly, the refines relation is a partial ordering of the

set of caches.

9) The refines relation can speed the simulation of alter-

native caches that use LRU replacement. Let these caches be

denoted by Ci , i = 1, 2 , Construct a direct-mapped cache

Co(A = 1, F = fo) such that all caches Ci refine CO. For
arbitrary set-mapping functions, fo(x) = 0 can be used; if

all caches Ci use bit selection and have 2'" or more sets,

f o (x) = x mod 2'" should be used. In any case, simulation

speed can be improved by deleting all references (trace en-

tries) that hit in cache CO and recording the deleted references

as hits in all caches simulated. Such deletion is possible when

caches Ci include cache CO and the deleted references would

not have affected any replacement decisions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25]. Since each

cache Ci refines cache CO and CO is direct-mapped, all caches

Ci include cache CO by Theorem 1. All deleted references do

not affect LRU replacement decisions since they are all to

the most-recently-referenced (MRU) block in each set. To see

why this is true for a cache Ci (A = ni , F = f i) , consider the

direct-mapped cache Ci(A = 1, F = f i) that always contains

the MRU blocks from cache Ci. Cache C / refines cache CO,
since cache C,! has the same set-mapping function as cache Ci
and cache Cj refines cache CO. Since refines implies includes
in direct-mapped caches, all deleted references are in cache

C / (and therefore to cache Ci's MRU blocks). Puzak shows

this result for bit-selection [23].

B . Simulating Direct-Mapped Caches

This section develops a new algorithm, called forest simu-
lation, for simulating alternative direct-mapped caches. For-

est simulation requires that the set-mapping functions of all

caches obey set-refinement. Since typical alternative designs

for direct-mapped caches use numbers of sets which are pow-

ers of two, with the set selected via bit selection, this algorithm

is applicable to the common case.

In the last section, we showed set-refinement implies inclu-

sion in direct-mapped caches. Forest simulation takes advan-

tage of inclusion, as does stack simulation, by searching for

a block from the smallest to largest cache. When a block is

found, a hit is implicitly recorded for all larger caches.

The data structure used by forest simulation to store cache

blocks is a forest (a set of disjoint trees) where the number of

levels equals the number of caches simulated, and the number

of nodes in level i equals the number of blocks frames in the

ith smallest cache. If bit selection is used by all caches, the

forest can be stored in an array that contains twice as many

elements as the largest cache, since the i - 1st smallest cache

is at most half the size of the ith smallest cache.

Fig. 4(a) displays a forest for direct-mapped caches of size

1, 2 , 4, and 8 block frames. The forest contains only one

tree, because the smallest cache has only one block frame,

and is binary, because each cache in this example is twice as

large as the next smaller cache. We assume here that blocks

are mapped to block frames with bit selection. Each node

holds the information for one block frame in a direct-mapped

cache. Nodes are labeled with the tag values which they could

contain if bit selection is used for all caches. The node at the

root of the tree has no block number bits constrained, because

a one-block direct-mapped cache can hold any block. This is

illustrated with a t representing arbitrary high-order bits of the

block number and three x's representing DON'T CARES for the

three low-order bits. The tags txx0 and txxl in the nodes of

level two indicate that the blocks can reside in these nodes are

constrained to have even and odd block numbers, respectively.

Similar rules with more bits constrained apply to the rest of

the levels.

For each reference, the key idea in forest simulation is to

begin at level 1 and proceed downward in the forest until the

reference is found or the forest exhausted. At each level, the

location of the search is guided by the set-mapping function

for that level. At each level traversed, the node examined is

changed to contain the reference. If the node is found at level

i , distance[z] is incremented. After N references have been

processed, the miss ratio of the ith smallest direct-mapped

cache is 1 - E>=, distanceb]lN.
Consider the example shown in Fig. 4(b) and (c). Fig. 4(b)

depicts the forest of Fig. 4(a) after a series of references.

HILL AND SMITH: ASSOCIATIVITY IN CPU CACHES 1619 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
txxx integer L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP number of direct-mapped zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*/

P set-mapping functions that obey set-refinement */
P i.e., f,,, refines f, for i=l. L-1. */

function fl (x), fL(x)

integer c1 , c, P cache sizes (in blocks); let C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe ZC, and c,, = o *I , =1

~ ~ ~ ~ , , ~ ~ ~ ~ ~
(a)

(C)

Fig. 4. Forest simulation example: the effect of referencing block 4 on
directed-mapped caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 1 , 2, 4, and 8 block frames. (a) A forest with
bit selection. (b) Before reference to block 4. (c) After the reference.

Information in the tree tells us that block 6 is in a cache of size

one block frame; blocks 6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are in a direct-mapped cache

of size two; blocks 4, 6, 5, and 3 are in a direct-mapped cache

of size four; and blocks 0 through 7 are in a direct-mapped

cache of size eight. Let the next reference be to block 4. A path

from the root to a leaf is determined using the set-mapping

function for each cache. A search begins at the root and stops

when block 4 is found. All nodes encountered in the search

that do not contain block 4 are modified to do so. The nodes

in bold are examined to find block 4. Since block 4 is located

at level 3, caches at levels 1 and 2 miss and caches at levels

3 and 4 hit. Fig. 4(c) shows the tree after this reference has

been processed. The nodes in bold now contain the referenced

block.

Fig. 5 shows pseudocode for the algorithm. We will analyze

the performance of forest simulation in Section IV-D.

The principal limitation of forest simulation is that it only

works for direct-mapped caches. Extending the algorithm to

set-associative caches is possible, but complex, since a for-

est gives only a partial ordering of recently-referenced blocks

and set-refinement does not imply inclusion in set-associative

caches. Consider using the forest of Fig. 4(b) to simulate a

two-block fully-associative cache that uses LRU replacement.

It is not possible to tell whether the reference to block 4 hits in

such a cache, since any of blocks 2, 4, or 5 could be second-

most-recently referenced.

Forest simulation can be extended to simulate n-way set as-

sociativity by replacing each node in the forest by an n-element

LRU stack. At each reference, rather than just replacing the

element at a node with the newest reference, the stack at that

node is updated in the normal LRU manner; the descent in

the tree stops as soon as the target block is found at level one

in the stack at the current node. This is because, by reason-

ing similar to that used to show corollary 9), the reference

will also be at distance one in all further levels. As should

integer N P counts the number of references */

P distance counts so that mk-ratio(A=l. F=fi) = 1 - Zdistance[i]/N */

integer distance[I:L]
integer forest[l:CL1 P the forest */
define map@., i) = (fi(x) + C,-,) P maps the forest into an m y */

1

j = 1

For each reference x [
read(var x)
N++

I* FIND */
found = FALSE
fori=l toLorfound [

y = forest[map(x, i)]

if (x=y)
found = TRUE

distance[i]++
r METRIC *I

r UPDATE *I
else

forest[map(x, i)] = x
I

I
Fig. 5 . Forest simulation.

be evident, forest simulation (for direct-mapped caches) is a

special case of this general algorithm, with the “n-element”

stack consisting of only one element.

We do not develop this algorithm further, because the dis-

cussion of the next section presents two forms of an algorithm

for simulating alternative set-associative caches that is more

general (set-refinement is not required) or faster.

C . Simulating &-Associative Caches

This section develops an algorithm, called all-associativity
simulation, for simulating alternative direct-mapped and

set-associative caches that have the same block size, do

no prefetching , and use LRU replacement. All-associativity

works for caches with arbitrary set-mapping functions,

but works more efficiently if set-refinement holds. All-

associativity simulation does not try to take advantage of in-

clusion, since inclusion does not hold between many pairs

of set-associative caches (see Section IV-A). This work gen-

eralizes to arbitrary set-mapping functions an algorithm de-

veloped for caches using bit selection only [19], [34]. The

algorithms discussed in this section can also be extended to

handle multiple-block sizes and sector sizes [24], [34].
In theory, the storage required for all-associativity simu-

lation is O(Nunique), where Nunique is the number of unique

blocks referenced in an address trace. Our experience is that

the storage required in practice, however, is usually much

smaller than the size of modem main memories. Simulation

of a one-million-address trace having an infinite cache miss

ratio of one percent, for example, requires storage for 10000

blocks. Since blocks can be stored in two words (a tag plus

a pointer), less than lOOK bytes are needed. Future simula-

1620 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Stack

fully-assoc
Stack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ff

*

Stack

$
Stack

I m o d 2
I
I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

--A

Fig. 6. Concurrent stack simulation with one (fully-associative) and two sets
(even and odd blocks partitioned). (a) Separate storage. (b) Shared storage.

tions of multiple-megabyte caches may require tens of billions

of references to be processed, potentially resulting in excess

storage use. Storage for simulations of finite caches can be

periodically (e.g., every 100 million references) reclaimed by

discarding blocks not in the superset of the caches of interest;

this latter approach is used in most other simulation algorithms

as well. The algorithms below neglect storage reclamation.

Figs. 9 and 10 at the end of this section present pseu-

docode for all-associativity simulation not using and using

set-refinement. The rest of this section provides insight into

how all-associativity simulation works by developing it from

stack simulation. A reader who understands the operation of
the algorithms from Figs. 9 and 10 may skip to the next sec-

tion.

If we wish to simulate caches that have one, two, and four

sets selected by bit selection (set-mapping functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx mod 1,

x mod 2, and x mod 4) we can run three concurrent stack

simulations (one with one stack, another with two and a third

with four.) Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6(a) illustrates the first two stack simulations.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

Due to locality, blocks that reside in one alternative cache

will tend to reside in the other caches. Thus, as illustrated

in Fig. 6(b), we can save storage by allocating storage for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a block once and using multiple links to insert it into the

multiple stacks. FGr LRU replacement, however, the order of

two blocks in all stacks is always the same (the more-recently-

referenced one is nearer the top) and is unaffected by what

other blocks are members of a particular stack.5 This implies

that all links must point down, and therefore can be inferred

instead of stored.

Instead of following the links of each stack and counting the

blocks traversed, a block’s stack distance for each set-mapping

function can be calculated by traversing the fully-associative

stack until the reference is found or the stack exhausted. For

each stack node y before the reference x is found or the

stack exhausted, we determine whether fiQ) = fi(x) with

each set-mapping function f; . Whenever the equality holds,

we increment stuck-count[i]. If the reference is found, all

stuck-count[i]’s are incremented. After the reference is found

or the stack exhausted, each distunce[i, stuck-count[l]] is in-

cremented to indicate a hit to distance stuck-count[i] with

set-mapping function f;. Fig. 7 illustrates that this method,

which we call ull-ussociutivity simulation, on a reference to

block 2.
The above method works for arbitrary set-mapping func-

tions. A faster algorithm is possible if f;+l(x) refines fi(x),
for i = 1 to L - 1. All-associativity simulation can take advan-

tage of set-refinement two ways. First, if f1 implies multiple

sets (not fully-associative), the algorithm can operate on the

number of stacks induced by f1 instead of simulating with one

long fully-associative stack. The information lost by not main-

taining one stack is the relative order of blocks in different fl

sets. This information is not needed since the contrapositive of

the implication used to define refines is fi(x) # fiQ) implies

fi+l(X) # fi+lQ). Thus, two blocks in different f1 sets will
never be compared. Simulating with multiple stacks is faster

than simulating with one, because the average number of ac-

tive blocks the algorithm must look through to find a block

is smaller, since active blocks are spread across many stacks

(e.g., 512 stacks for simulating the VAX-l1/780’s cache 1111).

Second, the examination of “fi(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ; Q) for i = L down

to 1 ” can be terminated the first time f;(x) equals f;(y), since

the set-refinement forces the equality to hold for all smaller

i. Furthermore, instead of incrementing stuck-count[i] for

each i where the equality holds, we need only increment

stuckmrtiul-count[i] for the maximum i for which it holds.

When the processing for a reference terminates, we can com-

pute stuck-count[i] as stuck>rtiul-countv] and in-

crement distunce[i, stuck-count[i]], for i = 1, L . Thus, using

In RANDOM replacement, on the other hand, two blocks can be re-
ordered in one group of stacks and not another if the current reference maps
below them in one set of stacks and to another stack in another group of
stacks. Consider blocks 0, I , and 2 and a fully-associative stack and a pair of
stacks for even and odd blocks. Reference 1, 0, and 2. The fully-associative
stack holds (2 0 I) , while the even and odd stacks hold (2 0) and (1) . Now
rereference block 1 . RANDOM replacement requires that there is a 50 per-
cent chance that the fully-associative stack changes to (1 0 2). Since the even
stack is unaffected by a reference to an odd block, it remains as (2 0) and
blocks 0 and 2 are now in a different order in different stacks.

HILL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND SMITH: ASSOCIATIVITY IN CPU CACHES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1621

Fully-Assoc Two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASets

f(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 f(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx mod 2
Stack Block 2 Same stack- Same stack-

set? count[2] - - set? count[l]

Yes 1 Yes 1

- - fdly-aSsoC found?

no

no

Yes 2

Yes 3

no 1

no 1

no Yes 4 Yes 2

no Yes 5 Yes 3

no Yes 6 no 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= I = 4

Four Sets

f(x) = x mod 4
Same stack-
set? count[3]

yes 1

- -

no 1

no 1

no 1

no 1

no 1

yes 2

= 2 * Distance:

Fig. 7. All-associativity simulation example: referencing block 2 in caches

with 1, 2, and 4 sets.

Stack Number of stackgartial stackqartial stack-partial

fully-assoc LSB matched -count[O] -count[ll -count[2] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 & 2 0 0 1

rti 0

b 0

1

found + - * Stack

1 0 1

2 0 1

2 1 1

2

2

3 2 2

3+2+2 2+2 2

Distance: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l = 4 = 2

Fig. 8. All-associativity simulation with set-refinement example: referenc-

ing block 2 in caches with 1, 2, and 4 sets.

set-refinement reduces the inner loop of all-associativity sim-

ulation with L set-mapping functions from L compares and 0

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL increments, to 1 to L compares and 0 or 1 increments.
Since the expected number of compares in the improved al-

gorithm can be as small as two,6 this can result in nontrivial

savings if L is large. Fig. 8 illustrates this optimization on

reference to block 2.

Assume sets are selected with bit selection and the least-significant address
bits of nodes in a stack are uniformly distributed. The probability that exactly
i least significant bits match is 1 /2'+'. The number of iterations given an i-bit
match is i + 1, with the final iteration used to detect the first mismatch. The
expected number of iterations does not exceed two, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i + 1)/2'+' =
2.

D. Implementation and Comparison of Simulation
Algorithms

To study the performance of stack, forest, and all-

associativity simulation and to study CPU caches per se, we

implemented these algorithms in C under UNIX 4.3 BSD.
Stack and forest simulation were added to a general cache

simulator that originally contained 1250 C statements' [14].

Adding stack simulation increased total code size by 150 state-

ments, and adding forest simulation, 220 statements. Stack

simulation is implemented using linked lists. The forest sim-

' Measured by the number of source lines containing a semicolon or closing
brace.

1622 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
16K 4-way

IKm8K I-way
16Km 128K I-way
16K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 128K I-. 2- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 4-way

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

312.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1.010) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- -- 309.2 (1.Oo0)

1234.4' (4.0) 326.1 (1.054) 402.9 (1.333)
1234.4' (4.0) 321.0 (1.038) 332.3 (1.074)

1t306.6 (6.0) - -- 366.6 (1.185)

TABLE I1
SIMULATION TIMES

Run-Lime in sec/lM-references (normalized) r E Associativity II
1 Slack 1 F m 1 All-Associativity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W D II 304.3 (0.984) I 304.7 (0.985) I 294.6 (0.952)
(bytes)

I 16K I-way 11 309.3 (l.Oo0) I 307.6 (0.994) I 300.8 (0.972) I

Instead of determining the time for each stack simulation, we optimisti-

cally approximate the time required as the time for a fast stack simulation
(128 kbyte direct-mapped cache) times the number of runs required.

integer L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP number of &-mapping functions */
function fl(x), fL(x) P arbitrary set-mapping functions */
integer N P counter for the number of references */
integer max-assoc /+ maximum associativity for metrics */

P distance counts so that miss-ratio(A=k. F=f,) = 1 - ~distance[i,j]/N */

integer distance[l:L, I:max-assoc]

integw stack-count[l:Ll Pstack distance counters; reset for each reference. */

define stacknode-type (

t

, = I

integer block-number
stacknode-type *next

I
stacknode-type *stack P top of stack pointer */
P Let N W y be the number of unique blocks referenced. */
stacknode-type stacknodes[l:O(N,)] P dynamically allocated pool of stacknodes. */

For each reference x 1
for i= 1 to L 1 s~ack-count[i] = 0]
read(var x)
N++

found = FALSE
previous-nodegointer = NULL

nodegointer = stack
while (mOT found) AND (nodegointer!=NULL)) 1

y = nodegointer->block-number

found = TRUE
for i=l to L [stack-count[i]++]

r FIND *I

if(x=y) I

I
else 1

for i=l to L 1

1
previous-nodegointer = node-pointer
nodegointer = nodegointer->next

if (f,(x)==f,(y)) stack-count[i]++

I
I
r METRIC *I
if (found) 1

for i=l to L [
/*Record hits to distances s max-assoc. */
if (stack-count[il S max-assoc) distance[i. stack-count[ill++

I
1
/* If found. move the stack node of x to the top of the stack. */
/* Othenvk, store x in a new stacknode and move it to the top of the stack. */
UPDAE(x, found, previous-node~~~intex. nodegointer)

I
Fig. 9. All-associativity simulation.

ulation implementation restricts the set-mapping functions to

be the block number modulo the cache size in block frames,

a slight generalization of bit selection. We implemented all-

associativity simulation in a separate program containing 800
C statements and having far fewer options than the sirnula-

tor above, and with the set-mapping function restricted to bit

selection.

Table I1 lists simulation times for C language implemen-

tations of stack, forest, and all-associativity simulation. All

caches simulated have 32-byte blocks, do no prefetching, use

HILL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND SMITH: ASSOCIATIVITY IN CPU CACHES 1623

integer L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP number of set-mapping functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*/
P set-mapping functions that obey set-refinemenf *I
P i.e., f;+l refines fi for i=l, ..., L-1. +/
function fl(x). ..., fL(x)

integer number-of-stacks P number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets induced by fl(x) *I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
integer N P number of references */
integer max-assoc P maximum associativity for metrics */
P distance counts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that miss-ratio(C(A=k. F=fi)) = 1 - ~distance[i,jIlN *I

integer disrance[l:L. l:max-assoc]

integer stack~artial-count[l:L] P stack distance counters; reset for each reference. *I

define stacknode-type (

1'1

integer block-number
stacknode-type *next

1
stacknode-type *srack[Onumbex of stacks-11 P top of stack pointers */
P Let Ne,,, be the number of unique blocks referenced. */
stacknode-type stacknodes[l:O(N+)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP dynamically allocated pool of stacknodes. */

For each reference x (
for i=l to L [stackgartial-count[il= 0)
read(var x)
N++
stactnumber = fi (x)

P FIND */
found = FALSE

previous-nodegointer = NULL
nodeminter = stack[stack-numberl

while ((NOT found) AND (nodepinter!=NULL)) (

y = nodegointer->block-number

found = TRUE
stacks;utial_count[++

if(x=y) [

1
else (

match = FALSE
for i=L down to 1 OR match [

if (f;(x)==fi(y)) [
match = TRUE
stackgartial_count[il+t

1
1
previous-nodegointer = nodegointer
nodegointer = ncdegointer->next

1
1
r METRIC *I
if (found) (

stack-count = 0
for i=L down to 1 (

stack-count = stack-count + stack-pamd-count[i]

P Record hits to dismces s max-assoc. */
if (s tack-mt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 max-as=) distance[i, stack-countl++

1
1
P If found, move the stack mde of x to the top of its stack. */
P Otherwise. store x in a new stacknode and move it to the top of the stack. */
UPDATE(x, stack-number, found, previous-nodegointer, nodegointer)

Fig. 10. All-associativity simulation with set-refinement.

1624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

LRU replacement, are unified (data and instructions cached to-

gether) and use bit selection. Results in the first row (“trivial

trace”) are for a trace consisting of one million copies of the

same address, yielding one miss and 999999 hits. All other

results presented here are for a trace of one million memory

references from system calls generated by an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAtndahl stan-

dard MVS workload [28]. We also examined traces from three

other architectures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15]. We omit these results here, since they

are similar to those with the MVS trace. Results not in paren-

theses are the elapsed virtual times in seconds for simulation

runs on an otherwise unloaded Sun-3/75 with 8M of memory,

no local disk, and trace data read from a file server via an

ethernet. Results in parentheses are normalized to the time for

stack simulation to simulate a single 16 kbyte direct-mapped

(1-way) cache with the MVS trace.

We compare these algorithms using only memory trace

data, as opposed to data from other caching systems, be-

cause set-associativity is rarely used outside of CPU caches.

Readers interested in simulation performance times for fully-

associative caches, driven by traces of memory and disk ref-

erences, should consult [33].

The simulation times in Table I1 allow us to answer the fol-

lowing three questions regarding how these implementations

perform.

1) Are the implementations comparable?

Yes. We determine that implementations are comparable by

simulating single caches, which, in theory, require the same

simulation time. For a synthetic trace and a real trace and for

two associativities, we found the virtual times (CPU times)

for implementations of stack and forest simulation differed

by less than 0.5 percent, while the implementation of all-

associativity simulation is 1-3 percent faster (see Table 11).

That all-associative simulation is slightly faster is not surpris-

ing, since it was implemented in a separate program, while

stack and forest simulation are part of a more powerful cache

simulator.

2) What algorithm is fastest for simulating a collection of

direct-mapped caches of similar size?

Forest simulation. However, forest simulation is not sig-

nificantly faster than all-associativity simulation if caches are

large. Both forest and all-associativity simulation are much

faster than stack simulation since they require only one run,

whereas stack simulation needs one run per cache size.

3) What algorithm is fastest for simulating a collection of

direct-mapped and set-associative caches of similar size?

All-associativity simulation. All-associativity simulation re-

quires only one run, which is not much slower than a single,

simple simulation run. Forest simulation is not able to simu-

late nondirect-mapped caches. Stack simulation requires one

run per unique number of sets. Simulating caches of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, 2c, 4c

through 2’c block frames with associativities 1, 2, 4 through

2a requires s + a - 1 stack simulations. One with c/2‘ sets,

a second with c/2”-’ sets, . . ., another with c sets, another

with 2c sets, . . ., and finally one with 2’c sets. The simulation

in the final row of Table 11, for example, required six stack

simulations, using 128, 256, . . . and 4K stacks, respectively.

The speedups illustrated here for trace lengths of one mil-

lion references (30 min down to 6 min) are impressive, but not

critical. Traces to exercise multiple-megabyte caches, how-

ever, will be much longer. All-associativity simulation will

allow billion-reference traces to be processed in a few days

rather than a few weeks. Furthermore, simulating a wide va-

riety of caches in one pass as a trace is generated facilitates

simulations with traces too large to store.

V. THE RELATIONSHIP BETWEEN ASSOCIATIVITY

AND MISS RATIO

In this section, we analyze how changes in associativity al-

ter cache miss ratio. We find empirically that some simple

relationships exist between the m i s s ratios of direct-mapped,

set-associative, and fully-associative caches, largely indepen-

dently of cache size. We concentrate on the relationship be-

tween miss ratios of alternative caches, rather than the abso-

lute size of miss ratio, because our traces samples are short,

never exceeding 500K references. We assume throughout that

caches have a fixed block size, use LRU replacement, do no

prefetching and pick the set of a reference with bit selection.

A . Categorizing Set-Associative Misses

The simulation algorithms described earlier facilitate com-

puting the miss ratios for many alternative cache sizes and

associativities. These data can be used to increase our under-

standing of a single cache’s miss ratio. We do this by subdi-

viding the observed misses into three categories: (set-)conflict
misses (due to too many active blocks mapping to a fraction

of the sets), capacity misses (due to fixed cache size), and

compulsory misses (necessary in any case’).

The size of these components can be calculated as follows.

First, the conflict miss ratio is the cache’s miss ratio less the

miss ratio for a fully-associative cache of the same size. Sec-

ond, the capacity m i s s ratio is the fully-associative cache’s

miss ratio less the miss ratio for an infinite cache (one so
large it never replaces a block). Finally, the compulsory miss

ratio is the infinite cache’s miss ratio, which is not zero since

initial references to blocks still miss. This categorization is
easy to compute, since it can be derived from average miss ra-

tios and does not require a detailed manipulation of simulation

programs (as does the model in [3]).

Table I11 illustrates this miss ratio categorization “ue,” a

trace of VAX-11 interactive users under Ultrix (see Table I).

All miss ratios are warm-start and for a unified cache with

32-byte blocks. Under each miss ratio component, the first

number is the component’s absolute size, while the second is

its relative contribution to the overall miss ratio. The reader

should concentrate on trends rather than miss ratio values,

since this table only gives results for three short trace sam-

ples of one workload. Compulsory miss ratios and results for

larger caches are subject to more error. (That one conflict miss

ratio is negative (eight-way set-associative 1 kbyte cache) is

unimportant, since 1) the magnitude is very small (-O.O006),

indicating that cache has approximately the same miss ratio as

fully-associative cache, and 2) the behavior is possible [31].)
For this trace, we see 1) the absolute size of the conflict miss

ratios for set-associative caches (not direct-mapped) are small, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
That is, necessary without violating our assumptions of a fixed block size,

LRU replacement, no prefetching, and bit selection.

HILL AND SMITH: ASSOCIATIVITY IN CPU CACHES 1625 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘ache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASue

@ytes)

1K
IK
IK
IK

2K
2K
2K
2K

4K
4K
4K
4K

8K
8K
8K
8K

16K
16K
16K
16K

32K
32K
32K
32K

Degree of
\ssOcmvity

1-way
2-way
4-way
8-way

I-way
2-way
4-way
%way

1-way
2-way
4-way
8-way

I-way
2-way
4-way
%way

I-way
2-way
4-way
%way

I-way
2-way
4-way
&way

TABLE 111
THREE Miss RATIO COMPONENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-

M I S

Ratio

0.1913 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1609
0.1523
0.1488

0.1482
0.1223
0.1148
0.1128

0.1089
0.0948
0.0868
0.0842

0.0868
0.0693
0.0650 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0629

0.0658
0.0535
0.04%
0.0478

0.0503
0.0612
0.0383

- -

0.0371

Miss Rali

Conflict

0.0419 Z2%
0.0115 7%
0.0029 2%
0.m -0%

0.0361 24%
0.0102 8%
0.0027 2%
0 . m 1%

0.M70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25%
0.0129 14%
0.0049 6%
0.0022 3%

0.0257 30%
0.0082 12%
O.OO40 6%
0.0018 3%

0.0194 29%
0.0070 13%
0.0029 6%
0.0014 3%

0.0134 27%
0.0043 11%
0.0014 4%
0 . m 2%

wnp~lenu (Reh
Capacity

0.1405 73%
0.1405 87%
0.1405 92%
0.1405 94%

0.1032 70%
0.1032 &l%
0.1032 90%
0.1032 91%

0.0730 67%
0.0730 77%
0.0730 84%
0.0730 87%

0.0521 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60%
0.0521 75%
0.0521 80%
0.0521 83%

0.0375 57%
0.0375 708
0.0375 76%
0.0375 78%

0.0279 55%
0.0279 68%
0.0279 73%
0.0279 74%

Srcenl)

Compulsory

0 . m 5%
O.Oo90 6%
O.Oo90 6%
O.oOs0 6%

O.Oo90 6%
0 . m 7%
O.Oo90 8%
0 . m 8%

o.Oo90 8%
o.Oo90 9%
0.0390 10%
o.Oo90 11%

0 . m 10%
O.Oo90 13%
O.Oo90 14%
O.Oo90 14%

O.Oo90 14%
0 . m 17%
0 . m 18%
O.Oo90 19%

0.030 18%
o.Oo90 22%
0.0390 23%
O.Oo90 24%

aking further increases in associativity of limited benefit,

2) the absolute size of conflict miss ratios for direct-mapped

caches gets smaller with increasing cache size, making in-

creasing associativity less important, and 3) the compulsory

m i s s ratio is fixed but gets relatively more important with in-

creasing cache size, limiting the potential benefit of further

cache size increases. One deficiency of this categorization is

that the magnitude of the capacity miss ratio does not bound

the miss ratio reduction that increasing cache size can yield.

This is because increasing cache size also increases the num-

ber of sets, reducing the conflict miss ratio.

B. How Set-Associative Miss Ratios Relate to
Fully -Associative Ones

It has been previously shown [26] that set-associative miss

ratios can be closely estimated from fully-associative ones;

this observation was validated for several traces for 16 and 64
sets. We review that calculation in this section, and validate

the results over a larger range of cache sizes and number of

sets.

The model derives LRU distance probabilities with s
sets, p i@) , from fully-associative LRU distance probabilities,

q;.p;(s) is the probability a reference is made to the ith most-

recently-referenced block in one of s sets, while qi is the prob-

ability a reference is made to the ith most-recently-referenced

block in any set. Consequently, qi = p;(l). LKU distance

probabilities are equivalent to the miss ratios of caches using

LRU replacement. The miss ratio for an n-way set-associative

cache with s sets is 1 - Er=, p i@) , while the miss ratio for

an n-block fully-associative cache is 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY=, 4;.
Bayes rule” allows us to express a set-associative LRU

distance probability in terms of fully-associative LRU distance

probabilities :

pn(s) =

CO

Prob(LRU distance n with s sets
i=l

I LRU distance i with 1 set) . qi.

I o For some event A and a set of mutually exclusive and exhaustive events
B, , Bayes’ rule states that Prob(A) = C Prob(A IB,) . Prob(B,).

The above equation can be used to estimate set-associative

LRU distance probabilities from fully-associative LRU dis-

tance probabilities, or equivalently set-associative miss ratios

from fully-associative miss ratios, using a simple approxima-

tion for Prob(LRU distance n with s setslLRU distance i with

1 set). The approximation is based on the assumption that

the probability that two blocks map the same set is l/s and

independent of where other blocks map. A reference to set-

associative distance n occurs if exactly n - 1 more-recently-

referenced blocks map to the reference’s set, while a reference

to fully-associative distance i implies i - 1 blocks are more-

recently-referenced. By the above assumption, the probability

that exactly n - 1 of the i - 1 more-recently-referenced blocks

map to the set of the reference is 0 for n > i and approxi-

mately

Substitution yields

Fig. 11 shows actual miss ratios (solid lines) and miss ratios

predicted with the above equation (dashed lines) for associa-

tivities 1, 2, 4, and 8. Data are based on using trace “mu12’

to drive a unified cache with 32-byte blocks. Results here and

for several other traces [151 yield three conclusions.

1) The predictions are quite accurate. In most cases, the

relative error is less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 percent; only rarely is it greater

than 10 percent.

2) Predictions are usually more pessimistic than the actual

miss ratios. The cause of this phenomenon is that blocks se-

lected with bit selection collide slightly less often than blocks

whose set is selected at random (as the above approximation
assumes), due to spatial locality [26].

3) The relative error gets smaller with increasing associativ-

ity, which is expected since many-way set-associative caches

have miss ratios nearly identical to fully-associative caches.

That this method is accurate is not important for deriving

set-associative miss ratios, since all-associativity simulation

allows exact values to be calculated efficiently. Rather, it is

important in that it provides insight into the difference between

set-associative and fully-associative miss ratios, showing that

the actual increase in miss ratio is nearly identical to the in-

crease that results from assuming that active blocks map to

sets with independent and equal probability.

C . How Set-Associative Miss Ratios Relate to Each Other

Empirically we see that miss ratio is affected by changes

in cache size, block size, and associativity. We would like to

find some simple rules that can be used to quantify changes in

associativity on cache miss ratios; we do that in this section.

We find that by examining relative m i s s ratio differences
rather than absolute miss ratio differences one can almost

eliminate the effect of cache size. Consider an n-way set-

associative cache and a 2n-way set-associative cache, hav-

1626 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.060 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-

0.050 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.040 -

0.030

0 . m

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.010 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U.M

0.20 M
1

S

S

R
a

1

I

0 0.10

0.00

M
I

S

s

M
I

S

S

IK
Cache Size (bytes)

(a)

10K

\, \

o.Oo0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ4,
IOK IOOK 1M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cache Size (bytes)

(b)

Fig. 1 1 . Predicted (dashed) and actual (solid) m i s s ratios for trace “mu12”
with caches of associativity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2, 4, and 8. (a) Smaller caches. (b) Larger
caches.

ing the same capacity, the same block size, and m i s s ratios

m(A = n) and m(A = 2n). Let the miss ratio spread be the

ratio of the miss ratios, less one:

m(A = n)
m(A =2n) m(A = 2n)

m(A = n) - m(A = 2n) - I =

M
1

S

S

0.50

0.40

0.30

0.20

0.10

0.00

0.40

0.30

0.20

0.10

0.00

1c
I ’\
I \
I \

I \
I \

~ ; /-to-l I \

I

-4e-J:

-x’

x

IK 10K LOOK IM
Cache Size (bytes)

(a)

____)j;_-LIII
\

I
I

\ \ I \ \ I

- d

IK 10K IOOK IM

Cache Size (bytes)

(b)
Fig. 12. Unified cache miss ratio spreads (solid lines are smoothed data).

A line labeled “2n-to-n” displays [m(A = n) - m(A = 2n)]/m(A = 2n)
where m(A = n) is the miss ratio of an n-way set-associative cache. (a)
Five-trace group. (b) 23-trace group.

Figs. 12 and 13 and Table IV present data from trace-driven

simulation. As discussed in Section 111, data for larger caches

are subject to more error than data for smaller caches, and

measurements for caches larger than 64K should be treated

with considerable caution. Fig. 12 shows some miss ratio

1627 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Size

IK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2K

HILL AND SMITH: ASSOCIATIVITY IN CPU CACHES

Block Size 16 Bytes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8-O4 [440-2 [2-lo-1

Block Size 32 Bytes Block Size 64 Bytes
8-104 I 4-lo-2 I 2-tc-1 8-04 I 4-lo-2 1 2-lo-I

5% 1 1 % 16% 4% 11% 16% 6% 10% 16%
6% 13% 18% 5% 14% 17% 6% 13% 18%

TABLE IV
SMOOTHED Miss RATIO SPREADS

4K
8K

16K
32K
64K

128K

6%
7%
7%
6%
5%
4%

20%
22%
26%
28%
30%
29%

6%
7%
7%
7%
6%
5%

20%
23%
28%
30%
32%
32%

7%
7%
7%
7%
6%
5%

15%
15%
15%
15%
13%
14%

20%
24%
29%
32%
35%
35%

Cache Block Size 16 Bytes I[Block Size 32 Bytes 11 Block Size 64 Bytes '

IK II 6% I 13% I '27% II 6% I 14% I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30% II 7% I 14% I 33% 1
Size 8 - 1 4 I 4-10-2 I 2-lo-1 11 8 - O 4 I 4-10.2 I 2-10.1 11 840.4 [4-lo-2 I 2-lo-l

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f \

f \
/ I

I Smoothed MQ Ratio Spreads for Unified CachM I
I f \

M
I

I

I

32K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.30

0.20.

40%
40%

Smoothed MQ Ratio Spreads for Instruction Caches I

13%
13%
13%
12%
11%
11%

15%
15%
14%
14%
12%
12%

\
A

Smoothed Miss Ratio Spreads lor D a h Caches

1K 10K IOOK IM
Cache Size (bytes)

(a)

14%
13%
12%
11%
11%
11%
12%
12%
-

34%
36%
35%
36%
35%
36%
35%
35%
-
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24% 29%

128K
256K

M
I

S

S

spreads (recommended in [9]). We selected the weights to re-

duce variation between adjacent spreads, without suppressing

larger trends. We assigned a weight of 0.20 to both adjacent

spreads and 0.15 to spreads two sizes away, leaving a weight

of 0.30 for the spread being smoothed.

Table IV shows similar results from an alternative computa-

tion, taking the geometric average of the miss ratio spreads of

individual traces. This method yields slightly larger spreads

than those calculated using the ratio of average miss ratios (as

in Fig. 12). Miss ratio spreads in rows labeled "AVG" are

calculated by taking the geometric mean of the ratio of miss

ratios for cache sizes from 1K to 256K bytes.

These results together with more data in [15] exhibit the

following trends.

1) Miss ratio spreads for caches with more restricted asso-

ciativity are larger, implying, for example, that direct-mapped

and two-way set-associative miss ratios are further apart than

two-way and four-way set-associative miss ratios. This result

corroborates the previous work of many others.

2) Except for small instruction caches, miss ratio spreads

do not vary rapidly with changing cache size, even though the

miss ratios in their numerators and denominators vary by over

an order of magnitude. The miss ratio spreads between small

direct-mapped and two-way set-associative instruction caches

are smaller than many other spreads due to the sequential

behavior of instruction reference streams, which minimizes

the usefulness of increasing associativity in small instruction

0.00
1

IK 10K IOOK IM
Cache Size (bytes)

(b)
Fig. 13. More m i s s ratio spreads for the five-trace group (solid lines are

smoothed data). (a) Instruction caches. (b) Data caches.

spreads of unified caches with 32-byte blocks for the five-

and 23-trace groups. Fig. 13 examines miss ratio spreads for

inAtruction and data cache with the five-trace group. The av-

erage miss ratio spread is computed using the ratio of the

average miss ratios. Dashed lines present raw data, while

solid lines are smoothed using a weighted average of adjacent

1628 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Type

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER

B l a k FmDirea-tdqq~dTo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 FmEighi-WayTo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Size 8-way I 4-way I 2-way 11 4-way 1 2-way I I-way

1989

Cache

Type

caches [3 11. This sequentiality is much less of a factor for large
instruction caches, and for such large instruction caches, the

miss ratio spreads are similar to those for data and unified

caches. The only major exception to these observations is the

miss ratio spread between direct-mapped and two-way set-

associative 128 kbyte caches with the five-trace group. We

believe that the cause of this aberration lies in the particular
traces and trace lengths used, not in some property of 128

kbyte caches.

3) Miss ratio spreads are positively correlated with block

size. While the difference is not important with wide associa-

tivity, the miss ratio spread between direct-mapped and two-

way set-associative unified caches with the 23-trace group in-

creases from 25 to 31 to 39 percent as block size goes from

16 to 32 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 bytes. The reason for this is that for a given

cache size, as the blocks become larger, the number of sets

decreases, and the probability that two active blocks map into

the same set increases (i.e., bigger blocks are more likely to

“bump into each other”.)

4) Miss ratio spreads between unified and data caches are

similar. Instruction cache spreads are similar or smaller (see

also [lo]). Miss ratio spreads between direct-mapped and two-

way set-associative instruction caches are significantly smaller

than other spreads, as has been observed elsewhere [31].

Since the miss ratio spreads do not vary greatly with cache

size, we can provide insight into the relationship between miss

ratio and associativity by computing miss ratio spreads aver-

aged over many cache sizes, as is done in Table IV. To one

significant figure, halving associativity with these traces from

eight-way to four-way to two-way to direct-mapped causes

miss ratio spreads of 5, 10, and 30 percent regardless of

cache size, cache type, or block size. Equivalently, one can

look at set-associative miss ratios relative to direct-mapped

or fully-associative ones, as depicted in Table V. Relative to

direct-mapped, the miss ratios for eight-, four- and two-way

set-associative are, respectively, about 34, 30, and 22 percent

lower. Assuming that eight-way set-associative is effectively

fully-associative, the miss ratio increases by 5 percent for

four-way, 17 percent for two-way, and 52 percent for direct-

mapped.

Our examination of miss ratios for caches with different

associativities has shown that the miss ratio spread does not

change significantly over a wide range of cache sizes, with

exception of small instruction caches, for which the spread is

unusually small. Consequently, the absolute miss ratio differ-

ence decreases as caches get larger, since absolute miss ratios

get smaller. When the absolute miss ratio difference becomes

sufficiently small, an interesting change occurs: the effective

access time of a direct-mapped cache can be smaller than that

of a set-associative cache of the same size, even though the

direct-mapped cache has the larger miss ratio. This change

occurs when implementation differences, that have previously

been ignored, become more important than absolute miss ra-

tio differences. This topic is considered in some detail in [16]

and [22]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D . Extending Design Target Miss Ratios

In [28], it was noted that absolute miss ratios computed

from trace-driven simulations were often optimistic. That pa-

Block From Direct-Mappad To I) From Eight-Way To
Size &way I 4-way I 2-way 11 4-way I 2-way I I-way

TABLE V
RELATIVE Miss RATIO CHANGE

lnsmrtion 1 64%

52%
63%
48%
51% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
54%

-

Insrmction

per then presented design target miss ratios which were miss

ratios derived from hardware monitor measurements, personal

experience, and trace-driven simulations using realistic work-

loads; those miss ratios were intended to represent realistic

figures for real systems under real workloads. The data in

[28] presented miss ratios for fully associative caches with

16-byte blocks, broken down into figures for unified, instruc-

tion, and data caches. In another paper [30], the design target

miss ratios were extended to block sizes ranging from 4 to 128

bytes. This was done by finding the relative change in miss

ratio as the block size changed (by taking “ratios of miss ra-

tios” for a variety of traces) and propagating the design target

miss ratios for 16-byte block to other block sizes.

We use the same method in Table VI to extend the design

target miss ratios to caches of limited associativity. We as-

sume that eight-way set-associative miss ratios are equal to

the fully-associative design target miss ratios, and compute

other set-associative miss ratios using the smoothed ratios of
miss ratios shown in Table IV. We do not extend the design

target miss ratios to caches larger than 32 kbytes, because the

original design target miss ratios in [28] and [30] are limited

to caches of 32 kbytes or less, and the methodology for ex-

tending them to larger cache sizes is beyond the scope of this

paper; note, however, that data in [27] suggest that as a rough

rule of thumb, the miss ratio drops as the square root of the

cache size.

VI. CONCLUSIONS

We have examined properties and algorithms for simulating

alternative caches and have examined the relationship between

associativity and miss ratio. We find that both inclusion (that

larger caches contain a superset of the blocks in smaller caches

[191) and set-refinement (that blocks mapping to the same set

in larger caches map to the same set in smaller caches) can

be used by forest simulation, a new algorithm for rapidly

simulating alternative direct-mapped caches. We show that in-

clusion is not useful, but set-refinement can be useful for

all-associativity simulation, an algorithm for rapidly sim-

ulating alternative direct-mapped, set-associative, and fully-

HILL AND SMITH: ASSOCIATIVITY IN CPU CACHES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IK

4K
8K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

32K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZK

I ~ K

TABLE VI
DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATARGET MISS RATIOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.211 0.234 0.271 0.134 0.140 0.155 0.179 0.098 0.104 0.115 0.133

0.100 0.106 0.120 0.143 0.063 0.067 0.076 0.091 0.043 0.046 0.053 0.063
0.060 0.061 0.072 0.089 0.037 0.039 0.045 0.056 0.023 0.025 0,028 0.035

0.030 0.032 0.036 0.046 0.017 0.018 0.021 0.027 0.010 0.011 0.012 0.016

0.150 0.159 0.179 0.210 0.098 o m 0.117 0.138 0.068 0.072 0.082 0.097

o.om 0.053 0.060 0.076 0.029 0.031 om5 0.045 0.018 0.019 0.022 0.029

1629

I Dakn Target Mhr Ratbs for Data C u b a I

1 3ZK I(0.040 1 0.041 1 0.045 1 0.055 11 0.025 1 0.026 1 0.023 1 0.037 1) 0.017 I 0.018 I 0.020 1 0.027 1

associative caches. Our algorithm is a generalization of an

earlier algorithm [191, [34]. We find all-associativity simula-

tion is tremendously effective, allowing dozens of caches to

be evaluated in time that is within a small constant factor of

the time needed to simulate one cache with wide associativity.

Our empirical examination of associativity and miss ratio

provides data and insight into how miss ratio is affected by

changes in associativity. In particular:

e We show how to divide cache misses into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconflict, ca-
pacity, and compulsory misses, using only average miss ra-

tios from alternative caches. Increasing associativity but not

cache size can only reduce conflict misses. Increasing cache

size but not associativity increases the number of sets, and

therefore may decrease conflict and capacity misses. Compul-

sory misses cannot be reduced without increasing block size

or prefetching .
e By applying a model from [26] to a wide variety of

caches, we show that the difference between set-associative

and fully-associative miss ratios (the rate of conflict misses)

can be predicted by assuming blocks map to sets uniformly

and independently, resulting in too many active blocks map-

ping to a fraction of the sets.

e We find empirically that miss ratio spread, the relative

change in miss ratio caused by reducing associativity, is rel-

atively invariant for caches of significantly different size and

miss ratio. Our data show that reducing associativity from

eight-way to four-way, from four-way to two-way, and from

two-way to direct-mapped causes relative miss ratio increases

of about 5 , 10, and 30 percent, respectively. We also use miss

ratio spreads to provide design target miss ratios for caches

with limited associativity.

ACKNOWLEDGMENT

We would like to thank R. Katz, D. Patterson, and other

members of the SPUR project for their many suggestions that

improved the quality of our research, H. Stone for comments

on [15], and S. Dentinger, G. Gibson, and V. Madan for

reading and improving drafts of this paper.

REFERENCES
A. Agarwal, R. L. Sites, and M. Horowitz, “ATUM: A new technique
for capturing address traces using microcode,” in Proc. 13th In t .
Syrnp. Cornput. Architecture, June 1986, pp. 119-129.
A. Agarwal, M. Horowitz, and J. Hennessy, “Cache performance of
operating systems and multiprogramming workloads,” ACM Trans.
Cornput. Syst., vol. 6 , no. 4, pp. 393-431, Nov. 1988.
- , “An analytical cache model,” ACM Trans. Cornput. Syst., vol.
7, no. 2, pp. 184-215, May 1989.
C. Alexander, W. Keshlear, F. Cooper, and F. Briggs, “Cache mem-
ory performance in a UNIX environment,” Cornput. Architecture
News, vol. 14, no. 3, pp. 14-70, June 1986.
J . Baer and W. Wang, “On the inclusion properties for multi-level
cache hierarchies,” in Proc. lSth Annu. Int. Syrnp. Cornput. Archi-
tecture, Honolulu, HI, June 1988, pp. 73-80.
L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Syst. J . , vol. 5 . no. 2, pp. 78-101, 1966.
J . Bell, D. Casasent, and C. G. Bell, “An investigation of alternative

cache organizations,” IEEE Trans. Cornput., vol. C-23, no. 4, pp.
346-351, Apr. 1974.
B. T. Bennett and V. J. Kruskal, “LRU stack processing,” IBM J.
Res. Develop., pp. 353-357, July 1975.
J . M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey,

Graphical Methods for Data Analysis. Boston, MA: Duxbury,
1983.

J. Cho, A. J. Smith, and H. Sachs, “The memory architecture and
the cache and memory management unit for the Fairchild CLIPPER
Processor,” Comput. Sci. Div. Tech. Rep. UCBIComput. Sci. Dep.
86/289, Univ. of California, Berkeley, Apr. 1986.
D. W. Clark, “Cache performance in the VAX-11/780,” ACM Trans.
Cornput. Syst., vol. 1 , no. 1 , pp. 24-37, A b . 1983.
M. C. Easton and R. Fagin, “Cold-start versus warm-start m i s s ra-
tios,” Comrnun. ACM, vol. 21, no. 10, pp. 866-872, Oct. 1978.
I. J. Haikala and P. H. Kutvonen, “Split cache organizations,” CS
Rep. C-198440., Univ. of Helsinki, Aug. 1984.
M. D. Hill, Diner0111 Documentation, Unpublished Unix-style Man
Page, Univ. of California, Berkeley, October 1985.
- , “Aspects of cache memory and instruction buffer performance,”

Ph.D. dissertation, Comput. Sci. Div. Tech. Rep. UCB/Comput. Sci.
Dep. 87/381, Univ. of California, Berkeley, Nov. 1987.

163r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1221

1341 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0

- , “A case for direct-mapped caches,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Comput. Mag., vol.
21, pp. 25-40, Dec. 1988.
K. R. Kaplan and R. 0. Winder, “Cache-based computer systems,”
IEEE Comput. Mag., vol. 6, pp. 30-36, Mar. 1973.

J. S. Liptay, “Structural aspects of the Systed360 Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA85, Part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11:
The cache,” IBM Syst. J . , vol. 7, no. 1, pp. 15-21, 1968.
R. L. Mattson, J. Gecsei, D. R. Slutz, andI. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J . , vol. 9, no. 2, pp.

R. L. Mattson, “Evaluation of multilevel memories,” IEEE Trans.
Magn., vol. MAG-7, no. 4, pp. 814-819, Dec. 1971.

F. Olken, “Efficient methods for calculating the success function of
fixed space replacement policies,” Masters Report, Lawrence Berkeley
Laboratory LBL-12370, Univ. of California, Berkeley, May 1981.
S. Przybylski, M. Horowitz, and J. Hennessy, “Performance tradeoffs
in cache design,” in Proc. 15th Annu. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInt. Symp. Comput. Archi-
tecture, Honolulu, HI, June 1988, pp. 290-298.
T. R. F’uzak, “Analysis of cache replacement algorithms,” unpublished
Ph.D. dissertation, Dep. Elec. Comput. Eng., Univ. of Massachusetts,

Feb. 1985.

D. R. Slutz and I. L. Traiger, “Evaluation techniques for cache mem-
ory hierarchies,” IBM Tech. Rep. RJ 1045 (#17547), May 1972.

A. J. Smith, “Two methods for the efficient analysis of memory ad-
dress trace data,” IEEE Trans. Software Eng., vol. SE-3, no. 1, pp.
94-101, Jan. 1977.
-, “A comparative study of set associative memory mapping algo-
rithms and their use for cache and main memory,” IEEE Trans. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASoft-
ware Eng., vol. SE-4, pp. 121-130, Mar. 1978.

- ,“ Cache memories,?’ Comput. Surveys, vol. 14, no. 3, pp.
473-530, Sept. 1982.
A. J. Smith, “Cache evaluation and the impact of workload choice,” in
Proc. 12th Int. Symp. Comput. Architecture, June 1985, pp. 63-73.
- , “Bibliography and readings on CPU cache memories and related
topics,” Comput. Architecture News, Jan. 1986, pp. 22-42.

- , “Line (block) size choice for CPU caches,” IEEE Trans. Com-
put., vol. C-36, no. 9 , pp. 1063-1075, Sept. 1987.
J. E. Smith and J. R. Goodman, “Instruction cache replacement
policies and organizations,” IEEE Trans. Comput., vol. C-34, pp.

234-241, Mar. 1985.
W. D. Strecker, “Cache memories for PDP-11 family computers,” in
Proc. 3rdInt. Symp. Comput. Arrhitecture, Jan. 1976, pp. 155-158.
J. G. Thompson, “Efficient analysis of caching systems,” Comput.
Sci. Div. Tech. Rep. UCB/Comput. Sci. Dept. 87/374, Univ. of Cal-

ifornia, Berkeley, Oct. 1987.

I. L. Traiger and D. R. Slutz, “One-pass techniques for the evaluation
of memory hierarchies,” IBM Tech. Rep. RJ 892 (#15563), July 1971.

78-117, 1970.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

Mark D. Hill (S’81-M’87) received the B.S.E. de-
gree in computer engineering from the University
of Michigan, AM Arbor, in 1981, and the M.S. and

Ph.D. degrees in computer science from the Uni-

versity of California, Berkeley, in 1983 and 1987,
respectively.

He is currently an Assistant Professor in the
Computer Sciences Department at the University of
Wisconsin, Madison. While at U.C. Berkeley, he
was a principal contributor to SPUR, a project that
built a shared-bus multiprocessor. His research in-

terests center on computer architecture, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan emphasis on performance
considerations and implementation factors in memory systems.

Dr. Hill is a member of ACM and a 1989 recipient of the National Science
Foundation’s Presidentlal Young Investigator award

Alan Jay Smith (S’73-M’74-SM’83-F’89) was
born in New Rochelle, NY. He received the B.S.

degree in electrical engineering from the Mas-
sachusetts Institute of Technology, Cambridge, and
the M.S. and Ph.D. degrees in computer science
from Stanford University, Stanford, CA, the latter
in 1974.

He is currently a Professor in the Computer Sci-
ence Division of the Department of Electrical Engi-
neering and Computer Sciences, University of Cal-
ifornia. Berkeley, where he has been on the faculty

since 1974, and was Vice Chairman of thk EECS department from July 1982
to June 1984. His research interests include the analysis and modeling of com-
puter systems and devices, computer architecture, and operating systems. He
has published a large number of research papers, including one which won
the IEEE Best Paper Award for the best paper in the IEEE ~ N S A C T I O N S ON

COMPUTERS in 1979. He also consults widely with computer and electronics
companies.

Dr. Smith is a member of the Association for Computing Machinery, the

Society for Industrial and Applied Mathematics, the Computer Measurement
Group, Eta Kappa Nu, Tau Beta Pi, and Sigma Xi. He was chairman of
the ACM Special Interest Group on Operating Systems (SIGOPS) from 1983
to 1987, was on the board of directors of the ACM Special Interst Group
on Measurement and Evaluation (SIGMETRICS) from 1985 to 1989, was
an ACM National Lecturer (1985-1986) and an IEEE Distinguished Visitor

(1986-1987), is an Associate Editor of the ACM Transactions on Com-
puter Systems (TOCS), a subject area editor of the Journal of Parallel
and Distributed Computing and is on the editorial board of the Journal
of Microprocessors and Microsystems. He was program chairman for the

Sigmetrics ’89/Performance ’89 Conference.

