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Evaluating Associativity in CPU Caches 

Abstract-Because of the infeasibility or expense of large 
fully-associative caches, cache memories are usually designed 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe set-associative or direct-mapped. This paper presents 1) 
new and efficient algorithms for simulating alternative direct- 
mapped and set associative caches, and 2) uses those algorithms 
to quantify the effect of limited associativity on the cache miss 
ratio. 

We introduce a new algorithm, forest simulation, for simulat- 
ing alternative direct-mapped caches and generalize one, which 
we call all-associativity simulation, for simulating alternative 
direct-mapped, set-associative, and fully-associative caches. We 
find that while all-associativity simulation is theoretically less ef- 
ficient than forest simulation or stack simulation (a commonly 
used simulation algorithm); in practice, it is not much slower 
and allows the simulation of many more caches with a single 
pass through an address trace. 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso provide data and insight into how varying associativity 
affects the miss ratio. We show: 1) how to use simulations of 
alternative caches to isolate the cause of misses; 2) that the 
principal reason why set-associative miss ratios are larger than 
fully-associative ones is (as one might expect) that too many 
active blocks map to a fraction of the sets even when blocks 
map to sets in a uniform random manner; and 3) that reducing 
associativity from eight-way to four-way, from four-way to two- 
way, and from two-way to direct-mapped causes relative miss 
ratio increases in our data of respectively about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, 10, and 30 
percent, consistently over a wide range of cache sizes and a 
range of line sizes. 

Index Terms- Associativity, buffer, cache memory, com- 
puter architecture, direct-mapped, memory systems, perfor- 
mance evalulation, set-associative and trace-driven simulation 
algorithms. 

I. INTRODUCTION 

HREE important CPU cache parameters are cache size, T block (line) size, and associativity [27]. Cache size (buffer 

size, capacity) is so important that it is a part of almost all 

cache studies (for a partial bibliography see [29]). Block size 

(line size) has recently been examined in detail in [30]. Here 

we concentrate on associativity (degree of associativity, set 
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size) which is the number of places in a cache where a block 

can reside. 

Selecting optimal associativity is important, because chang- 

ing associativity has a significant impact on cache performance 

and cost. Increasing associativity improves the likelihood that 

a block is resident by decreasing the probability that too many 

recently-referenced blocks map to the same place and by al- 

lowing more blocks to be considered for replacement. The 

effect of associativity on cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmiss ratio has never been iso- 

lated and quantified, and that is one of the major goals of 

this paper. Conversely, increasing associativity often increases 

cache cost and access time, since more blocks (frames) must 

be searched in parallel to find a reference [ 161. 

Fig. 1 illustrates set-associativity. A set-associative cache 

uses a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset-mapping function f to partition all blocks (data 

in an aligned, fixed-sized region of memory) into a number 

of equivalence classes. Some number of block frames in the 

cache are assigned to hold recently-referenced blocks from 

each equivalence class. Each group of block frames is called 

a set. The number of such groups, equal to the number of 

equivalence classes, is called the number of sets (s). The 

number of block frames in each set is called the associativity 
(degree of associativity, set size, n). The number of block 

frames in the cache (c) always equals the associativity times 

the number of sets (c = n . s). A cache is fully-ussociative 
if it contains only one set (n = c ,  s = l), is direct-mapped 
if each set contains one block frame ( n  = 1, s = c ) ,  and is 

n-way set-ussociative otherwise (where n is the associativity, 

s = c /n ) .  
On a reference to block x ,  the set-mapping function f feeds 

the “set decoder” with f (x)  to select one set (one row), and 

then each block frame in the set is searched until zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is found (a 

cache hit) or the set is exhausted (a cache miss). On a cache 

miss, one block in set f (x)  is replaced with the block x ob- 

tained from memory. Finally, the word requested from block 

x is returned to the processor. Here for conceptual simplic- 

ity we show the word within the block selected last (in the 

box “compare block number with tags and select data word”). 

Many implementations, however, select the word within the 

block while selecting the set to reduce the number of bits that 

must be read; i.e., only words are gated into the multiplexer, 

not full lines. The most commonly used set-mapping function 

is the block number modulo the number of sets, where the 

number of sets is a power of two. This set mapping function 

is called bit selection since the set number is just the num- 

ber given by the low-order bits of the block address. For 256 
sets, for example, f ( x )  = x mod 256 or f ( x )  = x AND Oxff, 
where mod is remainder and AND is bitwise AND. 

The method we use for examining associativity in CPU 

caches is tracedriven simulation. It uses one or more (ad- 
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Fig. 1 .  Set-associative mapping. 

dress) traces and a (cache) simulator. A trace is the log of a 

dynamic series of memory references, recorded during the ex- 

ecution of a program or workload. The information recorded 

for each reference must include the address of the reference 

and may include the reference's type (instruction fetch, data 

read, or data write), length, and other information. A sim- 
ulator is a program that accepts a trace and parameters that 

describe one or more caches, mimics the behavior of those 

caches in response to the trace, and computes performance 

metrics (e.g., miss ratio) for each cache. 

We analyze associativity in caches with trace-driven simula- 

tion for the same reasons as are discussed in [28]. The princi- 

pal advantage of trace-driven simulation over random number 

driven simulation or analytical modeling is that there exists no 

generally-accepted model for program behavior (at the cache 

level) with demonstrated validity and predictive power. The 

major disadvantage is that workload samples must be rela- 

tively short, due to disk space and simulation time limits. 

The CPU time required to simulate many alternative caches 

with many traces can be enormous. Mattson et al. [I91 ad- 

dressed a similar problem for virtual memory simulation by 

developing a technique we call stack simulation, which allows 

miss ratios for all memory sizes to be computed simultane- 

ously, during one pass through the address trace, subject to 

several constraints including a fixed page size. While stack 

simulation can be applied to caches, each cache configuration 

with a different number of sets requires a separate simulation. 

For this reason, this paper first examines better algorithms 

for simulating alternative direct-mapped and set-associative 

caches, and then uses those algorithms to study associativity 

in caches. 

The rest of this paper is organized as follows. Section I1 

reviews previous work on cache simulation algorithms and 

associativity in caches. In Section 111, we explain our meth- 

ods in more detail and describe our traces. Section IV dis- 

cusses cache simulation algorithms, including properties that 

facilitate rapid simulation, a new algorithm for simulating al- 

ternative direct-mapped caches, and an extension to an al- 

gorithm for simulating alternative caches with arbitrary set- 

mapping functions. Section V examines the effect of associa- 

tivity on miss ratio, including categorizing the cause of misses 

in set-associative caches, relating set-associative miss ratios 

to fully-associative ones, comparing miss ratios from similar 

set-associative caches, and extending the design target miss 
ratios from [28] and [30] to caches with reduced associativity. 

Readers interested in the effect of associativity on miss ratio 

but not in cache simulation algorithms may skip Section IV, 

as Section V is written to stand alone. 

II. RELATED WORK 

A .  Simulation Algorithms 

The original paper on memory hierarchy simulation is by 

Mattson et al. [19]. They introduce inclusion, show when 

inclusion holds, and develop stack simulation, which uses 

inclusion to rapidly simulate alternative caches. Inclusion is 

the property that after any series of references, larger alterna- 

tive caches always contain a superset of the blocks in smaller 

alternative caches.' Mattson et al. show inclusion holds be- 

tween alternative caches that have the same block size, do no 

prefetching , use the same set-mapping function (and therefore 

have the same number of sets), and use replacement algorithms 

that before each reference induce a total priority ordering on 

all previously referenced blocks (that map to each set) and use 

only this priority ordering to make the next replacement deci- 

sion. Replacement algorithms which meet the above condition, 

called stack algorithms, include LRU, OPTIMUM, and (if 

properly defined) RANDOM [6]. FIFO does not qualify since 

cache capacity affects a block's replacement priority. In Sec- 

tion IV-A, we will prove when inclusion holds for caches that 

use arbitrary set-mapping functions and LRU replacement. 

Mattson et al. develop stack simulation to simulate alter- 

native caches that have the same block size, do no prefetching, 

use the same set-mapping function, and use a stack replace- 

ment algorithm. Since inclusion holds, a single list per set, 

called a stack, can be used to represent caches of all associa- 

tives, with the first n elements of each stack representing the 

blocks in an n-way set-associative cache. For each reference, 

stack simulation performs three operations: 1) locate the ref- 
erence in the stack, 2) update one or more metrics to indicate 

which caches contained the reference, and 3) update the stack 

to reflect the contents of the caches after the reference. We 

' Inclusion is different from multilevel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinclusion defined by Baer and 
Wang [ 5 ] .  While inclusion is a property relating alternative caches, multilevel 
inclusion relates caches in the same cache hierarchy. 
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call these three operations FIND, METRIC, and UPDATE, 

and will show that the algorithms discussed in later in Sections 

IV-B and IV-C use the same steps. 

The most straightforward implementation of stack simula- 

tion is to implement each stack with a linked list and record 

hits to position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn by incrementing a counter distance[n]. After zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N references have been processed, the miss ratio of an n-way 
set-associative cache is simply 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Er=, distance[il/N. Since 

performance with a linked list will be poor if many elements of 

a stack must for searched on each reference, other researchers 

have developed more complex implementations of stack simu- 

lation, using hash tables, m-ary trees, and AVL trees [8], [21], 
[33]. While these algorithms are useful for some memory hi- 

erarchy simulations, Thompson [33] concludes that linked list 

stack simulation is near optimal for most CPU cache simu- 

lations. Linked list stack simulation is fast when few links 

are traversed to find a reference. On average, this is the case 

in CPU cache simulations since 1) CPU references exhibit a 

high degree of locality, and 2) CPU caches usually have a 

large number of sets and limited associativity, dividing active 

blocks among many stacks and bounding maximum stack size; 

different results are found for file system and database traces. 

For this reason, we consider only linked list stack simulation 

further, and use stack simulation to refer to linked list stack 

simulation. 

Mattson et al. also briefly mention a way of simulating 

caches with different numbers of sets (and therefore different 

set-mapping functions). In two technical reports, Traiger and 

Slutz extend the algorithms to simulate alternative caches with 

different numbers of sets and block sizes [34], and with dif- 

ferent numbers of sets, block sizes, and subblock sizes (sector 

and block sizes, address and transfer block sizes) [24]. They 

require that all alternative caches use LRU replacement, bit- 

selection for set mapping, and have block and subblock sizes 

that are powers of two. (Bit selection uses some of the bits 

of the block address as a binary number to specify the set.) 

In Section IV-C, we generalize to arbitrary set-mapping func- 

tions their algorithm for simulating alternative caches that use 

bit selection. 

The speed of stack simulation can also be improved by delet- 

ing references (trace entries) that will hit and not affect re- 

placement decisions in the caches to be simulated [25]. Puzak 

[23] shows that if all caches simulated use bit selection and 

LRU replacement, references that hit the most recently used 

element of a set can be deleted without affecting the total 

number of misses. We will show that this result trivially fol- 

lows from properties we define in Section IV-A, allowing 

such references to be deleted from traces before using any 

of our simulation algorithms. (The total number of memory 

references in the original trace must be retained, in order to 

compute the miss ratio.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B.  Associativity 

Previous work on associativity can be broken into the fol- 

lowing three categories: 1) papers that discuss associativity 

as part of a more general analysis of 32 kbyte and smaller 

caches, among the more notable of which are [18], [17], [7], 

[32], [27],* and [ l l ] ,  and [13]; 2) papers that discuss asso- 
ciativity and other aspects of cache design for larger caches 

([4], [2], and [22]); and 3) those that discuss only associativity 

([26] and [16]). Since caches have been getting larger, papers 

in category 1) can also be characterized as older, while those 

in category 2) are more recent. 
Papers in category 1) provide varying quantities of data 

regarding the effect of changing associativity in small caches. 

The qualitative trend they support is that changing associativ- 

ity from direct-mapped to two-way set-associative improves 

miss ratio, doubling associativity to four-way produces a 

smaller improvement, doubling again to eight-way yields an 

even smaller improvement, and subsequent doublings yield no 

significant improvement. Our quantitative results are consis- 

tent with results in these papers. We extend their results by 

examining relative miss ratio changes to isolate the effect of 

associativity from other cache aspects, and by examining some 

larger caches. 

Alexander et al. use trace-driven simulation to study small 

and large caches [4]. Unfortunately, the miss ratios they give 

are much lower than those that have been measured with hard- 

ware monitors and real workloads; see [28] for reports of real 

measurements. 

Agarwal et al. use traces gathered by modifying the mi- 

crocode of the VAX 8200 to study large caches and to try 

to separate operating system and multiprogramming effects 

[2]. They briefly examine associativity, where they find that 

associativity in large caches impacts multiprogramming work- 

loads more strongly than uniprocessor workloads. They find 

for one workload that decreasing associativity from two-way 

to direct-mapped increases the multiprogramming miss ratio 

by 100 percent and the uniprogramming miss ratio by 43 per- 

cent. These numbers are much larger than the average miss 

ratio change we find (30 percent). 

Przybylski et al. [22] examine cache implementation trade- 

offs. They find that reducing associativity from two-way to 

direct-mapped increases m i s s  ratio 25 percent, regardless of 

cache size, which is consistent with our results. One contribu- 

tion of that paper is a method of translating the architectural 

impact of a proposed design change into time by computing 

the cache hit time increase that will exactly offset the bene- 

fit of the proposed change. A change improves performance 

only if the additional delay required to implement the change 

is less than the above increase. Przybylski et al. find that the 

architectural impact times for increasing associativity are of- 

ten small, especially for large caches, calling into question the 

benefit of wide associativity. 

The first paper to concentrate exclusively on associativity is 

[26]. That paper presents a model that allows miss ratios for 

set associative caches to be accurately derived from the fully 

associative miss ratio. In Section V-B, we further validate 

those results by showing that the model accurately relates the 

miss ratios of many caches, including large direct-mapped 

caches, to LRU distance probabilities. 

The second paper to concentrate on associativity is [16], 
based on parts of [15]. It shows that many large single-level 

(e.g., 32-way set-associative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 kbyte caches). 
This survey includes results for some large caches with wide associativity 
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caches in uniprocessors should be direct-mapped, since the 

drawbacks of direct-mapped caches (e.g., worse miss ratios 

and more-common worst case behavior) have small signifi- 

cance for large caches with small miss ratios, while the bene- 

fits of direct-mapped caches (lower cost and faster access time) 

do not diminish with increasing cache size. Here we examine 

miss ratio in more detail, but do not discuss implementation 

considerations. 

111. METHODS AND TRACES 

In this section, we discuss the use of the miss ratio as a 

suitable metric (among others), describe the traces that we 

use, show how we estimate average steady-state miss ratios, 

and show that our traces yield results consistent with those 

observed from running systems. 

To first order, the effective access time of a cache can be 

modeled as tcache + miss-ratio . tmemory. (Additional factors 

which affect access time including the overhead of write backs, 

extra time for line crossers, page crossers, and TLB misses, 

and the fact that writes may be slower than reads. These latter 

delays are much less significant than those given in the expres- 

sion.) The miss ratio is the number of cache misses divided 

by the number of memory references, tmemory is the time for 

a cache miss, and tcache is the time to access the cache on a 

hit. The two latter parameters are implementation dependent, 

and in [15] there is a discussion of their effect on cache per- 

formance. As noted earlier, increases in associativity, while 

generally improving the miss ratio, can increase access time, 

and thus degrade overall performance. Here, we concentrate 

on miss ratio because it is easy to define, interpret, compute, 

and is implementation independent. This independence facili- 

tates cache performance comparisons between caches not yet 

implemented and those implemented with different technolo- 

gies and in different kinds of systems. 

Results in this paper are based on two partially overlapping 

groups of traces, called the five-trace and 23-trace groups, 

respectively. Table I presents data on the traces. The first 

column gives the name of each trace sample. The second gives 

the fraction of all references that are instruction references. 

In these simulations, we do not distinguish between data reads 

and writes. The third column gives the length of the address 

traces in 1000’s of references. The final column gives the 

number of distinct bytes referenced by the trace, where any 

reference in an aligned 32-byte block is considered to have 

touched each byte in the block. 

Each of the trace samples in the five-trace group comes 

from the second 500000 references of a longer trace. The 

first three samples are user and system VAX-11 traces gath- 

ered with ATUM [ 11. Trace mu12-2nd500k contains a circuit 

simulator and a microcode address allocator running concur- 

rently under VMS. Trace mu18-2nd500k is an eight-job mul- 

tiprogrammed workload under VMS: spice, alloc, a Fortran 

compile, a Pascal compile, an assembler, a string search in 

a file, jacobi (a numerical benchmark) and an octal dump. 

Trace ue2nd500k consists of several copies of a program 

that simulates interactive users running under Ultrix. The 

other two samples in the trace group, mvs1-2nd500k and 

rnvs2-2nd500k, are collections of IBM 370 references from 

lnsrmction Length (looo’s Trace 
Name References (%) of references) 

TABLE I 
DATA ON ~ C E S  

Dynamic Size 
(K-bytes) 

-... 

fora 
forf 

50 353 125 
52 388 144 
52 401 128 

61 

I 387 152 11 :: I 414 I 105 I 

228 54 
ue 56 

57 
358 205 
372 191 

system calls invoked in two Amdahl standard MVS workloads 

1281. 
The second trace group contains 23 samples of various 

workloads gathered on a VAX- 1 1 with ATUM [ 13. Trace sam- 

ples that exhibit unstable behavior (e.g., a particular doubling 

of cache size or associativity alters the miss ratio observed by 

many factors of two) have been excluded from both groups. 

We estimate the steady-state miss ratios for a trace sample 

using the miss ratio for a trace after the cache is warm (the 

warm-start miss ratio). A cache is warm if its future miss 

ratio is not significantly affected by the cache recently being 

empty [2]. We compute warm-start miss ratios using the sec- 

ond 250K references of each 500K-reference trace sample. 

We found that most caches with our traces are warm by 250K 

references by locating the knee in the graph of the cumulative 

misses to empty block frames versus references, a method 

of determining when caches are warm proposed in Agarwal 

et al. [2]. Furthermore, results for these multiprogrammed 

traces properly include cold-start effects whenever a process 

resumes execution. 

Fig. 2(a) and (b) displays miss ratio data for unified caches 

(mixed, i.e., cache data and instructions together) with 32- 

byte blocks. Solid lines show the average warm-start miss ra- 

tios with different associativities (1, 2, 4, and 8). The average 

warm-start miss ratio is the arithmetic average of warm-start 

miss ratios for each of the five traces in the five-trace group. 

The arithmetic mean is used because it represents the miss 
ratio of a workload consisting of an equal number of refer- 

ences from each of the traces. Previous experiments (as were 

done for [3 11 and [ 151) showed that little difference was ob- 

served when other averaging methods were used. The dashed 

line (labeled “inf”) gives the warm-start m i s s  ratio of an infi- 

55 364 22 1 
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Fig. 2 .  Miss ratios for five-trace workload with caches of associativities of 
1 ,  2, 4, and 8. The dashed line shows the miss ratio for an infinite cache. 
(a) Smaller caches. (b) Larger caches. 

nite cache, a cache so large that it never replaces any blocks. 

Measurements for the 23-trace group are similar. 

Fig. 3 compares miss ratios for the five-trace group in eight- 

way set-associative unified caches, having 16-byte and 32-byte 

blocks, to miss ratios from other sources. Line “cold” mea- 
sures miss ratios from an emDtv cache. while line “warm” 
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Fig. 3. 

does not count misses until after 250K references. Since the 
trace samples include multiprogramming effect, both contain 

some cold-start misses [12]. Lines labeled A and B show 

the design target miss ratios for fully-associative caches from 

1281 and 1301. The line labeled C from r21 shows four-way - -  - -  
I I  set-associative miss ratio results from Fig. -17 in that paper. Fi- 
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nally, the line labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD from [27] shows four-, six- and eight- 

way set-associative miss ratios taken from hardware monitor 

measurements on an Amdahl 470 (Fig. 33 of that paper, as- 

suming 50 percent supervisor execution). Fig. 3 demonstrates 

that the miss ratios of the five-trace group are consistent with 

those measured and/or proposed for actual operating environ- 

ments. 

Despite the similarities with previously published data, miss 

ratio data for large caches (greater than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64K bytes) are subject 

to greater error, since only a few thousand misses may occur 

during a trace sample. To reduce sensitivity to such error, 

results in Section V concentrate on the relationship between 

the miss ratios of alternative caches rather than on the miss 

ratio values themselves. 

to be inferred from hits detected in smaller ones. Mattson et 
al. [19] show when inclusion holds for alternative caches that 

use the same set-mapping function (and hence the same num- 

ber of sets). Next we show when it holds with LRU replace- 

ment and arbitrary set-mapping functions. 

Theorem I: Given the same block size, no prefetching and 

LRU replacement, cache C2(A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n2, F = f2)  includes cache 

Cl (A  = n l ,  F = f l )  if and only if set-mapping function f2 
refines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf1 (set-refinement) and associativity n2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n1 (nonde- 

creasing associativity). 

Proof: Suppose cache C2 includes cache C1. Suppose 

further that a large number of blocks map to each set in both 

caches, as is trivially true for practical set-mapping functions 

(e.g., bit selection). To demonstrate that inclusion implies 

both set-refinement and nondecreasing associativity, we show 

that a block can be replaced in cache C1 and still remain in 

cache C2, violating inclusion, if either 1) set-refinement does 

IV . SIMULATION TECHNIQUES FOR ALTERNATIVE 

DIRECT-MAPPED AND SET-ASSOCIATIVE CACHES 

In this section we first discuss two properties, set refine- 
ment and inclusion, that facilitate the rapid simulation of al- 

ternative caches. We then develop a new algorithm that uses 

both set-refinement and inclusion to rapidly simulate alterna- 

tive direct-mapped caches. Next we generalize an algorithm 

that simulates alternative set-associative caches using bit se- 

lection [34] to one that allows arbitrary set-mapping functions. 

Finally we compare implementations of the algorithms. 

A .  Properties that Facilitate Rapid Simulation 

Two properties useful for simulating alternative direct- 

mapped and set-associative caches are set -refinement3 (in- 

troduced below) and inclusion (introduced in Mattson et al. 
[19]). Here we discuss these properties with respect to caches 

that have the same block size, do no prefetching, use LRU 

replacement, have arbitrary associativities, and can use arbi- 

trary set-mapping functions. Let Cl (A  = n l ,  F = f l )  and 

C2(A = n2, F = f 2 )  be two such caches, where cache C; 
has associativity n; and set-mapping function f;, i = 1, 2 .  

Definition I :  Set-refinement: Set-mapping function f2 
refines set-mapping function f1 if f2(x)  = f 2 ( y )  implies 

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x )  = f 1 (y), for all blocks x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy.  
Furthermore, cache C2(A = n2,  F = f 2 )  is said to refine 

an alternative cache Cl (A  = n l ,  F = f 1 )  if set-mapping 

function f2 refines set-mapping function f l .  Refines is so 

named becauses f2 refines f1 implies set-mapping function 

f2 induces a finer partition on all blocks than does f1. Since 

set refinement is clearly transitive, if f ;+ l  refines f; for each 

i = 1, L - 1 then fj refines f; for all j > i ,  implying a 

hierarchy of sets. We will use set refinement to facilitate the 

rapid simulation of alternative direct-mapped caches (Section 

IV-B) and set-associative caches (Section IV-C). 

Definition 2: Znciusion: Cache C2(A = n2, F = f2) in- 
cludes an alternative cache Cl (A  = n l ,  F = f l )  if, for any 

block x after any series of references, x is resident in C1 
implies x is resident in C2. 

Thus, when cache C2 includes cache C1, C2 always contains 

a superset of the blocks in C1. Inclusion facilitates rapid sim- 

ulation of alternative caches by allowing hits in larger caches 

not hold or 2) set-refinement holds but the larger cache has 

the smaller associativity. 

1) If cache C2 does not refine cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACI, then there exists at 

least one pair of blocks x and y such that f2(x) = f 2 (y )  and 

f 1 ( x )  # f 1 0 ) .  Since we assume many blocks map to each set, 

there exist many blocks z; for which f2(z;)  = f2(x) = f 2 ( y > .  

(or both), implying set-refinement is violated many times. 

Without loss of generality, assume that many 2;’s map to dif- 

ferent f1 sets than x (otherwise, many map to a different f1 
sets than y).  Let n2 of these be denoted by w 1 ,  . . . , w,, .4 Con- 

sider references to x , w 1 , . . . , w n2 . Inclusion is now violated 

since x is in cache C1, but not in cache C2. It is in cache C1, 
because blocks w 1 ,  . . . , w,, mapped to other sets than x and 

could not force its replacement; x is replaced in n2-way set- 

associative cache C2, since LRU replacement is used and the 

n2 other blocks mapped to its set are more recently referenced. 

2) Let X O ,  . . . ,xn2 be a collection of blocks that map to the 

same f2 set. Since we are assuming f2 refines f1, they also 

map the same f1 set. Consider references to X O ,  X I ,  . . . , x n 2 .  
Inclusion is now violated since xo is in nl-way set-associative 

cache C1, but not in n2-way set-associative cache C2(n1 > n2 
implies nl 2 n2 + 1). 

Suppose cache C2 refines cache C1 and n2 2 nl . Initially 

both caches are empty and inclusion holds, because everything 

(nothing) in cache C1 is also in cache C2. Consider the first 

time inclusion is violated, i.e., some block is in cache C1 that 

is not in cache C2. This can only occur when some block xo 
is replaced from cache C2, but not from cache C1. A block xo 
can only be replaced from cache C2 if n2 blocks, x1 through 

xnz , all mapping to f2(xo), are referenced after it. By set- 

refinement, f l (x0) = f l (x1) = . . .  = f1(xn2).  Since n2 2 
0 

Several corollaries, used to develop the cache simulation 

algorithms in the next two sections, follow directly from the 

above definitions and theorem. 

1) If cache C2 refines cache C1 and their set-mapping func- 

tions f 2  and f1 are different (partition blocks differently), then 

cache C2 has more sets than cache C1. The number of sets 

Since f 1 ( x )  # f lo), either f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ( Z i )  # f 1 ( x )  or f l ( Z i )  # f 10) 

n l  , xo must also be replaced in cache C1. 

Set-refinement is called set-hierarchy in 1151. Blocks W I  , . . . , w,, exist if at least 2 4  blocks map to set f ~ ( x ) .  
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in a cache is equal to the number of classes in the partition 

induced by its set-mapping function. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 has fewer classes 

than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1  and at least one block maps to every f1 class, set- 

refinement is violated since some pair of those blocks must 

map to the same f2 class. Iff2 has the same number of classes 

a s f ~  and at least one block maps to every f 1  class, then there 

exists a one-to-one correspondence between f 2  classes and f i  

classes, implying both functions induce the same partition. 

2) If bit selection is used, a cache with 2' sets refines one 

with 2J ones, for all i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 j .  That is, set-mapping function x 
mod 2' refines x mod 2 J ,  i 2 j .  For all blocks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y (x 
mod 2' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= y mod 2') implies (x mod 2j = y mod 2 j ) ,  because 

2' can be factored into positive integers 2'-J and 2J,  and (x 
mod a b  = y mod ab) implies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x mod b = y mod b), for all 

positive integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and b. 
3) Cache C2 must be strictly larger than a different cache 

C1 to include it. Two caches are different if they can contain 

different blocks (after some series of references). If cache C2 

is smaller than cache C1, inclusion is violated whenever C1 is 

full. If C2 and C1 are the same size, different, and both full, 

then inclusion will be violated whenever they hold different 

blocks. 

4) Set refinement implies inclusion in direct-mapped caches. 

By Theorem 1, inclusion requires set-refinement and nonde- 

creasing associativity. Since all direct-mapped caches have as- 

sociativity one, only set-refinement is necessary. 

5 )  Inclusion holds between direct-mapped caches using bit 

selection. Implied by corollaries 2) and 4). 

6)  Inclusion does not hold between many pairs of differ- 

ent set-associative caches. It does not hold a) between two 

different set-associative caches of the same size [by corollary 

3)], b) if the larger cache has smaller associativity (Theorem 

l ) ,  and c) if set-refinement is violated (also Theorem 1). Set- 

refinement can be violated even when bit selection is used 

(e.g., the larger cache is twice as big but has four times the 

associativity of the smaller cache). 

7) The includes relation is a partial ordering of the set of 

caches. The proof of this, omitted here, need only show that 

includes is reflexive, antisymmetric, and transitive; see [ 151. 

8) Similarly, the refines relation is a partial ordering of the 

set of caches. 

9) The refines relation can speed the simulation of alter- 

native caches that use LRU replacement. Let these caches be 

denoted by Ci , i = 1, 2 ,  . . .. Construct a direct-mapped cache 

Co(A = 1, F = fo) such that all caches Ci refine CO. For 
arbitrary set-mapping functions, fo(x)  = 0 can be used; if 

all caches Ci use bit selection and have 2'" or more sets, 

f o (x )  = x mod 2'" should be used. In any case, simulation 

speed can be improved by deleting all references (trace en- 

tries) that hit in cache CO and recording the deleted references 

as hits in all caches simulated. Such deletion is possible when 

caches Ci include cache CO and the deleted references would 

not have affected any replacement decisions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25]. Since each 

cache Ci refines cache CO and CO is direct-mapped, all caches 

Ci include cache CO by Theorem 1. All deleted references do 

not affect LRU replacement decisions since they are all to 

the most-recently-referenced (MRU) block in each set. To see 

why this is true for a cache Ci (A = ni , F = f i ) ,  consider the 

direct-mapped cache Ci(A = 1, F = f i )  that always contains 

the MRU blocks from cache Ci.  Cache C /  refines cache CO, 
since cache C,! has the same set-mapping function as cache Ci 
and cache Cj refines cache CO. Since refines implies includes 
in direct-mapped caches, all deleted references are in cache 

C /  (and therefore to cache Ci's MRU blocks). Puzak shows 

this result for bit-selection [23]. 

B .  Simulating Direct-Mapped Caches 

This section develops a new algorithm, called forest simu- 
lation, for simulating alternative direct-mapped caches. For- 

est simulation requires that the set-mapping functions of all 

caches obey set-refinement. Since typical alternative designs 

for direct-mapped caches use numbers of sets which are pow- 

ers of two, with the set selected via bit selection, this algorithm 

is applicable to the common case. 

In the last section, we showed set-refinement implies inclu- 

sion in direct-mapped caches. Forest simulation takes advan- 

tage of inclusion, as does stack simulation, by searching for 

a block from the smallest to largest cache. When a block is 

found, a hit is implicitly recorded for all larger caches. 

The data structure used by forest simulation to store cache 

blocks is a forest (a set of disjoint trees) where the number of 

levels equals the number of caches simulated, and the number 

of nodes in level i equals the number of blocks frames in the 

ith smallest cache. If bit selection is used by all caches, the 

forest can be stored in an array that contains twice as many 

elements as the largest cache, since the i - 1st smallest cache 

is at most half the size of the ith smallest cache. 

Fig. 4(a) displays a forest for direct-mapped caches of size 

1, 2 ,  4, and 8 block frames. The forest contains only one 

tree, because the smallest cache has only one block frame, 

and is binary, because each cache in this example is twice as 

large as the next smaller cache. We assume here that blocks 

are mapped to block frames with bit selection. Each node 

holds the information for one block frame in a direct-mapped 

cache. Nodes are labeled with the tag values which they could 

contain if bit selection is used for all caches. The node at the 

root of the tree has no block number bits constrained, because 

a one-block direct-mapped cache can hold any block. This is 

illustrated with a t representing arbitrary high-order bits of the 

block number and three x's representing DON'T CARES for the 

three low-order bits. The tags txx0 and txxl in the nodes of 

level two indicate that the blocks can reside in these nodes are 

constrained to have even and odd block numbers, respectively. 

Similar rules with more bits constrained apply to the rest of 

the levels. 

For each reference, the key idea in forest simulation is to 

begin at level 1 and proceed downward in the forest until the 

reference is found or the forest exhausted. At each level, the 

location of the search is guided by the set-mapping function 

for that level. At each level traversed, the node examined is 

changed to contain the reference. If the node is found at level 

i ,  distance[z] is incremented. After N references have been 

processed, the miss ratio of the ith smallest direct-mapped 

cache is 1 - E>=, distanceb]lN. 
Consider the example shown in Fig. 4(b) and (c). Fig. 4(b) 

depicts the forest of Fig. 4(a) after a series of references. 
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P set-mapping functions that obey set-refinement */ 
P i.e., f,,, refines f, for i=l. .... L-1. */ 

function fl (x), .... fL(x) 

integer c1 ,  .... c, P cache sizes (in blocks); let C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe ZC, and c,, = o *I , =1 

~ ~ ~ ~ , , ~ ~ ~ ~ ~  
(a) 

(C) 

Fig. 4. Forest simulation example: the effect of referencing block 4 on 
directed-mapped caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 1 ,  2, 4, and 8 block frames. (a) A forest with 
bit selection. (b) Before reference to block 4. (c) After the reference. 

Information in the tree tells us that block 6 is in a cache of size 

one block frame; blocks 6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are in a direct-mapped cache 

of size two; blocks 4, 6, 5, and 3 are in a direct-mapped cache 

of size four; and blocks 0 through 7 are in a direct-mapped 

cache of size eight. Let the next reference be to block 4.  A path 

from the root to a leaf is determined using the set-mapping 

function for each cache. A search begins at the root and stops 

when block 4 is found. All nodes encountered in the search 

that do not contain block 4 are modified to do so. The nodes 

in bold are examined to find block 4.  Since block 4 is located 

at level 3, caches at levels 1 and 2 miss and caches at levels 

3 and 4 hit. Fig. 4(c) shows the tree after this reference has 

been processed. The nodes in bold now contain the referenced 

block. 

Fig. 5 shows pseudocode for the algorithm. We will analyze 

the performance of forest simulation in Section IV-D. 

The principal limitation of forest simulation is that it only 

works for direct-mapped caches. Extending the algorithm to 

set-associative caches is possible, but complex, since a for- 

est gives only a partial ordering of recently-referenced blocks 

and set-refinement does not imply inclusion in set-associative 

caches. Consider using the forest of Fig. 4(b) to simulate a 

two-block fully-associative cache that uses LRU replacement. 

It is not possible to tell whether the reference to block 4 hits in 

such a cache, since any of blocks 2, 4, or 5 could be second- 

most-recently referenced. 

Forest simulation can be extended to simulate n-way set as- 

sociativity by replacing each node in the forest by an n-element 

LRU stack. At each reference, rather than just replacing the 

element at a node with the newest reference, the stack at that 

node is updated in the normal LRU manner; the descent in 

the tree stops as soon as the target block is found at level one 

in the stack at the current node. This is because, by reason- 

ing similar to that used to show corollary 9), the reference 

will also be at distance one in all further levels. As should 

integer N P counts the number of references */ 

P distance counts so that mk-ratio(A=l. F=fi) = 1 - Zdistance[i]/N */ 

integer distance[ I:L] 
integer forest[l:CL1 P the forest */ 
define map@., i) = ( fi(x) + C,-, ) P maps the forest into an m y  */ 

1 

j = 1  

For each reference x [ 
read(var x) 
N++ 

I* FIND */ 
found = FALSE 
fori=l toLorfound [ 

y = forest[map(x, i)] 

if (x=y) 
found = TRUE 

distance[i]++ 
r METRIC *I 

r UPDATE *I 
else 

forest[map(x, i)] = x 
I 

I 
Fig. 5 .  Forest simulation. 

be evident, forest simulation (for direct-mapped caches) is a 

special case of this general algorithm, with the “n-element” 

stack consisting of only one element. 

We do not develop this algorithm further, because the dis- 

cussion of the next section presents two forms of an algorithm 

for simulating alternative set-associative caches that is more 

general (set-refinement is not required) or faster. 

C .  Simulating &-Associative Caches 

This section develops an algorithm, called all-associativity 
simulation, for simulating alternative direct-mapped and 

set-associative caches that have the same block size, do 

no prefetching , and use LRU replacement. All-associativity 

works for caches with arbitrary set-mapping functions, 

but works more efficiently if set-refinement holds. All- 

associativity simulation does not try to take advantage of in- 

clusion, since inclusion does not hold between many pairs 

of set-associative caches (see Section IV-A). This work gen- 

eralizes to arbitrary set-mapping functions an algorithm de- 

veloped for caches using bit selection only [19], [34]. The 

algorithms discussed in this section can also be extended to 

handle multiple-block sizes and sector sizes [24], [34]. 
In theory, the storage required for all-associativity simu- 

lation is O(Nunique), where Nunique is the number of unique 

blocks referenced in an address trace. Our experience is that 

the storage required in practice, however, is usually much 

smaller than the size of modem main memories. Simulation 

of a one-million-address trace having an infinite cache miss 

ratio of one percent, for example, requires storage for 10000 

blocks. Since blocks can be stored in two words (a tag plus 

a pointer), less than lOOK bytes are needed. Future simula- 
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Fig. 6. Concurrent stack simulation with one (fully-associative) and two sets 
(even and odd blocks partitioned). (a) Separate storage. (b) Shared storage. 

tions of multiple-megabyte caches may require tens of billions 

of references to be processed, potentially resulting in excess 

storage use. Storage for simulations of finite caches can be 

periodically (e.g., every 100 million references) reclaimed by 

discarding blocks not in the superset of the caches of interest; 

this latter approach is used in most other simulation algorithms 

as well. The algorithms below neglect storage reclamation. 

Figs. 9 and 10 at the end of this section present pseu- 

docode for all-associativity simulation not using and using 

set-refinement. The rest of this section provides insight into 

how all-associativity simulation works by developing it from 

stack simulation. A reader who understands the operation of 
the algorithms from Figs. 9 and 10 may skip to the next sec- 

tion. 

If we wish to simulate caches that have one, two, and four 

sets selected by bit selection (set-mapping functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx mod 1, 

x mod 2, and x mod 4) we can run three concurrent stack 

simulations (one with one stack, another with two and a third 

with four.) Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6(a) illustrates the first two stack simulations. 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989 

Due to locality, blocks that reside in one alternative cache 

will tend to reside in the other caches. Thus, as illustrated 

in Fig. 6(b), we can save storage by allocating storage for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a block once and using multiple links to insert it into the 

multiple stacks. FGr LRU replacement, however, the order of 

two blocks in all stacks is always the same (the more-recently- 

referenced one is nearer the top) and is unaffected by what 

other blocks are members of a particular stack.5 This implies 

that all links must point down, and therefore can be inferred 

instead of stored. 

Instead of following the links of each stack and counting the 

blocks traversed, a block’s stack distance for each set-mapping 

function can be calculated by traversing the fully-associative 

stack until the reference is found or the stack exhausted. For 

each stack node y before the reference x is found or the 

stack exhausted, we determine whether fiQ) = fi(x) with 

each set-mapping function f; . Whenever the equality holds, 

we increment stuck-count[i]. If the reference is found, all 

stuck-count[i]’s are incremented. After the reference is found 

or the stack exhausted, each distunce[i, stuck-count[l]] is in- 

cremented to indicate a hit to distance stuck-count[i] with 

set-mapping function f;. Fig. 7 illustrates that this method, 

which we call ull-ussociutivity simulation, on a reference to 

block 2. 
The above method works for arbitrary set-mapping func- 

tions. A faster algorithm is possible if f;+l(x) refines fi(x), 
for i = 1 to L - 1. All-associativity simulation can take advan- 

tage of set-refinement two ways. First, if f1 implies multiple 

sets (not fully-associative), the algorithm can operate on the 

number of stacks induced by f1 instead of simulating with one 

long fully-associative stack. The information lost by not main- 

taining one stack is the relative order of blocks in different fl  

sets. This information is not needed since the contrapositive of 

the implication used to define refines is fi(x) # fiQ) implies 

fi+l(X) # fi+lQ). Thus, two blocks in different f1 sets will 
never be compared. Simulating with multiple stacks is faster 

than simulating with one, because the average number of ac- 

tive blocks the algorithm must look through to find a block 

is smaller, since active blocks are spread across many stacks 

(e.g., 512 stacks for simulating the VAX-l1/780’s cache 1111). 

Second, the examination of “fi(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ; Q )  for i = L down 

to 1 ” can be terminated the first time f;(x) equals f;(y), since 

the set-refinement forces the equality to hold for all smaller 

i. Furthermore, instead of incrementing stuck-count[i] for 

each i where the equality holds, we need only increment 

stuckmrtiul-count[i] for the maximum i for which it holds. 

When the processing for a reference terminates, we can com- 

pute stuck-count[i] as stuck>rtiul-countv] and in- 

crement distunce[i, stuck-count[i]], for i = 1,  L .  Thus, using 

In RANDOM replacement, on the other hand, two blocks can be re- 
ordered in one group of stacks and not another if the current reference maps 
below them in one set of stacks and to another stack in another group of 
stacks. Consider blocks 0, I ,  and 2 and a fully-associative stack and a pair of 
stacks for even and odd blocks. Reference 1, 0, and 2. The fully-associative 
stack holds (2 0 I ) ,  while the even and odd stacks hold (2 0) and (1 ) .  Now 
rereference block 1 .  RANDOM replacement requires that there is a 50 per- 
cent chance that the fully-associative stack changes to ( 1  0 2). Since the even 
stack is unaffected by a reference to an odd block, it remains as (2 0) and 
blocks 0 and 2 are now in a different order in different stacks. 
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Fully-Assoc Two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASets 

f(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 f(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx mod 2 
Stack Block 2 Same stack- Same stack- 

set? count[2] - -  set? count[l] 

Yes 1 Yes 1 

- -  fdly-aSsoC found? 

no 

no 

Yes 2 

Yes 3 

no 1 

no 1 

no Yes 4 Yes 2 

no Yes 5 Yes 3 

no Yes 6 no 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= I  = 4  

Four Sets 

f(x) = x mod 4 
Same stack- 
set? count[3] 

yes 1 

- -  

no 1 

no 1 

no 1 

no 1 

no 1 

yes 2 

= 2  * Distance: 

Fig. 7. All-associativity simulation example: referencing block 2 in caches 

with 1, 2, and 4 sets. 

Stack Number of stackgartial stackqartial stack-partial 

fully-assoc LSB matched -count[O] -count[ll -count[2] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 & 2 0 0 1 

rti 0 

b 0 

1 

found + -  * Stack 

1 0 1 

2 0 1 

2 1 1 

2 

2 

3 2 2 

3+2+2 2+2 2 

Distance: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l  = 4  = 2  

Fig. 8. All-associativity simulation with set-refinement example: referenc- 

ing block 2 in caches with 1, 2, and 4 sets. 

set-refinement reduces the inner loop of all-associativity sim- 

ulation with L set-mapping functions from L compares and 0 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL increments, to 1 to L compares and 0 or 1 increments. 
Since the expected number of compares in the improved al- 

gorithm can be as small as two,6 this can result in nontrivial 

savings if L is large. Fig. 8 illustrates this optimization on 

reference to block 2. 

Assume sets are selected with bit selection and the least-significant address 
bits of nodes in a stack are uniformly distributed. The probability that exactly 
i least significant bits match is 1 /2'+'. The number of iterations given an i-bit 
match is i + 1, with the final iteration used to detect the first mismatch. The 
expected number of iterations does not exceed two, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i + 1)/2'+' = 
2. 

D. Implementation and Comparison of Simulation 
Algorithms 

To study the performance of stack, forest, and all- 

associativity simulation and to study CPU caches per se, we 

implemented these algorithms in C under UNIX 4.3 BSD. 
Stack and forest simulation were added to a general cache 

simulator that originally contained 1250 C statements' [14]. 

Adding stack simulation increased total code size by 150 state- 

ments, and adding forest simulation, 220 statements. Stack 

simulation is implemented using linked lists. The forest sim- 

' Measured by the number of source lines containing a semicolon or closing 
brace. 
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312.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1.010) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- -- 309.2 (1.Oo0) 

1234.4' (4.0) 326.1 (1.054) 402.9 (1.333) 
1234.4' (4.0) 321.0 (1.038) 332.3 (1.074) 

1t306.6 (6.0) - -- 366.6 (1.185) 

TABLE I1 
SIMULATION TIMES 

Run-Lime in sec/lM-references (normalized) r E Associativity II 
1 Slack 1 F m  1 All-Associativity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W D  II 304.3 (0.984) I 304.7 (0.985) I 294.6 (0.952) 
(bytes) 

I 16K I-way 11 309.3 (l.Oo0) I 307.6 (0.994) I 300.8 (0.972) I 

Instead of determining the time for each stack simulation, we optimisti- 

cally approximate the time required as the time for a fast stack simulation 
(128 kbyte direct-mapped cache) times the number of runs required. 

integer L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP number of &-mapping functions */ 
function fl(x), .... fL(x) P arbitrary set-mapping functions */ 
integer N P counter for the number of references */ 
integer max-assoc /+ maximum associativity for metrics */ 

P distance counts so that miss-ratio(A=k. F=f,) = 1 - ~distance[i,j]/N */ 

integer distance[l:L, I:max-assoc] 

integw stack-count[l:Ll Pstack distance counters; reset for each reference. */ 

define stacknode-type ( 

t 

, = I  

integer block-number 
stacknode-type *next 

I 
stacknode-type *stack P top of stack pointer */ 
P Let N W y  be the number of unique blocks referenced. */ 
stacknode-type stacknodes[l:O(N,)] P dynamically allocated pool of stacknodes. */ 

For each reference x 1 
for i= 1 to L 1 s~ack-count[i] = 0 ] 
read(var x) 
N++ 

found = FALSE 
previous-nodegointer = NULL 

nodegointer = stack 
while (mOT found) AND (nodegointer!=NULL)) 1 

y = nodegointer->block-number 

found = TRUE 
for i=l to L [ stack-count[i]++ ] 

r FIND *I 

if(x=y) I 

I 
else 1 

for i=l to L 1 

1 
previous-nodegointer = node-pointer 
nodegointer = nodegointer->next 

if (f,(x)==f,(y)) stack-count[i]++ 

I 
I 
r METRIC *I 
if (found) 1 

for i=l to L [ 
/*Record hits to distances s max-assoc. */ 
if (stack-count[il S max-assoc) distance[i. stack-count[ill++ 

I 
1 
/* If found. move the stack node of x to the top of the stack. */ 
/* Othenvk, store x in a new stacknode and move it to the top of the stack. */ 
UPDAE(x, found, previous-node~~~intex. nodegointer) 

I 
Fig. 9. All-associativity simulation. 

ulation implementation restricts the set-mapping functions to 

be the block number modulo the cache size in block frames, 

a slight generalization of bit selection. We implemented all- 

associativity simulation in a separate program containing 800 
C statements and having far fewer options than the sirnula- 

tor above, and with the set-mapping function restricted to bit 

selection. 

Table I1 lists simulation times for C language implemen- 

tations of stack, forest, and all-associativity simulation. All 

caches simulated have 32-byte blocks, do no prefetching, use 
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integer L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP number of set-mapping functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*/ 
P set-mapping functions that obey set-refinemenf *I 
P i.e., f;+l refines fi for i=l, ..., L-1. +/ 
function fl(x). ..., fL(x) 

integer number-of-stacks P number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets induced by fl(x) *I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
integer N P number of references */ 
integer max-assoc P maximum associativity for metrics */ 
P distance counts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that miss-ratio(C(A=k. F=fi)) = 1 - ~distance[i,jIlN *I 

integer disrance[l:L. l:max-assoc] 

integer stack~artial-count[l:L] P stack distance counters; reset for each reference. *I 

define stacknode-type ( 

1'1 

integer block-number 
stacknode-type *next 

1 
stacknode-type *srack[Onumbex of stacks-11 P top of stack pointers */ 
P Let Ne,,, be the number of unique blocks referenced. */ 
stacknode-type stacknodes[l:O(N+)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP dynamically allocated pool of stacknodes. */ 

For each reference x ( 
for i=l to L [ stackgartial-count[il= 0 ) 
read(var x) 
N++ 
stactnumber = fi (x) 

P FIND */ 
found = FALSE 

previous-nodegointer = NULL 
nodeminter = stack[stack-numberl 

while ((NOT found) AND (nodepinter!=NULL)) ( 

y = nodegointer->block-number 

found = TRUE 
stacks;utial_count[++ 

if(x=y) [ 

1 
else ( 

match = FALSE 
for i=L down to 1 OR match [ 

if (f;(x)==fi(y)) [ 
match = TRUE 
stackgartial_count[il+t 

1 
1 
previous-nodegointer = nodegointer 
nodegointer = ncdegointer->next 

1 
1 
r METRIC *I 
if (found) ( 

stack-count = 0 
for i=L down to 1 ( 

stack-count = stack-count + stack-pamd-count[i] 

P Record hits to dismces s max-assoc. */ 
if (s tack-mt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 max-as=) distance[i, stack-countl++ 

1 
1 
P If found, move the stack mde of x to the top of its stack. */ 
P Otherwise. store x in a new stacknode and move it to the top of the stack. */ 
UPDATE(x, stack-number, found, previous-nodegointer, nodegointer) 

Fig. 10. All-associativity simulation with set-refinement. 
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LRU replacement, are unified (data and instructions cached to- 

gether) and use bit selection. Results in the first row (“trivial 

trace”) are for a trace consisting of one million copies of the 

same address, yielding one miss and 999999 hits. All other 

results presented here are for a trace of one million memory 

references from system calls generated by an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAtndahl stan- 

dard MVS workload [28]. We also examined traces from three 

other architectures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15]. We omit these results here, since they 

are similar to those with the MVS trace. Results not in paren- 

theses are the elapsed virtual times in seconds for simulation 

runs on an otherwise unloaded Sun-3/75 with 8M of memory, 

no local disk, and trace data read from a file server via an 

ethernet. Results in parentheses are normalized to the time for 

stack simulation to simulate a single 16 kbyte direct-mapped 

(1-way) cache with the MVS trace. 

We compare these algorithms using only memory trace 

data, as opposed to data from other caching systems, be- 

cause set-associativity is rarely used outside of CPU caches. 

Readers interested in simulation performance times for fully- 

associative caches, driven by traces of memory and disk ref- 

erences, should consult [33]. 

The simulation times in Table I1 allow us to answer the fol- 

lowing three questions regarding how these implementations 

perform. 

1) Are the implementations comparable? 

Yes. We determine that implementations are comparable by 

simulating single caches, which, in theory, require the same 

simulation time. For a synthetic trace and a real trace and for 

two associativities, we found the virtual times (CPU times) 

for implementations of stack and forest simulation differed 

by less than 0.5 percent, while the implementation of all- 

associativity simulation is 1-3 percent faster (see Table 11). 

That all-associative simulation is slightly faster is not surpris- 

ing, since it was implemented in a separate program, while 

stack and forest simulation are part of a more powerful cache 

simulator. 

2) What algorithm is fastest for simulating a collection of 

direct-mapped caches of similar size? 

Forest simulation. However, forest simulation is not sig- 

nificantly faster than all-associativity simulation if caches are 

large. Both forest and all-associativity simulation are much 

faster than stack simulation since they require only one run, 

whereas stack simulation needs one run per cache size. 

3) What algorithm is fastest for simulating a collection of 

direct-mapped and set-associative caches of similar size? 

All-associativity simulation. All-associativity simulation re- 

quires only one run, which is not much slower than a single, 

simple simulation run. Forest simulation is not able to simu- 

late nondirect-mapped caches. Stack simulation requires one 

run per unique number of sets. Simulating caches of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, 2c, 4c 

through 2’c block frames with associativities 1, 2, 4 through 

2a requires s + a - 1 stack simulations. One with c/2‘ sets, 

a second with c/2”-’ sets, . . ., another with c sets, another 

with 2c sets, . . ., and finally one with 2’c sets. The simulation 

in the final row of Table 11, for example, required six stack 

simulations, using 128, 256, . . . and 4K stacks, respectively. 

The speedups illustrated here for trace lengths of one mil- 

lion references (30 min down to 6 min) are impressive, but not 

critical. Traces to exercise multiple-megabyte caches, how- 

ever, will be much longer. All-associativity simulation will 

allow billion-reference traces to be processed in a few days 

rather than a few weeks. Furthermore, simulating a wide va- 

riety of caches in one pass as a trace is generated facilitates 

simulations with traces too large to store. 

V. THE RELATIONSHIP BETWEEN ASSOCIATIVITY 

AND MISS RATIO 

In this section, we analyze how changes in associativity al- 

ter cache miss ratio. We find empirically that some simple 

relationships exist between the m i s s  ratios of direct-mapped, 

set-associative, and fully-associative caches, largely indepen- 

dently of cache size. We concentrate on the relationship be- 

tween miss ratios of alternative caches, rather than the abso- 

lute size of miss ratio, because our traces samples are short, 

never exceeding 500K references. We assume throughout that 

caches have a fixed block size, use LRU replacement, do no 

prefetching and pick the set of a reference with bit selection. 

A .  Categorizing Set-Associative Misses 

The simulation algorithms described earlier facilitate com- 

puting the miss ratios for many alternative cache sizes and 

associativities. These data can be used to increase our under- 

standing of a single cache’s miss ratio. We do this by subdi- 

viding the observed misses into three categories: (set-)conflict 
misses (due to too many active blocks mapping to a fraction 

of the sets), capacity misses (due to fixed cache size), and 

compulsory misses (necessary in any case’). 

The size of these components can be calculated as follows. 

First, the conflict miss ratio is the cache’s miss ratio less the 

miss ratio for a fully-associative cache of the same size. Sec- 

ond, the capacity m i s s  ratio is the fully-associative cache’s 

miss ratio less the miss ratio for an infinite cache (one so 
large it never replaces a block). Finally, the compulsory miss 

ratio is the infinite cache’s miss ratio, which is not zero since 

initial references to blocks still miss. This categorization is 
easy to compute, since it can be derived from average miss ra- 

tios and does not require a detailed manipulation of simulation 

programs (as does the model in [3]). 

Table I11 illustrates this miss ratio categorization “ue,” a 

trace of VAX-11 interactive users under Ultrix (see Table I). 

All miss ratios are warm-start and for a unified cache with 

32-byte blocks. Under each miss ratio component, the first 

number is the component’s absolute size, while the second is 

its relative contribution to the overall miss ratio. The reader 

should concentrate on trends rather than miss ratio values, 

since this table only gives results for three short trace sam- 

ples of one workload. Compulsory miss ratios and results for 

larger caches are subject to more error. (That one conflict miss 

ratio is negative (eight-way set-associative 1 kbyte cache) is 

unimportant, since 1) the magnitude is very small (-O.O006), 

indicating that cache has approximately the same miss ratio as 

fully-associative cache, and 2) the behavior is possible [31].) 
For this trace, we see 1) the absolute size of the conflict miss 

ratios for set-associative caches (not direct-mapped) are small, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
That is, necessary without violating our assumptions of a fixed block size, 

LRU replacement, no prefetching, and bit selection. 



HILL AND SMITH: ASSOCIATIVITY IN CPU CACHES 1625 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘ache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASue 

@ytes) 

1K 
IK 
IK 
IK  

2K 
2K 
2K 
2K 

4K 
4K 
4K 
4K 

8K 
8K 
8K 
8K 

16K 
16K 
16K 
16K 

32K 
32K 
32K 
32K 

Degree of 
\ssOcmvity 

1-way 
2-way 
4-way 
8-way 

I-way 
2-way 
4-way 
%way 

1-way 
2-way 
4-way 
8-way 

I-way 
2-way 
4-way 
%way 

I-way 
2-way 
4-way 
%way 

I-way 
2-way 
4-way 
&way 

TABLE 111 
THREE Miss RATIO COMPONENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

M I S  

Ratio 

0.1913 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1609 
0.1523 
0.1488 

0.1482 
0.1223 
0.1148 
0.1128 

0.1089 
0.0948 
0.0868 
0.0842 

0.0868 
0.0693 
0.0650 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0629 

0.0658 
0.0535 
0.04% 
0.0478 

0.0503 
0.0612 
0.0383 

- - 

0.0371 

Miss Rali 

Conflict 

0.0419 Z2% 
0.0115 7% 
0.0029 2% 
0.m -0% 

0.0361 24% 
0.0102 8% 
0.0027 2% 
0 . m  1% 

0.M70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25% 
0.0129 14% 
0.0049 6% 
0.0022 3% 

0.0257 30% 
0.0082 12% 
O.OO40 6% 
0.0018 3% 

0.0194 29% 
0.0070 13% 
0.0029 6% 
0.0014 3% 

0.0134 27% 
0.0043 11% 
0.0014 4% 
0 . m  2% 

wnp~lenu (Reh 
Capacity 

0.1405 73% 
0.1405 87% 
0.1405 92% 
0.1405 94% 

0.1032 70% 
0.1032 &l% 
0.1032 90% 
0.1032 91% 

0.0730 67% 
0.0730 77% 
0.0730 84% 
0.0730 87% 

0.0521 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60% 
0.0521 75% 
0.0521 80% 
0.0521 83% 

0.0375 57% 
0.0375 708 
0.0375 76% 
0.0375 78% 

0.0279 55% 
0.0279 68% 
0.0279 73% 
0.0279 74% 

Srcenl) 

Compulsory 

0 . m  5% 
O.Oo90 6% 
O.Oo90 6% 
O.oOs0 6% 

O.Oo90 6% 
0 . m  7% 
O.Oo90 8% 
0 . m  8% 
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O.Oo90 14% 
0 . m  17% 
0 . m  18% 
O.Oo90 19% 

0.030 18% 
o.Oo90 22% 
0.0390 23% 
O.Oo90 24% 

aking further increases in associativity of limited benefit, 

2) the absolute size of conflict miss ratios for direct-mapped 

caches gets smaller with increasing cache size, making in- 

creasing associativity less important, and 3) the compulsory 

m i s s  ratio is fixed but gets relatively more important with in- 

creasing cache size, limiting the potential benefit of further 

cache size increases. One deficiency of this categorization is 

that the magnitude of the capacity miss ratio does not bound 

the miss ratio reduction that increasing cache size can yield. 

This is because increasing cache size also increases the num- 

ber of sets, reducing the conflict miss ratio. 

B.  How Set-Associative Miss Ratios Relate to 
Fully -Associative Ones 

It has been previously shown [26] that set-associative miss 

ratios can be closely estimated from fully-associative ones; 

this observation was validated for several traces for 16 and 64 
sets. We review that calculation in this section, and validate 

the results over a larger range of cache sizes and number of 

sets. 

The model derives LRU distance probabilities with s 
sets, p i@) ,  from fully-associative LRU distance probabilities, 

q;.p;(s) is the probability a reference is made to the ith most- 

recently-referenced block in one of s sets, while qi is the prob- 

ability a reference is made to the ith most-recently-referenced 

block in any set. Consequently, qi = p;(l). LKU distance 

probabilities are equivalent to the miss ratios of caches using 

LRU replacement. The miss ratio for an n-way set-associative 

cache with s sets is 1 - Er=, p i@) ,  while the miss ratio for 

an n-block fully-associative cache is 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY=, 4;. 
Bayes rule” allows us to express a set-associative LRU 

distance probability in terms of fully-associative LRU distance 

probabilities : 

pn(s)  = 

CO 

Prob(LRU distance n with s sets 
i=l 

I LRU distance i with 1 set) . qi. 

I o  For some event A and a set of mutually exclusive and exhaustive events 
B, , Bayes’ rule states that Prob(A) = C Prob(A IB,) . Prob(B, ). 

The above equation can be used to estimate set-associative 

LRU distance probabilities from fully-associative LRU dis- 

tance probabilities, or equivalently set-associative miss ratios 

from fully-associative miss ratios, using a simple approxima- 

tion for Prob(LRU distance n with s setslLRU distance i with 

1 set). The approximation is based on the assumption that 

the probability that two blocks map the same set is l/s and 

independent of where other blocks map. A reference to set- 

associative distance n occurs if exactly n - 1 more-recently- 

referenced blocks map to the reference’s set, while a reference 

to fully-associative distance i implies i - 1 blocks are more- 

recently-referenced. By the above assumption, the probability 

that exactly n - 1 of the i - 1 more-recently-referenced blocks 

map to the set of the reference is 0 for n > i and approxi- 

mately 

Substitution yields 

Fig. 11 shows actual miss ratios (solid lines) and miss ratios 

predicted with the above equation (dashed lines) for associa- 

tivities 1, 2, 4, and 8. Data are based on using trace “mu12’ 

to drive a unified cache with 32-byte blocks. Results here and 

for several other traces [ 151 yield three conclusions. 

1) The predictions are quite accurate. In most cases, the 

relative error is less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 percent; only rarely is it greater 

than 10 percent. 

2) Predictions are usually more pessimistic than the actual 

miss ratios. The cause of this phenomenon is that blocks se- 

lected with bit selection collide slightly less often than blocks 

whose set is selected at random (as the above approximation 
assumes), due to spatial locality [26]. 

3) The relative error gets smaller with increasing associativ- 

ity, which is expected since many-way set-associative caches 

have miss ratios nearly identical to fully-associative caches. 

That this method is accurate is not important for deriving 

set-associative miss ratios, since all-associativity simulation 

allows exact values to be calculated efficiently. Rather, it is 

important in that it provides insight into the difference between 

set-associative and fully-associative miss ratios, showing that 

the actual increase in miss ratio is nearly identical to the in- 

crease that results from assuming that active blocks map to 

sets with independent and equal probability. 

C .  How Set-Associative Miss Ratios Relate to Each Other 

Empirically we see that miss ratio is affected by changes 

in cache size, block size, and associativity. We would like to 

find some simple rules that can be used to quantify changes in 

associativity on cache miss ratios; we do that in this section. 

We find that by examining relative m i s s  ratio differences 
rather than absolute miss ratio differences one can almost 

eliminate the effect of cache size. Consider an n-way set- 

associative cache and a 2n-way set-associative cache, hav- 
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Fig. 1 1 .  Predicted (dashed) and actual (solid) m i s s  ratios for trace “mu12” 
with caches of associativity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2, 4, and 8. (a) Smaller caches. (b) Larger 
caches. 

ing the same capacity, the same block size, and m i s s  ratios 

m(A = n) and m(A = 2n). Let the miss ratio spread be the 

ratio of the miss ratios, less one: 

m(A = n) 
m(A =2n) m(A = 2n) 

m(A = n) - m(A = 2n) - I =  

M 
1 

S 

S 
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Fig. 12. Unified cache miss ratio spreads (solid lines are smoothed data). 

A line labeled “2n-to-n” displays [m(A = n) - m(A = 2n)]/m(A = 2n) 
where m(A = n) is the miss ratio of an n-way set-associative cache. (a) 
Five-trace group. (b) 23-trace group. 

Figs. 12 and 13 and Table IV present data from trace-driven 

simulation. As discussed in Section 111, data for larger caches 

are subject to more error than data for smaller caches, and 

measurements for caches larger than 64K should be treated 

with considerable caution. Fig. 12 shows some miss ratio 
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Block Size 16 Bytes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8-O4 [ 440-2 [ 2-lo-1 

Block Size 32 Bytes Block Size 64 Bytes 
8-104 I 4-lo-2 I 2-tc-1 8-04 I 4-lo-2 1 2-lo-I 

5% 1 1 %  16% 4% 11% 16% 6% 10% 16% 
6% 13% 18% 5% 14% 17% 6% 13% 18% 

TABLE IV 
SMOOTHED Miss RATIO SPREADS 

4K 
8K 

16K 
32K 
64K 

128K 

6% 
7% 
7% 
6% 
5% 
4% 

20% 
22% 
26% 
28% 
30% 
29% 

6% 
7% 
7% 
7% 
6% 
5% 

20% 
23% 
28% 
30% 
32% 
32% 

7% 
7% 
7% 
7% 
6% 
5% 

15% 
15% 
15% 
15% 
13% 
14% 

20% 
24% 
29% 
32% 
35% 
35% 

Cache Block Size 16 Bytes I[ Block Size 32 Bytes 11 Block Size 64 Bytes ' 

IK II 6% I 13% I '27% II 6% I 14% I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30% II 7% I 14% I 33% 1 
Size 8 - 1 4  I 4-10-2 I 2-lo-1 11 8 - O 4  I 4-10.2 I 2-10.1 11 840.4 [ 4-lo-2 I 2-lo-l 
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0.20. 

40% 
40% 

Smoothed MQ Ratio Spreads for Instruction Caches I 

13% 
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11% 
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12% 
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\ 
A 

Smoothed Miss Ratio Spreads lor D a h  Caches 

1K 10K IOOK IM 
Cache Size (bytes) 
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14% 
13% 
12% 
11% 
11% 
11% 
12% 
12% 
- 

34% 
36% 
35% 
36% 
35% 
36% 
35% 
35% 
- 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24% 29% 

128K 
256K 

M 
I 

S 

S 

spreads (recommended in [9]). We selected the weights to re- 

duce variation between adjacent spreads, without suppressing 

larger trends. We assigned a weight of 0.20 to both adjacent 

spreads and 0.15 to spreads two sizes away, leaving a weight 

of 0.30 for the spread being smoothed. 

Table IV shows similar results from an alternative computa- 

tion, taking the geometric average of the miss ratio spreads of 

individual traces. This method yields slightly larger spreads 

than those calculated using the ratio of average miss ratios (as 

in Fig. 12). Miss ratio spreads in rows labeled "AVG" are 

calculated by taking the geometric mean of the ratio of miss 

ratios for cache sizes from 1K to 256K bytes. 

These results together with more data in [15] exhibit the 

following trends. 

1) Miss ratio spreads for caches with more restricted asso- 

ciativity are larger, implying, for example, that direct-mapped 

and two-way set-associative miss ratios are further apart than 

two-way and four-way set-associative miss ratios. This result 

corroborates the previous work of many others. 

2) Except for small instruction caches, miss ratio spreads 

do not vary rapidly with changing cache size, even though the 

miss ratios in their numerators and denominators vary by over 

an order of magnitude. The miss ratio spreads between small 

direct-mapped and two-way set-associative instruction caches 

are smaller than many other spreads due to the sequential 

behavior of instruction reference streams, which minimizes 

the usefulness of increasing associativity in small instruction 

0.00 
1 

IK 10K IOOK IM 
Cache Size (bytes) 

(b) 
Fig. 13. More m i s s  ratio spreads for the five-trace group (solid lines are 

smoothed data). (a) Instruction caches. (b) Data caches. 

spreads of unified caches with 32-byte blocks for the five- 

and 23-trace groups. Fig. 13 examines miss ratio spreads for 

inAtruction and data cache with the five-trace group. The av- 

erage miss ratio spread is computed using the ratio of the 

average miss ratios. Dashed lines present raw data, while 

solid lines are smoothed using a weighted average of adjacent 
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1989 

Cache 

Type 

caches [3 11. This sequentiality is much less of a factor for large 
instruction caches, and for such large instruction caches, the 

miss ratio spreads are similar to those for data and unified 

caches. The only major exception to these observations is the 

miss ratio spread between direct-mapped and two-way set- 

associative 128 kbyte caches with the five-trace group. We 

believe that the cause of this aberration lies in the particular 
traces and trace lengths used, not in some property of 128 

kbyte caches. 

3) Miss ratio spreads are positively correlated with block 

size. While the difference is not important with wide associa- 

tivity, the miss ratio spread between direct-mapped and two- 

way set-associative unified caches with the 23-trace group in- 

creases from 25 to 31 to 39 percent as block size goes from 

16 to 32 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 bytes. The reason for this is that for a given 

cache size, as the blocks become larger, the number of sets 

decreases, and the probability that two active blocks map into 

the same set increases (i.e., bigger blocks are more likely to 

“bump into each other”.) 

4) Miss ratio spreads between unified and data caches are 

similar. Instruction cache spreads are similar or smaller (see 

also [lo]). Miss ratio spreads between direct-mapped and two- 

way set-associative instruction caches are significantly smaller 

than other spreads, as has been observed elsewhere [31]. 

Since the miss ratio spreads do not vary greatly with cache 

size, we can provide insight into the relationship between miss 

ratio and associativity by computing miss ratio spreads aver- 

aged over many cache sizes, as is done in Table IV. To one 

significant figure, halving associativity with these traces from 

eight-way to four-way to two-way to direct-mapped causes 

miss ratio spreads of 5, 10, and 30 percent regardless of 

cache size, cache type, or block size. Equivalently, one can 

look at set-associative miss ratios relative to direct-mapped 

or fully-associative ones, as depicted in Table V. Relative to 

direct-mapped, the miss ratios for eight-, four- and two-way 

set-associative are, respectively, about 34, 30, and 22 percent 

lower. Assuming that eight-way set-associative is effectively 

fully-associative, the miss ratio increases by 5 percent for 

four-way, 17 percent for two-way, and 52 percent for direct- 

mapped. 

Our examination of miss ratios for caches with different 

associativities has shown that the miss ratio spread does not 

change significantly over a wide range of cache sizes, with 

exception of small instruction caches, for which the spread is 

unusually small. Consequently, the absolute miss ratio differ- 

ence decreases as caches get larger, since absolute miss ratios 

get smaller. When the absolute miss ratio difference becomes 

sufficiently small, an interesting change occurs: the effective 

access time of a direct-mapped cache can be smaller than that 

of a set-associative cache of the same size, even though the 

direct-mapped cache has the larger miss ratio. This change 

occurs when implementation differences, that have previously 

been ignored, become more important than absolute miss ra- 

tio differences. This topic is considered in some detail in [16] 

and [22]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D .  Extending Design Target Miss Ratios 

In [28], it was noted that absolute miss ratios computed 

from trace-driven simulations were often optimistic. That pa- 

Block From Direct-Mappad To I) From Eight-Way To 
Size &way I 4-way I 2-way 11 4-way I 2-way I I-way 

TABLE V 
RELATIVE Miss RATIO CHANGE 

lnsmrtion 1 64% 

52% 
63% 
48% 
51% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
54% 

- 

Insrmction 

per then presented design target miss ratios which were miss 

ratios derived from hardware monitor measurements, personal 

experience, and trace-driven simulations using realistic work- 

loads; those miss ratios were intended to represent realistic 

figures for real systems under real workloads. The data in 

[28] presented miss ratios for fully associative caches with 

16-byte blocks, broken down into figures for unified, instruc- 

tion, and data caches. In another paper [30], the design target 

miss ratios were extended to block sizes ranging from 4 to 128 

bytes. This was done by finding the relative change in miss 

ratio as the block size changed (by taking “ratios of miss ra- 

tios” for a variety of traces) and propagating the design target 

miss ratios for 16-byte block to other block sizes. 

We use the same method in Table VI to extend the design 

target miss ratios to caches of limited associativity. We as- 

sume that eight-way set-associative miss ratios are equal to 

the fully-associative design target miss ratios, and compute 

other set-associative miss ratios using the smoothed ratios of 
miss ratios shown in Table IV. We do not extend the design 

target miss ratios to caches larger than 32 kbytes, because the 

original design target miss ratios in [28] and [30] are limited 

to caches of 32 kbytes or less, and the methodology for ex- 

tending them to larger cache sizes is beyond the scope of this 

paper; note, however, that data in [27] suggest that as a rough 

rule of thumb, the miss ratio drops as the square root of the 

cache size. 

VI. CONCLUSIONS 

We have examined properties and algorithms for simulating 

alternative caches and have examined the relationship between 

associativity and miss ratio. We find that both inclusion (that 

larger caches contain a superset of the blocks in smaller caches 

[ 191) and set-refinement (that blocks mapping to the same set 

in larger caches map to the same set in smaller caches) can 

be used by forest simulation, a new algorithm for rapidly 

simulating alternative direct-mapped caches. We show that in- 

clusion is not useful, but set-refinement can be useful for 

all-associativity simulation, an algorithm for rapidly sim- 

ulating alternative direct-mapped, set-associative, and fully- 
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4K 
8K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

32K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZK 

I ~ K  

TABLE VI 
DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATARGET MISS RATIOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.211 0.234 0.271 0.134 0.140 0.155 0.179 0.098 0.104 0.115 0.133 

0.100 0.106 0.120 0.143 0.063 0.067 0.076 0.091 0.043 0.046 0.053 0.063 
0.060 0.061 0.072 0.089 0.037 0.039 0.045 0.056 0.023 0.025 0,028 0.035 

0.030 0.032 0.036 0.046 0.017 0.018 0.021 0.027 0.010 0.011 0.012 0.016 

0.150 0.159 0.179 0.210 0.098 o m  0.117 0.138 0.068 0.072 0.082 0.097 

o.om 0.053 0.060 0.076 0.029 0.031 om5 0.045 0.018 0.019 0.022 0.029 
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I Dakn Target Mhr Ratbs for Data C u b a  I 

1 3ZK I( 0.040 1 0.041 1 0.045 1 0.055 11 0.025 1 0.026 1 0.023 1 0.037 1) 0.017 I 0.018 I 0.020 1 0.027 1 

associative caches. Our algorithm is a generalization of an 

earlier algorithm [ 191, [34]. We find all-associativity simula- 

tion is tremendously effective, allowing dozens of caches to 

be evaluated in time that is within a small constant factor of 

the time needed to simulate one cache with wide associativity. 

Our empirical examination of associativity and miss ratio 

provides data and insight into how miss ratio is affected by 

changes in associativity. In particular: 

e We show how to divide cache misses into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconflict, ca- 
pacity, and compulsory misses, using only average miss ra- 

tios from alternative caches. Increasing associativity but not 

cache size can only reduce conflict misses. Increasing cache 

size but not associativity increases the number of sets, and 

therefore may decrease conflict and capacity misses. Compul- 

sory misses cannot be reduced without increasing block size 

or prefetching . 
e By applying a model from [26] to a wide variety of 

caches, we show that the difference between set-associative 

and fully-associative miss ratios (the rate of conflict misses) 

can be predicted by assuming blocks map to sets uniformly 

and independently, resulting in too many active blocks map- 

ping to a fraction of the sets. 

e We find empirically that miss ratio spread, the relative 

change in miss ratio caused by reducing associativity, is rel- 

atively invariant for caches of significantly different size and 

miss ratio. Our data show that reducing associativity from 

eight-way to four-way, from four-way to two-way, and from 

two-way to direct-mapped causes relative miss ratio increases 

of about 5 ,  10, and 30 percent, respectively. We also use miss 

ratio spreads to provide design target miss ratios for caches 

with limited associativity. 
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